Chapter 29
The Bootstrap

The bootstrap is a resampling mechanism designed to provide informa-
tion about the sampling distribution of a functional 7'(X,, X», ..., X,,, F),
where X, X», ..., X,, are sample observations and F is the CDF from which
X1, X2, ..., X, are independent observations. The bootstrap is not limited to
the iid situation. It has been studied for various kinds of dependent data
and complex situations. In fact, this versatile nature of the bootstrap is
the principal reason for its popularity. There are numerous texts and re-
views of bootstrap theory and methodology at various technical levels. We
recommend Efron and Tibshirani (1993) and Davison and Hinkley (1997)
for applications-oriented broad expositions and Hall (1992) and Shao and
Tu (1995) for detailed theoretical development. Modern reviews include
Hall (2003), Beran (2003), Bickel (2003), and Efron (2003). Bose and Poli-
tis (1992) is a well-written nontechnical account, and Lahiri (2003) is a rig-
orous treatment of the bootstrap for various kinds of dependent data.
Suppose X1, Xo, ..., Xy S F and T(X,, X5, ..., X,,, F) is a functional;
e.g, T(Xi, X, 0, Xy, F) = V"X \where p = Ep(X)) and 0? =
Varp(X1). In statistical problems, we frequently need to know something
about the sampling distribution of T'; e.g., Pr(T (X1, X2, ..., X,, F) < 1t). If
we had replicated samples from the population, resulting in a series of values
for the statistic 7', then we could form estimates of Pr(T < ¢) by counting
how many of the 7;’s are < ¢. But statistical sampling is not done that way.
We do not usually obtain replicated samples; we obtain just one set of data
of some size n. However, let us think for a moment of a finite population. A
large sample from a finite population should be well representative of the full
population itself, so replicated samples (with replacement) from the original
sample, which would just be an iid sample from the empirical CDF F,,, could
be regarded as proxies for replicated samples from the population itself, pro-
vided n is large. Suppose that for some number B we draw B resamples of
size n from the original sample. Denoting the resamples from the original
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462 29 The Bootstrap

sample as (X7;, X15, ..., X7,), (X3,, X35, oes X5,)5 oes (X515 X305 o0s X3,
with corresponding values T}, T3, ..., T for the functional 7', one can use

simple frequency-based estimates such as HT =1 to estimate Pp(T < t).
This is the basic idea of the bootstrap. Over time, the bootstrap has found
its use in estimating other quantities, e.g., Varz(7") or quantiles of 7. The
bootstrap is thus an omnibus mechanism for approximating sampling distri-
butions or functionals of sampling distributions of statistics. Since frequen-
tist inference is mostly about sampling distributions of suitable statistics,
the bootstrap is viewed as an immensely useful and versatile tool, further
popularized by its automatic nature. However, it is also frequently used in
situations where it should not be used. In this chapter, we give a broad
methodological introduction to various types of bootstraps, explain their
theoretical underpinnings, discuss their successes and limitations, and try
them out in some trial cases.

29.1 Bootstrap Distribution and the Meaning of Consistency

The formal definition of the bootstrap distribution of a functional is the fol-
lowing.

Definition 29.1 Let X, X5,.... X, ~ F and T(X,, X5, ... X, F) be a
given functional. The ordinary bootstrap distribution of T is defined as

HBOO[(X) = PF”(T(X*’ ey X:7 Fn) S x)7

where (X7, ..., X;) is an iid sample of size n from the empirical CDF F),.
It is common to use the notation P, to denote probabilities under the
bootstrap distribution.

Remark. P (-) corresponds to probability statements corresponding to
all the n" possible resamples with replacement from the original sample
(X1, ..., X,). Since recalculating T from all n" resamples is basically im-
possible unless n is very small, one uses a smaller number of B resam-
ples and recalculates 7" only B times. Thus Hpeo(x) itself is estimated by a
Monte Carlo, known as the bootstrap Monte Carlo, so the final estimate for
Pp(T (X1, Xo, ..., Xy, F,) < x) absorbs errors from two sources: (i) pretend-
ing (X}, X%, ..., X}) to be bona fide resamples from F’; (ii) estimating the
true Hpooi(x) by a Monte Carlo. By choosing B adequately large, the Monte
Carlo error is generally ignored. The choice of B that would let one ignore
the Monte Carlo error is a hard mathematical problem; Hall (1986, 1989a)
are two key references. It is customary to choose B ~ 300 for variance
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estimation and a somewhat larger value for estimating quantiles. It is hard to
give any general reliable prescriptions on B.

It is important to note that the resampled data need not necessarily be
obtained from the empirical CDF F,,. Indeed, it is a natural question whether
resampling from a smoothed nonparametric distribution estimator can result
in better performance. Examples of such smoothed distribution estimators
are integrated kernel density estimates. It turns out that, in some prob-
lems, smoothing does lead to greater accuracy, typically in the second order.
See Silverman and Young (1987) and Hall, DiCiccio, and Romano (1989)
for practical questions and theoretical analysis of the benefits of using a
smoothed bootstrap. Meanwhile, bootstrapping from F,, is often called the
naive or orthodox bootstrap, and we will sometimes use this terminology.

Remark. At first glance, the idea appears to be a bit too simple to actually
work. But one has to have a definition for what one means by the bootstrap
working in a given situation. It depends on what one wants the bootstrap to
do. For estimating the CDF of a statistic, one should want Hg,(x) to be
numerically close to the true CDF H,(x) of T. This would require consid-
eration of metrics on CDFs. For a general metric p, the definition of “the
bootstrap working” is the following.

Definition 29.2 Let F and G be two CDFs on a sample space X. Let

p(F, G) be a metric on the space of CDFs on X. For X, X», ..., X, S F,

and a given functional 7'(Xy, X, ..., X, F), let

Hn(x) = PF(T(Xla X27 sy Xn7 F) S x)a
Hpoo(x) = Pu(T (X, X5, ... X, Fy) < x).

We say that the bootstrap is weakly consistent under p for T if p(H,, Hgoot)

L 0asn — o0o. We say that the bootstrap is strongly consistent under p for
T if p(Hy, Hpoo) = 0.

Remark. Note that the need for mentioning convergence to zero in proba-
bility or a.s. in this definition is due to the fact that the bootstrap distribution
Hpgyo is a random CDF. That Hg, is @ random CDF has nothing to do with
bootstrap Monte Carlo; it is a random CDF because as a function it depends
on the original sample (X, X, ..., X,;). Thus, the bootstrap uses a random
CDF to approximate a deterministic but unknown CDF, namely the true CDF
H, of the functional T.

Example 29.1 How does one apply the bootstrap in practice? Suppose, for
example, T(X, ..., X,, F) = */”(ﬁ_“ ) In the orthodox bootstrap scheme,
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we take iid samples from F,. The mean and the variance of the empiri-
cal distribution F, are X and s> = i Z?Zl(Xi — X)? (note the n rather
than n — 1 in the denominator). The bootstrap is a device for estimating
PF(“/"(X;“(F ) < x) by PFn(“/"(Xf < X). We will further approximate
PEI(‘/"()Z’?X) < x) by resampling only B times from the original sample
set {X1, ..., X,}. In other words, finally we will report as our estimate for

Pp(‘/"(f_“) < x) the number #{; : \/n(Xi‘j_X) < x}/B.

29.2 Consistency in the Kolmogorov and Wasserstein
Metrics

We start with the case of the sample mean of iid random variables. If

X1, ..., X, S F and if Varp(X;) < oo, then \/n(X — ) has a limiting
normal distribution by the CLT. So a probability such as Pr(y/n(X —u) < x)
could be approximated for example by ®(*), where s is the sample standard
deviation. An interesting property of the bootstrap approximation is that,
even when the CLT approximation ®(?) is available, the bootstrap approx-
imation may be more accurate. We will later describe theoretical results in
this regard. But first we present two consistency results corresponding to
the following two specific metrics that have earned a special status in this
literature:

(i) Kolmogorov metric

K(F,G)= sup [|F(x)—G(x)l;

—00<X <

(i1) Mallows-Wasserstein metric

(o(F.G) = inf (E|Y ~ X%,

2,F.G

where X ~ F,Y ~ G, and I'; r ¢ is the class of all joint distributions
of (X, Y) with marginals F and G, each with a finite second moment.

