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Multivariate Analysis of Stationary Time Series

This is the second chapter that presents models con-
fined to stationary time series, but now in the context of
multivariate analysis. Vector autoregressive models and
structural vector autoregressive models are introduced.
The analytical tools of impulse response functions, fore-
cast error variance decomposition, and Granger causal-
ity, as well as forecasting and diagnostic tests, are out-
lined. As will be shown later, these concepts can be ap-
plied to cointegrated systems, too.

2.1 Overview

Since the critique of Sims [1980] in the early 1980s, VAR analysis has evolved
as a standard instrument in econometrics for analyzing multivariate time se-
ries. Because statistical tests are highly used in determining interdependence
and dynamic relationships between variables, it soon became evident that this
methodology could be enriched by incorporating non-statistical a priori infor-
mation; hence SVAR models evolved that try to bypass these shortcomings.
These kinds of models are considered in Section 2.3. At the same time as
Sims jeopardized the paradigm of multiple structural equation models laid
out by the Cowles Foundation in the 1940s and 1950s, Granger [1981] and
Engle and Granger [1987] endowed econometricians with a powerful tool for
modeling and testing economic relationships, namely the concept of integra-
tion and cointegration. Nowadays these traces of research are unified in the
form of vector error-correction and structural vector error-correction models.
These topics are deferred to Chapters 4 and 8.

2.2 Vector Autoregressive Models

2.2.1 Specification, Assumptions, and Estimation

In its basic form, a VAR consists of a set of K endogenous variables yt =
(y1t, . . . , ykt, . . . , yKt) for k = 1, . . .K. The VAR(p)-process is then defined as

yt = A1yt−1 + . . .+Apyt−p + CDt + ut, (2.1)

where Ai are (K × K) coefficient matrices for i = 1, . . . , p and ut is a K -
dimensional white noise process with time-invariant positive definite covari-
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ance matrix E(utu
′
t) = Σu. The matrix C is the coefficient matrix of poten-

tially deterministic regressors with dimension (K×M), and Dt is an (M × 1)
column vector holding the appropriate deterministic regressors, such as a con-
stant, trend, and dummy and/or seasonal dummy variables.

Equation (2.1) is sometimes written in the form of a lag polynomial A(L) =
(IK −A1 − . . .−Ap) as

A(L)yt = CDt + ut. (2.2)

One important characteristic of a VAR(p)-process is its stability. This
means that it generates stationary time series with time-invariant means, vari-
ances, and covariance structure, given sufficient starting values. One can check
this by evaluating the reverse characteristic polynomial,

det(IK −A1z − . . .−Apz
p) 6= 0 for |z| ≤ 1. (2.3)

If the solution of the preceding equation has a root for z = 1, then either some
or all variables in the VAR(p)-process are integrated of order one (i.e., I(1)),
a topic of the next chapter.

In practice, the stability of an empirical VAR(p)-process can be analyzed
by considering the companion form and calculating the eigenvalues of the
coefficient matrix (see Lütkepohl [2006] for a detailed derivation). A VAR(p)-
process can be written as a VAR(1)-process as

ξt = Aξt−1 + vt (2.4)

with
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, (2.5)

where the dimension of the stacked vectors ξt and vt is (Kp× 1) and that of
the matrix A is (Kp×Kp). If the moduli of the eigenvalues of A are less than
one, then the VAR(p)-process is stable. For a given sample of the endoge-
nous variables y1, . . .yT and sufficient presample values y−p+1, . . . ,y0, the
coefficients of a VAR(p)-process can be estimated efficiently by least squares
applied separately to each of the equations. If the error process ut is normally
distributed, then this estimator is equal to the maximum likelihood estimator
conditional on the initial values.

It was shown in the previous chapter that a stable AR(p)-process can be
represented as an infinite MA-process (see Equations (1.10a) and (1.10b)).
This result applies likewise to a stable VAR(p)-process. Its Wold moving av-
erage representation is given as

yt = Φ0ut + Φ1ut−1 + Φ2ut−2 + . . . (2.6)
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with Φ0 = IK , and the Φs matrices can be computed recursively according to

Φs =

s
∑

j=1

Φs−jAj for s = 1, 2, . . . , (2.7)

where Φ0 = IK and Aj = 0 for j > p.
Before considering an artificial data set, one topic should be touched on

first, namely the empirical determination of an appropriate lag order. As in
the univariate AR(p)-models, the lag length can be determined by information
criteria such as those of Akaike [1981], Hannan and Quinn [1979], Quinn
[1980], or Schwarz [1978], or by the final prediction error (see Lütkepohl [2006]
for a detailed exposition of these criteria). These measures are defined as

AIC(p) = log det(Σ̃u(p)) +
2

T
pK2, (2.8a)

HQ(p) = log det(Σ̃u(p)) +
2 log(log(T ))

T
pK2, (2.8b)

SC(p) = log det(Σ̃u(p)) +
log(T )

T
pK2, or (2.8c)

FPE(p) =

(

T + p∗

T − p∗

)K

det(Σ̃u(p)), (2.8d)

with Σ̃u(p) = T−1
∑T

t=1 ûtû
′
t, and p∗ is the total number of parameters in

each equation and p assigns the lag order. It is shown in Lütkepohl [2006]
that ln(FPE) and AIC will indicate similar lag orders for moderate and large
sample sizes. The following relations can be further deduced:

p̂(SC) <= p̂(AIC) if T >= 8, (2.9a)

p̂(SC) <= p̂(HQ) for all T, (2.9b)

p̂(HQ) <= p̂(AIC) if T >= 16. (2.9c)

These information criteria are implemented in the functions VAR() and VARs-

elect() contained in the package vars.1 In the former function, an appropri-
ate VAR(p)-model will be estimated by providing the maximal lag number,
lag.max, and the desired criterion. The calculations are based upon the same
sample size. That is, lag.max values are used as starting values for each of
the estimated models. The result of the function VARselect() is a list object
with elements selection and criteria. The element selection is a vector
of optimal lag length according to the above-mentioned information criteria.
The element criteria is a matrix containing the particular values for each
of these criteria up to the maximal lag order chosen.

