Chapter 2
Combinatorial Properties of (Pre)-Semirings

1. Introduction

Many results of classical linear algebra, such as the well-known Cayley—Hamilton
theorem, first established in the context of vector spaces on fields, do not actually
require all the properties of these structures. We show in this chapter that many known
results of this type are deduced from purely combinatorial properties which are valid
in more elementary algebraic structures such as semirings and pre-semirings. We will
not even require the dioid structure since there is no need to assume the presence of
a canonical order relation.

In the present chapter we will thus consider matrices, polynomials and formal
series with elements or coefficients in a pre-semiring or in a semiring.

The basic definitions concerning matrices, polynomials and formal series are
introduced in Sects. 2 and 3.

Definitions and basic properties for permutations are recalled in Sect. 4.1, and the
concepts of a bideterminant and of the characteristic bipolynomial of a matrix are
introduced in Sects. 4.2 and 4.3.

Section 5 presents a combinatorial proof of the extended version of the classical
identity for the determinant of the product of two matrices. Section 6 provides a
combinatorial proof of the Cayley—Hamilton theorem generalized to commutative
pre-semirings.

In Sect. 7, we focus on the links between the bideterminant of a matrix and the
arborescences of the associated directed graph. An extension to semirings of the
classical “Matrix Tree Theorem” is first established in Sects. 7.1 and 7.2. A more
general form of this result is then studied in Sect. 7.4, which may be considered as
an extension to semirings, of the so-called “All Minors Matrix Tree Theorem”.

Finally, a version of the well-known Mac Mahon identity, generalized to commu-
tative pre-semirings, is presented in Sect. 8.

In order to derive each of the identities discussed in this chapter, a superficial
analysis might lead one to believe that it is enough to start from the corresponding
classical result (usually stated in the field of real numbers) and to simply rewrite it
by moving all the negative terms to the other side to make them appear positively.
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52 2 Combinatorial Properties of (Pre)-Semirings

The result of Sect. 5 (about the bideterminant of the product of two matrices), as well
as the generalization of the classical “All-Minors Matrix Tree Theorem”, which is
studied in Sect. 7.4, provide concrete examples where such an approach would lead
to a wrong result; this indeed confirms the necessity of new direct proofs, different
from those previously known for the standard case.

2. Polynomials and Formal Series with Coefficients
in a (Pre-) Semiring

2.1. Polynomials
Let (E, &, ®) be a pre-semiring or a semiring with neutral elements ¢ and e (for &

and ® respectively).

Definition 2.1.1. A polynomial P of degree n in the variable X is defined by specifying
a mapping f: {0, 1,.... n} — E where, Vk,0 < k < n,f(k) € E is called the
coefficient of XX in the polynomial P. P can thus be represented by the sum:

n
P(x) = Zf(k) ® xX
k=0
where the sum is to be understood in the sense of the operation @ (by convention

x" = e and, Vk: ¢ ® xK = ¢).

In accordance with classical notation, we denote E[x] the set of polynomials in x
with coefficients in E.
Let P and Q be two polynomials of E [x] defined as:

p
P(x) = Z f(k) ® x¥
k=0

q
Q) =) gk) @x*
k=0

The sum of P and Q, denoted S = P @ Q, is the polynomial of degree at most
s = Max({p, q} defined as:

S =Y _(Fk) @ g(k) @ x*

k=0

(we agree to set f(j) = ¢ forj > p and g(j) = ¢ forj > q).
The product of P and Q, denoted T = P® Q is the polynomial of degreer = p+q
defined as:
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T
Tx) = Y t(k) @ x*
k=0
with, Vk =0....r1:
)= > i) el

0<i<p

0<j=gq

i+j=k
¢ being the neutral element of @, E[x] has, as neutral element for @, the polynomial
denoted &(x), of degree 0, defined as: e(X) = ¢ ® x" = . Likewise, e being the

neutral element of ®, E[x] has as neutral element for ®, the polynomial denoted e(x)
of degree 0 defined as: e(x) = e ® x0 =e.

Proposition 2.1.2. (i) If (E, @, ®) is a pre-semiring, then (E[X], ®, Q) is a pre-
semiring

(ii) If (E, ®, ®) is a semiring, then (E[x], ®, ®) is a semiring

(iii) If (E, ®, ®) is a dioid, then (E[x], ®, ®) is a dioid.

Proof. Tt follows from the fact that the elementary properties of @ and ® on E induce
the same properties on E[x]. Let us just show that, in case (iii), the canonical preorder
relation on E[x] defined as:

P<Q<« 3R €E[x] suchthat: Q=P&R

is an order relation.

P
If P(x) = » (k) ®@x*
k=0
q
Q) =) gk) @x*
k=0

T
then P < Q = IR with: Rx) = ) h(k) ® xX, such that: Q = P® R
k=0

I./
Similarly Q < P = 3R’ with: R'(x) = Y h’(k) ® x* such that: P= Q @ R’
k=0
Set K = Max({p, q, r, r'} and let us agree that:

If K>p, f(G)=e¢ forevery je[p+1,K]

If K>q, g@G =¢ forevery je[q+1,K]

If K>r, h()=e forevery je[r+1,K]
jel

If K>r1, h(G)=¢ forevery ' +1,K]
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We deduce Vk =0, ....K:
Ir): gk = k) & r(k)
Irk): fk) =gk & r'k)
in other words:
f(k) <g(k), and g(k) <f(k)

Since (E, @, ®) is a dioid, we deduce Vk: f(k) = g(k) and therefore P = Q.
(E[x], @, ®) is thus clearly a dioid in this case. 0O

The above is easily generalized to multivariate polynomials in several commu-
tative indeterminates Xp, X2, . ... Xy, the set of these polynomials being denoted
E[x1, X2, .... Xm].

2.2. Formal Series
Let (E, @, ®) be a pre-semiring or a semiring with neutral elements € and e (for @
and ®, respectively).

Definition 2.2.1. A formal series F in m commutative indeterminates X1, X2, . . . Xm
is defined by specifying a mapping £: N™ — E, where: Y(k1, ko, .... ky) € N™,

f(ky, ko, ....km) is the coefficient of the term xll(l ® )(12(2 R & x]é{“
Formally, we represent F by the (infinite) sum:
F= 3 fkp, ko, . k) @ X @ - @ xkm
(kl’ k29 LN} km)
eN™

Let us consider two formal series with coefficients f(kj,ko---ky) and
g(ky, ..., k). The sum is the formal series of coefficients s(ky, . ..kp) defined as:

V(ki, ko -km) € N":s(ki -+ . km) = f(ki -+ km) @ g(ki -+ . k).

The product is the formal series of coefficients t(kj---ky) defined as:
V(ki...,km) € N?:t(ky, ko ..., kp) = Xf(@i1,12...1m) ® 2(1, - - - jm) Where the
sum extends to all the pairs of m-tuples (i, ...im) € N™, (i,j2,...jm) € N™
such that:

i1 +j1 =k, ip+jo=ko,...,im +]jm = Kn.