£, is a special case of the more general metric

¢,(F.G) = inf (E]Y — X7y,

p.F.G

with the infimum being taken over the class of joint distributions with
marginals as F', G, and the pth moment of F, G being finite.
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Of these, the Kolmogorov metric is universally regarded as a natural
one. But how about £,? ¢, is a natural metric for many statistical problems

because of its interesting property that ¢,(F,, F) — 0 iff F), é F and
Epn(Xi) — Ep(X')fori = 1,2. Since one might want to use the bootstrap
primarily for estimating the CDF, mean, and variance of a statistic, consis-
tency in ¢ is just the right result for that purpose.

Theorem 29.1 Suppose X1, X2, ..., X, % F and that Ep(X?) < oo. Let
T(le cees Xna F) == \/H(X - ,Uv) Then K(an HBoot) and EZ(an HBoot)
2% 0asn — oo.

Remark. Strong consistency in K is proved in Singh (1981), and that for
£, is proved in Bickel and Freedman (1981). Notice that Er(X f) < o0
guarantees that /n(X — p) admits a CLT. And Theorem 29.1 says that the
bootstrap is strongly consistent (w.r.t. K and ¢,) under that assumption. This
is in fact a very good rule of thumb: if a functional 7 (X, X», ..., X,,, F)
admits a CLT, then the bootstrap would be at least weakly consistent for 7'.
Strong consistency might require a little more assumption.

We sketch a proof of the strong consistency in K. The proof requires use
of the Berry-Esseen inequality, Polya’s theorem (see Chapter 1 or Chap-
ter 2), and a strong law known as the Zygmund-Marcinkiewicz strong law,
which we state below.

Lemma 29.1 (Zygmund-Marcinkiewicz SLLN) Let Y1, Y5>, ... be iid ran-
dom variables with CDF F and suppose, forsome 0 < § < 1, E¢|Y;|® < oo.
Then n='/231 ¥ 0.

We are now ready to sketch the proof of strong consistency of Hpoot
under K. Using the definition of K, we can write K(H,, Hpoot) =
sup, |Pr (T, < x} — P {T} < x}|

T, x T x
Pr = — Py =
o o N N

= sup
X
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That A, — 0 is a direct consequence of Polya’s theorem. Also, s con-

verges almost surely to o> and so, by the continuous mapping theorem, s
converges almost surely to . Then B, = 0 almost surely by the fact that
d(-) is a uniformly continuous function. Finally, we can apply the Berry-
Esseen theorem to show that C,, goes to zero:

4 EpIXi-X,P _ 4 YLK - X,

< =
"S5y varg (XDP2 T 5y ns’

4 3 S 3 3
< apg 2 [Dxi — ul’ +nlp = X,|

M|l 1 < X, — ul?
= Xi —pl’ + ,

C

where M = 352.

Since s = o > 0and X,, = p, it is clear that |X,, — u|?/(/ns?) = 0
almost surely. As regards the first term, let ¥; = |X; — wl? and § = 2/3.
Then the {Y;} are iid and

ENY;° = Ep|X; — uP?? = Varp(X)) < oo.

It now follows from the Zygmund-Marcinkiewicz SLLN that

1 < !
w32 Z|Xi —ul =n71/SZYi = 0as. asn — oo.
i=1 i=1

Thus, A, + B, + C,, = 0 almost surely, and hence K(H,,, Hgoot) = 0.

We now proceed to a proof of convergence under the Wasserstein-
Kantorovich-Mallows metric £,. Recall that convergence in ¢, allows us to
conclude more than weak convergence. We start with a sequence of results
that enumerate useful properties of the ¢, metric.

These facts (see Bickel and Freedman (1981)) are needed to prove con-
sistency of Hpyo in the £, metric.

Lemma 29.2 Let G, G € I';. Then ¢5(G,,, G) — 0 if and only if

G,= G and lim xden(x):/xde(x), k=1,2.

n—oo
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Lemma 29.3 Let G,H € I, and suppose Yi,...,Y, are iid G and
Zy,...,Z, are iid H. If G™ is the CDF of \/n(Y — ) and H™ is the
CDF of \/n(Z — wg), then £,(G™, H™) < £,(G, H), VYn> 1.

Lemma 29.4 (Glivenko-Cantelli) Let X, X,, ..., X, be iid F and let F,
be the empirical CDFE. Then F,(x) — F(x) almost surely, uniformly in x.

Lemma 29.5 Let X, X», ..., X, beiid F and let F, be the empirical CDF.
Then £,(F,, F) = 0 almost surely.

The proof that £,(H,,, Hgeot) converges to zero almost surely follows on
simply putting together the lemmas 29.2-29.5. We omit this easy verifica-
tion.

It is natural to ask if the bootstrap is consistent for /n(X — i) even when
Er(X?) = oo. If we insist on strong consistency, then the answer is negative.
The point is that the sequence of bootstrap distributions is a sequence of
random CDFs and so it cannot be expected a priori that it will converge to
a fixed CDF. It may very well converge to a random CDF, depending on the
particular realization X, X», . ... One runs into this problem if E (X f) does
not exist. We state the result below.

Theorem 29.2 Suppose X, X», ... are iid random variables. There exist
un(X1, Xs, ..., X;)), an increasing sequence c,, and a fixed CDF G(x) such
that

n

Y X — (X1, o X))
P <x| % 6w
Cn

if and only if EF(Xf) < 00, in which case f/n —1.

Remark. The moral of Theorem 29.2 is that the existence of a nonrandom
limit itself would be a problem if E (X f) = 00. See Athreya (1987), Giné
and Zinn (1989), and Hall (1990) for proofs and additional examples.

The consistency of the bootstrap for the sample mean under finite second
moments is also true for the multivariate case. We record consistency under
the Kolmogorov metric next; see Shao and Tu (1995) for a proof.

Theorem 29.3 Let X;,---, X,,--- be iid F with covp(X;) = 2, 3 fi-

~

nite. Let T(X{, X2, ..., X, F) = /n(X — ). Then K(Hpoot, H,) 2500
as n — OQ. - - -
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29.3 Delta Theorem for the Bootstrap

We know from the ordinary delta theorem that if 7 admits a CLT and g(-) is a
smooth transformation, then g(7") also admits a CLT. If we were to believe in
our rule of thumb, then this would suggest that the bootstrap should be con-
sistent for g(7') if it is already consistent for 7. For the case of sample mean
vectors, the following result holds; again, see Shao and Tu (1995) for a proof.

Theorem 29.4 Let X, X», ..., X, % F and let 2 ,xp = covp(X)) be fi-
nite. Let T(X;, X2, ..., X,, F) = \/n():(—/i) and, for some m > 1, let
g : R? — R™ If Vg(-) exists in a neighborhood of ®,Vg(/) # 0, and if

Vg(-) is continuous at i, then the bootstrap is strongly consistent w.r.t. K

for /n(g(X) — g(H)).

Example 29.2 Let X, X»,..., X, X F, and suppose Er(X]) < oo. Let
Y, = (;;). Then, with p = 2, Y1, Y, ..., Y, are iid p-dimensional vectors

with cov(Y) finite. Note that ¥ = (, 25( y2)- Consider the transformation
~ ~ n i=1 i

g : R?> - R! defined as g(u,v) = v — u’. Then ;iZ?:I(Xi - X)? =
i X7 —(X)? = g(Y). If we let 1 = E(Y)), then g(1) = o2 = Var(X)).

Since g(-) satisfies the conditions of the Theorem 29.4, it follows that the
bootstrap is strongly consistent w.r.t. K for \/n(i Z?:l(Xi —X)? —o?).

