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An Overview of Empirical Processes

This chapter presents an overview of the main ideas and techniques of em-
pirical process research. The emphasis is on those concepts which directly
impact statistical estimation and inference. The major distinction between
empirical process theory and more standard asymptotics is that the random
quantities studied have realizations as functions rather than real numbers
or vectors. Proofs of results and certain details in definitions are postponed
until Part II of the book.

We begin by defining and sketching the main features and asymptotic
concepts of empirical processes with a view towards statistical issues. An
outline of the main empirical process techniques covered in this book is pre-
sented next. This chapter concludes with a discussion of several additional
related topics that will not be pursued in later chapters.

2.1 The Main Features

A stochastic process is a collection of random variables {X(t), t ∈ T} on the
same probability space, indexed by an arbitrary index set T . An empirical
process is a stochastic process based on a random sample. For example,
consider a random sample X1, . . . , Xn of i.i.d. real random variables with
distribution F . The empirical distribution function is

Fn(t) = n−1
n∑

i=1

1{Xi ≤ t},(2.1)
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where the index t is allowed to vary over T = R, the real line.
More generally, we can consider a random sample X1, . . . , Xn of inde-

pendent draws from a probability measure P on an arbitrary sample space
X . We define the empirical measure to be Pn = n−1

∑n
i=1 δXi

, where δx is
the measure that assigns mass 1 at x and zero elsewhere. For a measurable
function f : X �→ R, we denote Pnf = n−1

∑n
i=1 f(Xi). For any class F

of measurable functions f : X �→ R, an empirical process {Pnf, f ∈ F}
can be defined. This simple approach can generate a surprising variety of
empirical processes, many of which we will consider in later sections in this
chapter as well as in Part II.

Setting X = R, we can now re-express Fn as the empirical process
{Pnf, f ∈ F}, where F = {1{x ≤ t}, t ∈ R}. Thus one can view the stochas-
tic process Fn as indexed by either t ∈ R or f ∈ F . We will use either
indexing approach, depending on which is most convenient for the task at
hand. However, because of its generality, indexing empirical processes by
classes of functions will be the primary approach taken throughout this
book.

By the law of large numbers, we know that

Fn(t) as→ F (t)(2.2)

for each t ∈ R, where as→ denotes almost sure convergence. A primary goal of
empirical process research is to study empirical processes as random func-
tions over the associated index set. Each realization of one of these random
functions is a sample path. To this end, Glivenko (1933) and Cantelli (1933)
demonstrated that (2.2) could be strengthened to

sup
t∈R

|Fn(t) − F (t)| as→ 0.(2.3)

Another way of saying this is that the sample paths of Fn get uniformly
closer to F as n → ∞. Returning to general empirical processes, a class
F of measurable functions f : X �→ R, is said to be a P -Glivenko-Cantelli
class if

sup
f∈F

|Pnf − Pf | as∗→ 0,(2.4)

where Pf =
∫
X f(x)P (dx) and as∗→ is a mode of convergence slightly stronger

than as→ but which will not be precisely defined until later in this chapter
(both modes of convergence are equivalent in the setting of (2.3)). Some-
times the P in P -Glivenko-Cantelli can be dropped if the context is clear.

Returning to Fn, we know by the central limit theorem that for each
t ∈ R

Gn(t) ≡
√

n [Fn(t) − F (t)] � G(t),
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where � denotes convergence in distribution and G(t) is a mean zero
normal random variable with variance F (t) [1 − F (t)]. In fact, we know
that Gn, simultaneously for all t in a finite set Tk = {t1, . . . , tk} ∈ R,
will converge in distribution to a mean zero multivariate normal vector
G = {G(t1), . . . , G(tk)}′, where

cov [G(s), G(t)] = E [G(s)G(t)] = F (s ∧ t) − F (s)F (t)(2.5)

for all s, t ∈ Tk.
Much more can be said. Donsker (1952) showed that the sample paths

of Gn, as functions on R, converge in distribution to a certain stochastic
process G. Weak convergence is the generalization of convergence in dis-
tribution from vectors of random variables to sample paths of stochastic
processes. Donsker’s result can be stated succinctly as Gn � G in �∞(R),
where, for any index set T , �∞(T ) is the collection of all bounded functions
f : T �→ R. �∞(T ) is used in settings like this to remind us that we are
thinking of distributional convergence in terms of the sample paths.

The limiting process G is a mean zero Gaussian process with E [G(s)G(t)]
= (2.5) for every s, t ∈ R. A Gaussian process is a stochastic process
{Z(t), t ∈ T}, where for every finite Tk ⊂ T , {Z(t), t ∈ Tk} is multivariate
normal, and where all sample paths are continuous in a certain sense that
will be made more explicit later in this chapter. The process G can be
written G(t) = B(F (t)), where B is a standard Brownian bridge on the
unit interval. The process B has covariance s ∧ t − st and is equivalent to
the process W(t) − tW(1), for t ∈ [0, 1], where W is a standard Brownian
motion process. The standard Brownian motion is a Guassian process on
[0,∞) with continuous sample paths, with W(0) = 0, and with covariance
s ∧ t. Both B and W are important examples of Gaussian processes.

Returning again to general empirical processes, define the random mea-
sure Gn =

√
n(Pn − P ), and, for any class F of measurable functions

f : X �→ R, let G be a mean zero Gaussian process indexed by F , with
covariance E [f(X)g(X)] − Ef(X)Eg(X) for all f, g ∈ F , and having ap-
propriately continuous sample paths. Both Gn and G can be thought of as
being indexed by F . We say that F is P -Donsker if Gn � G in �∞(F).
The P and/or the �∞(F) may be dropped if the context is clear. Donsker’s
(1952) theorem tells us that F = {1{x ≤ t}, t ∈ R} is Donsker for all proba-
bility measures which are based on some real distribution function F . With
f(x) = 1{x ≤ t} and g(x) = 1{x ≤ s},

E [f(X)g(X)] − Ef(X)Eg(X) = F (s ∧ t) − F (s)F (t).

For this reason, G is also referred to as a Brownian bridge.
Suppose we are interested in forming confidence bands for F over some

subset H ⊂ R. Because F = {1{x ≤ t}, t ∈ R} is Glivenko-Cantelli, we can
uniformly consistently estimate the covariance σ(s, t) = F (s∧t)−F (s)F (t)
of G with σ̂(s, t) = Fn(s∧t)−Fn(s)Fn(t). While such a covariance could be
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used to form confidence bands when H is finite, it is of little use when H is
infinite, such as when H is a subinterval of R. In this case, it is preferable
to make use of the Donsker result for Gn. Let Un = supt∈H |Gn(t)|. The
continuous mapping theorem tells us that whenever a process {Zn(t), t ∈
H} converges weakly to a tight limiting process {Z(t), t ∈ H} in �∞(H),
then h(Zn) � h(Z) in h(�∞(H)) for any continuous map h. In our setting
Un = h(Gn), where h(g) = supt∈H |g(t)|, for any g ∈ �∞(R), is a continuous
real function. Thus the continuous mapping theorem tells us that Un �
U = supt∈H |G(t)|. When F is continuous and H = R, U = supt∈[0,1] |B(t)|
has a known distribution from which it is easy to compute quantiles. If we
let up be the p-th quantile of U , then an asymptotically valid symmetric
1 − α level confidence band for F is Fn ± u1−α/

√
n.

An alternative is to construct confidence bands based on a large num-
ber of bootstraps of Fn. The bootstrap for Fn can be written as F̂n(t) =
n−1

∑n
i=1 Wni1{Xi ≤ t}, where (Wn1, . . . ,Wnn) is a multinomial random

n-vector, with probabilities 1/n, . . . , 1/n and number of trials n, and which
is independent of the data X1, . . . , Xn. The conditional distribution of
Ĝn =

√
n(F̂n − Fn) given X1, . . . , Xn can be shown to converge weakly

to the distribution of G in �∞(R). Thus the bootstrap is an asymptotically
valid way to obtain confidence bands for F .

Returning to the general empirical process set-up, let F be a Donsker
class and suppose we wish to construct confidence bands for Ef(X) that
are simultaneously valid for all f ∈ H ⊂ F . Provided certain second
moment conditions hold on F , the estimator σ̂(f, g) = Pn [f(X)g(X)] −
Pnf(X)Png(X) is consistent for σ(f, g) = E [f(X)g(X)] − Ef(X)Eg(X)
uniformly over all f, g ∈ F . As with the empirical distribution function
estimator, this covariance is enough to form confidence bands provided H
is finite. Fortunately, the bootstrap is always asymptotically valid when
F is Donsker and can therefore be used for infinite H. More precisely, if
Ĝn =

√
n(P̂n−Pn), where P̂nf = n−1

∑n
i=1 Wnif(Xi) and (Wn1, . . . ,Wnn)

is defined as before, then the conditional distribution of Ĝn given the data
converges weakly to G in �∞(F). Since this is true for all of F , it is cer-
tainly true for any H ⊂ F . The bootstrap result for Fn is clearly a special
case of this more general result.