Proposition 2.1.2 of Sect. 2.1 easily extends to formal series as defined above.

3. Square Matrices with Coefficients in a (Pre)-Semiring

Let (E, @, ®) be a pre-semiring or a semiring. We denote M, (E) the set of square
n x n matrices with elements in E.
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Given two matrices A = (ajj) and B = (bjj) of My (E)
* The sum, denoted A @ B, is the matrix S = (s;j) defined as:
Vi, j: sij = aj; ® by
e The product, denoted A ® B, is the matrix T = (t;;) defined as:

n
Vi, it = Z ajx @ bxj  (sum in the sense of @).
k=1

If E has a neutral element ¢ for @, the matrix:

is the neutral element of M, (E) for 6.
If, moreover, E has unit element e, and ¢ is absorbing for ®, then the matrix:

is the unit element of M;, (E) for ®.
It is then easy to prove the following:

Proposition 3.1. (i) If (E, ®, ®) is a pre-semiring then (M (E), ®, ®) is a pre-

semiring

(ii) If (E, ®, ®) is a semiring, then (Mp(E), ®, ®) is a semiring (in general
noncommutative)

(iii) If (E, @, ®) is a dioid, then My (E), &, ®) is a dioid (in general noncommuta-
tive)

In the subsequent sections, we study properties of square n X n matrices with elements
in a commutative pre-semiring (E, &, ®). For some of the properties considered, we
will have to assume that (E, @, ®) has a semiring structure.

4. Bideterminant of a Square Matrix. Characteristic
Bipolynomial

In this section we introduce the concept of bideterminant for matrices with coeffi-
cients in a pre-semiring.
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4.1. Reminder About Permutations

Let 7 be a permutation of X = {1, 2, ..., n} where, Vi € X, t(i) € X denotes the
element corresponding to i through m. The graph associated with m is the directed
graph G having X as set of vertices and n arcs of the form (i, 7(i)). This graph can
contain loops (when 7t (i) = 1).

It is well-known that the permutation graph decomposes into disjoint elemen-
tary circuits (each connected component is an elementary circuit). If a connected
component is reduced to a single vertex i, the corresponding circuit is the loop (i, 1).

Figure 1 below represents the permutation graph of {1, ... 7} defined as:

) =7, 7Q2) =4,713) =514 =2,705) =1, 7(6) =6, 7(7) = 3.

The parity of a permutation m, is defined as the parity of the number of transpositions
necessary to transform the permutation  into the identity permutation.
Thus, in the above example, a possible sequence of transpositions would be:

7 1 1 1 1
4 4 2 2 2
5 5 5 3 3
21> 12— 14—~ 14| — |4
1 7 7 7 5
6 6 6 6 6
3 3 3 5 7

The permutation of Fig. 1 is therefore even.
More generally, we can prove:

Property 4.1.1. The parity of a permutation 7 is equal to the parity of the number
of circuits of even length of the graph G associated with the permutation.

Fig. 1 Permutation graph
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Example. The graph of Fig. 1 contains two circuits of even length (1, 7, 3, 5) and
(2, 4), the corresponding permutation is therefore even. ||

We call signature of a permutation 7, the quantity sign (7) defined as:

sign(mw) = 41 if wiseven
sign(w) = —1 if wis odd

It is easy to see that the signature of a permutation 1 can be calculated as:
sign(m) = l_[ (=Dlci=t
C circuit of Gy

(where |C| is the cardinality of the circuit, and where the product extends to the set
of the circuits of Gy).

In the example of Fig. 1 we have three circuits: C; = (6) of odd length and
Cr =(2,4); C3=(1,3,5,7) of even length. We clearly have:

Sign(n) = (_)|C1|71 X (_1)|C2|*1 X (_l)\C3|7]

=41
Hereafter we denote:

Per(n) the set of all the permutations of {1, 2, ..., n}

Pert(n) the set of all the even permutations of {1,2,...,n} (the set of the

permutations of signature +1)
Per™ (n) the set of odd permutations of {1,2...,n} (of signature — 1)

We will also make use of the concept of partial permutation: a partial permutation
of X = {1, ..., n} is simply a permutation of a subset S of X.

Example. If X ={1,...,7} S = {2, 3,5, 7} then o defined as:
c2)=3;, o3 =7, oB)=5 o) =2

is a permutation of S and a partial permutation of X. The domain of definition of o,
denoted dom (0),is S = {2, 3,5, 7}

With every partial permutation ¢ of X = {I,...,n} we can associate the
permutation 6 of {1, ..., n} defined as:

6() = o(i) if ie dom(o)
i) =i if i e X\(dom(o))

6 will be referred to as the extension of o.
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&

@

Fig. 2 Graph associated with a partial permutation o of characteristic +1: o € Part™*(7)

The parity (resp. signature) of a partial permutation o is the parity (resp. signature)
of its extension 6.
The characteristic of a partial permutation o, denoted char (o), is defined as:

char(o) = sign(c) x (—1)!°!

|o| denoting the cardinality of dom(o).

We observe that, if o is a partial permutation of order k (i.e. |o| = |dom(o)| = k)
and cyclic (i.e. such that the associated graph contains a single circuit covering all
the vertices of dom (o)) then: sign(c) = sign(6) = (—l)k_l, hence:

char(o) = (—1)X**! = —1.
From the above, we deduce:

Property 4.1.2. For every partial permutation o, char(c) = (—1)" where r is the
number of circuits in the graph associated with o.

Example. For the partial permutation of {1, ..., 7} defined as:
c2)=3;, oB)=7;, oB)=5 o7 =2
the associated graph (see Fig. 2) contains two circuits, therefore: char(c) = +1. ||

Hereafter, we denote Part(n) the set of all the partial permutations of {1, ..., n}
(Observe that Per(n) C Part(n)).

The set of partial permutations of characteristic +1, (resp. of characteristic —1),
will be denoted Part™ (n) (resp. Part™(n)).

4.2. Bideterminant of a Matrix

For a square matrix of order n, A = (ajj) with elements in R endowed with the
standard operations, the determinant det (A) is classically defined as:
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det(A) = Z sign(m) (H ai,n(i)) M

mnePer(n) i=1

or equivalently, with the notation of Sect. 4.1., as:

e = Y (nai,m))— > (nai,nm) @)

mePert(n) \i=1 mePer—(n) \i=I1

(the above sums should be understood in the sense of the addition of reals). This
notation is possible given that (R, +) is a group.

If one wishes to generalize the concept of determinant to algebraic structures
featuring fewer properties, where addition does not induce a group structure, one
must introduce the concept of bideterminant.