29.4 Second-Order Accuracy of the Bootstrap

One philosophical question about the use of the bootstrap is whether the
bootstrap has any advantages at all when a CLT is already available. To be
specific, suppose T(X1, ..., X,, F) = /n(X — ). If 0> = Varp(X) < oo,

then /n(X — u) A N, 02) and K (Hgoo, H,) %3 0. So two competitive
approximations to Pr(T(X1y, ..., X,, F)) < x) are ®(} ) and Pr (/n(X* —
X) < x). It turns out that, for certain types of statistics, the bootstrap approx-
imation is (theoretically) more accurate than the approximation provided
by the CLT. Because any normal distribution is symmetric, the CLT can-
not capture information about the skewness in the finite sample distribution
of T. The bootstrap approximation does so. So the bootstrap succeeds in
correcting for skewness, just as an Edgeworth expansion would do. This
is called Edgeworth correction by the bootstrap, and the property is called
second-order accuracy of the bootstrap. It is important to remember that
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second-order accuracy is not automatic; it holds for certain types of 7 but
not for others. It is also important to understand that practical accuracy
and theoretical higher-order accuracy can be different things. The follow-
ing heuristic calculation will illustrate when second-order accuracy can be
anticipated. The first result on higher-order accuracy of the bootstrap is due
to Singh (1981). In addition to the references we provided in the beginning,
Lehmann (1999) gives a very readable treatment of higher-order accuracy of
the bootstrap.

Suppose X1, X2, ..., X,  F and T(Xy, ..., Xy, F) = “/"(ﬁf“); here
02 = Varp(X;) < co. We know that 7 admits the Edgeworth expansion

F F
pli)/c’L )(p(x)+ pz(zl )(p(x)

+smaller order terms,

x| F, x| F,
pi(x| n)w(x)+P2( | n)(p
Jn

+smaller order terms,
Pi(x|F) — pi(x|F,) n P2(x|F) — pa(x|Fy)

Jn n

+smaller order terms.

Pp(T < x)=®P(x) +

P(T* = x)=P(x) + (x)

H,(x) — Hpoot(x) =

Recall now that the polynomials p;, p, are given as
14
PIxIF) = (1 =%,

Kk —3 K2
pz(x|F)=x|: o (3—x2)—72(x4—10x2+15)],

o Ot e
where y = EFO;; M and k = EF()ZQ M Since Ve, =V = Op(\}n) and

K, —K = OP(jn), just from the CLT for y, and «, under finiteness of

Fn
four moments, one obtains H,(x) — Hpyoi(x) = O,( i ). If we contrast this
with the CLT approximation, in general, the error in the CLT is 0(\/1,1 ), as is

known from the Berry-Esseen theorem. The \/1’1 rate cannot be improved in

general even if there are four moments. Thus, by looking at the standardized
statistic ‘/”(if—” ), we have succeeded in making the bootstrap one order more
accurate than the CLT. This is called second-order accuracy of the bootstrap.

If one does not standardize, then

PF(\/”(X—M)SX)ZPF(\/H();_M)§x>_>cp<x),

o o
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and the leading term in the bootstrap approximation in this unstandardized
case would be &( j; ). So the bootstrap approximates the true CDF H, (x)

also at the rate jn ; 1.e., if one does not standardize, then H,(x) — Hgooi(X) =

0,( jn ). We have now lost the second-order accuracy. The following second
rule of thumb often applies.

Rule of Thumb Let X, X, ..., X, * Fand T(X,, ..., X, F)afunc-
tional. If T(Xy, ..., X,,, F) é N(0, 72), where 7 is independent of F, then
second-order accuracy is likely. Proving it will depend on the availability of
an Edgeworth expansion for 7. If t depends on F (i.e., T = t(F)), then the
bootstrap should be just first-order accurate.

Thus, as we will now see, the orthodox bootstrap is second-order accurate
for the standardized mean ¥Y"* ™" although from an inferential point of
view it is not particularly useful to have an accurate approximation to the
distribution of ‘/"(ﬁ ~*) pecause o would usually be unknown, and the accu-
rate approximation could not really be used to construct a confidence interval
for w. Still, the second-order accuracy result is theoretically insightful.

We state a specific result below for the case of standardized and nonstan-
dardized sample means. Let H,(x) = Pr(y/n(X — ) < x), H,o(x) =
Pr("T <), Hpou(x) = Pu(y/n(X* = X) < %), Hpooro(x) =

P, (V"0 < ).

Theorem 29.5 Let Xy, X5, ..., X, X F.

() If Ep|X;|> < oo and F is nonlattice, then K(H,. 0, Heoot,0) = op(\/ln).

() If Ex|X;]? < oo and F is lattice, then «/nK(Hy o, Hzooro) — c,
0<c< oo

Remark. See Lahiri (2003) for a proof. The constant ¢ in the lattice case
equals szﬂ, where £ is the span of the lattice {a + kh, k = 0, &1, £2, ...}
on which the X; are supported. Note also that part (a) says that higher-order
accuracy for the standardized case obtains with three moments; Hall (1988)
showed that finiteness of three absolute moments is in fact necessary and
sufficient for higher-order accuracy of the bootstrap in the standardized case.
Bose and Babu (1991) investigate the unconditional probability that the
Kolmogorov distance between Hpoo and H,, exceeds a quantity of the order
o(n_é) for a variety of statistics and show that, with various assumptions,
this probability goes to zero at a rate faster than O(n~").
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Example 29.3 How does the bootstrap compare with the CLT approxima-
tion in actual applications? The question can only be answered by case-by-
case simulation. The results are mixed in the following numerical table. The
X; are iid Exp(1) in this example and T = /n(X — 1) with n = 20. For the
bootstrap approximation, B = 250 was used.

t  H,(t) CLT approximation Hpgo(?)

—2 0.0098 0.0228 0.0080
—1 0.1563 0.1587 0.1160
0 0.5297 0.5000 0.4840
1 0.8431 0.8413 0.8760
2 0.9667 0.9772 0.9700

29.5 Other Statistics

The ordinary bootstrap that resamples with replacement from the empirical
CDF F, is consistent for many other natural statistics besides the sample
mean and even higher-order accurate for some, but under additional con-
ditions. We mention a few such results below; see Shao and Tu (1995) for
further details on the theorems in this section.

Theorem 29.6 (Sample Percentiles)

Let Xy, ..., X, be 2 FandletO < p < 1. Let§, = F~!(p) and suppose
F has a positive derivative f(§,) at §,. Let T, = T(X,, ..., X,, F) =
Vi (p) =€) and T = T(XF, ..., X5, F,) = /n(Fy~ ' (p)— F,7 N (p)),
where F) is the empirical CDF of X7, ..., X}. Let H,(x) = Pr(T, < x)

and Hgpooi(x) = Pu(T," < x). Then, K(Hgoot, H,) = O(n_l/“\/loglogn)
almost surely.

Remark. So again we see that, under certain conditions that ensure the ex-
istence of a CLT, the bootstrap is consistent.

Next we consider the class of one-sample U -statistics.

Theorem 29.7 (U-statistics)

Let U, = U,(X4, ..., X,) be a U-statistic with a kernel / of order 2. Let
0 = Er(U,) = Er[h(X,, X3)], where X, X» S F. Assume:

(i) Er (h*(X1, X2)) < oo.
(i) 72 = Varg (h(X)) > 0, where ii(x) = Er[h(X1, X»)| X5 = x].
(i) Eplh(X, X1)| < oo.
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LetT, = /n(U,—0)and T = /n(U}—U,), where U = U, (X7}, ..., X}),
H,(x) = Pp(T, < x),and Hpou(x) = P,(T} < x). Then K (H,, Hpoo)—>0.

Remark. Under conditions (i) and (ii), o/n(U, — ) has a limiting normal
distribution. Condition (iii) is a new additional condition and actually cannot
be relaxed. Condition (ii1) is vacuous if the kernel /4 is bounded or a function
of | X| — X;|. Under additional moment conditions on the kernel 4, there is
also a higher-order accuracy result; see Helmers (1991).

Previously, we observed that the bootstrap is consistent for smooth func-
tions of a sample mean vector. That lets us handle statistics such as the
sample variance. Under some more conditions, even higher-order accuracy
obtains. Here is a result in that direction.