Many important statistics based on i.i.d. data cannot be written as em-
pirical processes, but they can frequently be written in the form φ(Pn),
where Pn is indexed by some F and φ is a smooth map from �∞(F) to some
set B (possibly infinite-dimensional). Consider, for example, the quantile
process ξn(p) = F

−1
n (p) for p ∈ [a, b], where H−1(p) = inf{t : H(t) ≥ p}

for a distribution function H and 0 < a < b < 1. Here, ξn = φ(Fn),
where φ maps a distribution function H to H−1. When the underlying
distribution F is continuous over N = [H−1(a) − ε,H−1(b) + ε] ⊂ [0, 1],
for some ε > 0, with continuous density f such that 0 < inft∈N f(t) ≤
supt∈N f(t) < ∞, then

√
n(ξn(p) − ξp), where ξp = F−1(p), is uniformly
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asymptotically equivalent to −Gn(F−1(p))/f(F−1(p)) and hence converges
weakly to G(F−1(p))/f(F−1(p)) in �∞([a, b]). (Because the process G is
symmetric around zero, both −G and G have the same distribution.) The
above weak convergence result is a special case of the functional delta-
method principle which states that

√
n [φ(Pn) − φ(P )] converges weakly in

B to φ′(G), whenever F is Donsker and φ has a “Hadamard derivative” φ′

which will be defined more precisely later in this chapter.
Many additional statistics can be written as zeros or maximizers of

certain data-dependent processes. The former are known as Z-estimators
and the latter as M-estimators. Consider the linear regression example
given in Chapter 1. Since β̂ is the zero of Un(β) = Pn [X(Y − X ′β)], β̂

is a Z-estimator. In contrast, the penalized likelihood estimators (β̂, η̂) in
the partly linear logistic regression example of the same chapter are M-
estimators since they are maximizers of L̃(β, η) given in (1.6). As is the
case with Un and L̃n, the data-dependent objective functions used in Z-
and M- estimation are often empirical processes, and thus empirical process
methods are frequently required when studying the large sample properties
of the associated statistics.

The key attribute of empirical processes is that they are random func-
tions—or stochastic processes—based on a random data sample. The main
asymptotic issue is studying the limiting behavior of these processes in
terms of their sample paths. Primary achievements in this direction are
Glivenko-Cantelli results which extend the law of large numbers, Donsker
results which extend the central limit theorem, the validity of the bootstrap
for Donsker classes, and the functional delta method.

2.2 Empirical Process Techniques

In this section, we expand on several important techniques used in empirical
processes. We first define and discuss several important kinds of stochastic
convergence, including convergence in probability as well as almost sure
and weak convergence. We then introduce the concept of entropy and in-
troduce several Glivenko-Cantelli and Donsker theorems based on entropy.
The empirical bootstrap and functional delta method are described next.
A brief outline of Z- and M- estimator methods are then presented. This
section is essentially a review in miniature of the main points covered in
Part II of this book, with a minimum of technicalities.

2.2.1 Stochastic Convergence

When discussing convergence of stochastic processes, there is always a met-
ric space (D, d) implicitly involved, where D is the space of possible values
for the processes and d is a metric (distance measure), satisfying d(x, y) ≥ 0,
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d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z), and d(x, y) = 0 if and only if
x = y, for all x, y, z ∈ D. Frequently, D = �∞(T ), where T is the index
set for the processes involved, and d is the uniform distance on D, i.e.,
d(x, y) = supt∈T |x(t) − y(t)| for any x, y ∈ D. We are primarily interested
in the convergence properties of the sample paths of stochastic processes.
Weak convergence, or convergence in distribution, of a stochastic process
Xn happens when the sample paths of Xn begin to behave in distribution,
as n → ∞, more and more like a specific random process X. When Xn

and X are Borel measurable, weak convergence is equivalent to saying that
Ef(Xn) → Ef(X) for every bounded, continuous function f : D �→ R,
where the notation f : A �→ B means that f is a mapping from A to B,
and where continuity is in terms of d. Hereafter, we will let Cb(D) denote
the space of bounded, continuous maps f : D �→ R. We will define Borel
measurability in detail later in Part II, but, for now, it is enough to say
that lack of this property means that there are certain important subsets
A ⊂ D where the probability that Xn ∈ A is not defined.

In many statistical applications, Xn may not be Borel measurable. To
resolve this problem, we need to introduce the notion of outer expectation
for arbitrary maps T : Ω �→ R̄ ≡ [−∞,∞], where Ω is the sample space.
T is not necessarily a random variable because it is not necessarily Borel
measurable. The outer expectation of T , denoted E∗T , is the infimum over
all EU , where U : Ω �→ R is measurable, U ≥ T , and EU exists. For EU to
exist, it must not be indeterminate, although it can be ±∞, provided the
sign is clear. We analogously define inner expectation: E∗T = −E∗[−T ].
There also exists a measurable function T ∗ : Ω �→ R, called the mini-
mal measurable majorant, satisfying T ∗(ω) ≥ T (ω) for all ω ∈ Ω and
which is almost surely the smallest measurable function ≥ T . Further-
more, when E∗T < ∞, E∗T = ET ∗. The maximal measurable minorant is
T∗ = −(−T )∗. We also define outer probability for possibly nonmeasurable
sets: P∗(A) as the infimum over all P(B) with A ⊂ B ⊂ Ω and B a Borel
measurable set. Inner probability is defined as P∗(A) = 1 − P∗(Ω − A).
This use of outer measure permits defining weak convergence, for possibly
nonmeasurable Xn, as E∗f(Xn) �→ Ef(X) for all f ∈ Cb(D). We denote
this convergence by Xn � X. Notice that we require the limiting process
X to be measurable. This definition of weak convergence also carries with
it an implicit measurability requirement on Xn: Xn � X implies that Xn

is asymptotically measurable, in that E∗f(Xn) − E∗f(Xn) → 0, for every
f ∈ Cb(D).

We now consider convergence in probability and almost surely. We say
Xn converges to X in probability if P {d(Xn,X)∗ > ε} → 0 for every ε > 0,
and we denote this Xn

P→ X. We say that Xn converges outer almost surely
to X if there exists a sequence Δn of measurable random variables with
d(Xn,X) ≤ Δn for all n and with P{lim supn→∞ Δn = 0} = 1. We denote
this kind of convergence Xn

as∗→ X. While these modes of convergence are
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slightly different than the standard ones, they are identical when all the
quantities involved are measurable. The properties of the standard modes
are also generally preserved in these new modes. The major difference is
that these new modes can accommodate many situations in statistics and in
other fields which could not be as easily accommodated with the standard
ones. As much as possible, we will keep measurability issues suppressed
throughout this book, except where it is necessary for clarity. From this
point on, the metric d of choice will be the uniform metric unless noted
otherwise.

For almost all of the weak convergence applications in this book, the
limiting quantity X will be tight, in the sense that the sample paths of X
will have a certain minimum amount of smoothness. To be more precise, for
an index set T , let ρ be a semimetric on T , in that ρ has all the properties
of a metric except that ρ(s, t) = 0 does not necessarily imply s = t. We
say that T is totally bounded by ρ if for every ε > 0, there exists a finite
collection Tk = {t1, . . . , tk} ⊂ T such that for all t ∈ T , we have ρ(t, s) ≤ ε
for some s ∈ Tk. Now define UC(T, ρ) to be the subset of �∞(T ) where
each x ∈ UC(T, ρ) satisfies

lim
δ↓0

sup
s,t∈T with ρ(s,t)≤δ

|x(t) − x(s)| = 0.

The “UC” refers to uniform continuity. The stochastic process X is tight
if X ∈ UC(T, ρ) almost surely for some ρ for which T is totally bounded.
If X is a Gaussian process, then ρ can be chosen as ρ(s, t) = (var[X(s)−
X(t)])1/2. Tight Gaussian processes will be the most important limiting
processes considered in this book.

Two conditions need to be met in order for Xn to converge weakly in
�∞(T ) to a tight X. This is summarized in the following theorem which we
present now but prove later in Chapter 7 (Page 114):

Theorem 2.1 Xn converges weakly to a tight X in �∞(T ) if and only
if:

(i) For all finite {t1, . . . , tk}⊂T , the multivariate distribution of {Xn(t1),
. . . , Xn(tk)} converges to that of {X(t1), . . . , X(tk)}.