1 The package vars can be obtained from CRAN, and it is hosted on R-
Forge as project AICTS II; see http://CRAN.r-project.org and http://r-forge.r-
project.org/projects/vars/, respectively.
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Table 2.1. VAR result for y1

Variable Estimate Std. Error t-value Pr(>|t |)

Lagged levels

y1.l1 0.4998 0.0354 14.1003 0e + 00
y2.l1 0.1551 0.0407 3.8085 2e − 04
y1.l2 −0.3291 0.0352 −9.3468 0e + 00
y2.l2 −0.7550 0.0454 −16.6466 0e + 00

Deterministic

const. 5.9196 0.6197 9.5531 0e + 00

We will now generate an artificial two-dimensional VAR(2)-process that
obeys the following form:

[

y1
y2

]

t

=

[

5.0
10.0

]

+

[

0.5 0.2
−0.2 −0.5

] [

y1
y2

]

t−1

+

[

−0.3 −0.7
−0.1 0.3

] [

y1
y2

]

t−2

+

[

u1

u2

]

t

. (2.10)

The process above is simulated in R code 2.1. This is achieved by employing
the function ARMA() and its method simulate(), contained in the package
dse1 (see Gilbert [2004], [2000], [1995], and [1993]).2 In the first step, the
lag polynomial A(L) as described in Equation (2.2) is created as an array
signified by Apoly. The shape of the variance-covariance matrix of the error
process is an identity matrix stored as object B, and finally the constant term
is assigned as TRD. An ARMA object is created next, and the model is simulated
for a sample size of 500 observations. The resultant series are retrieved from
the list element output and plotted in Figure 2.1. In the next step, the lag
order is empirically determined by utilizing VARselect(). Alternatively, the
VAR(p)-model could have been estimated directly by setting lag.max = 4

and type = "AIC". All criteria indicate a lag order of two. Finally, a VAR(2)
with a constant is estimated with function VAR(), and its roots are checked
for stability by applying the function roots() to the object varsimest. The
function has an argument "modulus" of type logical that returns by default the
moduli of the eigenvalues; otherwise a vector of complex numbers is returned.

The results of the VAR(2) for the variables y1 and y2 are presented in
Tables 2.1 and 2.2, respectively. As expected, the estimated coefficients are
close to their theoretical values, and all are significantly different from zero.
Finally, the eigenvalues of the companion form are less than one and are
provided in Table 2.3.

2 Please note that this package is part of the bundle dse. As an alternative, a VAR-
process can be simulated with the functions contained in the package mAr, too
(see Barbosa [2007]).
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Fig. 2.1. Time series plot of the simulated VAR(2)-process

Table 2.2. VAR result for y2

Variable Estimate Std. Error t-value Pr(>|t |)

Lagged levels

y1.l1 −0.1499 0.0358 −4.1920 0e + 00
y2.l1 −0.4740 0.0411 −11.5360 0e + 00
y1.l2 −0.1184 0.0355 −3.3328 9e − 04
y2.l2 0.3006 0.0458 6.5684 0e + 00

Deterministic

const. 9.7620 0.6253 15.6124 0e + 00

Table 2.3. Eigenvalues of the companion form

1 2 3 4

Eigenvalues 0.8311 0.6121 0.6121 0.6049
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R Code 2.1 Simulation of VAR(2)-process

1## Simu la t e VAR(2)−data
2l i b r a r y ( dse1 )
3l i b r a r y ( v a r s )
4## Se t t i n g the lag−po l yn om i a l A(L )
5Apoly <− a r r a y ( c ( 1 . 0 , −0.5 , 0 . 3 , 0 ,
60 . 2 , 0 . 1 , 0 , −0.2 ,
70 . 7 , 1 , 0 . 5 , −0.3) ,
8c (3 , 2 , 2) )
9## Se t t i n g Cova r i ance to i d e n t i t y −mat r i x
10B <− d iag (2)
11## Se t t i n g con s t a n t term to 5 and 10
12TRD <− c (5 , 10)
13## Gene ra t ing the VAR(2) model
14var2 <− ARMA(A = Apoly , B = B, TREND = TRD)
15## S imu l a t i n g 500 ob s e r v a t i o n s
16va r s im <− s imu l a t e ( var2 , sampleT = 500 ,
17n o i s e = l i s t (w = mat r i x ( rnorm (1000) ,
18nrow = 500 , n co l = 2) ) , rng = l i s t ( seed = c (123456) ) )
19## Obta in ing the gene ra t ed s e r i e s
20va r d a t <− mat r i x ( va r s im $output , nrow = 500 , n co l = 2)
21co lnames ( va r d a t ) <− c ( ”y1 ” , ”y2 ”)
22## P l o t t i n g the s e r i e s
23p l o t . t s ( vardat , main = ”” , x l a b = ””)
24## Determin ing an a p p r o p r i a t e lag−o rd e r
25i n f o c r i t <− VARselect ( vardat , l a g . max = 3 ,
26type = ”con s t ”)
27## Es t ima t i n g the model
28v a r s im e s t <− VAR( vardat , p = 2 , type = ”con s t ” ,
29s ea son = NULL , exogen = NULL)
30## A l t e r n a t i v e l y , s e l e c t i o n a c co r d i n g to AIC
31v a r s im e s t <− VAR( vardat , type = ”con s t ” ,
32l a g . max = 3 , i c = ”SC”)
33## Check ing the r o o t s
34r o o t s <− r o o t s ( v a r s im e s t )

2.2.2 Diagnostic Tests

Once a VAR-model has been estimated, it is of pivotal interest to see whether
the residuals obey the model’s assumptions. That is, one should check for the
absence of serial correlation and heteroscedasticity and see if the error pro-
cess is normally distributed. In Section 1.4, these kinds of tests were briefly
introduced, and the versions will now be presented in more detail for the mul-
tivariate case. As a final check, one can conduct structural stability tests; i.e.,
CUSUM, CUSUM-of-squares, and/or fluctuation tests. The latter tests can
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be applied on a per-equation basis, whereas for the former tests multivariate
statistics exist. All tests are made available in the package vars.