Theorem 29.8 (Higher-Order Accuracy for Functions of Means)

Let Xi,....X,  F with Ep(X;) = p and covp(X;) = 3,,,. Let
g : R?” — R be such that g(-) is twice continuously differentiable in some
neighborhood of 1 and Vg(u) # 0. Assume also:

) EpllX) —pl]’ <oo.
(ii) Timsup;, o [Er (¢7%)] < 1.

LetT, = Vn(g(X)—g(w) and T* = \/"(g(f_(*)*g()_f)_) ,where S = S(X,, .
\/(Vg(u))’E(Vg(M)) " \/(Vg(X))’S(Vg(X))

X, ) is the sample variance-covariance matrix. Also let H,(x) = Pp(T, < x)

and Hpoo(x) = P(T* < x). Then y/nK (Hy, Hpoo)—>0.

Finally, let us describe the case of the 7-statistic. By our previous rule of
thumb, we would expect the bootstrap to be higher-order accurate simply
because the ¢-statistic is already studentized and has an asymptotic variance
function independent of the underlying F'.

“ey

Theorem 29.9 (Higher-Order Accuracy for the ¢-statistic)

Let Xy, ..., X, S F. Suppose F' is nonlattice and that Ep(X% < oo.
Let 7, = “/"(f ~* and Tr = ‘/"(f: %) Wwhere s* is the standard deviation
of XI,....X". Let Hy(x) = Pp(T, < x) and Hyooi(x) = Pu(T* < x).

Then/nK (H,, Hyoo)—30.
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29.6 Some Numerical Examples

The bootstrap is used in practice for a variety of purposes. It is used to
estimate a CDF, a percentile, or the bias or variance of a statistic 7,,. For
example, if 7, is an estimate for some parameter 0, and if Ep(T,, — 0) is
the bias of 7, the bootstrap estimate Ef, (7, — T,) can be used to esti-
mate the bias. Likewise, variance estimates can be formed by estimating
Varp(T,) by Varg, (T,7). How accurate are the bootstrap-based estimates in
reality?

This can only be answered on the basis of case-by-case simulation. Some
overall qualitative phenomena have emerged from these simulations. They
are:

(a) The bootstrap captures information about skewness that the CLT will
miss.

(b) The bootstrap tends to underestimate the variance of a statistic 7.

Here are a few numerical examples.

Example 29.4 Let X, ..., X, S Cauchy(u, 1). Let M,, be the sample me-
dian and 7T, = /n(M, — ). If n is odd, say n = 2k + 1, then there is an
exact variance formula for M,,. Indeed

/2

/xk(n — x)¥(cotx)*dx;

0

n!

Var(M,,)) = (kD)2

see David (1981). Because of this exact formula, we can easily gauge the
accuracy of the bootstrap variance estimate. In this example, n = 21 and
B = 200. For comparison, the CLT-based variance estimate is also used,
which is

Var(M,) = An’

The exact variance, the CLT-based estimate, and the bootstrap estimate for
the specific simulation are 0.1367,0.1175, and 0.0517, respectively. Note the
obvious underestimation of variance by the bootstrap. Of course, one cannot
be sure if it is the idiosyncrasy of the specific simulation.

A general useful result on consistency of the bootstrap variance estimate
for medians under very mild conditions is in Ghosh et al. (1984).
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Example 29.5 Suppose X, ..., X, are iid Poi(u), and let 7, be the
t-statistic T, = /n(X —u)/s. In this example, n = 20 and B = 200, and for
the actual data, u was chosen to be 1. Apart from the bias and the variance of
T, in this example we also report percentile estimates for 7;,. The bootstrap
percentile estimates are found by calculating 7, for the B resamples and
calculating the corresponding percentile value of the B values of T,". The
bias and the variance are estimated to be —0.18 and 1.614, respectively. The
estimated percentiles are reported in the following table.

o Estimated 100«Percentile
0.05 —2.45
0.10 —1.73
0.25 —0.76
0.50 —-0.17
0.75 0.49
0.90 1.25
0.95 1.58

On observing the 100(1 — )% estimated percentiles, it is clear that there
seems to be substantial skewness in the distribution of 7. Whether the skew-
ness is truly as serious can be assessed by a large-scale simulation.

Example 29.6 Suppose (X;,Y;), i=1,2,--- ,nareiid BVN(,O0, 1, 1, p),
and let r be the sample correlation coefficient. Let 7, = /n(r — p). We know

that T, = N (0, (1 — p?)?); see Chapter 3. Convergence to normality is very
slow. There is also an exact formula for the density of r. For n > 4, the exact
density is

2"3(1 = P o~ (k= 1\ 2ot
_ 1 — p2)n—%/2 T :
an cn—3y A=) ; ( 5 ) 0

see Tong (1990). In the following table, we give simulation averages of the
estimated standard deviation of r by using the bootstrap. We used n = 20
and B = 200. The bootstrap estimate was calculated for 1000 independent
simulations, and the table reports the average of the standard deviation esti-
mates over the 1000 simulations.

n True p  Trues.d.of r  CLT estimate  Bootstrap estimate
0.0 0.230 0.232 0.217

20 0.5 0.182 0.175 0.160
0.9 0.053 0.046 0.046
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Again, except when p is large, the bootstrap underestimates the variance
and the CLT estimate is better.

29.7 Failure of the Bootstrap

In spite of the many consistency theorems in the previous sections, there are
instances where the ordinary bootstrap based on sampling with replacement
from F), actually does not work. Typically, these are instances where the
functional 7, fails to admit a CLT. Before seeing a few examples, we list a
few situations where the ordinary bootstrap fails to estimate the CDF of 7,
consistently:

(@) T, = /n(X — ) when Varp(X;) = co.

(b) T, = /n(g(X) — g(w)) and Vg(u) = 0.

(c) T, = /n(g(X) — g(n)) and g is not differentiable at .

() T, = /n(F,'(p) — F~'(p)) and f(F~'(p)) = O or F has unequal right
and left derivatives at F~!(p).

(e) The underlying population Fy is indexed by a parameter 6, and the sup-
port of Fy depends on the value of 6.

(f) The underlying population Fy is indexed by a parameter 6, and the true
value 6, belongs to the boundary of the parameter space ©.

Example 29.7 Let X, X, ..., X, > F and 02 = Varp(X) = 1. Let

g(x) = |x| and T, = /n(g(X) — g(w)). If the true value of u is 0, then

by the CLT for X and the continuous mapping theorem, 7, 5 |Z| with
Z ~ N(0, o). To show that the bootstrap does not work in this case, we
first need to observe a few subsidiary facts.

(a) For almost all sequences {X, X, - - -}, the conditional distribution of
Jn(X, — X,), given X,,, converges in law to N(0, %) by the triangular
array CLT (see van der Vaart (1998).

(b) The joint asymptotic distribution of (/n(X, — w), /n(X : - X,)) A
(Z1, Z»), where Z,, Z, are iid N(0, o?).

In fact, a more general version of part (b) is true. Suppose (X, Y,) is
a sequence of random vectors such that X, :£> Z ~ H (some Z) and

Y,|X, = Z (the same Z) almost surely. Then (X,, Y,) = (Z1, Z»), where
Zi,7Zyareiid ~ H.
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Therefore, returning to the example, when the true u is 0,

TF = J/n(1X,| — X))
= [Vn(X, — X,) + /n X,| — [V/n X,|
L
= |Z) + 22| — |Z4],

where Z;, Z, are iid N(0, o'%). But this is not distributed as the absolute
value of N(0, o'%). The sequence of bootstrap CDFs is therefore not consis-
tent when = 0.

Example 29.8 Let X, X5, ..., X, i U(,6) and let T, = n@ — X)),
T,) = n(X@) — X{,))- The ordinary bootstrap will fail in this example in the
sense that the conditional distribution of 7, given X, does not converge to
the Exp(@) a.s. Let us assume 8 = 1. Then, for ¢ > 0,

Pp (T, <t) = Pg(T  =0)
= Pp(X(y = Xw)
= 1- PFn(XEkn) < X(n))

()

n— 00 —
-l

For example, take # = 0.0001. Then lim, Pr (T} < t) > 1 —e~', while
lim, Pp(T, <t) =1—¢ 090" % 0. So Pr (T} <1t) A Pp(T, <1).