Definition 4.2.1. (Bideterminant)

Let A = (a;j) be a square n x n matrix with elements in a commutative pre-
semiring (E, ®, ®). We call bideterminant of A the pair (det™ (A), det™ (A)) where
the values det™ (A) € E and det™ (A) € E are defined as:

det™(A) = Z ( ai,n(i)) 3
1

nePert (n) \i=
n

det”(A)= ) (]‘[ai,n@> )
mePer—(n) \i=I

(the above sums and products should be understood in the sense of the operations &
and ® of the pre-semiring).

4.3. Characteristic Bipolynomial

In the case of a real n x n matrix A, the characteristic polynomial is defined as the
polynomial in the variable A equal to the determinant of the matrix AI — A where I is
the n X n unit matrix:

Pa(\) = det(A\l — A)

n

= Y sign(m (l_[ bi,n(i))
mePer(n) i=1

bij = —aij if i 75_]

where, Vi, {bij:x—aij it iz
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We observe that, for every q, 1 < q < n, the coefficient of the term involving A"~
in the above expression can be expressed as:

Z sign(o) l_[ (—aj,0(1))

oePart(n) iedom(o)
lol=q
(5)
n
= > Dlsign@ | [ @ow)
oePart (n) iedom(o)
lol=q

For q = 0, the A" term has coefficient equal to 1. Observing that (—1)!°! sign(o) is
none other than the characteristic char(o) (see Sect. 4.1), (5) is rewritten:

Yo car@ | [ @ioa ©6)

oePart(n) iedom(o)
lol=q

By denoting (see Sect. 4.1) Part™ (n) (resp. Part ™ (n)) the set of partial permutations
of {1, ..., n} with characteristic 41 (resp. with characteristic —1) then the above
sum becomes:

n n

> [ @oay |- > [] @ioa (7
oePartT(n) \iedom(o) oePart™(n) \i€dom(o)
lo]=q lo]=q

Now, when A = (ajj) is a matrix with coefficients in a pre-semiring (E, @, ®), one
is then naturally lead to define the characteristic bipolynomial as follows.

Definition 4.3.1. (characteristic bipolynomial) Let A = (a;;) be a square n x n
matrix with elements in a commutative pre-semiring (E, @, ®). We call characteristic
bipolynomial the pair (PX (M), Py (V) where PX()\) and P, (\) are two polynomials
of degree n in the variable '\, defined as:

n n
Proo=>[ > | [] @oo||[er @ ®)
q=1 \ oePartt (n) \iedom(o)
lo|=q

and:
n

INOEDS DY [T Gioa || @20 ©)

q=1 \ oePart~(n) \iedom(o)
lol=q

(the sums and the products above are to be understood in the sense of the addition
@ and the multiplication Q of the pre-semiring (E, @, ®)).



5 Bideterminant of a Matrix Product as a Combinatorial Property of Pre-Semirings 61

We observe that, in the case where (E, &, ®) is a semiring, ¢ the neutral element
of @, is absorbing and the formulae (8)—(9) give:

PX(8)= Z (H%,m))

oePartt(n) \ i
lo|=n

Py(e) = Z (l_[ai,o(i)>
oePart—(n) \ i

lo]=n

Since, for |o| = n, char(c) = (—1)" sign(o), we see that for even n, Part™(n) =
Per™ (n) and consequently:

PX () = detT(A), P (e) = det™ (A)
For odd n, we have Part* (n) = Per™ (n) and consequently:
PX (e) = det” (A), P, (e) = det™(A).

We thus find again the analogue of the classical property for the characteristic
polynomial:
PA(0) = det(—A) = (—1)" det(A).

5. Bideterminant of a Matrix Product as a Combinatorial
Property of Pre-Semirings

Given two square n x n real matrices, a classical result of linear algebra is the
identity:
det(A x B) = det(A) x det(B)

In the present section we study the generalization of this result to square matrices
with elements in a commutative pre-semiring (E, @, ®).

If A= (aj) B= (bij) and C=AQ®B= (cij)

with:

n
cij = Z ajxk ® bxj  (sum in the sense of the operation &)
k=1

Then, by definition (see Sect. 4.2):

det" (A ® B) = Z (]‘[ci,n@) (10)

mePert(n) \i=1
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For 7t € Per™(n) fixed, we can write:

n n n
Hci,n(i) = l—[ (Z ajk ® bk,n(i)) an
=1

i=1 \k=I

By using distributivity, each term in the expansion of expression (11) is obtained by

choosing, for each value of i(1 <1i < n), avalue of k € {1, ..., n}. In other words,
each term in the expanded expression is associated with a mapping f:{1, ..., n} —
{1, ..., n}, and the value of the corresponding term in (11) is:

n

[ (@ic0) ® briy.ni)

i=1

By denoting F(n) the set of mappings: {1, ...,n} — {1,...,n}, (10) can therefore
be rewritten:

n
det"(A®B) = Z Z H(ai,f(i) ® br (i), n (i) (12)
feF(n) nePert(n) i=1

We would similarly obtain:

det " (A®B) = Z Z H(ai,f(i) ® br i), n (i) (13)

feF(n) mePer—(n) i=1
Among the mappings of F(n), we find (even and odd) permutations, i.e.:
F(n) = Per*(n) UPer™(n) UF (n)

where F'(n) denotes the set of all the mappings of F(n) which are not permutations.
Expression (12) therefore decomposes into the sum of three sub-expressions:

n
of = Z Z l_[(ai,fm@bf(i),n(i)) (14)

fePert (n) mePert (n) iil

pr= > > J@ico ® b)) (15)

fePer—(n) mePert (n)n i=1

vi= Y Y ]]@isw ®bri.ai) (16)

feF (n) mePert(n) i=1

In cases where f is a permutation, let g be the permutation m o f~!. In the
expressions (14) and (15) above, we can rewrite the term:

n n n n
<l_[ ai,f(i)) by (l_[bf(i),n(i)> as: (l_[ ai,f(i)) b2 (l_[ bi,g(i))
i=1 i=1 i=1 i=1

Let us then consider the expression a™t.
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f being an even permutation, f —1 is even and g, as the product of two even
permutations is even. Then a™ can be rewritten:

n n
at = Z Hai,f(i) ® Z Hbi,g(i) (17

fePert(n) i=1 gePert (n) i=1

= det™(A) ® dett(B)

Let us now consider the expression p.
f being odd, f~! is odd and g, as the product of an even permutation and an odd
permutation, is odd. Then B+ can be rewritten:

pr={ > [laco|®| 2 Ilbeo (18)

fePer—(n) i=1 gePer—(n) i=1
= det™(A) ® det™ (B)

From the above, we deduce:

det™ (A ® B) = det™(A) @ det™(B) @ det” (A) @ det— (B) ®yt  (19)
Through similar reasoning, we would prove that:

det " (A®B) =det"(A) @ det " (B) ®det (A) @det™(B)®dy~  (20)

with: N
Yy = Z Z H(ai,f(i) ® br i), n(i)) 21
feF (n) tePer— (n) i=1
Now we prove:

Lemma 5.1. The two expressions T, given by (16), and y~, given by (21), take the
same value.