(ii) There exists a semimetric ρ for which T is totally bounded and

lim
δ↓0

lim sup
n→∞

P∗
{

sup
s,t∈T with ρ(s,t)<δ

|Xn(s) − Xn(t)| > ε

}
= 0,(2.6)

for all ε > 0.

Condition (i) is convergence of all finite dimensional distributions and Con-
dition (ii) implies asymptotic tightness. In many applications, Condition (i)
is not hard to verify while Condition (ii) is much more difficult.
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In the empirical process setting based on i.i.d. data, we are interested in
establishing that Gn � G in �∞(F), where F is some class of measurable
functions f : X �→ R, and where X is the sample space. When Ef2(X) < ∞
for all f ∈ F , Condition (i) above is automatically satisfied by the standard
central limit theorem, whereas establishing Condition (ii) is much more
work and is the primary motivator behind the development of much of
modern empirical process theory. Whenever F is Donsker, the limiting
process G is always a tight Gaussian process, and F is totally bounded
by the semimetric ρ(f, g) = {var [f(X) − g(X)]}1/2. Thus Conditions (i)
and (ii) of Theorem 2.1 are both satisfied with T = F , Xn(f) = Gnf , and
X(f) = Gf , for all f ∈ F .

Another important result is the continuous mapping theorem. This the-
orem states that if g : D �→ E is continuous at every point of a set D0 ⊂ D,
and if Xn � X, where X takes all its values in D0, then g(Xn) � g(X). For
example, if F is a Donsker class, then supf∈F |Gnf | has the same limiting
distribution as supf∈F |Gf |, since the supremum map is uniformly con-
tinuous, i.e.,

∣∣supf∈F |x(f)| − supf∈F |y(f)|
∣∣ ≤ supf∈F |x(f) − y(f)| for all

x, y ∈ �∞(F). This fact can be used to construct confidence bands for Pf .
The continuous mapping theorem has many other practical uses that we
will utilize at various points throughout this book.

2.2.2 Entropy for Glivenko-Cantelli and Donsker Theorems

The major challenge in obtaining Glivenko-Cantelli or Donsker theorems
for classes of functions F is to somehow show that going from pointwise
convergence to uniform convergence is feasible. Clearly the complexity, or
entropy, of F plays a major role. The easiest entropy to introduce is en-
tropy with bracketing. For 1 ≤ r < ∞, Let Lr(P ) denote the collection
of functions g : X �→ R such that ‖g‖r,P ≡

[∫
X |g(x)|rdP (x)

]1/r
< ∞.

An ε-bracket in Lr(P ) is a pair of functions l, u ∈ Lr(P ) with P{l(X) ≤
u(X)} = 1 and with ‖l−u‖r,P ≤ ε. A function f ∈ F lies in the bracket l, u
if P{l(X) ≤ f(X) ≤ u(X)} = 1. The bracketing number N[](ε,F , Lr(P )) is
the minimum number of ε-brackets in Lr(P ) needed to ensure that every
f ∈ F lies in at least one bracket. The logarithm of the bracketing num-
ber is the entropy with bracketing. The following is one of the simplest
Glivenko-Cantelli theorems (the proof is deferred until Part II, Page 145):

Theorem 2.2 Let F be a class of measurable functions and suppose that
N[](ε,F , L1(P )) < ∞ for every ε > 0. Then F is P -Glivenko-Cantelli.

Consider, for example, the empirical distribution function Fn based on
an i.i.d. sample X1, . . . , Xn of real random variables with distribution F
(which defines the probability measure P on X = R). In this setting, Fn

is the empirical process Gn with class F = {1{x ≤ t}, t ∈ R}. For any
ε > 0, a finite collection of real numbers −∞ = t1 < t2 < · · · < tk = ∞
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can be found so that F (tj−) − F (tj−1) ≤ ε for all 1 < j ≤ k, F (t1) = 0
and F (tk−) = 1, where H(t−) = lims↑t H(s) when such a limit exists.
This can always be done in such a way that k ≤ 2 + 1/ε. Consider the
collection of brackets {(lj , uj), 1 < j ≤ k}, with lj(x) = 1{x ≤ tj−1} and
uj(x) = 1{x < tj} (notice that uj is not in F). Now each f ∈ F is in at least
one bracket and ‖uj−lj‖P,1 = F (tj−)−F (tj−1) ≤ ε for all 1 < j ≤ k. Thus
N[](ε,F , L1(P )) < ∞ for every ε > 0, and the conditions of Theorem 2.2
are met.

Donsker theorems based on entropy with bracketing require more strin-
gent conditions on the number of brackets needed to cover F . The brack-
eting integral,

J[](δ,F , Lr(P )) ≡
∫ δ

0

√
log N[](ε,F , Lr(P ))dε,

needs to be bounded for r = 2 and δ = ∞ to establish that F is Donsker.
Hence the bracketing entropy is permitted to go to ∞ as ε ↓ 0, but not
too quickly. For most of the classes F of interest, the entropy does go to
∞ as ε ↓ 0. However, a surprisingly large number of these classes satisfy
the conditions of Theorem 2.3 below, our first Donsker theorem (which we
prove in Chapter 8, Page 148):

Theorem 2.3 Let F be a class of measurable functions with J[](∞,F ,
L2(P )) < ∞. Then F is P -Donsker.

Returning again to the empirical distribution function example, we have
for the ε-brackets used previously that ‖uj − lj‖P,2 = (‖uj − lj‖P,1)

1/2 ≤
ε1/2. Hence the minimum number of L2 ε-brackets needed to cover F is
bounded by 1 + 1/ε2, since an L1 ε2-bracket is an L2 ε-bracket. For ε > 1,
the number of brackets needed is just 1. J[](∞,F , L2(P )) will therefore be
finite if

∫ 1

0

√
log(1 + 1/ε2)dε < ∞. Using the fact that log(1+a) ≤ 1+log(a)

for a ≥ 1 and the variable substitution u = 1 + log(1/ε2), we obtain that
this integral is bounded by

∫ ∞
0

u1/2e−u/2du =
√

2π. Thus the conditions
of Theorem 2.3 are easily satisfied. We now give two other examples of
classes with bounded Lr(P ) bracketing integral. Parametric classes of the
form F = {fθ : θ ∈ Θ} work, provided Θ is a bounded subset of R

p and
there exists an m ∈ Lr(P ) such that |fθ1(x) − fθ2(x)| ≤ m(x)‖θ1 − θ2‖ for
all θ1, θ2 ∈ Θ. Here, ‖ · ‖ is the standard Euclidean norm on R

p. The class
F of all monotone functions f : R �→ [0, 1] also works for all 1 ≤ r < ∞
and all probability measures P .

Entropy calculations for other classes that arise in statistical applications
can be difficult. However, there are a number of techniques for doing this
that are not difficult to apply in practice and that we will explore briefly
later on in this section. Unfortunately, there are also many classes F for
which entropy with bracketing does not work at all. An alternative which
can be useful in such settings is entropy based on covering numbers. For a
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probability measure Q, the covering number N(ε,F , Lr(Q)) is the minimum
number of Lr(Q) ε-balls needed to cover F , where an Lr(Q) ε-ball around a
function g ∈ Lr(Q) is the set {h ∈ Lr(Q) : ‖h−g‖Q,r < ε}. For a collection
of balls to cover F , all elements of F must be included in at least one of
the balls, but it is not necessary that the centers of the balls be contained
in F . The entropy is the logarithm of the covering number. The bracketing
entropy conditions in Theorems 2.2 and 2.3 can be replaced by conditions
based on the uniform covering numbers

sup
Q

N (ε‖F‖Q,r,F , Lr(Q)) ,(2.7)

where F : X �→ R is an envelope for F , meaning that |f(x)| ≤ F (x)
for all x ∈ X and all f ∈ F , and where the supremum is taken over
all finitely discrete probability measures Q with ‖F‖Q,r > 0. A finitely
discrete probability measure on X puts mass only at a finite number of
points in X . Notice that the uniform covering number does not depend
on the probability measure P for the observed data. The uniform entropy
integral is

J(δ,F , Lr) =
∫ δ

0

√
log sup

Q
N (ε‖F‖Q,r,F , Lr(Q))dε,

where the supremum is taken over the same set used in (2.7).
The following two theorems (given without proof) are Glivenko-Cantelli

and Donsker results for uniform entropy:

Theorem 2.4 Let F be an appropriately measurable class of measurable
functions with supQ N(ε‖F‖1,Q,F , L1(Q)) < ∞ for every ε > 0, where the
supremum is taken over the same set used in (2.7). If P ∗F < ∞, then F
is P -Glivenko-Cantelli.

