CHAPTER 2

FUNDAMENTAL CONCEPTS

This chapter describes the fundamental concepts in the theory of time series models. In
particular, we introduce the concepts of stochastic processes, mean and covariance func-
tions, stationary processes, and autocorrelation functions.

2.1 Time Series and Stochastic Processes

The sequence of random variables {Y;: r =0, £1, £2, +3,...} is called a stochastic
process and serves as a model for an observed time series. It is known that the complete
probabilistic structure of such a process is determined by the set of distributions of all
finite collections of the Y’s. Fortunately, we will not have to deal explicitly with these
multivariate distributions. Much of the information in these joint distributions can be
described in terms of means, variances, and covariances. Consequently, we concentrate
our efforts on these first and second moments. (If the joint distributions of the ¥’s are
multivariate normal distributions, then the first and second moments completely deter-
mine all the joint distributions.)

2.2 Means, Variances, and Covariances

For a stochastic process {Y;: t =0, £1, £2, £3,...}, the mean function is defined by
u, = E(Y,) fort=0, £1,%2, ... 2.2.1)

That is, p, is just the expected value of the process at time ¢. In general, p; can be differ-
ent at each time point ¢.
The autocovariance function, v, , is defined as

v, , = Cov(Y,,Y,) fort,s =0, £1,+2, ... (2.2.2)

where Cov(Y,, ¥,) = EL(Y, - p)(Y; — ul = E(Y,Y)) — i .
The autocorrelation function, p, , is given by

p, = Corr(Y,,Y)) fort, s =0, £1,%2, ... (2.2.3)

where
Cov(Yt,YS) _ Vs (22.4)
JVar(Yt)Var(Ys) «/Vt, Vs

Corr(Y,,Y,) =

11
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We review the basic properties of expectation, variance, covariance, and correlation
in Appendix A on page 24.

Recall that both covariance and correlation are measures of the (linear) dependence
between random variables but that the unitless correlation is somewhat easier to inter-
pret. The following important properties follow from known results and our definitions:

Ve = Var(Y, Pr; = 1
Te,s = Vst Prs = Pyt (2.2.5)

s s ,

|Y,’ S| < f\lyt, tyx, K |pt, s| <1

Values of p, ; near £1 indicate strong (linear) dependence, whereas values near zero
indicate weak (linear) dependence. If p, ;= 0, we say that Y, and Y| are uncorrelated.

To investigate the covariance properties of various time series models, the follow-
ing result will be used repeatedly: If ¢y, ¢,,..., ¢,, and dy, d,, ..., d,, are constants and ¢,,
ty,..., t,, and sy, §5,..., 5, are time points, then

m n
Cov Z Cthi’ Z d]YSJ

n n
= 2 2 cdiCov(Y,, Yy) (2.2.6)
i=1 J= 1 2 J

i=1 j=1

The proof of Equation (2.2.6), though tedious, is a straightforward application of
the linear properties of expectation. As a special case, we obtain the well-known result

n n ni-1
Var z Y, | = z cl-ZVar(Ylv) +2 Z z cichov(Ylv, Y,) 2.2.7)
i=1 ! i=1 ! i=2 j=1 t

The Random Walk

Let ey, e5,... be a sequence of independent, identically distributed random variables
each with zero mean and variance csez. The observed time series, {Y,: t=1, 2,...}, is
constructed as follows:

Yy =¢
h=etre (2.2.8)
Y,=e +te,+ +e,
Alternatively, we can write
Y, =Y, _|+e (2.2.9)

with “initial condition” Y = e;. If the ¢’s are interpreted as the sizes of the “steps” taken
(forward or backward) along a number line, then Y; is the position of the “random
walker” at time ¢. From Equation (2.2.8), we obtain the mean function
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n, = E(Y,) = E(e;+e,+-+e,) = E(e)) +E(ey) +--- +E(e,)
=0+0+--40

so that
n,=0 forall¢ (2.2.10)

We also have
Var(Y,)

Var(e, +e,+ - +e,) = Var(e|) + Var(ey) + -+ + Var(e,)

2 24 ... 2
c,+0,+ +0,

so that
Var(Y,) = tc? (2.2.11)

Notice that the process variance increases linearly with time.
To investigate the covariance function, suppose that 1 < <s. Then we have

Vis = Cov(Y,,Y) = Cov(ej+ey+ - +e,,e +e,+ - +e,+e, |+ +e)

From Equation (2.2.6), we have

N

t
Vs = Z z Cov(e;, ej)

i=1 j=1

However, these covariances are zero unless i = j, in which case they equal Var(e;) = Gg .
There are exactly ¢ of these so thaty, ; = tcez .