The phenomenon of this example can be generalized essentially to any
CDF F with a compact support [w(F'), w(F)] with some conditions on F,
such as existence of a smooth and positive density. This is one of the earliest
examples of the failure of the ordinary bootstrap. We will revisit this issue
in the next section.

29.8 m out of n Bootstrap

In the particular problems presented above and several other problems where
the ordinary bootstrap fails to be consistent, resampling fewer than n obser-
vations from F,, say m observations, cures the inconsistency problem. This
is called the m out of n bootstrap. Typically, consistency will be regained if
m = o(n); in some general theorems in this regard, one requires m> = o(n)
or some similar stronger condition than m = o(n). If the n out of n ordinary
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bootstrap is already consistent, then there can still be m out of n schemes
with m going to co slower than »n that are also consistent, but the m out of
n scheme will perform somewhat worse than the n out of n. See Bickel,
Goetze, and van Zwet (1997) for an overall review.

We will now present a collection of results that show that the m out of
n bootstrap, written as the m/n bootstrap, solves the orthodox bootstrap’s
inconsistency problem in a number of cases; see Shao and Tu (1995) for
proofs and details on all of the theorems in this section.

Theorem 29.10 Let X, X5, ... beiid F, where F isaCDFonR?, d > 1.
Suppose u = Ep(X;) and 2 = covp(X) exist, and suppose 2, is positive
definite. Let g : RY — R be such that Vg(u) = 0 and the Hessian matrix
Vzg(u) is not the zero matrix. Let 7, = n(g(X,) — g(u)) and T, =
m(g(X_m*)_g(Xn)) and define H,(x) = Pp{T, < x} and HBoot,m,n(x) =
PAT, , =< x}. Here X,,” denotes the mean of an iid sample of size
m = m(n) from F,, where m — oo with n.

@1f m = o(n), then K (Hgootmn. Hy) = 0.
(b) Ifm= O(IOg;logn)’ then K(HBoot,m,nv H,) g 0.

Theorem 29.11 Let X, X,,... be iid F, where F is a CDF on R. For
0 <p<l1let, = F~'(p). Suppose F has finite and positive left
and right derivatives f(§,+), f(§,—) and that f(§,+) # f(§,—). Let
T, = Vn(F,'(p) — §,) and T;} , = /m(F;"'(p) — F, '(p)), and define
Hn(x) = PF{Tn = x}and HBoot,m,n(X) = P*{Tn?n = X}. Here, F,,Tl(l?)
denotes the pth quantile of an iid sample of size m from F),.

@]1f m = o(n), then K (Hpootm.n: Hy) = 0.
(B)If m = 0, 1..,)- then K (Hpooumn, Hy) S5 0.

Theorem 29.12 Suppose F is a CDF on R, and let X, X5, ... be iid F.
Suppose 6 = 6(F) is such that F(0) = 1 and F(x) < 1 for all x < 6.
Suppose, for some § > 0, Pp {n'?(6 — X)) > x} — e~/
Let 7, = n'/%@ — Xw) and T, = ml/‘S(X(n) — XE"m)), and define
H,(x) = PF{Tn = X} and HBoot,m,n(x) = P*{T,:n = X}.

(@) If m = o(n), then K (Hyootmns Hy) = 0.

O I m = 0(,,,10,,)s then K (Hpooumns Hy) = 0.
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Remark. Clearly an important practical question is the choice of the boot-
strap resample size m. This is a difficult question to answer, and no precise
prescriptions that have any sort of general optimality are possible. A rule of
thumb is to take m ~ 2./n.

29.9 Bootstrap Confidence Intervals

The standard method to find a confidence interval for a parameter 6 is to find

a studentized statistic, sometimes called a pivot, say 7,, = 9’;;0, such that

T, 5 T, with T having some known CDF G. An equal-tailed confidence
interval for 6, asymptotically correct, is constructed as

0, — G '(1 —a/2)6, <0 <8, — G Ya/2)6,.

This agenda requires the use of a standard deviation estimate 6,, for the stan-
dard deviation of §, and the knowledge of the function G(x). Furthermore, in
many cases, the limiting CDF G may depend on some unknown parameters,
too, that will have to be estimated in turn to construct the confidence interval.
The bootstrap methodology offers an omnibus, sometimes easy to imple-
ment, and often more accurate method of constructing confidence intervals.
Bootstrap confidence intervals and lower and upper one-sided confidence
limits of various types have been proposed in great generality. Although, as
a matter of methodology, they can be used in an automatic manner, a theoret-
ical evaluation of their performance requires specific structural assumptions.
The theoretical evaluation involves an Edgeworth expansion for the relevant
statistic and an expansion for their quantiles, called Cornish-Fisher expan-
sions. Necessarily, we are limited to the cases where the underlying statistic
admits a known Edgeworth and Cornish-Fisher expansion. The main refer-
ence is Hall (1988), but see also Goetze (1989), Hall and Martin (1989),
Bickel (1992), Konishi (1991), DiCiccio and Efron (1996), and Lee (1999),
of which the article by DiCiccio and Efron is a survey article and Lee (1999)
discusses m /n bootstrap confidence intervals. There are also confidence in-
tervals based on more general subsampling methods, which work asymptot-
ically under the mildest conditions. These intervals and their extensions to
higher dimensions are discussed in Politis, Romano, and Wolf (1999).

Over time, various bootstrap confidence limits have been proposed. Gen-
erally, the evolution is from the algebraically simplest to progressively more
complicated and computer-intensive formulas for the limits. Many of these
limits have, however, now been incorporated into standard statistical soft-
ware. We present below a selection of these different bootstrap confidence
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limits and bounds. Let 6, = én(X 1,.-.,X,) be a specific estimate of the
underlying parameter of interest 6.

(a) The bootstrap percentile lower bound (BP). Let G(x) = G,(x) =
Pr{6, < x} be the exact distribution and let G(x) = P.{f* < x} be the
bootstrap distribution. The lower 1 — « bootstrap percentile confidence
bound would be (A}*l(oe), so the reported interval would be [G*I(a), 00).
This was present in Efron (1979) itself, but it is seldom used because it
tends to have a significant coverage bias.

(b) Transformation-based bootstrap percentile confidence bound. Suppose
there is a suitable 1-1 transformation ¢ = ¢, of g, such that Pﬂ(p(@) —
p(@) < x} = ¥(x), with ¢ being a known continuous, strictly increas-
ing, and symmetric CDF (e.g., the N(0, 1) CDF). Then a transformation-
based bootstrap percentile lower confidence bound for 6 is ¢~ 1(®, + z4),
where ¢, = (p(é,,) and z, = ¥ !(a). Transforming may enhance the
quality of the confidence bound in some problems. But, on the other
hand, it is rare that one can find such a 1-1 transformation with a known
Y.

(¢c) Bootstrap-t (BT). Let t, = 9"0_0 where 0, 1s an estimate of the stan-

dard error of 6,, and let o= '7 “ be its bootstrap counterpart. As
usual, let Hpooi(x) = Puit; < x} The bootstrap-t lower bound is
6, — Hy (1 — @)d,, and the two-sided BT confidence limits are 6, —
Hy! (1—a))d, and 6,—Hg (c)d,, where o+, = a, the nominal
confidence level.

(d) Bias-corrected bootstrap percentile bound (BC). The derivation of the
BC bound involves quite a lot of calculation; see Efron (1981) and Shao
and Tu (1995). The BC lower confidence bound is given by Oy =

G W (zo +2¢71(G(6,)))], where G is the bootstrap distribution of 6%,
¥ is as above, and z, = ¥~ ().