Theorem 2.5 Let F be an appropriately measurable class of measurable
functions with J(1,F , L2) < ∞. If P ∗F 2 < ∞, then F is P -Donsker.

Discussion of the “appropriately measurable” condition will be postponed
until Part II (see Pages 145 and 149), but suffice it to say that it is satisfied
for many function classes of interest in statistical applications.

An important collection of function classes F , which satisfies J(1,F , Lr)
< ∞ for any 1 ≤ r < ∞, are the Vapnik-C̆ervonenkis classes, or VC
classes. Many classes of interest in statistics are VC, including the class of
indicator functions explored earlier in the empirical distribution function
example and also vector space classes. A vector space class F has the form
{
∑k

i=1 λifi(x), (λ1, . . . , λk) ∈ R
k} for fixed functions f1, . . . , fk. We will

postpone further definition and discussion of VC classes until Part II.
The important thing to know at this point is that one does not need

to calculate entropy for each new problem. There are a number of easy
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methods which can be used to determine whether a given class is Glivenko-
Cantelli or Donsker based on whether the class is built up of other, well-
known classes. For example, subsets of Donsker classes are Donsker since
Condition (ii) of Theorem 2.1 is clearly satisfied for any subset of T if it
is satisfied for T . One can also use Theorem 2.1 to show that finite unions
of Donsker classes are Donsker. When F and G are Donsker, the following
are also Donsker: {f ∧ g : f ∈ F , g ∈ G}, {f ∨ g : f ∈ F , g ∈ G}, where ∨
denotes maximum, and {f + g : f ∈ F , g ∈ G}. If F and G are bounded
Donsker classes, then {fg : f ∈ F , g ∈ G} is Donsker. Also, Lipschitz
continuous functions of Donsker classes are Donsker. Furthermore, if F is
Donsker, then it is also Glivenko-Cantelli. These, and many other tools
for verifying that a given class is Glivenko-Cantelli or Donsker, will be
discussed in greater detail in Chapter 9.

2.2.3 Bootstrapping Empirical Processes

An important aspect of inference for empirical processes is to be able to
obtain covariance and confidence band estimates. The limiting covariance
for a P -Donsker class F is σ : F × F �→ R, where σ(f, g) ≡ Pfg −
PfPg. The covariance estimate σ̂ : F × F �→ R, where σ̂(f, g) ≡ Pnfg −
PnfPng, is uniformly consistent for σ outer almost surely if and only if
P ∗ [

supf∈F (f(X) − Pf)2
]

< ∞. This will be proved later in Part II. How-
ever, this is only of limited use since critical values for confidence bands
cannot in general be determined from the covariance when F is not finite.
The bootstrap is an effective alternative.

As mentioned earlier, some care must be taken to ensure that the concept
of weak convergence makes sense when the statistics of interest may not
be measurable. This issue becomes more delicate with bootstrap results
which involve convergence of conditional laws given the observed data.
In this setting, there are two sources of randomness, the observed data
and the resampling done by the bootstrap. For this reason, convergence
of conditional laws is assessed in a slightly different manner than regular
weak convergence. An important result is that Xn � X in the metric space
(D, d) if and only if

sup
f∈BL1

|E∗f(Xn) − Ef(X)| → 0,(2.8)

where BL1 is the space of functions f : D �→ R with Lipschitz norm
bounded by 1, i.e., ‖f‖∞ ≤ 1 and |f(x) − f(y)| ≤ d(x, y) for all x, y ∈ D,
and where ‖ · ‖∞ is the uniform norm.

We can now use this alternative definition of weak convergence to de-
fine convergence of the conditional limit laws of bootstraps. Let X̂n be a
sequence of bootstrapped processes in D with random weights that we will

denote M . For some tight process X in D, we use the notation X̂n
P�
M

X to
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mean that suph∈BL1

∣∣∣EMh(X̂n) − Eh(X)
∣∣∣ P→ 0 and EMh(X̂n)∗−EMh(X̂n)∗

P→ 0, for all h ∈ BL1, where the subscript M in the expectations indicates
conditional expectation over the weights M given the remaining data, and
where h(X̂n)∗ and h(X̂n)∗ denote measurable majorants and minorants
with respect to the joint data (including the weights M). We use the nota-
tion X̂n

as∗�
M

X to mean the same thing except with all P→’s replaced by as∗→’s.

Note that the h(X̂n) inside of the supremum does not have an asterisk: this
is because Lipschitz continuous function of the bootstrapped processes we
will study in this book will always be measurable functions of the random
weights when conditioning on the data.

As mentioned previously, the bootstrap empirical measure can be de-
fined as P̂nf = n−1

∑n
i=1 Wnif(Xi), where �Wn = (Wn1, . . . ,Wnn) is a

multinomial vector with probabilities (1/n, . . . , 1/n) and number of trials
n, and where �Wn is independent of the data sequence �X = (X1,X2, . . .).
We can now define a useful and simple alternative to this standard non-
parametric bootstrap. Let �ξ = (ξ1, ξ2, . . .) be an infinite sequence of non-
negative i.i.d. random variables, also independent of �X, which have mean
0 < μ < ∞ and variance 0 < τ2 < ∞, and which satisfy ‖ξ‖2,1 < ∞, where
‖ξ‖2,1 =

∫ ∞
0

√
P (|ξ| > x)dx. This last condition is slightly stronger than

bounded second moment but is implied whenever the 2 + ε moment exists
for any ε > 0. We can now define a multiplier bootstrap empirical measure
P̃nf = n−1

∑n
i=1(ξi/ξ̄n)f(Xi), where ξ̄n = n−1

∑n
i=1 ξi and P̃n is defined

to be zero if ξ̄ = 0. Note that the weights add up to n for both bootstraps.
When ξ1 has a standard exponential distribution, for example, the moment
conditions are clearly satisfied, and the resulting multiplier bootstrap has
Dirichlet weights.

Under these conditions, we have the following two theorems (which we
prove in Part II, Page 187), for convergence of the bootstrap, both in proba-
bility and outer almost surely. Let Ĝn =

√
n(P̂n−Pn), G̃n =

√
n(μ/τ)(P̃n−

Pn), and G be the standard Brownian bridge in �∞(F).

Theorem 2.6 The following are equivalent:

(i) F is P -Donsker.

(ii) Ĝn
P�
W

G in �∞(F) and the sequence Ĝn is asymptotically measurable.

(iii) G̃n
P�
ξ

G in �∞(F) and the sequence G̃n is asymptotically measurable.

Theorem 2.7 The following are equivalent:

(i) F is P -Donsker and P ∗ [
supf∈F (f(X) − Pf)2

]
< ∞.

(ii) Ĝn
as∗�
W

G in �∞(F).
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(iii) G̃n
as∗�
ξ

G in �∞(F).

According to Theorem 2.7, the almost sure consistency of the boot-
strap requires the same moment condition required for almost sure uniform
consistency of the covariance estimator σ̂. In contrast, the consistency in
probability of the bootstrap given in Theorem 2.6 only requires that F is
Donsker. Thus consistency in probability of the bootstrap empirical pro-
cess is an automatic consequence of weak convergence in the first place.
Fortunately, consistency in probability is adequate for most statistical ap-
plications, since this implies that confidence bands constructed from the
bootstrap are asymptotically valid. This follows because, as we will also es-
tablish in Part II, whenever the conditional law of a bootstrapped quantity
(say X̂n) in a normed space (with norm ‖ · ‖) converges to a limiting law
(say of X), either in probability or outer almost surely, then the conditional
law of ‖X̂n‖ converges to that of ‖X‖ under mild regularity conditions. We
will also establish a slightly more general in-probability continuous map-
ping theorem for the bootstrap when the continuous map g is real valued.

Suppose we wish to construct a 1−α level confidence band for {Pf, f ∈
F}, where F is P -Donsker. We can obtain a large number, say N , bootstrap
realizations of supf∈F

∣∣∣Ĝnf
∣∣∣ to estimate the 1−α quantile of supf∈F |Gf |.

If we call this estimate ĉ1−α, then Theorem 2.6 tells us that {Pnf ± ĉ1−α ,
f ∈ F} has coverage 1 − α for large enough n and N . For a more specific
example, consider estimating F (t1, t2) = P{Y1 ≤ t1, Y2 ≤ t2}, where X =
(Y1, Y2) has an arbitrary bivariate distribution. We can estimate F (t1, t2)
with F̂n(t1, t2) = n−1

∑n
i=1 1{Y1i ≤ t1, Y2i ≤ t2}. This is the same as esti-

mating {Pf, f ∈ F}, where F = {f(x) = 1{y1 ≤ t1, y2 ≤ t2} : t1, t2 ∈ R}.
This is a bounded Donsker class since F = {f1f2 : f1 ∈ F1, f2 ∈ F2},
where Fj = {1{yj ≤ t}, t ∈ R} is a bounded Donsker class for j = 1, 2.
We thus obtain consistency in probability of the bootstrap. We also obtain
outer almost sure consistency of the bootstrap by Theorem 2.7, since F is
bounded by 1.