Since y; ¢ =¥y, this specifies the autocovariance function for all time points 7 and s
and we can write

Vs = 162 for 1<t<s (22.12)

The autocorrelation function for the random walk is now easily obtained as

P for 1<t<s (2.2.13)

Yoo f
ts I
Medss  V°

The following numerical values help us understand the behavior of the random

walk.
= [ = 0.707 = 8 = 0.943
P1,2 = 5 =Y Pg 9 = 9

24 1
Paas = [55 = 0980 py o5 = Jzis = 0.200

The values of Y at neighboring time points are more and more strongly and posi-
tively correlated as time goes by. On the other hand, the values of Y at distant time
points are less and less correlated.

A simulated random walk is shown in Exhibit 2.1 where the e’s were selected from
a standard normal distribution. Note that even though the theoretical mean function is
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zero for all time points, the fact that the variance increases over time and that the corre-
lation between process values nearby in time is nearly 1 indicate that we should expect
long excursions of the process away from the mean level of zero.

The simple random walk process provides a good model (at least to a first approxi-
mation) for phenomena as diverse as the movement of common stock price, and the
position of small particles suspended in a fluid—so-called Brownian motion.

Exhibit 2.1 Time Series Plot of a Random Walk

Random Walk

I I I I I I I
0 10 20 30 40 50 60

Time

> win.graph(width=4.875, height=2.5,pointsize=8)
> data(rwalk) # rwalk contains a simulated random walk
> plot (rwalk, type='o',ylab="'Random Walk')

A Moving Average
As a second example, suppose that {Y,} is constructed as
e, te,
Y, = —5 (2.2.14)

where (as always throughout this book) the e’s are assumed to be independent and iden-
tically distributed with zero mean and variance 03. Here

_oJate | E(e,)+E(e,_ )
E(Y,) = E{ 5 } = :

My

=0

and
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Var( Yz)

Var{et-'-el_]} _ Var(et)+ Var(et_l)
4

I
e
N
a
[\

Also

e +e e, +e
Cov(Y,Y,_)) = Cov{ ro o1l t_z}

2 2
Cov(e,e, )+ Cov(e,e,_,)+Covie,_j,e,_)
4

Cov(el_ s el_z)
+ e S ———
4
Cov(e,_1,€,_1) )
= 7 (as all the other covariances are zero)

0.2502

or
Y, ,_ 1 = 02502 for all ¢ (2.2.15)

Furthermore,

Cov(Y, Y, ,)

Cov e;te,_| e_rte 3
2 ’ 2

=0 since the e's are independent.

Similarly, Cov(Y;, Y;_;) = 0 for k > 1, so we may write

0.562 forlr—s =0
Yis =) 02562 for|t—s| =1
0 for |t —s| > 1

For the autocorrelation function, we have

1 forl|t—s/=0
Prs =91 05 forlt—s| =1 (2.2.16)
0 for|t—s|>1

since 0.2562/0.562=0.5.

Notice that py | = p3 2 = P4 3 = P9 g = 0.5. Values of ¥ precisely one time unit apart
have exactly the same correlation no matter where they occur in time. Furthermore, p3 |
= P4 =Py -2 and, more generally, p, ,_ 1 is the same for all values of . This leads us to
the important concept of stationarity.
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2.3 Stationarity

To make statistical inferences about the structure of a stochastic process on the basis of
an observed record of that process, we must usually make some simplifying (and pre-
sumably reasonable) assumptions about that structure. The most important such
assumption is that of stationarity. The basic idea of stationarity is that the probability
laws that govern the behavior of the process do not change over time. In a sense, the pro-
cess is in statistical equilibrium. Specifically, a process {Y,} is said to be strictly sta-
tionary if the joint distribution of Y, i Y, fyrees Y, 0 is the same as the joint distribution of
Yt1 iy Y,2 kreens Ytn _ for all choices of time points 7, t,,...., t,, and all choices of time
lag k.