(e) Hybrid bootstrap confidence bound (B H). Suppose for some determin-

istic sequence {c,}, c,(6, — 0) ~ H, and let Hgyo be the bootstrap
distribution; i.e., the distribution of ¢, (QA; — 6,) under F,. We know that
Pr{ca(6y —0) < H7'(1 —a)} =1 —a.
If we knew H,,, then we could turn this into a 100(1 — )% lower confi-
dence bound, 0 > 6, — lH '(1 — &). But H, is, in general, not known,
SO we approximate it by Hpoor. That is, the hybrld bootstrap lower confi-
dence bound is defined as O = =0, Boot(1 o).

(f) Accelerated bias-corrected bootstrap percentlle bound (BC,). The ordi-
nary bias-corrected bootstrap bound is based on the assumption that we
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can find zy = zo(F, n) and ¢ (for known 1) such that
Pr{@n — @ + 20 < x} = ¥ (x).

The accelerated bias-corrected bound comes from the modified assump-

tion that there exists a constant ¢ = a(F, n) such that PF{?iZi + 270 <

x} = ¥ (x). In applications, it is rare that even this modification holds
exactly for any given F and n. Manipulation of this probability statement

results in a lower bound, O = G~ (w (zo 4 | atw )) where

1—a(ze—2z0)

Ze = ¥~ (@), a is the acceleration parameter, and G is as before. We re-
peat that, of these, zp and a both depend on F and n. They will have to be
estimated. Moreover, the CDF ¢ will generally have to be replaced by an
asymptotic version; e.g., an asymptotic normal CDF of ($,, —¢)/(14a¢).
The exact manner in which zy and a depend on F and 7 is a function of
the specific problem. For example, suppose that the problem to begin
with is a parametric problem, F' = Fjy. In such a case, zo = z¢(0, n) and
a = a(f, n). The exact form of zy(6, n) and a(6, n) depends on Fy, 6,
and ¢.

Remark. As regards computational simplicity, BP, BT, and BH are the sim-
plest to apply; BC and BC,, are harder to apply and, in addition, are based
on assumptions that will rarely hold exactly for finite n. Furthermore, BC,
involves estimation of a very problem-specific acceleration constant a. The
bootstrap-t intervals are popular in practice, provided an estimate g, is read-
ily available. The BP method usually suffers from a large bias in coverage
and is seldom used.

Remark. If the model is parametric, F' = Fy, and 9;, is the MLE, then one

can show the following general and useful formula: ¢ = z9 = é x skewness

coefficient on(Q), where f(@) is the score function, f(@) = dd9 log f(xi,...,
xn|60). This expression allows for estimation of a and zy by plug-in esti-
mates. Nonparametric estimates of a and z(y have also been suggested; see
Efron (1987) and Loh and Wu (1987).

We now state the theoretical coverage properties of the various one-sided
bounds and two-sided intervals.

Definition 29.3 Let 0 < o« < 1l and I, = [,(Xy,..., X,) be a confi-
dence set for the functional 8(F ™), where F is the joint distribution of
(X1, ..., Xn). Then I, is called kth-order accurate if Prw {In E) 0(F("))} =
1 —a+ 0mn*2).
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The theoretical coverage properties below are derived by using Edge-
worth expansions as well as Cornish-Fisher expansions for the underlying
estimate én. If X, X,,...areiid FonRY, 1 <d < oo, and if 6 = o(w),
0 = @(X), for a sufficiently smooth map ¢ : RY — R, then such Edgeworth
and Cornish-Fisher expansions are available. In the results below, it is as-
sumed that @ and 0 are the images of x and X, respectively, under such a
smooth mapping ¢. See Hall (1988) for the exact details.

Theorem 29.13 The CLT, BP, BH and BC one-sided confidence bounds are
first-order accurate. The BT and BC, one-sided bounds are second-order
accurate. The CLT, BP, BH, BT, and BC, two-sided intervals are all second-
order accurate.

Remark. For two-sided intervals, the higher-order accuracy result is ex-
pected because the coverage bias for the two tails cancels in the n~!/? term,
as can be seen from the Edgeworth expansion. The striking part of the result
is that the BT and BC, can achieve higher-order accuracy even for one-sided
bounds.

The second-order accuracy of the BT lower bound is driven by an Edge-
worth expansion for H,, and an analogous one for Hpo. One can invert these
expansions for the CDFs to get expansions for their quantiles; i.e., to obtain
Cornish-Fisher expansions. Under suitable conditions on F, H; ' and Hg |
admit expansions of the forms

F JF 1
q11(z; )+912(Zt )+0( )

H't)=1z+ n . .

and

- 9z, F) gz, F) 1
Hioo (1) = 2z, + Jn + ; +o ; (a.s.),

where ¢11(-, F') and g1,(-, F) are polynomials with coefficients that depend
on the moments of F. The exact polynomials depend on what the statistic 6,

is. For example, if 6, = X and § = \/nil S(X; — X)?, then gy1(x, F) =

— U267, g = X[ =Y + 5 A = D), where y = Ep 1Y

0—3
) . .
andk = Efp (Xaf) —3.Foragivent,0 <t < 1, on subtraction,

1
W%—%@b’yMM%%WEH

Vv

1 1
+ [q12zi, F) — qi2(zi, F)l + o ( ) (a.s.)
n n
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o () o (U)ol e
=or(,)

The actual confidence bounds obtained from H,,, Hgoot are 6 H, = 0, —

A

6, Hn_l(l —a)and Ogp = 0, — 6, HB_Olm(l — o). On subtraction,

1\ wpi :
10, — Orl = 6,0, (n) WP o (n .

Thus, the bootstrap-r lower bound is approximating the idealized lower
bound with third-order accuracy. In addition, it can be shown that P(0 >
) = 1 — o + PE%) 4o (1) where p(-) is again a polynomial de-
pending on the specific statistic and F. For the case of X, as an example,
p(x) = ¢(1+ 2x2)(k — gyz). Notice the second-order accuracy in this cov-
erage statement in spite of the fact that the confidence bound is one sided.

Again, see Hall (1988) for full details.

29.10 Some Numerical Examples

How accurate are the bootstrap confidence intervals in practice? Only case-
by-case numerical investigation can give an answer to that question. We
report in the following table results of simulation averages of coverage and
length in two problems. The sample size in each case is n = 20, in each case
B = 200, the simulation size is 500, and the nominal coverage 1 — o = .9.

0(F) Type of CI F
N(0,1) t(5) Weibull
coverage length coverage length coverage length
u  Regular ¢ 9 0.76 91 1.8 5 2.8

BP 91 0.71 .84 1.7 73 2.6
BT .92 0.77 .83 2.7 .83 55
o’ BP 19 0.86 .68 1.1 .65 1.3
BT .88 1.5 .85 32 .83 5.5

From the table, the bootstrap-¢ interval seems to buy more accuracy (i.e.,
a smaller bias in coverage) with a larger length than the BP interval. But
the BP interval has such a serious bias in coverage that the bootstrap-r may
be preferable. To kill the bias, modifications of the BP method have been
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suggested, such as the bias-corrected BP and the accelerated bias-corrected
BP intervals. Extensive numerical comparisons are reported in Shao and
Tu (1995).

29.11 Bootstrap Confidence Intervals for Quantiles

Another interesting problem is the estimation of quantiles of a CDF F on R.
We know, for example, that if X, X,,...areiid F,if 0 < p < 1, and if
f = F' exists and is strictly positive at £, = F~'(p), then /n(F, '(p) —

&p) :£> N, p(1 — p)[f(&‘p)]_z). So, a standard CLT-based interval is

Ry YPUTP)

V&)

where f/(éj) is some estimate of the unknown f = F’ at the unknown &,,.
For a bootstrap interval, let H, be the CDF of /n(F~'(p) — &,) and

Hp, its bootstrap counterpart. Using the terminology from before, a hybrid

bootstrap two-sided confidence interval for &, is

[F,7'(p) — Hygo (1 = 9)//n, ;7' (p) — Hyoo (8)/+/n] .

It turns out that this interval is not only asymptotically correct but also
comes with a surprising asymptotic accuracy. The main references are Hall,
DiCiccio, and Romano (1989) and Falk and Kaufman (1991).