2.2.4 The Functional Delta Method

Suppose Xn is a sequence of random variables with
√

n(Xn − θ) � X for
some θ ∈ R

p, and the function φ : R
p �→ R

q has a derivative φ′(θ) at θ.
The standard delta method now tells us that

√
n(φ(Xn)−φ(θ)) � φ′(θ)X.

However, many important statistics based on i.i.d. data involve maps from
empirical processes to spaces of functions, and hence cannot be handled by
the standard delta method. A simple example is the map φξ which takes
cumulative distribution functions H and computes {ξp, p ∈ [a, b]}, where
ξp = H−1(p) = inf{t : H(t) ≥ p} and [a, b] ⊂ (0, 1). The sample p-th
quantile is then ξ̂n(p) = φξ(Fn)(p). Although the standard delta method
cannot be used here, the functional delta method can be.
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Before giving the main functional delta method results, we need to define
derivatives for functions between normed spaces D and E. A normed space
is a metric space (D, d), where d(x, y) = ‖x−y‖, for any x, y ∈ D, and where
‖ · ‖ is a norm. A norm satisfies ‖x + y‖ ≤ ‖x‖ + ‖y‖, ‖αx‖ = |α| × ‖x‖,
‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0, for all x, y ∈ D and all complex
numbers α. A map φ : Dφ ⊂ D �→ E is Gâteaux-differentiable at θ ∈ D, if
for every fixed h ∈ D with θ + th ∈ Dφ for all t > 0 small enough, there
exists an element φ′

θ(h) ∈ E such that

φ(θ + th) − φ(θ)
t

→ φ′
θ(h)

as t ↓ 0. For the functional delta method, however, we need φ to have the
stronger property of being Hadamard-differentiable. A map φ : Dφ �→ E is
Hadamard-differentiable at θ ∈ D, tangentially to a set D0 ⊂ D, if there
exists a continuous linear map φ′

θ : D �→ E such that

φ(θ + tnhn) − φ(θ)
tn

→ φ′
θ(h),

as n → ∞, for all converging sequences tn → 0 and hn → h ∈ D0, with
hn ∈ D and θ + tnhn ∈ Dφ for all n ≥ 1 sufficiently large.

For example, let D = D[0, 1], where DA, for any interval A ⊂ R, is the
space of cadlag (right-continuous with left-hand limits) real functions on
A with the uniform norm. Let Dφ = {f ∈ D[0, 1] : |f | > 0}. Consider the
function φ : Dφ �→ E = D[0, 1] defined by φ(g) = 1/g. Notice that for any
θ ∈ Dφ, we have, for any converging sequences tn ↓ 0 and hn → h ∈ D,
with hn ∈ D and θ + tnhn ∈ Dφ for all n ≥ 1,

φ(θ + tnhn) − φ(θ)
tn

=
1

tn(θ + tnhn)
− 1

tnθ
= − hn

θ(θ + tnhn)
→ − h

θ2
,

where we have suppressed the argument in g for clarity. Thus φ is
Hadamard-differentiable, tangentially to D, with φ′

θ(h) = −h/θ2.
Sometimes Hadamard differentiability is also called compact differentia-

bility. Another important property of this kind of derivative is that it satis-
fies a chain rule, in that compositions of Hadamard-differentiable functions
are also Hadamard-differentiable. Details on this and several other aspects
of functional differentiation will be postponed until Part II. We have the
following important result (the proof of which will be given in Part II,
Page 235):

Theorem 2.8 For normed spaces D and E, let φ : Dφ ⊂ D �→ E be
Hadamard-differentiable at θ tangentially to D0 ⊂ D. Assume that rn(Xn−
θ) � X for some sequence of constants rn → ∞, where Xn takes its values
in Dφ, and X is a tight process taking its values in D0. Then rn(φ(Xn) −
φ(θ)) � φ′

θ(X).
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Consider again the quantile map φξ, and let the distribution function
F be absolutely continuous over N = [u, v] = [F−1(a) − ε, F−1(b) + ε],
for some ε > 0, with continuous density f such that 0 < inft∈N f(t) ≤
supt∈N f(t) < ∞. Also let D1 ⊂ D[u, v] be the space of all distribution
functions restricted to [u, v]. We will now argue that φξ is Hadamard-
differentiable at F tangentially to C[u, v], where for any interval A ⊂ R,
CA is the space of continuous real functions on A. Let tn → 0 and {hn} ∈
D[u, v] converge uniformly to h ∈ C[u, v] such that F + tnhn ∈ D1 for all
n ≥ 1, and denote ξp = F−1(p), ξpn = (F + tnhn)−1(p), ξN

pn = (ξpn∨u)∧v,
and εpn = t2n ∧ (ξN

pn − u). The reason for the modification ξN
pn is to ensure

that the quantile estimate is contained in [u, v] and hence also εpn ≥ 0.
Thus there exists an n0 < ∞, such that for all n ≥ n0, (F + tnhn)(u) < a,
(F + tnhn)(v) > b, εpn > 0 and ξN

pn = ξpn for all p ∈ [a, b], and therefore

(F + tnhn)(ξN
pn − εpn) ≤ F (ξp) ≤ (F + tnhn)(ξN

pn)(2.9)

for all p ∈ [a, b], since (F + tnhn)−1(p) is the smallest x satisfying (F +
tnhn)(x) ≥ p and F (ξp) = p.

Since F (ξN
pn − εpn) = F (ξN

pn) + O(εpn), hn(ξN
pn) − h(ξN

pn) = o(1), and
hn(ξN

pn − εpn) − h(ξN
pn − εpn) = o(1), where O and o are uniform over

p ∈ [a, b] (here and for the remainder of our argument), we have that (2.9)
implies

F (ξN
pn) + tnh(ξN

pn − εpn) + o(tn) ≤ F (ξp)(2.10)

≤ F (ξN
pn) + tnh(ξN

pn) + o(tn).

But this implies that F (ξN
pn) + O(tn) ≤ F (ξp) ≤ F (ξN

pn) + O(tn), which
implies that |ξpn − ξp| = O(tn). This, together with (2.10) and the fact
that h is continuous, implies that F (ξpn)−F (ξp) = −tnh(ξp) + o(tn). This
now yields

ξpn − ξp

tn
= −h(ξp)

f(ξp)
+ o(1),

and the desired Hadamard-differentiability of φξ follows, with derivative
φ′

F (h) = {−h(F−1(p))/f(F−1(p)), p ∈ [a, b]}.
The functional delta method also applies to the bootstrap. Consider the

sequence of random elements Xn(Xn) in a normed space D, and assume
that rn(Xn−μ) � X, where X is tight in D, for some sequence of constants
0 < rn � ∞. Here, Xn is a generic empirical process based on the data
sequence {Xn, n ≥ 1}, and is not restricted to i.i.d. data. Now assume
we have a bootstrap of Xn, X̂n(Xn,Wn), where W = {Wn} is a sequence
of random bootstrap weights which are independent of Xn. Also assume

X̂n
P�
W

X. We have the following bootstrap result:

Theorem 2.9 For normed spaces D and E, let φ : Dφ ⊂ D �→ E be
Hadamard-differentiable at μ tangentially to D0 ⊂ D, with derivative φ′

μ.
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Let Xn and X̂n have values in Dφ, with rn(Xn − μ) � X, where X is
tight and takes its values in D0, the maps Wn �→ X̂n are appropriately

measurable, and where rnc(X̂n − Xn)
P�
W

X, for some 0 < c < ∞. Then

rnc(φ(X̂n) − φ(Xn))
P�
W

φ′
μ(X).

We will postpone until Part II a more precise discussion of what “appro-
priately measurable” means in this context (see Page 236).

When Xn in the previous theorem is the empirical process Pn indexed
by a Donsker class F and rn =

√
n, the results of Theorem 2.6 ap-

ply with μ = P for either the nonparametric or multiplier bootstrap
weights. Moreover, the above measurability condition also holds (this will
be verified in Chapter 12). Thus the bootstrap is automatically valid for
Hadamard-differentiable functions applied to empirical processes indexed
by Donsker classes. As a simple example, bootstraps of the quantile pro-
cess {ξ̂n(p), p ∈ [a, b] ⊂ (0, 1)} are valid, provided the conditions given in
the example following Theorem 2.8 for the density f over the interval N
are satisfied. This can be used, for example, to create asymptotically valid
confidence bands for {F−1(p), p ∈ [a, b]}. There are also results for outer
almost sure conditional convergence of the conditional laws of the boot-
strapped process rn(φ(X̂n) − φ(Xn)), but this requires stronger conditions
on the differentiability of φ, and we will not pursue this further in this
book.