For testing the lack of serial correlation in the residuals of a VAR(p)-model,
a Portmanteau test and the LM test proposed by Breusch [1978] and Godfrey
[1978] are most commonly applied. For both tests, small sample modifications
can be calculated, too, where the modification for the LM test was introduced
by Edgerton and Shukur [1999]. The Portmanteau statistic is defined as

Qh = T

h
∑

j=1

tr(Ĉ′
jĈ

−1
0 ĈjĈ

−1
0 ) (2.11)

with Ĉi = 1
T Σ

T
t=i+1ûtû

′
t−i. The test statistic has an approximate χ2(K2h−n∗)

distribution, and n∗ is the number of coefficients excluding deterministic terms
of a VAR(p)-model. The limiting distribution is only valid for h tending to
infinity at a suitable rate with growing sample size. Hence, the trade-off is
between a decent approximation to the χ2 distribution and a loss in power of
the test when h is chosen too large. The small-sample properties of the test
statistic

Q∗
h = T 2

h
∑

j=1

1

T − j
tr(Ĉ′

jĈ
−1
0 ĈjĈ

−1
0 ) (2.12)

may be better.
The Breusch-Godfrey LM -statistic is based upon the following auxiliary

regressions:

ût = A1yt−1 + . . .+Apyt−p + CDt +B1ût−1 + . . .+Bhût−h + εt. (2.13)

The null hypothesis is H0 : B1 = · · · = Bh = 0, and correspondingly the
alternative hypothesis is of the form H1 : ∃Bi 6= 0 for i = 1, 2, . . . , h. The test
statistic is defined as

LMh = T (K − tr(Σ̃−1
R Σ̃e)), (2.14)

where Σ̃R and Σ̃e assign the residual covariance matrix of the restricted and
unrestricted models, respectively. The test statistic LMh is distributed as
χ2(hK2). Edgerton and Shukur [1999] proposed a small-sample correction,
which is defined as

LMFh =
1 − (1 −R2

r)
1/r

(1 −R2
r)

1/r

Nr − q

Km
, (2.15)

with R2
r = 1−|Σ̃e|/|Σ̃R|, r = ((K2m2−4)/(K2+m2−5))1/2, q = 1/2Km−1

and N = T −K −m− 1/2(K −m+ 1), where n is the number of regressors
in the original system and m = Kh. The modified test statistic is distributed
as F (hK2, int(Nr − q)).
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These tests are implemented in the function serial.test(). The test
statistics are returned in the list element serial and have class attribute
htest. Per default, the asymptotic Portmanteau test is returned. The ad-
justed version is computed if the type argument is set to "PT.adjusted".
The specifiers for the Breusch and Godfrey and the Edgerton and Shukur
tests are "BG" and "ES", respectively. The residuals are contained in the first
list element. In R code 2.2, the asymptotic Portmanteau test is applied to the
object varsimest.

R Code 2.2 Diagnostic tests of VAR(2)-process

1## t e s t i n g s e r i a l c o r r e l a t i o n
2a r g s ( s e r i a l . t e s t )
3## Portmanteau−Test
4va r2c . s e r i a l <− s e r i a l . t e s t ( v a r s ime s t , l a g s . pt = 16 ,
5type = ”PT. a symptot i c ”)
6va r2c . s e r i a l
7p l o t ( va r2c . s e r i a l , names = ”y1 ”)
8p l o t ( va r2c . s e r i a l , names = ”y2 ”)
9## t e s t i n g h e t e r o s c e d a s t i c i t y
10a r g s ( a rch . t e s t )
11va r2c . a rch <− arch . t e s t ( v a r s ime s t , l a g s . mu l t i = 5 ,
12m u l t i v a r i a t e . on l y = TRUE)
13va r2c . a rch
14## t e s t i n g f o r n o rma l i t y
15a r g s ( n o rma l i t y . t e s t )
16va r2c . norm <− no rma l i t y . t e s t ( v a r s ime s t ,
17m u l t i v a r i a t e . on l y = TRUE)
18va r2c . norm
19## c l a s s and methods f o r d i g a n o s t i c t e s t s
20c l a s s ( va r2c . s e r i a l )
21c l a s s ( va r2c . a rch )
22c l a s s ( va r2c . norm )
23methods ( c l a s s = ”va rcheck ”)
24## Plot o f o b j e c t s ”va r check ”
25a r g s ( v a r s : : : p l o t . va r check )
26p l o t ( va r2c . s e r i a l , names = ”y1 ”)

The implemented tests for heteroscedasticity are the univariate and multi-
variate ARCH tests (see Engle [1982], Hamilton [1994], and Lütkepohl [2006]).
The multivariate ARCH-LM test is based on the following regression (the uni-
variate test can be considered a special case of the exhibition below and is
skipped):

vech(ûtût
′) = β0 +B1vech(ût−1û

′
t−1)+ . . .+Bqvech(ût−qû

′
t−q)+vt, (2.16)
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where vt assigns a spherical error process and vech is the column-stacking
operator for symmetric matrices that stacks the columns from the main diag-
onal on downward. The vech operation is easily applied to a matrix by using
lower.tri(..., diag = TRUE). The dimension of β0 is 1

2K(K + 1), and for
the coefficient matrices Bi with i = 1, . . . , q, 1

2K(K + 1) × 1
2K(K + 1). The

null hypothesis is H0 := B1 = B2 = . . . = Bq = 0 and the alternative is
H1 : B1 6= 0 ∩B2 6= 0 ∩ . . . ∩Bq 6= 0. The test statistic is defined as

VARCHLM(q) =
1

2
TK(K + 1)R2

m, (2.17)

with

R2
m = 1 − 2

K(K + 1)
tr(Ω̂Ω̂−1

0 ), (2.18)

and Ω̂ assigns the covariance matrix of the regression model defined above.
This test statistic is distributed as χ2(qK2(K + 1)2/4). These test statistics
are implemented in the function arch.test() contained in the package vars.
The default is to compute the multivariate test only. If multivariate.only
= FALSE, the univariate tests are computed, too. In this case, the list object
returned from arch.test() has three elements. The first element is the matrix
of residuals. The second, signified by arch.uni, is a list object itself and holds
the univariate test results for each of the series. The multivariate test result
is contained in the third list element, signified by arch.mul. In R code 2.2,
these tests are applied to the object varsimest.