Thus, when n = 1 the (univariate) distribution of Y, is the same as that of Y, _ ; for
all ¢ and k; in other words, the Y’s are (marginally) identically distributed. It then follows
that E(Y,) = E(Y; _ ;) for all # and & so that the mean function is constant for all time.
Additionally, Var(Y;) = Var(Y, _ ) for all ¢ and & so that the variance is also constant over
time.

Setting n = 2 in the stationarity definition we see that the bivariate distribution of ¥,
and Y, must be the same as that of ¥;_; and Y, _; from which it follows that Cov(Y,, Yy)
= Cov(Y; _, Yy _p) for all ¢, 5, and k. Putting k = s and then k = ¢, we obtain

yt, s Cov(Yt—s’ YO)
Cov(Yy, Y, _))
COV(YO, Y|l‘—s|)

= Yo, |t

That is, the covariance between Y; and Y depends on time only through the time differ-
ence |t — s| and not otherwise on the actual times ¢ and s. Thus, for a stationary process,
we can simplify our notation and write
Y = Cov(Y, Y, ;) and pp = Corr(Y, Y, ) (2.3.1)

Note also that

Tk
Pr = —

Yo

The general properties given in Equation (2.2.5) now become

Yo = Var(Y) po =1
Ye = Yk Pr = P (2.3.2)
il <70 [

If a process is strictly stationary and has finite variance, then the covariance func-
tion must depend only on the time lag.
A definition that is similar to that of strict stationarity but is mathematically weaker
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is the following: A stochastic process {Y,} is said to be weakly (or second-order)
stationary if

1. The mean function is constant over time, and

2. Viiok = Yok for all time ¢ and lag k

In this book the term stationary when used alone will always refer to this weaker form of
stationarity. However, if the joint distributions for the process are all multivariate normal
distributions, it can be shown that the two definitions coincide. For stationary processes,
we usually only consider £ > 0.

White Noise

A very important example of a stationary process is the so-called white noise process,
which is defined as a sequence of independent, identically distributed random variables
{e,}. Its importance stems not from the fact that it is an interesting model itself but from
the fact that many useful processes can be constructed from white noise. The fact that
{e,} is strictly stationary is easy to see since

Pr(et1 <xy, et2 <Xy, .onn€ : <x,)

Pr(ell <x )Pr(et2 < x2)~--Pr(etn <x,) (by independence)

Pr(el1 k<X )Pr(etz_k < xz)"'Pr(eln_k <x,)

(identical distributions)

Pr(e[1 _kSxp et2 kS X 0 etn _xS$x,) (by independence)

as required. Also, p, = E(e,) is constant and

v = Var(e,) fork =0
k 0 for k=0

Alternatively, we can write

3 1 fork =0 (2.3.3)
P70 for k#0 o

The term white noise arises from the fact that a frequency analysis of the model shows
that, in analogy with white light, all frequencies enter equally. We usually assume that
the white noise process has mean zero and denote Var(e,) by Gez .

The moving average example, on page 14, where Y, = (e, + e, _ 1)/2, is another
example of a stationary process constructed from white noise. In our new notation, we
have for the moving average process that

1 fork = 0
Py =105 for |k =1
0 for |k =2



18 Fundamental Concepts

Random Cosine Wave

As a somewhat different example,Jr consider the process defined as follows:

t

Y, = cos[Zn(l—t2+<Dﬂ fort = 0,£1,%2, ...

where @ is selected (once) from a uniform distribution on the interval from 0 to 1. A
sample from such a process will appear highly deterministic since Y, will repeat itself
identically every 12 time units and look like a perfect (discrete time) cosine curve. How-
ever, its maximum will not occur at ¢ = 0 but will be determined by the random phase ®.
The phase @ can be interpreted as the fraction of a complete cycle completed by time ¢ =
0. Still, the statistical properties of this process can be computed as follows:

E(Y)) = E{cos[Zn(ﬁ+®>]}

= jcos[2n(1—t§ + ¢ﬂd¢
0
= %tsin[Zn(é + )]
9=0

= 21n[s1n(2nﬁ + 27:) - s1n(2n12)}

But this is zero since the sines must agree. So p, = 0 for all #.
Also
Vo5 = E{cos [275(5 + @)}COS[ZE(% + CI))}}

j(l) cos[Zn(l—% + ﬂcos [271(1—% + )}dd)
A oo o2
= 1{003[275( ﬂ+——sm[2n(t—1+§§+2¢)] l }

¢=0

1

T This example contains optional material that is not needed in order to understand most of
the remainder of this book. It will be used in Chapter 13, Introduction to Spectral Analysis.
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So the process is stationary with autocorrelation function
k
Py = cos 2n1— fork = 0, £1, 2, ... 2.3.4)

This example suggests that it will be difficult to assess whether or not stationarity is
a reasonable assumption for a given time series on the basis of the time sequence plot of
the observed data.