2.2.5 Z-Estimators

A Z-estimator θ̂n is the approximate zero of a data-dependent function. To
be more precise, let the parameter space be Θ and let Ψn : Θ �→ L be a
data-dependent function between two normed spaces, with norms ‖ · ‖ and
‖ · ‖L , respectively. If ‖Ψn(θ̂n)‖L

P→ 0, then θ̂n is a Z-estimator. The main
statistical issues for such estimators are consistency, asymptotic normality
and validity of the bootstrap. Usually, Ψn is an estimator of a fixed function
Ψ : Θ �→ L with Ψ(θ0) = 0 for some parameter of interest θ0 ∈ Θ. We save
the proof of the following theorem as an exercise:

Theorem 2.10 Let Ψ(θ0) = 0 for some θ0 ∈ Θ, and assume ‖Ψ(θn)‖L →
0 implies ‖θn − θ0‖ → 0 for any sequence {θn} ∈ Θ (this is an “identifia-
bility” condition). Then

(i) If ‖Ψn(θ̂n)‖L

P→ 0 for some sequence of estimators θ̂n ∈ Θ and
supθ∈Θ ‖Ψn(θ) − Ψ(θ)‖L

P→ 0, then ‖θ̂n − θ0‖ P→ 0.

(ii) If ‖Ψn(θ̂n)‖L

as∗→ 0 for some sequence of estimators θ̂n ∈ Θ and
supθ∈Θ ‖Ψn(θ) − Ψ(θ)‖L

as∗→ 0, then ‖θ̂n − θ0‖ as∗→ 0.
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Consider, for example, estimating the survival function for right-censored
failure time data. In this setting, we observe X = (U, δ), where U = T ∧C,
δ = 1{T ≤ C}, T is a failure time of interest with distribution function F0

and survival function S0 = 1 − F0 with S0(0) = 1, and C is a censoring
time with distribution and survival functions G and L = 1 − G, respec-
tively, with L(0) = 1. For a sample of n observations {Xi, i = 1, . . . , n},
let {T̃j , j = 1, . . . , mn} be the unique observed failure times. The Kaplan-
Meier estimator Ŝn of S0 is then given by

Ŝn(t) =
∏

j:T̃j≤t

(
1 −

∑n
i=1 δi1{Ui = T̃j}∑n
i=1 1{Ui ≥ T̃j}

)
.

Consistency and other properties of this estimator can be demonstrated via
standard continuous-time martingale arguments (Fleming and Harrington,
1991; Andersen, Borgun, Keiding and Gill, 1993); however, it is instructive
to use empirical process arguments for Z-estimators.

Let τ < ∞ satisfy L(τ−)S0(τ−) > 0, and let Θ be the space of all
survival functions S with S(0) = 1 and restricted to [0, τ ]. We will use the
uniform norm ‖ ·‖∞ on Θ. After some algebra, the Kaplan-Meier estimator
can be shown to be the solution of Ψn(Ŝn) = 0, where Ψn : Θ �→ Θ has the
form Ψn(S)(t) = PnψS,t, where

ψS,t(X) = 1{U > t} + (1 − δ)1{U ≤ t}1{S(U) > 0} S(t)
S(U)

− S(t).

This is Efron’s (1967) “self-consistency” expression for the Kaplan-Meier.
For the fixed function Ψ, we use Ψ(S)(t) = PψS,t. Somewhat surprisingly,
the class of function F = {ψS,t : S ∈ Θ, t ∈ [0, τ ]} is P -Donsker. To see
this, first note that the class M of monotone functions f : [0, τ ] �→ [0, 1] of
the real random variable U has bounded entropy (with bracketing) integral,
which fact we establish later in Part II. Now the class of functions M1 =
{ψ̃S,t : S ∈ Θ, t ∈ [0, τ ]}, where

ψ̃S,t(U) = 1{U > t} + 1{U ≤ t}1{S(U) > 0} S(t)
S(U)

,

is a subset of M, since ψ̃S,t(U) is monotone in U on [0, τ ] and takes values
only in [0, 1] for all S ∈ Θ and t ∈ [0, τ ]. Note that {1{U ≤ t} : t ∈ [0, τ ]}
is also Donsker (as argued previously), and so is {δ} (trivially) and {S(t) :
S ∈ Θ, t ∈ [0, τ ]}, since any class of fixed functions is always Donsker. Since
all of these Donsker classes are bounded, we now have that F is Donsker
since sums and products of bounded Donsker classes are also Donsker. Since
Donsker classes are also Glivenko-Cantelli, we have that supS∈Θ ‖Ψn(S)−
Ψ(S)‖∞ as∗→ 0. If we can establish the identifiability condition for Ψ, the
outer almost sure version of Theorem 2.10 gives us that ‖Ŝn − S0‖∞ as∗→ 0.
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After taking expectations, the function Ψ can be shown to have the form

Ψ(S)(t) = PψS,t = S0(t)L(t) +
∫ t

0

S0(u)
S(u)

dG(u)S(t) − S(t).(2.11)

Thus, if we make the substitution εn(t) = S0(t)/Sn(t) − 1, Ψ(Sn)(t) → 0
uniformly over t ∈ [0, τ ] implies that un(t) = εn(t)L(t)+

∫ t

0
εn(u)dG(u) → 0

uniformly over the same interval. By solving this integral equation, we
obtain εn(t) = un(t)/L(t−)−

∫ t−
0

[L(s)L(s−)]−1
un(s)dG(s), which implies

εn(t) → 0 uniformly, since L(t−) ≥ L(τ−) > 0. Thus ‖Sn − S0‖∞ → 0,
implying the desired identifiability.

We now consider weak convergence of Z-estimators. Let Ψn, Ψ, Θ and L

be as at the beginning of this section. We have the following master theorem
for Z-estimators, the proof of which will be given in Part II (Page 254):

Theorem 2.11 Assume that Ψ(θ0) = 0 for some θ0 in the interior of
Θ,

√
nΨn(θ̂n) P→ 0, and ‖θ̂n − θ0‖ P→ 0 for the random sequence {θ̂n} ∈ Θ.

Assume also that
√

n(Ψn−Ψ)(θ0) � Z, for some tight random Z, and that∥∥∥√n(Ψn(θ̂n) − Ψ(θ̂n)) −√
n(Ψn(θ0) − Ψ(θ0))

∥∥∥
L

1 +
√

n‖θ̂n − θ0‖
P→ 0.(2.12)

If θ �→ Ψ(θ)is Fréchet-differentiable at θ0 (defined below) with continuously-
invertible (also defined below) derivative Ψ̇θ0 , then

‖
√

nΨ̇θ0(θ̂n − θ0) +
√

n(Ψn − Ψ)(θ0)‖L

P→ 0(2.13)

and thus
√

n(θ̂n − θ0) � −Ψ̇−1
θ0

(Z).

Fréchet-differentiability of a map φ : Θ ⊂ D �→ L at θ ∈ Θ is stronger
than Hadamard-differentiability, in that it means there exists a continuous,
linear map φ′

θ : D �→ L with

‖φ(θ + hn) − φ(θ) − φ′
θ(hn)‖

L

‖hn‖
→ 0(2.14)

for all sequences {hn} ⊂ D with ‖hn‖ → 0 and θ + hn ∈ Θ for all n ≥ 1.
Continuous invertibility of an operator A : Θ �→ L essentially means A is
invertible with the property that for a constant c > 0 and all θ1, θ2 ∈ Θ,

‖A(θ1) − A(θ2)‖L ≥ c‖θ1 − θ2‖.(2.15)

An operator is a map between spaces of function, such as the maps Ψ
and Ψn. We will postpone further discussion of operators and continuous
invertibility until Part II.

Returning to our Kaplan-Meier example, with Ψn(S)(t) = PnψS,t and
Ψ(S)(t) = PψS,t as before, note that since F = {ψS,t, S ∈ Θ, t ∈ [0, τ ]} is
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Donsker, we easily have that
√

n(Ψn − Ψ)(θ0) � Z, for θ0 = S0 and some
tight random Z. We also have that for any {Sn} ∈ Θ converging uniformly
to S0,

sup
t∈[0,τ ]

P (ψSn,t − ψS0,t)2 ≤ 2 sup
t∈[0,τ ]

∫ t

0

[
Sn(t)
Sn(u)

− S0(t)
S0(u)

]2

S0(u)dG(u)

+2 sup
t∈[0,τ ]

(Sn(t) − S0(t))2

→ 0.