The Jarque-Bera normality tests for univariate and multivariate series are
implemented and applied to the residuals of a VAR(p) as well as separate tests
for multivariate skewness and kurtosis (see Bera and Jarque [1980], [1981],
Jarque and Bera [1987], and Lütkepohl [2006]). The univariate versions of the
Jarque-Bera test are applied to the residuals of each equation. A multivariate
version of this test can be computed by using the residuals that are standard-
ized by a Choleski decomposition of the variance-covariance matrix for the
centered residuals. Please note that in this case the test result is dependent
upon the ordering of the variables. The test statistics for the multivariate case
are defined as

JBmv = s23 + s24, (2.19)

where s23 and s24 are computed according to

s23 = Tb′
1b1/6, (2.20a)

s24 = T (b2 − 3K)′(b2 − 3k)/24, (2.20b)

and b1 and b2 are the third and fourth non-central moment vectors of the
standardized residuals ûs

t = P̃−(ût − ¯̂ut) and P̃ is a lower triangular matrix
with positive diagonal such that P̃ P̃ ′ = Σ̃u; i.e., the Choleski decomposition
of the residual covariance matrix. The test statistic JBmv is distributed as
χ2(2K) and the multivariate skewness, s23, and kurtosis test, s24, are distributed
as χ2(K).
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These tests are implemented in the function normality.test() contained
in the package vars. Please note that the default is to compute the multivari-
ate tests only. To obtain the test statistics for the single residual series, the
argument multivariate.only has to be set to FALSE. The list elements of
this function returned are jb.uni and jb.mul, which consist of objects with
class attribute htest as for the previously introduced tests.

for which plot and print methods exist. The plots — one for each equation
— include a residual plot, an empirical distribution plot, and the ACF and
PACF of the residuals and their squares. The plot method offers additional
arguments for adjusting its appearance. The residual plots as returned by
plot(var2c.norm), for instance, are provided in Figures 2.2 and 2.3 for y1
and y2, respectively. The results of the diagnostic tests are shown in Table 2.4.

Fig. 2.2. Diagnostic residual plot for y1 of VAR(2)-process

As expected for the simulated VAR(2)-process, none of the test outcomes in-
dicate any deviations from a spherical error process.

Finally, structural stability can be tested by investigating the empirical
fluctuation process. A detailed exposition of generalized fluctuation tests can
be found for instance in Zeileis, Leisch, Hornik and Kleiber [2005] and Kuan

The three former functions return a list object with class attribute varcheck
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Fig. 2.3. Diagnostic residual plot for y2 of VAR(2)-process

Table 2.4. Diagnostic tests of VAR(2)

Test Statistic D.F. p-value

Portmanteau 52.44 56 0.61
ARCH VAR 32.58 45 0.92
JB VAR 0.54 4 0.97
Kurtosis 0.42 2 0.81
Skewness 0.12 2 0.94

and Hornik [1995]. Tests such as CUSUM, CUSUM-of-squares, MOSUM, and
the fluctuation test are implemented in the function efp() contained in the
package strucchange. The structural tests implemented in the package struc-

change are explained in its vignette. The function stability() in the package
vars is a wrapper function to efp(). The desired test is then applied to each
of the equations in a VAR(p)-model. These kinds of tests are exhibited in R

code 2.3, and their graphical results are depicted in Figures 2.4 and 2.5. In
the code, an OLS-CUSUM and a fluctuation test have been applied to the
simulated VAR(2)-process. In order to save space, only the test outcome for
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y1 (OLS-CUSUM test) and similarly the outcome for y2 (fluctuation test) are
shown. As expected, neither test indicates structural instability.

R Code 2.3 Empirical fluctuation processes

1reccusum <− s t a b i l i t y ( v a r s ime s t ,
2type = ”OLS−CUSUM”)
3f l u c t u a t i o n <− s t a b i l i t y ( v a r s ime s t ,
4type = ”f l u c t u a t i o n ”)

Fig. 2.4. OLS-CUSUM test for y1 of VAR(2)-process

2.2.3 Causality Analysis

Often researchers are interested in the detection of causalities between vari-
ables. The most common one is the Granger causality test (see Granger
[1969]). Incidentally, this test is not suited for testing causal relationships
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Fig. 2.5. Fluctuation test for y2 of VAR(2)-process

in the strict sense because the possibility of a post hoc ergo propter hoc fallacy
cannot be excluded. This is true for any “causality test” in econometrics. It
is therefore common practice to say that variable x granger-causes variable
y if variable x helps to predict variable y. Aside from this test, a Wald-type
instantaneous causality test can be used, too. It is characterized by testing
for non-zero correlation between the error processes of the cause and effect
variables (see Lütkepohl [2006]).

For both tests, the vector of endogenous variables yt is split into two sub-
vectors y1t and y2t with dimensions (K1×1) and (K2×1) with K = K1+K2.
For the rewritten VAR(p),

[

y1t

y2t

]

=

p
∑

i=1

[

α11,i α12,i

α21,i α22,i

] [

y1,t−i

y2,t−i

]

+ CDt +

[

u1t

u2t

]

, (2.21)

the null hypothesis that the sub-vector y1t does not Granger-cause y2t is
defined as α21,i = 0 for i = 1, 2, . . . , p. The alternative is ∃α21,i 6= 0 for
i = 1, 2, . . . , p. The test statistic is distributed as F (pK1K2,KT − n∗), with
n∗ equal to the total number of parameters in the VAR(p)-process above,
including deterministic regressors. The null hypothesis for non-instantaneous
causality is defined as H0 : Cσ = 0, where C is an (N ×K(K + 1)/2) matrix
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Table 2.5. Causality tests

Test Statistic p-value

Granger 250.07 0.00
Instant 0.00 0.99

of rank N selecting the relevant covariances of u1t and u2t; σ̃ = vech(Σ̃u).
The Wald statistic is defined as

λW = T σ̃′C′[2CD+
K(Σ̃u ⊗ Σ̃u)D+′

K C′]−1Cσ̃, (2.22)

where the Moore-Penrose inverse of the duplication matrix DK is assigned
by D+

K and Σ̃u = 1
T Σ

T
t=1ûtû

′
t. The duplication matrix DK has dimension

(K2 × 1
2K(K + 1)) and is defined such that, for any symmetric (K × K)

matrix A, vec(A) = DKvech(A) holds. The test statistic λW is asymptotically
distributed as χ2(N).

Both tests are implemented in the function causality() contained in the
package vars. The function has two arguments. The first argument, x, is an
object of class varest, and the second, cause, is a character vector of the
variable names, which are assumed to be causal to the remaining variables
in a VAR(p)-process. If this argument is unset, then the variable in the first
column of x$y is used as the cause variable and a warning is printed. In R

code 2.4, this function is applied to the simulated VAR(2)-process. The results
are provided in Table 2.5. Clearly, the null hypothesis of no Granger causality
has to be dismissed, whereas the hypothesis of no instantaneous causality
cannot be rejected.