The random walk of page 12, where Y,=e te,++e, is also constructed
from white noise but is not stationary. For example, the variance function, Var(Y,) =
tcg , 1S not constant; furthermore, the covariance function Vs = tcg for 0 <t < s does
not depend only on time lag. However, suppose that instead of analyzing {Y;} directly,
we consider the differences of successive Y-values, denoted VY,. Then VY, =Y, - Y, | =
e,, so the differenced series, {VY,}, is stationary. This represents a simple example of a
technique found to be extremely useful in many applications. Clearly, many real time
series cannot be reasonably modeled by stationary processes since they are not in statis-
tical equilibrium but are evolving over time. However, we can frequently transform non-
stationary series into stationary series by simple techniques such as differencing. Such

techniques will be vigorously pursued in the remaining chapters.

2.4 Summary

In this chapter we have introduced the basic concepts of stochastic processes that serve
as models for time series. In particular, you should now be familiar with the important
concepts of mean functions, autocovariance functions, and autocorrelation functions.
We illustrated these concepts with the basic processes: the random walk, white noise, a
simple moving average, and a random cosine wave. Finally, the fundamental concept of
stationarity introduced here will be used throughout the book.

EXERCISES

2.1 Suppose E(X) =2, Var(X) =9, E(Y) =0, Var(Y) =4, and Corr(X,Y) = 0.25. Find:
@) Var(X+Y).
(b) Cov(X, X + Y).
(©) CorrX+Y,X-Y).

2.2 If X and Y are dependent but Var(X) = Var(Y), find Cov(X + ¥, X - Y).

2.3 Let X have a distribution with mean p and variance 62, and let Y; = X for all z.
(a) Show that {Y,} is strictly and weakly stationary.
(b) Find the autocovariance function for {Y,}.
(c) Sketch a “typical” time plot of Y.
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2.5

2.6

2.7

2.8

2.9

2.10

Fundamental Concepts

Let {e,} be a zero mean white noise process. Suppose that the observed process is

Y,=e;+ 0e;_ |, where 0 is either 3 or 1/3.

(a) Find the autocorrelation function for {Y;} both when 6 = 3 and when 6 = 1/3.

(b) You should have discovered that the time series is stationary regardless of the
value of 0 and that the autocorrelation functions are the same for 6 =3 and 6 =
1/3. For simplicity, suppose that the process mean is known to be zero and the
variance of Y, is known to be 1. You observe the series {Y;} fort=1,2,...,n
and suppose that you can produce good estimates of the autocorrelations py.
Do you think that you could determine which value of 0 is correct (3 or 1/3)
based on the estimate of p;? Why or why not?

Suppose Y, =5 + 2t + X,, where {X,} is a zero-mean stationary series with autoco-

variance function ;.

(a) Find the mean function for {Y,}.

(b) Find the autocovariance function for {Y,}.

(c) Is {Y;} stationary? Why or why not? {

X, for ¢t odd

X, +3 for ¢ even.

(a) Show that Cov(Y, Y,_,) is free of ¢ for all lags k.

(b) Is {Y,} stationary?

Suppose that {Y;} is stationary with autocovariance function yy.

(a) Show that W,=VY,=Y,—-Y,_ is stationary by finding the mean and autoco-
variance function for { W;}.

(b) Show that U, = V2Y,= V[Y, - Y,_] = Y, - 2Y,_| + Y,_, is stationary. (You need
not find the mean and autocovariance function for {U,}.)

Suppose that {Y,} is stationary with autocovariance function y;. Show that for any

fixed positive integer n and any constants ¢y, ¢y, ..., ¢, the process { W,} defined

by W, =cY,+c,Y, +--+c,Y,_, . Iisstationary. (Note that Exercise

2.7 is a special case of this result.)