This can be shown to imply (2.12). After some analysis, Ψ can be shown
to be Fréchet-differentiable at S0, with derivative

Ψ̇θ0(h)(t) = −
∫ t

0

S0(t)h(u)
S0(u)

dG(u) − L(t)h(t),(2.16)

for all h ∈ D[0, τ ], having continuous inverse

Ψ̇−1
θ0

(a)(t) = −S0(t)(2.17)

×
{

a(0) +
∫ t

0

1
L(u−)S0(u−)

[
da(u) +

a(u)dF0(u)
S0(u)

]}
,

for all a ∈ D[0, τ ]. Thus all of the conditions of Theorem 2.11 are satisfied,
and we obtain the desired weak convergence of

√
n(Ŝn − S0) to a tight,

mean zero Gaussian process. The covariance of this process is

V (s, t) = S0(s)S0(t)
∫ s∧t

0

dF0(u)
L(u−)S0(u)S0(u−)

,

which can be derived after lengthy but straightforward calculations (which
we omit).

Returning to general Z-estimators, there are a number of methods for
showing that the conditional law of a bootstrapped Z-estimator, given the
observed data, converges to the limiting law of the original Z-estimator. One
important approach that is applicable to non-i.i.d. data involves establish-
ing Hadamard-differentiability of the map φ, which extracts a zero from
the function Ψ. We will explore this approach in Part II. We close this
section with a simple bootstrap result for the setting where Ψn(θ)(h) =
Pnψθ,h and Ψ(θ)(h) = Pψθ,h, for random and fixed real maps indexed
by θ ∈ Θ and h ∈ H. Assume that Ψ(θ0)(h) = 0 for some θ0 ∈ Θ
and all h ∈ H, that suph∈H |Ψ(θn)(h)| → 0 implies ‖θn − θ0‖ → 0 for
any sequence {θn} ∈ Θ, and that Ψ is Fréchet-differentiable with continu-
ously invertible derivative Ψ̇′

θ0
. Also assume that F = {ψθ,h : θ ∈ Θ, h ∈

H} is P -G-C with supθ∈Θ,h∈G P |ψθ,h| < ∞. Furthermore, assume that
G = {ψθ,h : θ ∈ Θ, ‖θ − θ0‖ ≤ δ, h ∈ H}, where δ > 0, is P -Donsker
and that suph∈H P (ψθn,h − ψθ0,h)2 → 0 for any sequence {θn} ∈ Θ with
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‖θn −θ0‖ → 0. Then, using arguments similar to those used in the Kaplan-
Meier example and with the help of Theorems 2.10 and 2.11, we have
that if θ̂n satisfies suph∈H

∣∣∣√nΨn(θ̂n)
∣∣∣ P→ 0, then ‖θ̂n − θ0‖ P→ 0 and

√
n(θ̂n − θ0) � −Ψ̇−1

θ0
(Z), where Z is the tight limiting distribution of√

n(Ψn(θ0) − Ψ(θ0)).
Let Ψ◦

n(θ)(h) = P
◦
nψθ,h, where P

◦
n is either the nonparametric bootstrap

P̂n or the multiplier bootstrap P̃n defined in Section 2.2.3, and define the
bootstrap estimator θ̂◦n ∈ Θ to be a minimizer of suph∈H |Ψ◦

n(θ)(h)| over
θ ∈ Θ. We will prove in Part II that these conditions are more than enough

to ensure that
√

n(θ̂◦n− θ̂n)
P�
W

−Ψ̇−1
θ0

(Z), where W refers to either the non-
parametric or multiplier bootstrap weights. Thus the bootstrap is valid.
These conditions for the bootstrap are satisfied in the Kaplan-Meier exam-
ple, for either the nonparametric or multiplier weights, thus enabling the
construction of confidence bands for S0(t) over t ∈ [0, τ ].

2.2.6 M-Estimators

An M-estimator θ̂n is the approximate maximum of a data-dependent func-
tion. To be more precise, let the parameter set be a metric space (Θ, d)
and let Mn : Θ �→ R be a data-dependent real function. If Mn(θ̂n) =
supθ∈Θ Mn(θ) − oP (1), then θ̂n is an M-estimator. Maximum likelihood
and least-squares (after changing the sign of the objective function) esti-
mators are some of the most important examples, but there are many other
examples as well. As with Z-estimators, the main statistical issues for M-
estimators are consistency, weak convergence and validity of the bootstrap.
Unlike Z-estimators, the rate of convergence for M-estimators is not nec-
essarily

√
n, even for i.i.d. data, and finding the right rate can be quite

challenging.
For establishing consistency, Mn is often an estimator of a fixed function

M : Θ �→ R. We now present the following consistency theorem (the proof
of which is deferred to Part II, Page 267):

Theorem 2.12 Assume for some θ0 ∈ Θ that lim infn→∞ M(θn) ≥
M(θ0) implies d(θn, θ0) → 0 for any sequence {θn} ∈ Θ (this is another
identifiability condition). Then, for a sequence of estimators θ̂n ∈ Θ,

(i) If Mn(θ̂n) = supθ∈Θ Mn(θ)− oP (1) and supθ∈Θ |Mn(θ)−M(θ)| P→ 0,

then d(θ̂n, θ0)
P→ 0.

(ii) If Mn(θ̂n) = supθ∈Θ Mn(θ)− oas∗(1) and supθ∈Θ |Mn(θ)−M(θ)| as∗→
0, then d(θ̂n, θ0)

as∗→ 0.

Suppose, for now, we know that the rate of convergence for the M-
estimator θ̂n is rn, or, in other words, we know that Zn = rn(θ̂n − θ0) =
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OP (1). Zn can now be re-expressed as the approximate maximum of the
criterion function h �→ Hn(h) = Mn(θ0 + h/rn) for h ranging over some
metric space H. If the argmax of Hn over bounded subsets of H can now be
shown to converge weakly to the argmax of a tight limiting process H over
the same bounded subsets, then Zn converges weakly to argmaxh∈H

H(h).
We will postpone the technical challenges associated with determining

these rates of convergence until Part II, and restrict ourselves to an inter-
esting special case involving Euclidean parameters, where the rate is known
to be

√
n. The proof of the following theorem is also deferred to Part II

(Page 270):

Theorem 2.13 Let X1, . . . , Xn be i.i.d. with sample space X and law
P , and let mθ : X �→ R be measurable functions indexed by θ ranging over
an open subset of Euclidean space Θ ⊂ R

p. Let θ0 be a bounded point of
maximum of Pmθ in the interior of Θ, and assume for some neighborhood
Θ0 ⊂ Θ including θ0, that there exists measurable functions ṁ : X �→ R

and ṁθ0 : X �→ R
p satisfying

|mθ1(x) − mθ2(x)| ≤ ṁ(x)‖θ1 − θ2‖,(2.18)
P [mθ − mθ0 − (θ − θ0)′ṁθ0 ]

2 = o(‖θ − θ0‖2),(2.19)

Pṁ2 < ∞, and P‖ṁθ0‖2 < ∞, for all θ1, θ2, θ ∈ Θ0. Assume also that
M(θ) = Pmθ admits a second order Taylor expansion with nonsingular
second derivative matrix V . Denote Mn(θ) = Pnmθ, and assume the ap-
proximate maximizer θ̂n satisfies Mn(θ̂n) = supθ∈Θ Mn(θ) − oP (n−1) and

‖θ̂n − θ0‖ P→ 0. Then
√

n(θ̂n − θ0) � −V −1Z, where Z is the limiting
Gaussian distribution of Gnṁθ0 .

Consider, for example, least absolute deviation regression. In this setting,
we have i.i.d. random vectors U1, . . . , Un in R

p and random errors e1, . . . , en,
but we observe only the data Xi = (Yi, Ui), where Yi = θ′0Ui + ei, i =
1, . . . , n. The least-absolute-deviation estimator θ̂n minimizes the function
θ �→ Pnm̃θ, where m̃θ(X) = |Y − θ′U |. Since a minimizer of a criterion
function Mn is also a maximizer of −Mn, M-estimation methods can be
used in this context with only a change in sign. Although boundedness
of the parameter space Θ is not necessary for this regression setting, we
restrict—for ease of discourse—Θ to be a bounded, open subset of R

p

containing θ0. We also assume that the distribution of the errors ei has
median zero and positive density at zero, which we denote f(0), and that
P [UU ′] is finite and positive definite.