Proof. Let us consider an arbitrary term of the sum (16) whose value is:

n
b= l_[ ai.f ) ® br(),x()

i=1

with f € F'(n) and 7w € Pert(n).

We are going to show that we associate it with a term 6’ of expression (21) such
that 9’ = 0.

Since f € F'(n), fis nota permutation of X = {1, ..., n}, which therefore implies
that there exists iy € X, i, € X, i, # io, k € X such that:

f(ig) =k = f(if) (22)
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If there exist several ordered triples (ig, i{), k) satisfying (22) we choose the smallest
possible value of k and, for this value of k, the two smallest possible values for igp
and if,.

From the permutation 7, let us define the following permutation 7t’:

7'(§) = n()¥j € X\{io, iy},

' (i0) = n(ip),

(i) = m(io)
We observe that 1" is deduced from by transposition of the elements i and iy,
consequently @' € Per™ (n). Furthermore, we observe that the same construction

that obtains (f, ') from (f, ) enables one to obtain (f, 1) from (f, 7).
Finally, we have:

n

0 = 1_[ (i) ® briy,w(i))

i=1

n
= 1_[ ai. (i) ® brei), ) | ® g ® bk (g ® &l ® bk,n’(ig,)
i=1
i # 1
i #£ il

n
= 1_[ 3i.£(i) ® brei),n i) | © iy ® bimii) ® Ay, @ by (i)
i=1
i7#1g
P i)

=0
which completes the proof. O
‘We have therefore obtained:

Theorem 1. Let A and B be two square n x n matrices with coefficients in a com-
mutative pre-semiring (E, ®, ®).
Then:

det™ (A ®B) = det(A) @ det™(B) @ det” (A) @ det  (B) ® y

and:
det (A ®g) =dett(A) ® det” (B) @ det  (A) ® det™ (B) ® y
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where:

n
y= > X (l_[ai,fm@bf(i),n(i))

feF (n) mePert(n) \i=1

n
= > X (ﬂai,f(i)®bf<i>,n(i>)

feF'(n) mePer(n) \i=1

F'(n), in the above expressions, denoting the set of the mappings
f: {1,...n} = {1, ...n} which are not permutations. O

As an immediate consequence of the above, we find again the well-known result:
Corollary 5.2. If (E, ®) is a group, then:
det(A ® B) = det(A) ® det(B)

As already pointed out in the introduction, Theorem 1 above clearly does not directly
follow from the classical result (on the real field). Indeed a different proof is needed
for the case of pre-semirings to get the exact expression of the additional term y
arising in both expressions of det™ (A ® B) and det ™ (A ® B).

6. Cayley—Hamilton Theorem in Pre-Semirings

The Cayley—Hamilton theorem is a classical result of linear algebra (on the field of
real numbers) according to which a matrix satisfies its own characteristic equation.

Combinatorial proofs of this theorem have been provided by Straubing (1983)
and previously by Rutherford (1964). Rutherford’s result constituted, moreover, a
generalization of the theorem to the case of semirings.

Below we give a combinatorial proof inspired from Straubing (1983) and
Zeilberger (1985), but which further generalizes the theorem to the case of commu-
tative pre-semirings (indeed, it does not need to assume that ¢, the neutral element
of @, is absorbing for ®).

Theorem 2. Let (E, ®, ®) be a commutative pre-semiring with neutral elements €
and e.

Let A be a square n x n matrix with coefficients in (E, ®, ®), and let (ijr ),
P, (\)) be the characteristic bipolynomial of A.

Then we have: P} (A) = Py (A) (23)

where:

PX (A) and P, (A) are matrices obtained by replacing \"~4 by the matrix A"~ 4 in
the expression of PJAr (\) and P, (\), and where the following conventional notation
is used: A° denotes the matrix with diagonal terms equal to e and nondiagonal terms
equal to g; for every o € E, a ® A° denotes the matrix with diagonal terms equal to
o and nondiagonal terms equal to €.
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Proof. We show that each entry (i, j) of the matrix PX (A) is equal to the entry (i, j)
of the matrix P, (A).

Let us therefore consider i and j as fixed.

Forq=0,1,..., n— 1, the value of term (i, j) of the matrix A" ™9 is:

A"y = Y [T
pePij k.,Dep
Ipl=n—q

where Pj; is the set of (nonnecessarily elementary) paths joining i to j in the complete
directed graph on the set of vertices {1, ..., n}, and where |p| denotes the cardinality
(number of arcs) of the path p € P;.

For ¢ = n, consistently with the adopted notational convention, (A"79);; =
(Ao)ij is equal to ¢ fori # j, and to e for i = j.

Furthermore, the coefficient of A"~9 in P} (A) is:

Z 1_[ A o(i)

oePartt(n) \iedom(c)
lol=q

and, consequently, the term (i, j) of the matrix PJAr (A) (by using the distributivity of
® with respect to @) is given by the following formulae. For i # j:

n—1
2 TT el X2 I aweol||®| X TT au
q=1 peP;j  (k,Dep oePart™ (n) i€dom(o) pePyj (k,1)ep

[pl=n—q lol=q Ipl=n
(24)
For i = j, we must add to expression (24) the extra term:

Z l_[ i o(i)

oePartt(n) \iedom(o)
lo]=n

(which may be viewed as corresponding to the value q = n).
Let us denote .7-'; (resp. .7-'1;) the family of graphs having X = {1,2,...,n} as
vertex set and whose set of arcs U decomposes into: U = P U C where:

e Pisa set of arcs forming a path from i to j;

» Cis a set of arcs such that the graph G = [X, C] is the graph associated with a
partial permutation ¢ of X with o € Part*(n) (resp. o € Part™(n)).
In other words, [X, C] is a union of an even (resp. odd) number of disjoint circuits
(loops are allowed) not necessarily covering all the vertices.

* U =|P|+|C|=n.
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The weight w(G) of a graph G = [X, U] belonging to .7-'; or to F; is defined as:

wG) = [] au

(k,1)eU

In the case where i # j, by expanding (24) (distributivity) we then observe that entry
(i, j) of PX(A) is:
> w(G) (25)

"
Ge]—'ij

In the case where i = j, by considering that the path P can be empty in the decom-
position U = P U C, the additional term corresponding to q = n is clearly taken into
account in expression (25).

Similarly, it is easy to see that the entry (i, j) of P, (A) is, in all cases, (i = j and
i # j), equal to:

Z w(G) (26)
Ge]’i;
It therefore remains to show that the two expressions (25) and (26) are equal. To do
s0, let us show that, with any graph G of ]-'lj', we can associate a graph G” of }"IJ_
of the same weight, w(G") = w(G), the correspondence thus exhibited between .7’-'1J+
and fu_ being one-to-one.