Theorem 29.14 Let X, X,,...beiid and F aCDFon R. For0 < p < 1,
let &, = F~'(p), and suppose 0 < f(§,) = F'(§,) < oo. If I, is the
two-sided hybrid bootstrap interval, then Pp{l, 3 £,} = 1 —a + O(n~"/?).

Remark. Actually, the best result available is stronger and says that Pr{l, >

£, = 1 —a+ C(F\’/O;’p) + o(n~'/?), where c(F, a, p) has an explicit but

complicated formula. That the bias of the hybrid interval is O(n~'/?) is still
a surprise in view of the fact that the bootstrap distribution of F,!(p) is
consistent at a very slow rate; see Singh (1981).

29.12 Bootstrap in Regression

Regression models are among the key ones that differ from the iid setup
and are also among the most widely used. Bootstrap for regression cannot
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be model-free; the particular choice of the bootstrap scheme depends on
whether the errors are iid or not. We will only talk about the linear model
with deterministic X and iid errors. Additional moment conditions will be
necessary depending on the specific problem to which the bootstrap will
be applied. The results here are available in Freedman (1981). First let us
introduce some notation.

Model: y; = B'x; + ¢;, where B is a p x 1 vector and so is x;, and ¢; are
iid with mean 0 and variance o> < oo.

X is the n x p design matrix with ith row equal to x/; H = X(X'X)~' X’
and h,’ = Hii = )C;(X/X)_I)Ci.

B = Brs = (X’X)"'X'y is the least squares estimate of S, where
y= (- ,y,) and (X'X)~! is assumed to be nonsingular.

The bootstrap scheme is defined below.

29.13 Residual Bootstrap

Letey, ez, - - - , e, denote the residuals obtained from fitting the model (i.e.,
e =y — xi’ﬁ); e =0ifx; =(1,x;, - ,x; ,—1) but not otherwise. Define
¢ = e —e,and let e, --- , e; be a sample with replacement of size n
from {&;,---,&,}. Let y’ = x,’ﬁ’ + e} and let B* be the LSE of 8 computed
from (x;, y/), i =1,---,n. This is the bootstrapped version of B, and the
scheme is called the residual bootstrap (RB).

Remark. The more direct approach of resampling the pairs (x;, y;) is known
as the paired bootstrap and is necessary when the errors are not iid; for exam-
ple, the case where the errors are still independent but their variances depend
on the corresponding covariate values (called the heteroscedastic case). In
such a case, the residual bootstrap scheme would not work.

By simple matrix algebra, it can be shown that

E.(B*) =B,
cov,(B*) = 6X(X'X)7",

where 62 = 1/n) Z?Zl(ei —2)%. Note that E(6%) < 2. So on average the
bootstrap covariance matrix estimate will somewhat underestimate cov(,B).
However, cov,.(8*) is still consistent under some mild conditions. See Shao
and Tu (1995) or Freedman (1981) for the following result.
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Theorem 29.15 Suppose |X'X| — oo and max;<;<, h; — 0 asn — oo.
Then [cov.(B*)] " cov(B) = 1 »xp almost surely.

Example 29.9 The only question is, when do the conditions | X'X| — oo,
maxi<;<, h; — 0 hold? As an example, take the basic regression model
yi = Po + Bix; + € with one covariate. Then, |[X'X| =n)_(x; — %)? and
hi = (3 x5 = 2x; 3 x4+ nx})/(n ) (x; — ¥)%).

4n max x2 4 max x2
- J J

.‘.h,’_ T, = Ts
ny (x;—%)?% 3 (x;— %)

Therefore, for the theorem to apply, it is enough to have max|x;|/
VI (x; —8)? — 0andn Y (x; — %) — o0.

29.14 Confidence Intervals

We present some results on bootstrap confidence intervals for a linear com-
bination 6 = ¢’B;, where B = (o, B}); i.e., there is an intercept term in
the model. Correspondingly, x; = (1, ¢/). The confidence interval for 6 or
confidence bounds (lower or upper) are going to be in terms of the studen-
tized version of the LSE of 6, namely 0=c 31. In fact, 31 =S, ! Sty, where
Sy = ,(t; =)t — 1) and S, = > _.(t; — )(y; — ¥)". The bootstrapped
version of § is 0* = c'Bf, where B = (Bg» ﬁf/) as before. Since the variance
of 0 is a2c’'S; tc, the bootstrapped version of the studentized 0 is

o — 0" — b
- .
IS - xprres;te

The bootstrap distribution is defined as Hgoot(x) = Py (0] < x). For given «,
let Hgolm(a) be the ath quantile of Hpoor. We consider the bootstrap-t (BT)
confidence bounds and intervals for 0. They are obtained as

oW =6 — H! (1 — a)\/ 62'S; e,

0 =0 — Hg! (a)\/62¢'S; e,
and the intervals 6, gt = 95;*{2) and Oy gt = ééaT/ 2,

There are some remarkable results on the accuracy in coverage of the BT
one-sided bounds and confidence intervals. We state one key result below.
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Theorem 29.16 (a) P(6 > 0yp) = (1 —a) + O(n™3/?).
(b) P(O < bgr) =1 —a)+ O(n/?).
(©) POrpr <0 <Oypr)=1—a)+ O(n?).

These results are derived in Hall (1989).

Remark. It is remarkable that one already gets third-order accuracy for the
one-sided confidence bounds and fourth-order accuracy for the two-sided
bounds. There seems to be no intuitive explanation for this phenomenon. It
just happens that certain terms cancel in the Cornish-Fisher expansions used
in the proof for the regression case.

29.15 Distribution Estimates in Regression

The residual bootstrap is also consistent for estimating the distribution of
the least squares estimate B of the full vector 8. The metric chosen is the
Mallows-Wasserstein metric we used earlier for sample means of iid data.
See Freedman (1981) for the result below. We first state the model and the
required assumptions below.

Let y; = x;B+¢;, where x; is the p-vector of covariates for the ith sample
unit. Write the design matrix as X,. We assume that the ¢;’s are iid with
mean 0 and variance 0> < oo and that {X,} is a sequence of nonstochastic
matrices. We assume that, for every n (n > p), X, X, is positive definite. Let
h; = xlf(X’X)_lx,- and let h,x = max{h;}. We assume, for the consistency
theorem below, that:

(C1) Stability: liX;l X, — V,where V is a p x p positive definite matrix.
(C2) Uniform asymptotic negligibility: /,,,, — O.

Under these conditions, we have the following theorem of Freedman (1981)
for RB.

Theorem 29.17 Under conditions C1 and C2 above, we have the follow-
ing:

(@) V(B — B) S Ny(©0, 02V ),

(b) For almost all {¢; : i > 1}, /n(B* — B) = N,(0, 02V ~").

© X, X)) 2(B — B) S N0, 1,).

(d) For almost all {&; : i > 1}, }(X, X,)'/2(8* — B) S N,(0, I).
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(e) If H, and Hg,o are the true and bootstrap distributions of \/n(,B —-B)
and /n(B* — B), respectively, then for almost all {g; : i > 1}, £,
(Hna HBoot) — 0.

Remark. This theorem gives a complete picture of the consistency issue for
the case of a nonstochastic design matrix and iid errors using the residual
bootstrap. If the errors are iid but the design matrices are random, the same
results hold as long as the conditions of stability and uniform asymptotic
negligibility stated earlier hold with probability 1. See Shao and Tu (1995)
for the case of independent but not iid errors (for example, the heteroscedas-
tic case).

29.16 Bootstrap for Dependent Data

The orthodox bootstrap does not work when the sample observations are
dependent. This was already pointed out in Singh (1981). It took some time
before consistent bootstrap schemes were offered for dependent data. There
are consistent schemes that are meant for specific dependence structures
(e.g., stationary autoregression of a known order) and also general bootstrap
schemes that work for large classes of stationary time series without requir-
ing any particular dependence structure. The model-based schemes are bet-
ter for the specific models but can completely fall apart if some assumption
about the specific model does not hold.