Suppose Y; = By + Bt + X, where {X,} is a zero-mean stationary series with auto-

covariance function y; and B and ; are constants.

(a) Show that {Y,} is not stationary but that W, =VY,=Y,—Y,_ is stationary.

(b) In general, show that if Y, = p, + X, where {X;} is a zero-mean stationary
series and p, is a polynomial in 7 of degree d, then V'Y, = Vvl Y,) is sta-
tionary for m > d and nonstationary for 0 <m < d.

Let {X;} be a zero-mean, unit-variance stationary process with autocorrelation

function py. Suppose that i, is a nonconstant function and that o, is a positive-val-

ued nonconstant function. The observed series is formed as Y, = y; + 6,X,.

(a) Find the mean and covariance function for the {Y,} process.

(b) Show that the autocorrelation function for the {Y,} process depends only on
the time lag. Is the {Y,} process stationary?

(¢) Is it possible to have a time series with a constant mean and with
Corr(Y,,Y,_ ) free of t but with {Y;} not stationary?

Let {X,} be a stationary time series, and define ¥, =
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2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

Suppose Cov(X;,X; _ ;) = i is free of ¢ but that E(X,) = 3t.

(a) Is {X,} stationary?

(b)Let Y, =7 -3t + X,. Is {Y,} stationary?

Suppose that Y, = e, — ¢,_,. Show that {Y;} is stationary and that, for k > 0, its
autocorrelation function is nonzero only for lag k = 12.

LetY,=e,—0(e, _ 1)2. For this exercise, assume that the white noise series is nor-
mally distributed.

(a) Find the autocorrelation function for {Y;}.

(b) Is {Y;} stationary?

Evaluate the mean and covariance function for each of the following processes. In
each case, determine whether or not the process is stationary.

(a) Yt= 90 +1te;.

(b) W,= VY,, where Y, is as given in part (a).

(¢) Y,=e,;e,_ 1. (You may assume that {e,} is normal white noise.)

Suppose that X is a random variable with zero mean. Define a time series by
Y,=(-D'X.

(a) Find the mean function for {Y,}.

(b) Find the covariance function for {Y;}.

(c) Is {Y;} stationary?

Suppose Y; = A + X;, where {X,} is stationary and A is random but independent of
{X,}. Find the mean and covariance function for {Y;} in terms of the mean and
autocovariance function for {X;} and the mean and variance of A.

Let {Y;} be stationary with autocovariance function y;. Let Y = IZZ?: e
Show that

_ n-1
Var(Y) = ﬁ)_'_% Z (1—1—6)}%
M=

n

Let {Y;} be stationary with autocovariance function y;. Define the sample vari-
ance as S2 = n—iitil(n— Y)2.

. n n — —
(a) First show that Z (Y;—H)2 = Z (YI—Y)2+n(Y—p)2.

t=1 t=1
(b) Use part (a) to show that
— 2 n=1 k

E(S?) = Ty - —V. =Yy — (—-) :

(¢) E(S7) n_lYo o1 ar(Y) Yo n_lkgl 1 nyk
(Use the results of Exercise 2.17 for the last expression.)

(d) If {Y,} is a white noise process with variance 7y, show that E(SZ) = Yo
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2.19

2.20

2.21

2.22
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Let Y| = 0 + e, and then for # > 1 define Y, recursively by ¥, =0y + Y,_| + e,

Here 6 is a constant. The process {Y;} is called a random walk with drift.

(a) Show that ¥, may be rewritten as ¥, = teo tete,_|t+-te.

(b) Find the mean function for Y,.

(c) Find the autocovariance function for Y.

Consider the standard random walk model where Y, =Y,_ | + ¢, with Y| = ¢e;.

(a) Use the representation of Y, above to show that p, = p, _ | for # > 1 with initial
condition p; = E(e;) = 0. Hence show that p, = 0 for all 7.

(b) Similarly, show that Var(Y,) = Var(Y;_ ) + 63 for t > 1 with Var(Y)) = Gez
and hence Var(Y,) = tc2.

(cForO0<t<s,use Y=Y, +e¢,+e€ .9+ + e toshow that Cov(Y, Y) =
Var(Y,) and, hence, that Cov(Y,, Y;) = min(t, s)c2.