Let us therefore consider G = [X,PUC] € ]—'Jr [X, C] is a union of an even
number (possibly zero) of vertex-disjoint circuits (Fig. 3 shows an example where
n=3_8,i=1,j=4).

Since |P| 4 |C| = n, we observe that the sets of vertices covered by P and C nec-
essarily have at least one common element. Furthermore, the path P not necessarily
being elementary, P can contain one (or several) circuit(s).

Fig. 3 Example illustrating the proof of the Cayley—Hamilton theorem. A graph G € }'J for

n = 8, withi = 1 and j = 4. The path P is indicated in full lines and the partial permutation ¢ of
characteristic 41 (as it contains two vertex-disjoint circuits) is indicated with dotted lines
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Let us follow the path P starting from i until one of the following two situations
occurs:

Case 1. We arrive at a vertex of P already traversed without meeting a vertex
covered by C;
Case 2.  We arrive at a vertex k covered by C.

In case 1 we have identified a circuit I' of P which does not contain any vertex
covered by C. In this case, we construct G’ = [X, P’ U C'] where:

» P’ is deduced from P by eliminating the circuit ';
e (' is deduced from C by adding the circuit T

We observe that C' now contains an odd number of disjoint circuits, therefore G’ €
7.

In case 2, let T be the circuit of C containing the vertex k. We construct G’ =
[X, P’ U C’'] where:

e P’ is deduced from P by adding the circuit T";
» (' is deduced from C by eliminating the circuit T.

Here again, C’ contains an odd number of disjoint circuits, therefore G’ € .7-'1;

Furthermore, we observe that in the two cases, G and G’ have the same set of
arcs, therefore w(G’) = w(G).

Finally, it is easy to see that, the same construction by which G is transformed
into G’ can be used to transform G’ back into G: there is therefore a one-to-one
correspondence between .7-'13" and }"U_ (see illustration in Fig. 4)

From the above we deduce:

> wG) = > wG)

n _
Ge]—‘ij Ge]—‘ij

which completes the proof of Theorem 2. 0O

Fig. 4 The graph G’ obtained by including the circuit (3, 6, 8) in P is an element of Fy and it has
the same weight as G
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7. Semirings, Bideterminants and Arborescences

In the present section we consider a square n X n matrix, A = (a;j) with elements in
a commutative semiring (E, &, ®). We assume therefore:

e That & has a neutral element ¢
e That ® has a neutral element e.
» That ¢ is absorbing for ® that is to say,

Vx € E: ERX=XQ e=c¢

Forr € [1, n] we denote A the (n — 1) x (n — 1) matrix deduced from A by deleting
row r and column r.

We denote [ the (n — 1) x (n — 1) identity matrix of M_ (E) with all diagonal
terms equal to e and all other terms equal to €.

7.1. An Extension to Semirings of the Matrix-Tree Theorem

Let us begin by stating below the result which will be proved in Sect. 7.2, and
which may be viewed as a generalization, to semirings, of the classical “Matrix-
Tree-Theorem” by Borchardt (1860) and Tutte (1948).

Theorem 3. (Minoux, 1997)

Let A be a square n X n matrix with coefficients in a commutative semiring
(E, ®, ®). Let A be the matrix deduced from A by deleting row r and column r(r €
[1, n]) and let B be the (2n — 2) x (2n — 2) matrix of the form:

S

where I is the identity matrix of My_1 (E) and D the diagonal matrix whose diagonal
terms are:

di =) ay Vie{l,....n\{r)
=1

(sum in the sense of ®).

Let us denote by G the complete directed 1-graph on the vertex set X =
{1,2,...,n} and by 7T; the set of the arborescences rooted at t in G. For an arbitrary
partial graph G of G, the weight of G, denoted w (G), is the product (in the sense of
®) of the values aj; for all the arcs (i, j) of G.

Then we have the identity:

det™ (B) = det " (B) ® Z w(G) O
GeT;
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7.2. Proof of Extended Theorem

To prove Theorem 3, let us consider the following (2n — 2) x (2n —2) square matrix:

A:D
B =1 ....
I:°1

We observe that the permutation applied to the columns of B to obtain B’ is even
if n — 1 is even, and odd if n — 1 is odd. Consequently, if n — 1 is even we have
det™(B) = det™(B’) and det™(B) = det™(B’). If n — 1 is odd, we have: det™(B) =
det™(B’) and det™ (B) = det™(B/).

Letus begin by studying the properties of the bideterminant of B’ = (b{j).We have:

2n—2
dettB)= ) (]‘[ bg,ﬂ(i)> 27)

mePert(2n—2) \ i=1

In the above expression, all the terms corresponding to permutations 7 of {1, ...,
2n — 2} such that b;’n(i) = ¢ for some i € [1,2n — 2] disappear because of the
absorption property.

Consequently, in (27), we only have to take into account the permutations 1 of
Pert(2n — 2) such that, for 1 <i<n — I:

n@i+n—1)=i or w(i4+n—1)=i4+n-1

Each admissible permutation 7 can therefore be associated with a partition of X =
{1,..., n— 1} in two subsets U and V where:

U={i/ieX; wn@i+n—-1) =i}

V={i/ieX; mi+n—1)=i+n—1)}
Furthermore, we observe that the columns of B’ indexed 1_ +n—1withi € U
can only be covered by rows with index i € U. Given that D is diagonal, we must

therefore have:
VieU #n@)=i+n-1

Each admissible permutation 1 can therefore be considered as derived from a

permutation o of V (a partial permutation of X = {1, ..., n}) as follows:
viey:] "W =00
Ini+n—1D=i+n-1
viey "W =itn-l

ni+n—1)=i
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The graph representing 7 on the set of vertices {1, ..., 2n — 2} therefore consists of:

* Elementary circuits representing the partial permutation o;
* |V|loops on the verticesi+n — 1 (i € V);
* |U| circuits of length 2 (therefore even) of the form (i,i+n — 1),i € U.

The signature of m is therefore equal to
sign() = sign(o) x (=1
hence:

sign(m) = sign(m) x (—=1)>*IVI
= sign(o) x (=D x (=1)VI+IVI

= char(o) x (=1)"!

(since V = dom(o)).