R Code 2.4 Causality analysis of VAR(2)-process

1## Cau s a l i t y t e s t s
2## Granger and i n s t a n t a n e o u s c a u s a l i t y
3va r . c a u s a l <− c a u s a l i t y ( v a r s ime s t , cause = ”y2 ”)

2.2.4 Forecasting

Once a VAR-model has been estimated and passes the diagnostic tests, it can
be used for forecasting. Indeed, one of the primary purposes of VAR analy-
sis is the detection of the dynamic interaction between the variables included
in a VAR(p)-model. Aside from forecasts, other tools for investigating these
relationships are impulse response analysis and forecast error variance decom-
position, which will be covered in Subsections 2.2.5 and 2.2.6, respectively.



2.2 Vector Autoregressive Models 37

For a given empirical VAR, forecasts can be calculated recursively accord-
ing to

yT+h|T = A1yT+h−1|T + . . .+ApyT+h−p|T + CDT+h (2.23)

for h = 1, 2, . . . , n. The forecast error covariance matrix is given as

Cov













yT+1 − yT+1|T

...
yT+h − yT+h|T












=











I 0 · · · 0
Φ1 I 0
...

. . . 0
Φh−1 Φh−2 . . . I











(Σu ⊗ Ih)











I 0 · · · 0
Φ1 I 0
...

. . . 0
Φh−1 Φh−2 . . . I











′

,

and the matrices Φi are the coefficient matrices of the Wold moving average
representation of a stable VAR(p)-process. Forecast confidence bands can then
be calculated as

[yk,T+h|T − c1−γ/2σk(h), yk,T+h|T + c1−γ/2σk(h)], (2.24)

where c1−γ/2 signifies the (1− γ
2 ) percentage point of the normal distribution

and σk(h) is the standard deviation of the kth variable h steps ahead.
In the package vars, forecasting of VAR-processes is accomplished by a

predictmethod for objects with class attribute varest. Besides the function’s
arguments for the varest object and the n.ahead forecast steps, a value for
the forecast confidence interval can be provided, too. Its default value is 0.95.
The predict method returns a list object of class varprd with three elements.
The first element, fcst, is a list of matrices containing the predicted values,
the lower and upper bounds according to the chosen confidence interval, ci,
and its size. The second element, endog, is a matrix object containing the
endogenous variables, and the third is the submitted varest object. A plot

method for objects of class varprd exists as well as a fanchart() function
for plotting fan charts as described in Britton, Fisher and Whitley [1998].

In R code 2.5, the predict method is applied to the empirical simulated
VAR-process. The fanchart() function has colors and cis arguments, al-
lowing the user to input vectors of colors and critical values. If these arguments
are left NULL, then as defaults a gray color scheme is used and the critical val-
ues are set from 0.1 to 0.9 with a step size of 0.1. The predictions for y1 are
shown in Figure 2.6, and the fan chart for variable y2 is depicted in Figure 2.7.

2.2.5 Impulse Response Functions

In Subsection 2.2.3, two causality tests were introduced, that are quite useful
to infer whether a variable helps predict another one. However, this analysis
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R Code 2.5 Forecasts of VAR-process

1## Fo r e c a s t i n g o b j e c t s o f c l a s s v a r e s t
2a r g s ( v a r s : : : p r e d i c t . v a r e s t )
3p r e d i c t i o n s <− p r e d i c t ( v a r s ime s t , n . ahead = 25 ,
4c i = 0 . 95 )
5c l a s s ( p r e d i c t i o n s )
6a r g s ( v a r s : : : p l o t . va rp rd )
7## Plot o f p r e d i c t i o n s f o r y1
8p l o t ( p r e d i c t i o n s , names = ”y1 ”)
9## Fanchart f o r y2
10a r g s ( f a n c h a r t )
11f a n c h a r t ( p r e d i c t i o n s , names = ”y2 ”)

Fig. 2.6. Forecasting y1 of VAR(2)-process

falls short of quantifying the impact of the impulse variable on the response
variable over time. The impulse response analysis is used to investigate these
kinds of dynamic interactions between the endogenous variables and is based
upon the Wold moving average representation of a VAR(p)-process (see Equa-
tions (2.6) and (2.7)). The (i, j)th coefficients of the matrices Φs are thereby
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Fig. 2.7. Fanchart of y2 of VAR(2)-process

interpreted as the expected response of variable yi,t+s to a unit change in
variable yjt. These effects can be cumulated through time s = 1, 2, . . ., and
hence one would obtain the cumulated impact of a unit change in variable j
on the variable i at time s. Rather than these impulse response coefficients,
it is often conceivable to use orthogonal impulse responses as an alternative.
This is the case if the underlying shocks are less likely to occur in isolation
but rather contemporaneous correlation between the components of the error
process ut exists; i.e., the off-diagonal elements of Σu are non-zero. The or-
thogonal impulse responses are derived from a Choleski decomposition of the
error variance-covariance matrix Σu = PP ′, with P being lower triangular.
The moving average representation can then be transformed to

yt = Ψ0εt + Ψ1εt−1 + . . . , (2.25)

with εt = P−1ut and Ψi = ΦiP for i = 0, 1, 2, . . . and Ψ0 = P . Incidentally,
because the matrix P is lower triangular, it follows that only a shock in the
first variable of a VAR(p)-process exerts an influence on all the remaining ones
and that the second and following variables cannot have a direct impact on
y1t. Hence, a certain structure of the error terms is implicitly imposed. One
should bear this in mind when orthogonal impulse responses are employed.

Fanchart for variable y2
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Please note further that a different ordering of the variables might produce
different outcomes with respect to the impulse responses. As we shall see in
Section 2.3, the non-uniqueness of the impulse responses can be circumvented
by analyzing a set of endogenous variables in the SVAR framework.