Note that since we are not assuming E|ei| < ∞, it is possible that
Pm̃θ = ∞ for all θ ∈ Θ. Since minimizing Pnm̃θ is the same as mini-
mizing Pnmθ, where mθ = m̃θ − m̃θ0 , we will use Mn(θ) = Pnmθ as our
criterion function hereafter (without modifying the estimator θ̂n). By the
definition of Y , mθ(X) = |e − (θ − θ0)′U | − |e|, and we now have that
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Pmθ ≤ ‖θ − θ0‖
(
E‖U‖2

)1/2
< ∞ for all θ ∈ Θ. Since

|mθ1(x) − mθ2(x)| ≤ ‖θ1 − θ2‖ × ‖u‖,(2.20)

it is not hard to show that the class of function {mθ : θ ∈ Θ} is P -
Glivenko-Cantelli. It can also be shown that Pmθ ≥ 0 with equality only
when θ = θ0. Hence Theorem 2.12, Part (ii), yields that θ̂n

as∗→ θ0.
Now we consider M(θ) = Pmθ. By conditioning on U , one can show af-

ter some analysis that M(θ) is two times continuously differentiable, with
second derivative V = 2f(0)P [UU ′] at θ0. Note that (2.20) satisfies Con-
dition (2.18); and with ṁθ(X) = −Usign(e), we also have that

|mθ(X) − mθ0(X) − (θ − θ0)′ṁθ(X)| ≤ 1 {|e| ≤ |(θ − θ0)′U |} [(θ − θ0)′U ]2

satisfies Condition (2.19). Thus all the conditions of Theorem 2.13 are
satisfied. Hence

√
n(θ̂n − θ0) is asymptotically mean zero normal, with

variance V −1P
[
ṁθ0ṁ

′
θ0

]
V −1 =

(
P [UU ′]

)−1
/
(
4f2(0)

)
. This variance is

not difficult to estimate from the data, but we postpone presenting the
details.

Another technique for obtaining weak convergence of M-estimators that
are

√
n consistent, is to first establish consistency and then take an appro-

priate derivative of the criterion function Mn(θ), Ψn(θ)(h), for h ranging
over some index set H, and apply Z-estimator techniques to Ψn. This works
because the derivative of a smooth criterion function at an approximate
maximizer is approximately zero. This approach facilitates establishing the
validity of the bootstrap since such validity is often easier to obtain for
Z-estimators than for M-estimators. This approach is also applicable to
certain nonparametric maximum likelihood estimators which we will con-
sider in Part III.

2.3 Other Topics

In addition to the empirical process topics outlined in the previous sections,
we will cover a few other related topics in Part II, including results for
sums of independent but not identically distributed stochastic processes
and, briefly, for dependent but stationary processes. However, there are a
number of interesting empirical process topics we will not pursue in later
chapters, including general results for convergence of nets. In the remainder
of this section, we briefly outline a few additional topics not covered later
which involve sequences of empirical processes based on i.i.d. data. For
some of these topics, we will primarily restrict ourselves to the empirical
process Gn =

√
n(Fn −F ), although many of these results have extensions

which apply to more general empirical processes.
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The law of the iterated logarithm for Gn states that

lim sup
n→∞

‖Gn‖∞√
2 log log n

≤ 1
2
, a.s.,(2.21)

with equality if 1/2 is in the range of F , where ‖ · ‖∞ is the uniform norm.
This can be generalized to empirical processes on P -Donsker classes F
which have a measurable envelope with bounded second moment (Dudley
and Philipp, 1983):

lim sup
n→∞

[
supf∈F |Gn(f)|

]∗√
(2 log log n) supf∈F |P (f − Pf)2|

≤ 1, a.s.

Result (2.21) can be further strengthened to Strassen’s (1964) theorem,
which states that on a set with probability 1, the set of all limiting paths
of

√
1/(2 log log n)Gn is exactly the set of all functions of the form h(F ),

where h(0) = h(1) = 0 and h is absolutely continuous with derivative h′

satisfying
∫ 1

0
[h′(s)]2 ds ≤ 1. While the previous results give upper bounds

on ‖Gn‖∞, it is also known that

lim inf
n→∞

√
2 log log n‖Gn‖∞ =

π

2
, a.s.,

implying that the smallest uniform distance between Fn and F is at least
O(1/

√
n log log n).

A topic of interest regarding Donsker theorems is the closeness of the em-
pirical process sample paths to the limiting Brownian bridge sample paths.
The strongest result on this question for the empirical process Gn is the
KMT construction, named after Komlós, Major and Tusnády (1975, 1976).
The KMT construction states that there exists fixed positive constants a,
b, and c, and a sequence of standard Brownian bridges {Bn}, such that

P
(
‖Gn − Bn(F )‖∞ >

a log n + x√
n

)
≤ be−cx,

for all x > 0 and n ≥ 1. This powerful result can be shown to imply both

lim sup
n→∞

√
n

log n
‖Gn − Bn(F )‖∞ < ∞, a.s., and

lim sup
n→∞

E
[ √

n

log n
‖Gn − Bn(F )‖∞

]m

< ∞,

for all 0 < m < ∞. These results are called strong approximations and have
applications in statistics, such as in the construction of confidence bands for
kernel density estimators (see, for example, Bickel and Rosenblatt, 1973).
Another interesting application—to “large p, small n” asymptotics for
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microarrays—will be developed in some detail in Section 15.5 of Part II,
although we will not address the theoretical derivation of the KMT con-
struction.

An important class of generalizations of the empirical process for i.i.d.
data are the U-processes. The mth order empirical U-process measure Un,m

is defined, for a measurable function f : Xm �→ R and a sample of oberva-
tions X1, . . . , Xn on X , as(

n
m

)−1 ∑
(i1,...,im)∈In,m

f(Xi1 , . . . , Xim
),

where In,m is the set of all m-tuples of integers (i1, . . . , im) satisfying 1 ≤
i1 < · · · < im ≤ n. For m = 1, this measure reduces to the usual empirical
measure, i.e., Un,1 = Pn. The empirical U-process, for a class of m-variate
real functions F (of the form f : Xm �→ R as above), is{√

n(Un,m − P )f : f ∈ F
}

.

These processes are useful for solving a variety of complex statistical prob-
lems arising in a number of areas, including nonparametric monotone re-
gression (see Ghosal, Sen and van der Vaart, 2000), testing for normality
(see Arcones and Wang, 2006), and a number of other areas. Fundamental
work on Glivenko-Cantelli and Donsker type results for U-processes can
be found in Nolan and Pollard (1987, 1988) and Arcones and Giné (1993),
and some useful technical tools can be found in Giné (1997). Recent de-
velopments include Monte Carlo methods of inference for U-processes (see,
for example, Zhang, 2001) and a central limit theorem for two-sample U-
processes (Neumeyer, 2004).

2.4 Exercises

2.4.1. Let X,Y be a pair of real random numbers with joint distribution
P . Compute upper bounds for N[](ε,F , Lr(P )), for r = 1, 2, where F =
{1{X ≤ s, Y ≤ t} : s, t ∈ R}.

2.4.2. Prove Theorem 2.10.

2.4.3. Consider the Z-estimation framework for the Kaplan-Meier estima-
tor discusses in Section 2.2.5. Let Ψ(S)(t) be as defined in (2.11). Show that
Ψ is Fréchet-differentiable at S0, with derivative Ψ̇θ0(h)(t) given by (2.16),
for all h ∈ D[0, τ ].

2.4.4. Continuing with the set-up of the previous problem, show that
Ψ̇θ0 is continuously invertible, with inverse Ψ̇−1

θ0
given in (2.17). The fol-

lowing approach may be easiest: First show that for any a ∈ D[0, τ ],
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h(t) = Ψ̇−1
θ0

(a)(t) satisfies Ψ̇θ0(h)(t) = a(t). The following identity may
be helpful:

d

[
a(t)
S0(t)

]
=

da(t)
S0(t−)

+
a(t)dF0(t)

S0(t−)S0(t)
.

Now show that there exists an M < ∞ such that
∥∥∥Ψ̇−1

θ0
(a)

∥∥∥ ≤ M‖a‖, where
‖ · ‖ is the uniform norm. This then implies that there exists a c > 0 such
that ‖Ψ̇θ0(h)‖ ≥ c‖h‖.

2.5 Notes

Theorem 2.1 is a composite of Theorems 1.5.4 and 1.5.7 of van der Vaart
and Wellner (1996) (hereafter abbreviated VW). Theorems 2.2, 2.3, 2.4
and 2.5 correspond to Theorems 19.4, 19.5, 19.13 and 19.14, respectively, of
van der Vaart (1998). The if and only if implications of (2.8) are described in
VW, Page 73. The implications (i)⇔(ii) in Theorems 2.6 and 2.7 are given
in Theorems 3.6.1 and 3.6.2, respectively, of VW. Theorems 2.8 and 2.11
correspond to Theorems 3.9.4 and 3.3.1, of VW, while Theorem 2.13 comes
from Example 3.2.22 of VW.
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