Let us first assume that n — 1 is even. In this case, sign(m) is none other than the
characteristic of o as a partial permutation of X, and € Per™ (2n — 2) if and only
if 6 € Part™(n — 1). Then, (27) can be rewritten:

dettB)= )~ (]‘[ai,cm>®(1‘[dﬁ) (28)

oePartt(n—1) \ieV ieU

= det™ (B)

We would obtain a similar expression for det™ (B’) = det™ (B) simply by replacing
o € Part™(n — 1) in (28) with o € Part™(n — 1). (Fig. 5)

Let us now consider the case where n — 1 is odd. We then have sign(w) =
—char(o), and, consequently, we have:

det*®)= ) (1_[ ai,c(i)) ® (l_[ dii) (29)

o€Part—(n—1) \ieV ieU
= det™ (B)
(we obtain the expression of det ™ (B’) = det™ (B) by replacing ¢ € Part~(n — 1) in

(29) with o € Part™(n — 1)).
Thus it is seen that, in both cases (n — 1 even or odd), the expression giving

det™(B) is:
dett®) = Y (]‘[ ai,(,m) ® (]"[ dﬁ) (30)

o€Partt(n—1) \ieV ieU

(where V = dom(o) and U = X\V). The expression giving det™ (B) is simply
deduced from the above by replacing o € Part™(n — 1) with o € Part™(n — 1).
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Fig. 5 The matrix B’ and a partition of X = {1, ..., n— 1} into two subsets U and V corresponding
to an admissible permutation 1 of {1, ..., 2 n — 2}. Only the terms distinct from ¢ (neutral element

of @) are represented (by circles). The terms indicated in black are those corresponding to the
permutation 7. The partial permutation o is the one induced by 1 on the sub-matrix of A restricted
to the rows and columns of V

Let us denote F* (resp. F ) the family of all directed graphs constructed on the
vertex set X = {1, 2, ..., n}, of the form G = [X, C U Y] where:

» Cisasetof arcs constituting vertex-disjoint circuits and containing an even (resp.
odd) number of circuits;

* Y is a set of arcs such that, for every i € X\{r} not covered by C, Y contains a
single arc of the form (i, j) (the possibility j = i being authorized, as well as the
possibility j = r).

n
By expanding expression (30), that is to say by replacing each term dj; by }° a;; and
j=1
by using distributivity, we then observe that det™ (B) can be expressed in the form:

det™(B)_ Z w(G) (3D

GeF+
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where the “weight” w(G) of the graph G = [X, CU Y] is:

wG =[] au

(k,1)eCUY
We would prove similarly that:
det”(B) = Y w(G) (32)
GeF~

Among the graphs of F+UJF ~, those which do not contain a cycle play a special role.
Indeed, in this case, C = J, and the set Y does not contain a cycle and is composed
of n — 1 arcs (an arc originating at each vertex i € X\{r}). Y therefore forms an
arborescence rooted at r.

Since C = ¢, the subclass 7; (the set of arborescences rooted at r) is necessarily
included in F+.

If we denote Ft=TuFrf

we can therefore write:

dettB)= Y w@G @ Y wG) (33)

GeT: GeF&

The end of the proof uses the following result (Zeilberger, 1985):

Z w(G) = Z w(G) (34)

Ge]::r GeF~

Lemma 7.2.1.

Proof. It proceeds by showing that, with each graph G € F; we can associate a
graph G’ of F~ with w(G’) = w(G), and that the correspondence is one-to-one.

Let us therefore consider a graph G of F. of the form G = [X, CU Y].

This graph contains at least one circuit and [X, C] contains an even number
(possibly zero) of circuits. Among all the circuits of G, let us consider the one which
meets the vertex with the smallest index number and let I" be the set of its arcs.

If ' C Y then let us define G’ = [X, C’ U Y'] with

c¢=Ccur
Y =Y\l

If ' C C then let us define C' and Y’ as:

C' =C\Il
Y =YUT
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In both cases, C’ contains an odd number of circuits, therefore G’ € F—, and as G
and G’ have the same sets of arcs:

w(G') = w(G).

Furthermore, we observe that the same construction which transforms G to G’ enables
one to transform G’ back to G.

We would prove in the same way that, with every G € F~ we can associate
G’ € F such that w(G') = w(G).

This completes the proof of Lemma 7.2.1. O

By using Lemma 7.2.1, (33) is then rewritten:

det™(B) = Z w(G) @ det™ (B), which establishes Theorem 3. 0O
Ge7;

7.3. The Classical Matrix-Tree Theorem as a Special Case

In the special case where A is a real matrix on the field of real numbers, we see that

> w(G) = det*(B) — det” (B) = det(B)
Gel;

where det(B) is the determinant of B in the usual sense and:

D:A
det(B):det|:--}--:|

I:1
D—A: A
=det| - e
0 I
=det(D — A)

From the above, we deduce the following corollary, known as the “Matrix Tree
Theorem”, due independently to Borchardt (1860) and Tutte (1948):

Corollary 7.3.1. Let A = (a;j) be a square n x n matrix with real coefficients; D

n - —
the diagonal matrix whose ith diagonal term is djy = »_ aij; A and D the matrices
j=1
deduced from A and D by eliminating the rth row and the rth column (for any fixed'r,
1 <r <n). Thendet (D — A) is equal to the sum of the weights of the arborescences
rooted at t in the graph associated with matrix A.

Theorem 3 can thus be considered as an extension to semirings of the “Matrix-Tree
Theorem”.
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7.4. A Still More General Version of the Theorem

A more general version of the “Matrix Tree Theorem”, known as the “All Minors
Matrix Tree Theorem” (see Chen (1976), Chaiken (1982)) can also be extended to
semirings. We present this extension below (Theorem 4).
Let A = (aj) be asquaren x nmatrix with coefficients ina commutative semi-ring
(E, ®, ®), such that Vi = 1, ..., n: a;; = ¢ (the neutral element of & in E).
Foreveryie X ={1,2,...,n} set:

n

dij = Z ajk
k=1
K#i

Let L C X be a subset of rows of A and K C X a subset of columns of A with
IL] = |K].

Let A be the sub-matrix of A obtained by eliminating the rows of L and the
columns of K. The rows and the columns of A are therefore indexed by L = X\L
and K = X\K.

By settingm = |L| = |K| and p = |L N K| let us consider the (m +p) x (m + p)
square matrix B having the block structure:

where:

I, is the p x p identity matrix of the semiring (E, @, ®).

Qis am x p matrix whose rows are indexed by L and whose columns are indexed
by LNK; all its terms are equal to & except those indexed (i, i) with i € LK which
are equal to d;;.

R is a p x m matrix whose lines are indexed by L N K and whose columns are
indexed by K; all its terms are equal to € except those indexed (i, i) withi e LN K
which are equal to e (the neutral element of ® in E).

For every subset Y C X = {1,2, ..., n} let us denote sign (Y, X) = (—1)"¥-X)

where:

(Y. X) = [{G.))/i € X\Y.jeY.i<j
and s(L, K) = sign(L, X) x sign(K, X) x (=1)™.

Let us also consider the set 7 = 7 U7~ of all the directed forests H on the
vertex set X satisfying the following three properties:

(1) H contains exactly [L| = |K] trees;
(i) Each tree of H contains exactly a vertex of L and a vertex of K;
(iii) Each tree of H is an arborescence, the root of which is the unique vertex of K
which it contains.