For a random walk with random starting value, let Y,=Yyte +e, |+ +e

for ¢ > 0, where Y|) has a distribution with mean i and variance 03 . Suppose fur-

ther that Y, ey,..., e, are independent.

(a) Show that E(Y;) = p for all ¢.

(b) Show that Var(Y,) = tcg +68 .

(¢) Show that Cov(Y,, Y,) = min(z, 5)62 +63 .

162+ 6}

SGZ + 08

Let {e,} be a zero-mean white noise process, and let ¢ be a constant with |c] < 1.

Define Y, recursively by Y, =cY,_| + e, with Y| =e;.

(a) Show that E(Y;) = 0.

(b) Show that Var(Y,) = 62 (1 + ¢ +c* ++- + ¢* ~2). Is {¥,} stationary?

(¢) Show that

(d) Show that Corr(Y,Y ) = for0<r<s.

Var( Y, )
Var(Y,)

Var(Y
Corr(Y,,Y,_}) = ck % for k>0
A} ar
t

Hint: Argue that Y, _ ; is independent of ¢,. Then use
Cov(Y,Y,_)=Cov(cY,_{+e,Y 1)
(d) For large ¢, argue that

Corr(Y,,Y,_|) =c and, in general,

2
c
Var(Yt)zl_eC2 and Corr(Yt,Yt_k)zck for k>0
so that {Y,} could be called asymptotically stationary. e
(e) Suppose now that we alter the initial condition and put Y| = L Show

that now {Y,} is stationary. 1-¢2
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2.23

2.24

2.25

2.26

2.27

2.28

Two processes {Z,} and {Y;} are said to be independent if for any time points ¢,
ty,..., t, and sy, §5,..., 5, the random variables {Ztl, th, ey Ztm } are independent
of the random variables {YSI’ Y‘vz, cee st}. Show that if {Z,} and {Y;} are inde-
pendent stationary processes, then W, = Z, + Y, is stationary.

Let {X,} be a time series in which we are interested. However, because the mea-
surement process itself is not perfect, we actually observe Y, = X, + ¢,. We assume
that {X,} and {e,;} are independent processes. We call X, the signal and e, the
measurement noise or error process.

If {X,} is stationary with autocorrelation function p;, show that {Y,} is also sta-
tionary with
Pk

Corr(Y, Y, ;) = ————
N 1+062/62
e X

for k>1

We call 0)2(/ 03 the signal-to-noise ratio, or SNR. Note that the larger the SNR,
the closer the autocorrelation function of the observed process {Y;} is to the auto-
correlation function of the desired signal {X,}.

k
Suppose Y, = By + z [A;cos(2nf;t) + B;sin(2nf;t)], where By, f1, fo,..., fj are

constants and A, Az,l.:,lAk, By, B», ..., By are independent random variables with

zero means and variances Var(A;) = Var(B;) = ciz. Show that {Y,} is stationary

and find its covariance function.

Define the function Fz, = %E[(Yt - YS)Z] . In geostatistics, I', ; is called the

semivariogram.

(a) Show that for a stationary process s =v- Vie—s| -

(b) A process is said to be intrinsically stationary if ', ; depends only on the time
difference |t — s|. Show that the random walk process is intrinsically station-
ary.

For a fixed, positive integer r and constant ¢, consider the time series defined by

Y, = e, + e, |+ ¢2"’z—2+ e+ oTe, .

(a) Show that this process is stationary for any value of ¢.

(b) Find the autocorrelation function.

(Random cosine wave extended) Suppose that

Y, = Rcos(2n(ft + D)) forr = 0,%1, £2, ...
where 0 < f < 2 is a fixed frequency and R and @ are uncorrelated random vari-
ables and with @ uniformly distributed on the interval (0,1).

(a) Show that E(Y;) =0 for all ¢. |
(b) Show that the process is stationary with vy, = EE(Rz)cos(ank).

Hint: Use the calculations leading up to Equation (2.3.4), on page 19.
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2.29

2.30
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(Random cosine wave extended further) Suppose that

m
Y, = _ZIR/'COS[ZTEO.CI'[+Q/')] fort = 0,%1, £2, ...
j:

where 0 < f] < f, < --- < f,,, < V2 are m fixed frequencies, and R, @, R, ©5,...,

R,,, ®,, are uncorrelated random variables with each ®; uniformly distributed on

the interval (0,1).