The function for conducting impulse response analysis is irf(), contained
in the package vars. It is a method for objects with class attribute varest.
The impulse variables are set as a character vector impulse, and the responses
are provided likewise in the argument response. If either one is unset, then
all variables are considered as impulses or responses, respectively. The default
length of the impulse responses is set to 10 via argument n.ahead. The com-
putation of orthogonal and/or cumulated impulse responses is controlled by
the logical switches ortho and cumulative, respectively. Finally, confidence
bands can be returned by setting boot = TRUE (default). The pre-set values
are to run 100 replications and return 95% confidence bands. It is at the user’s
leisure to specify a seed for replicable results. The standard percentile inter-
val is calculated as CIs = [s∗γ/2, s

∗
(1−γ)/2], where s∗γ/2 and s∗(1−γ)/2 are the

γ/2 and (1 − γ)/2 quantiles of the estimated bootstrapped impulse response
coefficients Φ̂∗ or Ψ̂∗ (see Efron and Tibshirani [1993]). The function irf()

returns an object with class attribute varirf for which a plot and a print

method exist.
In R code 2.6, an impulse response analysis is conducted for the simulated

VAR(2)-process. For clarity, the impulse responses of y1 to y2 and vice versa
have been split into two separate command lines. The results are shown in
Figures 2.8 and 2.9, respectively.

R Code 2.6 IRA of VAR-process

1## Impu l se r e s p on s e a n a l y s i s
2i r f . y1 <− i r f ( v a r s ime s t , impu l s e = ”y1 ” ,
3r e s p on s e = ”y2 ” , n . ahead = 10 ,
4or tho = FALSE , cumu l a t i v e = FALSE ,
5boot = FALSE , seed = 12345)
6a r g s ( v a r s : : : p l o t . v a r i r f )
7p l o t ( i r f . y1 )
8i r f . y2 <− i r f ( v a r s ime s t , impu l s e = ”y2 ” ,
9r e s p on s e = ”y1 ” , n . ahead = 10 ,
10or tho = TRUE, cumu l a t i v e = TRUE,
11boot = FALSE , seed = 12345)
12p l o t ( i r f . y2 )
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Fig. 2.8. Impulse responses of y1 to y2

2.2.6 Forecast Error Variance Decomposition

The forecast error variance decomposition (FEVD) is based upon the orthogo-
nal impulse response coefficient matrices Ψn (see Subsection 2.2.4). The FEVD
allows the user to analyze the contribution of variable j to the h-step fore-
cast error variance of variable k. If the element-wise squared orthogonal im-
pulse responses are divided by the variance of the forecast error variance,
σ2

k(h), the result is a percentage figure. Formally, the forecast error variance
for yk,T+h − Yk,T+h|T is defined as

σ2
k(h) =

h−1
∑

n=0

(ψ2
k1,n + . . .+ ψ2

kK,n), (2.26)

which can be written as

σ2
k(h) =

K
∑

j=1

(ψ2
kj,0 + . . .+ ψ2

kj,h−1). (2.27)

Dividing the term (ψ2
kj,0 + . . . + ψ2

kj,h−1) by σ2
k(h) yields the forecast error

variance decompositions in percentage terms:
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Fig. 2.9. Impulse responses of y2 to y1

ωkj(h) = (ψ2
kj,0 + . . .+ ψ2

kj,h−1)/σ
2
k(h). (2.28)

The fevd method in the package vars is available for conducting FEVD.
The argument n.ahead sets the number of forecasting steps; it has a default
value of 10. In R code 2.7, an FEVD is applied to the simulated VAR(2)-
process, and its graphical output is presented in Figure 2.10.

R Code 2.7 FEVD of VAR-process

1## For e c a s t e r r o r v a r i a n c e decompos i t i on
2f e vd . va r2 <− f e vd ( va r s ime s t , n . ahead = 10)
3a r g s ( v a r s : : : p l o t . v a r f e vd )
4p l o t ( f evd . var2 , addbars = 2)
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Fig. 2.10. FEVD for VAR(2)-process

2.3 Structural Vector Autoregressive Models

2.3.1 Specification and Assumptions

Recall from Subsection 2.2.1 the definition of a VAR(p)-process, in particular
Equation (2.1). A VAR(p) can be interpreted as a reduced-form model. An
SVAR model is its structural form and is defined as

Ayt = A∗
1yt−1 + . . .+ A∗

pyt−p +Bεt. (2.29)

For a textbook exposition of SVAR-models, see Amisano and Giannini [1997].
It is assumed that the structural errors, εt, are white noise and the coefficient
matrices A∗

i for i = 1, . . . , p, are structural coefficients that will differ from
their reduced-form counterparts if A 6= I. To see this, consider the resulting
equation by left-multiplying Equation (2.29) with the inverse of A:

yt = A−1A∗
1yt−1 + . . .+A−1A∗

pyt−p +A−1Bεt,

yt = A1yt−1 + . . .+Apyt−p + ut.
(2.30)

An SVAR-model can be used to identify shocks and trace these out by em-
ploying IRA and/or FEVD through imposing restrictions on the matrices A

1 2 3 4 5 6 7 8 9 10

y2
y1

FEVD for y1

Horizon

P
er

ce
nt

ag
e

0.
0

0.
4

0.
8

1 2 3 4 5 6 7 8 9 10

y2
y1

FEVD for y2

Horizon

P
er

ce
nt

ag
e

0.
0

0.
4

0.
8



44 2 Multivariate Analysis of Stationary Time Series

and/or B. Incidentally, though an SVAR-model is a structural model, it de-
parts from a reduced-form VAR(p)-model and only restrictions for A and B
can be added. It should be noted that the reduced-form residuals can be re-
trieved from an SVAR-model by ut = A−1Bεt and its variance-covariance
matrix by Σu = A−1BB′A−1′

.
Depending on the restrictions imposed, three types of SVAR-models can

be distinguished:

• A-model: B is set to IK (minimum number of restrictions for identification
is K(K − 1)/2).

• B-model: A is set to IK (minimum number of restrictions to be imposed
for identification is the same as for A-model).

• AB-model: restrictions can be placed on both matrices (minimum number
of restrictions for identification is K2 +K(K − 1)/2).