The subsets 7 and 7~ are then defined as follows.
With each H € 7 we can associate a one-to-one correspondence n*: L — K
defined as: 7*(j) = iif and only if i € K and j € L belong to the same tree of H.
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Then 7T (resp. 7 ) is the set of the directed forests of 7 such that sign (n*) = +1
(resp. sign (1t*) = —1).
We can then state:

Theorem 4. (Minoux, 1998a)
If s(L, K) = +1 then there exists A € E
such that:

dettB)= 3 wH)® A
HeT+
det"(B) = > w(H) @A
He7 -

If s(L, K) = —1 then there exists A € E such that:

dettB)= Y wH)® A
He7 -~
det™B)= Y. wH)®A
HeT+

Proof. Refer to Exercise 1 at the end of the chapter where the exact expression of A
is specified. O

The above result suggests, once again, an essential remark concerning the general
approach followed in the present chapter. In fact, suppose that we apply the simple
trick which consists in formally deducing the generalized result from the classical
result. The reader will easily be convinced that we can reformulate the classical
“All-Minors Matrix-Tree Theorem” as:

det(B) = Y w(H)— Y  w(H)

He7+ He7 -~

If one thinks that it then suffices to rewrite the classical result by switching each
term appearing negatively to the other side of the equation, one is led to propose a
generalized version of the form:

det™ (B) ® Z w(H) = det” (B) ® Z w(H)

He7 - HeT+

which is not correct. Indeed, the above formula does not take into account the
additional term A which cancels itself in the classical result.

Only a direct proof, specialized to the semiring structure, can exhibit this term
and provide the exact expression (see Exercise 1 at the end of the chapter).

8. A Generalization of the Mac Mahon Identity to Commutative
Pre-Semirings

Let us consider a square n x n matrix, A = (ajj) with coefficients in a commutative
pre-semiring (E, @, ®).
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X1, X2, ..., Xp being indeterminates and mp, my, ..., m, natural integers, we
consider the expression:

(a1 ®X1 Dan@x2 @ ---ajp @ xp)™
® (a2] @X| B -+ B ay ® xy)™

(35)

®(anl®xl@"'$ann®xn)mn

and we denote K(mj, my, ..., my) the coefficient of the term involving x}"! ® x5 ®
... ® xp™" in the expansion of expression (35).
The Mac Mahon identity (1915) (recalled in Sect. 8.2 below) establishes a link

between the formal series S in X1, X, . . ., X,, with coefficients K(m, mp, ..., my),
and the expansion of the inverse of the determinant of the matrix I — A Dy, where Dy
is the diagonal matrix whose diagonal terms are the indeterminates X, X2, .. ., Xp.

In Sect. 8.1, we establish a more general version of this result for commutative
pre-semirings by giving a combinatorial proof generalizing that of Foata (1965),
Cartier and Foata (1969) (see also Zeilberger, 1985). In Sect. 8.2 we show that the
classical identity can be found again as a special case.

8.1. The Generalized Mac Mahon Identity

Theorem 5. (Minoux 1998b, 2001)
Let (E, ®, ®) be a commutative pre-semiring and A = (a;j) € My(E).
Let S denote the formal series:

S = Z K(mi,...,mp) ®x]"' ®x,% Q@+ @ xp™ (36)
(my,...mp)

where the sum extends to all distinct n-tuples of natural integers.
Then we have the following generalized Mac Mahon identity:

S® Z l_[ i 6(1) ® Xo(i)

oePart™ (n) iedom(o)

(37)
=eadsS®| Y. [l aico®x0
oePart™ (n) icdom(o)
Proof. Let us consider the family G(my, ..., my) of all the directed multigraphs of
the form G = [X, Y] where X = {1, 2, ..., n} is the vertex set and where the set of

arcs Y satisfies the two conditions:

(1) Vi € X, Y contains exactly m; arcs origining at i
(2) Vi € X, Y contains exactly m; arcs terminating at i

(observe that the graphs of the family G(my, ..., my) can obviously contain loops).
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The weight of G = [X, Y] is defined as the formal expression:
wG) = [] @i &x)
k,HeY

(product in the sense of ®) with the convention w(G) = e if Y = (.
We then verify that:

K(my,....,m)x;" @x;° ® - @ X"
= Z w(G)
GeG(my,...,my)

Consequently, the expression S given by (36) can be rewritten:

S = Z Z w(G):Zw(G)

(my,....,mp) GeG(my,...,my) Geg

with G = U G(my, ..., my)
my)

(my,...,

(union extended to all distinct n-tuples of natural integers).
Let us now consider the family F* (resp. F~) of all the graphs of the form
G = [X, Y UC] where:

e [X,Y]eg

e [X, C] is the graph representative of a partial permutation ¢ € Part™(n) (resp.
o € Part™(n)). It is therefore a set of arcs forming an even number (resp. odd
number) of elementary vertex-disjoint circuits (some of these circuits may
be loops).

We then observe that the left-hand side of (37) is equal to: Y w(G) and the

GeF+
right-hand side of (37) isequal to: e ® Y. w(G).
GeF~
Among all the graphs of the family 7+ U F~, let us consider Go = [X, Y U C]

with Y = @ and C = (. In this case, the graph [X, Y] corresponds to m; =
0,mp =0, ... my = 0, itis therefore the unique element of the family G(0, 0, . .. 0).
Furthermore, Go € F1 since C = ¢ corresponds to an even number of circuits, and
w(Gg) =e.

Consequently, it suffices to establish that:

> wG) = > wG) (38)

GeFH\G, GeF-

To do so, we are going to exhibit a one-to-one correspondence between F 7\ Gy and
F~ such that, if G € F\Gp and G’ € F~ are images through this one-to-one
correspondence, then w(G’) = w(G).

All the graphs of the form [X,Y U C] in (FT\G,) U F~ are assumed to be
represented by adjacency lists with the following convention: for every i € X, if i
belongs to a circuit in [X, C], then the arc of origin i in C is placed in the first position
of the list of the arcs of origin i.
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Now, let us consider G = [X, Y UC] € F\Gy. Since G # Gy, there exists at
least one vertex of nonzero degree in G. Among these, let ip be the vertex having
minimum index number.

Observe that C consists of an even number of vertex-disjoint circuits (this number
may possibly be zero).

Let us traverse the partial graph [X, Y] starting from vertex ip by using the arcs
of Y as follows: from every intermediate vertex i encountered that is not covered
by C, we take the arc (i, j) which appears first in the adjacency list of vertex i. The
traversal stops when one of the two following situations arises:

Case 1. We arrive at a vertex already encountered in the pathway before having
encountered a vertex covered by C;
Case 2. We arrive at a vertex k covered by C.