(a) Show that E(Y,) =0 for all #.

(b) Show that the process is stationary with vy,
Hint: Do Exercise 2.28 first.

(Mathematical statistics required) Suppose that

Y, = Rcos[2n(ft + ®@)] fort = 0,%1,£2, ...

%ng(R})cos(sz; k) .

where R and @ are independent random variables and fis a fixed frequency. The
phase @ is assumed to be uniformly distributed on (0, 1), and the amplitude R has
a Rayleigh distribution with pdf f(r) = re™" */2 for r > 0. Show that for each
time point ¢, ¥, has a normal distribution. (Hint: Let ¥ = Rcos[2n(ft + ®)] and
X = Rsin[2n(ft + ®)]. Now find the joint distribution of X and Y. It can also be
shown that all of the finite dimensional distributions are multivariate normal and
hence the process is strictly stationary.)

Appendix A: Expectation, Variance, Covariance,

and Correlation

In this appendix, we define expectation for continuous random variables. However, all
of the properties described hold for all types of random variables, discrete, continuous,
or otherwise. Let X have probability density function f(x) and let the pair (X,Y) have
joint probability density function f(x,y).

o0
The expected value of X is defined as E(X) = I xf(x)dx .

o0
(If j |x|f(x)dx < o0 ; otherwise E(X) is undefined.) E(X) is also called the expectation
Lo

of X or the mean of X and is often denoted p or py.

Properties of Expectation

o0
If h(x) is a function such that J. |h(x)|f(x)dx < o0, it may be shown that
2o

ELACOT = | heofods

o0 o0
Similarly, if j j |h(x,p)|f(x, y)dxdy < o , it may be shown that
oo *oo
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EhX, 0] = [ [ h(x y)fe, y)dxdy Q2.A1)

As a corollary to Equation (2.A.1), we easily obtain the important result
E(aX+bY+c) = aE(X)+bE(Y)+c¢ 2.A.2)

‘We also have

Exy)y = [ [ xyfte,y)drdy (2.A3)

The variance of a random variable X is defined as
Var(X) = E{[X-E(X)]?} (2.A.4)

. ) . . . 2
(provided E(X~) exists). The variance of X is often denoted by c“ or 0}2(.

Properties of Variance

Var(X)=0 (2.A.5)
Var(a+bX) = b*Var(X) (2.A.6)

If X and Y are independent, then
Var(X+Y) = Var(X) + Var(Y) 2.A.7)

In general, it may be shown that
Var(X) = E(X?)-[E(X)]? (2.A.8)

The positive square root of the variance of X is called the standard deviation of X and
is often denoted by o or 6. The random variable (X — py)/cy is called the standard-
ized version of X. The mean and standard deviation of a standardized variable are
always zero and one, respectively.

The covariance of X and Y is defined as Cov(X, Y) = E[(X - py)(Y —puy)].

Properties of Covariance

Cov(a+bX,c+dY) = bdCov(X,Y) (2.A.9)
Var(X+Y) = Var(X) + Var(Y)+2Cov(X, Y) (2.A.10)
Cov(X+Y,Z) = Cov(X,Z)+ Cov(Y, Z) (2.A.11)
Cov(X, X) = Var(X) (2.A.12)

Cov(X,Y) = Cov(Y, X) (2.A.13)

If X and Y are independent,
Cov(X,Y) =0 (2.A.14)
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The correlation coefficient of X and ¥, denoted by Corr(X, Y) or p, is defined as
Cov(X,Y)

JVar(X)Var(Y)

Alternatively, if X* is a standardized X and Y* is a standardized Y, then p = E(X*Y*).

p=Corr(X,Y) =

Properties of Correlation
-1<Corr(X,¥)< 1 (2.A.15)
Corr(a+bX,c+dY) = sign(bd)Corr(X,Y)
1if bd>0
where sign(bd) = 4 0ifbd = 0
-1if bd<0

(2.A.16)

Corr(X, Y) = £1 if and only if there are constants a and b such that Pr(Y =a + bX) = 1.



2 Springer
http://www.springer.com/978-0-387-75958-6

Time Series Analysis

with Applications in R

Cryer, J.D.; Chan, K.-5,

2008, XV, 491 p., Hardcover
ISBN: @78-0-387-758958-6