2.3.2 Estimation

Depending on the SVAR type, the estimation is similar to the estimation of
a simultaneous multiple-equation model with covariance restrictions on the
error terms. In practice, the maximum-likelihood principle is applied to the
concentrated log-likelihood, which is given as

lnLc(A,B) = const +
T

2
ln |A2| − T

2
ln |B2| − T

2
tr(A′B′−1B−1AΣ̂u), (2.31)

where Σ̂u signifies the estimated residual covariance matrix of the VAR(p)-
model. The negative of Equation (2.31) is minimized subject to the imposed
restrictions on A and B, which can be compactly written as

[

vecA
vecB

]

=

[

RA 0
0 RB

] [

γA

γb

]

+

[

rA
rB

]

. (2.32)

Two approaches for numerically estimating the unknown coefficients are
implemented within the R package vars. The first method applies the optim()
function for direct minimization of the negative log-likelihood, whereas the
second method makes use of the scoring algorithm proposed by Amisano and
Giannini [1997]. Either method is selected by providing "direct" or "scor-
ing" as the value for the argument estmethod in the function SVAR(). In
addition, the first argument in a call to SVAR() must be an object of class
varest. Whether an A-, B-, or AB-model will be estimated is dependent on
the setting for Amat and Bmat. If a restriction matrix for Amat with dimen-
sion (K ×K) is provided and the argument Bmat is left NULL, an A-model is
estimated. In this case, Bmat is set to an identity matrix IK . Alternatively, if
only a matrix object for Bmat is provided and Amat is left unchanged, then a
B-model will be estimated and internally Amat is set to an identity matrix IK .
Finally, if matrix objects for both arguments are provided, then an AB-model
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will be estimated. In all cases, the matrix elements to be estimated are marked
by NA entries at the relevant positions. Depending on the chosen model, the
list elements A, Ase, B, Bse contain the estimated coefficient matrices with
the numerical standard errors, if applicable. In case estmethod = "direct",
the standard errors are returned only if SVAR() has been called with hessian

= TRUE. The returned list element Sigma.U is the variance-covariance matrix
of the reduced-form residuals times 100; i.e., ΣU = A−1BB′A−1′×100. Please
note that this estimated variance-covariance matrix only corresponds to the
reduced-form counterpart if the SVAR-model is exactly identified. The valid-
ity of the overidentifying restrictions can be tested with an LR test defined
as

LR = T (ln |Σ̃u| − ln |Σ̂u|), (2.33)

where Σ̃u is the implied variance-covariance matrix of the SVAR and Σ̂u

signifies the reduced-form counterpart. The statistic is distributed as χ2 with
degrees of freedom equal to the number of overidentifying restrictions. This
test statistic is returned as list element LR with class attribute htest. The
element opt is the object returned from function optim(). The remaining
four list items are the vector of starting values, the SVAR-model type, the
varest object, and the call to SVAR().

In R code 2.8, the function SVAR() is applied to a generated A-model of
the form

[

1 −0.7
0.8 1

] [

y1
y2

]

t

=

[

0.5 0.2
−0.2 −0.5

] [

y1
y2

]

t−1

+

[

−0.3 −0.7
−0.1 0.3

] [

y1
y2

]

t−2

+

[

ε1
ε2

]

t

.

(2.34)

In the call to SVAR(), the argument hessian = TRUE has been used, which
is passed to optim(). Hence, the empirical standard errors are returned in
the list element Ase of the object svar.A. The result is shown in Table 2.6.
The coefficients are close to their theoretical counterparts and statistically
significant different from zero. As expected, the likelihood-ratio statistic for
overidentification does not indicate the rejection of the null.

Table 2.6. SVAR A-model: estimated coefficients

Variable y1 y2

y1 1.0000 −0.6975
(−13.67)

y2 0.8571 1.0000
(14.96)

Note: t statistics in parentheses.
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R Code 2.8 SVAR: A-model

1l i b r a r y ( dse1 )
2l i b r a r y ( v a r s )
3## A−model
4Apoly <− a r r a y ( c ( 1 . 0 , −0.5 , 0 . 3 , 0 . 8 ,
50 . 2 , 0 . 1 , −0.7 , −0.2 ,
60 . 7 , 1 , 0 . 5 , −0.3) ,
7c (3 , 2 , 2) )
8## Se t t i n g c o v a r i a n c e to i d e n t i t y −mat r i x
9B <− d iag (2)
10## Gene ra t ing the VAR(2) model
11svarA <− ARMA(A = Apoly , B = B)
12## S imu l a t i n g 500 ob s e r v a t i o n s
13s v a r s im <− s imu l a t e ( svarA , sampleT = 500 ,
14rng = l i s t ( seed = c (123456) ) )
15## Obta in ing the gene ra t ed s e r i e s
16s v a r d a t <− mat r i x ( s v a r s im $output , nrow = 500 , n co l = 2)
17co lnames ( s v a r d a t ) <− c ( ”y1 ” , ”y2 ”)
18## Es t ima t i n g the VAR
19v a r e s t <− VAR( sva rda t , p = 2 , type = ”none ”)
20## Se t t i n g up ma t r i c e s f o r A−model
21Amat <− d iag (2)
22Amat [ 2 , 1 ] <− NA
23Amat [ 1 , 2 ] <− NA
24## Es t ima t i n g the SVAR A−type by d i r e c t max im i sa t i on
25## of the log− l i k e l i h o o d
26a r g s (SVAR)
27s v a r .A <− SVAR( va r e s t , estmethod = ”d i r e c t ” ,
28Amat = Amat , h e s s i a n = TRUE)

A B-type SVAR is first simulated and then estimated with the alternative
method estmethod = "scoring" in R code 2.9. The scoring algorithm is based
upon the updating equation

[

γ̃A

γ̃B

]

i+1

=

[

γ̃A

γ̃B

]

i

+ ℓ I
([

γ̃A

γ̃B

]

i

)−1

S
([

γ̃A

γ̃B

]

i

)

, (2.35)

where ℓ signifies the step length, I is the information matrix for the unknown
coefficients contained in γ̃A and γ̃B, and S is the scoring vector. The iteration
step is assigned by i.

The covariance for the error terms has been set to −0.8. The values of the
coefficient matrices Ai for i = 1, 2 are the same as in the previous example.
The result is provided in Table 2.7.