In the first case, we have exhibited a circuit of the partial graph [X, Y], which does
not have a common vertex with C. Let I' C Y be the set of its arcs.
We then form G’ =[X,Y U]
with Y =Y\l
¢=Ccur
In the second case, C contains a circuit passing through k and let I" be the set of its
arcs. Then we form G’ = [X, Y’ U C'] with:
Y =YUTL
C =C\I'
Moreover, the adjacency list of each node i covered by the circuit I' is modified in such
away that the arc of I which originates at i becomes the first in the adjacency list for i.
In both cases, C’ contains an odd number of vertex-disjoint circuits. Furthermore,
the sets of arcs of G and G’ being the same, we have w(G’) = w(G).
Finally, we observe that, thanks to the convention established concerning the
order of arcs in the adjacency lists, the same construction which transforms G into

G’ enables one to transform G into G’. This is therefore a one-to-one correspondence
between F\Gg and F~, which completes the proof of Theorem 5. O

8.2. The Classical Mac Mahon Identity as a Special Case

It is interesting to verify that the generalized form (37) of the Mac Mahon identity
includes, as a special case, the usual form on the field of real numbers, which is
expressed by the following corollary:

Corollary 8.2.1. S being defined as in expression (36), and B denoting the matrix
B = (bjj)i=1..n. = (@jjXj)i=1..n, we have:
j=l,.n j=l,.n
SxdetI—B) =1 (39)
Proof. See Exercise 2 at the end of the chapter and Minoux (1998b, 2001). O
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Exercises

Exercise 1. We consider the real matrix:

N O
—_— O W N
|

on a dioid (R, @, ®).

(1) Give the formal expression of the bideterminant of A, by formally stating det™ (A)
and det™ (A).

(2) Compute the value of the bideterminant when the dioid under consideration
is (R, Max, Min). Check that Max{det™ (A); det™(A)} is indeed equal to the
optimal value of the «bottleneck » (Max-Min) assignment problem.

(3) Compute the value of the bideterminant when the dioid under consideration is
(R Max, +). Check that Max{det™ (A); det™ (A)} is indeed equal to the optimal
value of the assignment problem (where the objective is to maximize the sum of
the selected entries).

(4) Check the Cayley—Hamilton theorem for A in both cases ((R, Max, Min) and
(R, Max, +)).

El(ercise 2. We consider the real 4 x 4 matrix with entries in the dioid
(R, Min, +):

o 4 0 1
0 c0o—1 2
A=13 5 -3
—-21 6 o©

which is a generalized adjacency matrix corresponding to the complete oriented
graph.

(1) Set up the list of all arborescences with root r = 1 in the above graph, and
calculate the sum S (in the sense of & = Min) of the weights of these arbores-
cences. We recall that, in the Matrix-Tree Theorem (see Theorem 3, Sect. 7.1), the
arborescences involved are those having arcs oriented from the pending vertices
to the root. The vertex r = 1 has thus zero out-degree.

(2) Check the generalized version of the « matrix tree theorem » on this example, in
other words that det™ (B) = Min {det™ (B); S}

D:A
where B is the 6 x 6 matrix: | - -

I:1
where: B
A is deduced from A by deleting the first row and the first column of A; D is the
diagonal matrix with diagonal entries:

di = Min {aj} Vi=23,4.
j=L,...n

=l1,...,
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[Answers:

(1) There are 16 distinct arborescences rooted at r = 1 in this example. For instance
the arborescence composed of the arcs (2,1) (3,1) (4,1) with weight 1 (= 0 +
3 — 2); the arborescence composed of the arcs (2, 1) (3, 1) (4, 2) with weight
4, etc. The minimum of the weights of these 16 arborescences is S = —6, and
corresponds to the arborescence (4, 1)(2, 3)(3, 4).
oo —1 2 —1 00 o0
(2) Wehave A=|35 0o =3| and D= 0o —3 o0
1 6 oo 0o —2

and it can be checked that:
det*(B) = —6, det” (B) = -3
and that the extended Matrix-Tree Theorem holds since:
det™(B) = Min{det ™ (B), S} = Min{—3, —6}.]

Exercise 3. (Proof of Theorem 4: generalized “All Minors Matrix Tree Theorem™)

In this exercise, we refer to the concepts and notation used in Sect. 7.4.

Given two subsets U and V of X of equal cardinality (JU| = |V]), we refer to as
matching every one-to-one correspondence t: U — V. The signature of a matching
n: U — V, denoted sign(m), is defined as follows. A pair (i, j) of elements of U is
said to be in inversion relatively to w if i < j and 1(i) > 7(j). By denoting v() the
number of pairs (i, j) i € U, j € U, which are in inversion relatively to mt, then sign
(1) = (—1)"™_ We observe that, in the special case where U = V = X, a matching
is none other than a permutation of X, and we verify that in this case the definition
of the matching signature is consistent with that of the permutation signature.

The characteristic of a matching m: U — V is defined as:

Char(‘f[) = sign(n) X (_ ])|W‘
where W ={i/i € U, n(i) = i}

We now denote by F1 (resp. F ) the set of all the directed graphs on X having as
set of arcs S U T where:

— Sis the set of arcs of the form (i, m(i)) for every i € L such that i # 7(i), where
7: L — K is a matching of characteristic +1 (resp. of characteristic —1).

— Tisaset of arcs such that, for every i € L satisfying mt(i) = i, there is exactly one
arc in T of the form (k, 1) withk € X, k # i (note that (i) = iimpliesi € LNK).

Among the graphs H of the family F* (resp. ) those which are circuitless are

exactly those of 7 (resp. 7 ) (see Sect. 7.4). We can therefore write:
Ft=TtUFtand F~ =T~ UF; where F, (resp. F; ) denotes the family

of sub-graphs H € F (resp. H € F ) which contain nontrivial circuits (i.e. circuits

which are not loops).
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(1) Prove that we have:

dett (B) = Z w(H) and det™(B) = Z w(H)

HeF+ HeF~

A:Q
where B is the matrix |: e :| defined in Sect. 7.4.
R:1,
(2) Show, by using an argument similar to the one used by Chaiken (1982), that

> owH) = D w(H)
HeF HeF:
(3) Then show that Theorem 4 is deduced from the above by taking:
A= > wH) = ) wH)
HeFt HeF:
[Answers: refer to Minoux (1998a)].

Exercise 4. Where we recover the classical Mac Mahon identity
Here we take the field of real numbers as the basic algebraic structure.

(1) Let B be an x n matrix with coefficients in R, and I the identity matrix of My, (R).
Prove that:

det(I — B) = Z Q I1 bi,o(i)>_ Z ( I bi,oﬁ))-

ds ied
o€Partt (n) €dom(o) o€Part~(n) iedom(o)

(2) By using the above relation, deduce from Theorem 5 (see Sect. 8.1) the classical
Mac Mahon identity:

SxdetI—B) =1
with B = (bij)i:}mn = (ainj)g=%mn.
i P

n

[Answers: refer to Minoux (1998b, 2001)]
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