In addition to an object with class attribute varest, the other arguments
of SVAR() if estmethod = "scoring" are max.iter for defining the maximal
number of iterations, conv.crit for providing a value for defining convergence,
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R Code 2.9 SVAR: B-model

1l i b r a r y ( dse1 )
2l i b r a r y ( v a r s )
3## B−model
4Apoly <− a r r a y ( c ( 1 . 0 , −0.5 , 0 . 3 , 0 ,
50 . 2 , 0 . 1 , 0 , −0.2 ,
60 . 7 , 1 , 0 . 5 , −0.3) ,
7c (3 , 2 , 2) )
8## Se t t i n g c o v a r i a n c e to i d e n t i t y −mat r i x
9B <− d iag (2)
10B[2 , 1 ] <− −0.8
11## Gene ra t ing the VAR(2) model
12svarB <− ARMA(A = Apoly , B = B)
13## S imu l a t i n g 500 ob s e r v a t i o n s
14s v a r s im <− s imu l a t e ( svarB , sampleT = 500 ,
15rng = l i s t ( seed = c (123456) ) )
16s v a r d a t <− mat r i x ( s v a r s im $output , nrow = 500 , n co l = 2)
17co lnames ( s v a r d a t ) <− c ( ”y1 ” , ”y2 ”)
18v a r e s t <− VAR( sva rda t , p = 2 , type = ”none ”)
19## Es t ima t i n g the SVAR B−type by s c o r i n g a l go r i t hm
20## Se t t i n g up the r e s t r i c t i o n mat r i x and ve c t o r
21## f o r B−model
22Bmat <− d iag (2)
23Bmat [ 2 , 1 ] <− NA
24s v a r .B <− SVAR( va r e s t , estmethod = ”s c o r i n g ” ,
25Bmat = Bmat , max . i t e r = 200)

Table 2.7. SVAR B-model: estimated coefficients

Variable y1 y2

y1 1.0000 0.0000
y2 −0.8439 1.0000

(−18.83)

Note: t statistics in parentheses.

and maxls for determining the maximal step length. As in the estimation
method direct, the alternative method returns an object with class attribute
svarest. For objects of this class, methods for computing impulse responses
and forecast error variance decomposition exist. These methods will be the
subjects of the following two subsections.

2.3.3 Impulse Response Functions

Just as impulse response analysis can be conducted for objects with class
attribute varest, it can also be done for objects with class attribute svarest
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(see Subsection 2.2.5 on page 37 following). In fact, the irf methods for classes
varest and svarest are at hand with the same set of arguments, except ortho
is missing for objects of class svarest due to the nature and interpretation of
the error terms in an SVAR. The impulse response coefficients for an SVAR
are calculated as Θi = ΦiA

−1B for i = 1, . . . , n.
In R code 2.10, IRA is exhibited for the estimated A-type SVAR from the

previous section. The impulses from y1 to y2 are calculated. In program line
3, the method is applied to the object svar.A. In line 6, these orthogonal
impulse responses are plotted. The result is provided in Figure 2.11.

R Code 2.10 SVAR: Impulse response analysis

1## Impu l se r e s p on s e a n a l y s i s o f SVAR A−type model
2a r g s ( v a r s : : : i r f . s v a r e s t )
3i r f . s v a r a <− i r f ( s v a r .A, impu l s e = ”y1 ” ,
4r e s p on s e = ”y2 ” , boot = FALSE)
5a r g s ( v a r s : : : p l o t . v a r i r f )
6p l o t ( i r f . s v a r a )

2.3.4 Forecast Error Variance Decomposition

A forecast error variance decomposition can be applied to objects of class
svarest. Here the forecast errors of yT+h|T are derived from the impulse re-
sponses of an SVAR, and the derivation for the forecast error variance decom-
position is similar to the one outlined for the VAR-model (see Subsection 2.2.6
on page 41 following).

R Code 2.11 SVAR: Forecast error variance decomposition

1## FEVD a n a l y s i s o f SVAR B−type model
2a r g s ( v a r s : : : f e vd . s v a r e s t )
3f e vd . sva rb <− f e vd ( s v a r .B, n . ahead = 5)
4c l a s s ( f evd . sva rb )
5methods ( c l a s s = ”va r f e vd ”)
6p l o t ( f evd . sva rb )

An application for the SVAR B-model is provided in R code 2.11. As for
the FEVD for VAR-models, print and plot methods exist for SVAR-models.
The outcome of the FEVD for the variable y2 is provided in Table 2.8.
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Fig. 2.11. IRA from y1 to y2 of SVAR A-model

Table 2.8. SVAR B-model: FEVD for y2

Period y1 y2

1 0.4160 0.5840
2 0.4021 0.5979
3 0.4385 0.5615
4 0.4342 0.5658
5 0.4350 0.5650

Summary

In this chapter, the analysis of stationary time series has been extended to
multivariate models and their associated statistical tests and methods. In
particular, VAR- and SVAR-models have been introduced, where the former
can be interpreted as the reduced-form counterparts of SVAR-models. Both
model classes have been illustrated by artificial data sets.

It has been outlined how a suitable lag length can be empirically deter-
mined and what kind of diagnostic tests are at hand for checking the assump-
tions about the multivariate error process. The different concepts of causality
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analysis and forecasting with VAR-models have been shown. For investigat-
ing the dynamic interactions between variables, the impulse response functions
and forecast error variance decomposition have been introduced. These tools
are implemented as methods for VAR- and SVAR-models alike. The results
can be obtained and plotted swiftly with the functions included in package
vars. An overview of the package’s structure is presented in Table 2.9.

Exercises

1. Set up a three-dimensional VAR(2) model where the third variable does
not Granger-cause the first variable.

2. Simulate 250 observations of your model from Exercise 1.
3. Estimate a VAR(2)-model with the simulated data from Exercise 2 and

check its stability.
4. Conduct the diagnostic tests outlined in Subsection 2.2.2.
5. Perform Granger-causality tests for y3, Granger-causing y2 and y1.
6. Calculate the impulse response functions (orthogonal and non-orthogonal)

and forecast error variance decomposition for y3.

Table 2.9. Overview of package vars

function or method class methods for class functions for class

VAR varest coef, fevd, fitted, irf, logLik,
Phi, plot, predict, print, Psi,
resid, summary

Acoef, arch.test,
Bcoef, BQ, causality,
normality.test,
restrict, roots,
serial.test, stability

SVAR svarest fevd, irf, logLik, Phi, print,
summary

SVEC svecest fevd, irf, logLik, Phi, print,
summary

vec2var vec2var fevd, fitted, irf, logLik, Phi,
predict, print, Psi, resid

arch.test,
normality.test,
serial.test

fevd varfevd plot, print
irf varirf plot, print
predict varprd plot, print fanchart
summary varsum,

svarsum,
svecsum

print

arch.test varcheck plot, print
normality.test varcheck plot, print
serial.test varcheck plot, print
stability varstabil plot, print
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7. Set up an SVAR-model of type AB with three variables and two lags,
which are just identified and overidentified, respectively.

8. Simulate 250 observations of your model from Exercise 7 and estimate it
with function SVAR2.

9. Perform impulse response analysis and forecast error variance decomposi-
tion of your estimated SVAR AB-model.
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