We start with examples of some standard short-range dependence time
series models. As opposed to these models, there are some that have a long
memory or long-range dependence. The bootstrap runs into problems for
long-memory data; see Lahiri (2006).

Standard time series models for short-range dependent processes in-
clude:

(a) Autoregressive processes. The observations y, are assumed to satisfy
yo=pn+ 0y + 0y o4 0y + e,
where 1 < p < oo and the ¢;’s are iid white noise with mean 0 and
variance 0> < oo. The {y,} process is stationary if the solutions of the

polynomial equation

1+91z+92z2+...+0pz‘”=0
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lie strictly outside the unit circle in the complex plane. This process is
called autoregression of order p and is denoted by AR(p).

(b) Moving average processes. Given a white noise process {g,} with mean
0 and variance o2 < oo, the observations are assumed to satisfy

Ve =R+ E —P1&-1 — P82 — ... = P€iq;
where 1 < g < oco. The process {y,} is stationary if the roots of
l—giz— > — ... — 29 =0

lie strictly outside the unit circle. This process is called a moving average
process of order g and is denoted by MA(g).

(c) Autoregressive moving average processes. This combines the two previ-
ously mentioned models. The observations are assumed to satisfy

Ve=un+0y1+. "prtfp + & —Q1&-1 — . — QYpE1—g-

The process {y,} is called an autoregressive moving average process of
order (p, ¢q) and is denoted by ARMA(p, g).

For all of these processes, the autocorrelation sequence dies off quickly;
in particular, if py is the autocorrelation of lag k, then ), |px| < oo.

29.17 Consistent Bootstrap for Stationary Autoregression

A version of the residual bootstrap (RB) was offered in Bose (1988) and
shown to be consistent and even higher-order accurate for the least squares
estimate (LSE) of the vector of regression coefficients in the stationary
AR(p) case. For ease of presentation, we assume 4 = 0 and 0 = 1. In
this case, the LSE of = (6, ..., 0,) is defined as § = argming Y /_, [vi—

Zle Bjyt,j]z, where yi_,, ...,Y0, Y1, . .., Y is the observed data sequence.
There is a closed-form expression of 8; specifically, § = Sl ( o YiYi-1s
Z?:] ViVi—25 o Z?:l ytytfp)a where S, = ((Srlzjn))pxp and Srlzjn =

Y Yi—iyi—j- Let ox = cov(y;, yi+x) and let

(o) (03] N |
(o5] (o)) <. 0p_2

S =

Op—10p—2...00
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Assume 3, is positive definite. It is known that under this condition

V271260 —0) 5N (0, I). So we may expect that with a suitable bootstrap
scheme \/ni_l/2 O* — 0) converges a.s. in law to N (0, 7). Here 3, denotes
the sample autocovariance matrix. We now describe the bootstrap scheme
given in Bose (1988).

Let y, = Z‘;Zl éjy,,j and let the residuals be ¢, = y, — y,. To obtain
the bootstrap data, define {yf_zp, yzﬁ_zp, R yip} = {Vi—p, Y2—ps--- Yo}
Obtain bootstrap residuals by taking a random sample with replacement
from {e, — e}. Then obtain the “starred” data by using the equation y; =
Zle BAjy;'Lj + e;. Then 6* is the LSE obtained by using {y;}. Bose (1988)
proves the following result.

Theorem 29.18 Assume that ¢; has a density with respect to Lebesgue
measure and that E(e¥) < oo. If H,(x) = P{/n271?(@ — 0) < x} and
Hpoot(x) = P*{«/nzil/z(e* - é) < x}, then ||H, — Hpootlloc = 0(7[71/2),
almost surely.

Remark. This was the first result on higher-order accuracy of a suitable form
of the bootstrap for dependent data. One possible criticism of the otherwise
important result is that it assumes a specific dependence structure and that it
assumes the order p is known. More flexible consistent bootstrap schemes
involve some form of block resampling, which we describe next.

29.18 Block Bootstrap Methods

The basic idea of the block bootstrap method is that if the underlying series
is a stationary process with short-range dependence, then blocks of obser-
vations of suitable lengths should be approximately independent and the
joint distribution of the variables in different blocks would be (about) the
same due to stationarity. So, if we resample blocks of observations rather
than observations one at a time, then that should bring us back to the nearly
iid situation, a situation in which the bootstrap is known to succeed. The
block bootstrap was first suggested in Carlstein (1986) and Kiinsch (1989).
Various block bootstrap schemes are now available. We only present three
such schemes, for which the block length is nonrandom. A small problem
with some of the blocking schemes is that the “starred” time series is not
stationary, although the original series is, by hypothesis, stationary. A ver-
sion of the block bootstrap that resamples blocks of random length allows
the “starred” series to be provably stationary. This is called the stationary
bootstrap, proposed in Politis and Romano (1994), and Politis, Romano,
and Wolf (1999). However, later theoretical studies have established that
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the auxiliary randomization to determine the block lengths can make the
stationary bootstrap less accurate. For this reason, we only discuss three
blocking methods with nonrandom block lengths.

(a) Nonoverlapping block bootstrap (NBB). In this scheme, one splits the
observed series {yj, ..., y,} into nonoverlapping blocks

Bi={yi,....yn}, Bo=A{yns1s--, Yuhs -,
By = {Yim—1h+1> - - - » Ymh}

where it is assumed that n = mh. The common block length is 4.
One then resamples B, B}, ..., B, at random, with replacement, from
{Bi, ..., B,}. Finally, the B’s are pasted together to obtain the “starred”
series y{, ..., yr.

(b) Moving block bootstrap (MBB). In this scheme, the blocks are

Bl :{yh""yh}a Bzz{y27"'7yh+l}””’BN:{yn—h+1”“’yn}7

where N = n—h+1. One thenresamples Bf, ..., B from By, ..., By,
where still n = mh.

(c) Circular block bootstrap (CBB). In this scheme, one periodically extends

the observed series as yi, y2, - .-, Yu, Y15 Y25 - - - s Yu» - - .. SUppOse we let
z; be the members of this new series,i = 1, 2, .. .. The blocks are defined
as

By ={zi,....z}, Bo=A{znt1,--- 220} s By = {20, - o5 Zugh—1)-
One then resamples BY, ..., By from By, ..., B,.

Next we give some theoretical properties of the three block bootstrap
methods described above. The results below are due to Lahiri (1999).

Suppose {y; : —0o < i < oo} is a d-dimensional stationary process with
a finite mean u and spectral density f. Let h : RY — R! be a sufficiently
smooth function. Let & = h(u) and 0, = h(y,), where y, is the mean of the
realized series. We propose to use the block bootstrap schemes to estimate
the bias and variance of §,,. Precisely, let b, = E (9n — 6) be the bias and let
o*n2 = Var(d,) be the variance. We use the block bootstrap-based estimates
of b, and 02, denoted by b, and o:nz, respectively.

Next, let 7, = 6, —60 = h(3,) — h(u), and let T = h(5}) — h(E, ). The
estimates b, and 0:12 are defined as b, = E, T and o:n2 = Var,(T,)). Then the
following asymptotic expansions hold; see Lahiri (1999).
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Theorem 29.19 Let i : RY — R! be a sufficiently smooth function.

(a) For each of the NBB, MBB, and CBB, there exists ¢; = c¢;(f) such that
Eb, = b, + 6111 +o((nh)™), n— oo.

n

(b) For the NBB, there exists ¢c; = c>(f) such that

. 2m2csh
Var(b,) = d 52 +o(hn™), n— oo,
A
and for the MBB and CBB,
. 42csh 3
Var(b,) = 33 +o(hn™), n — oo.
n

(c)For each of NBB, MBB, and CBB, there exists c3 = c3(f) such that
E(c})) =0, + & +o((nh)™"), n— oo.
(d) For NBB, there exists ¢4 = c4(f) such that Var(GAnz) = 2”;364}’ +

o(hn™3), n — oo, and for the MBB and CBB, Var(o:z) = 4”2§4h +
n 3n
o(hn™3), n — oo.

These expansions are used in the next section.

29.19 Optimal Block Length

The asymptotic expansions for the bias and variance of the block boot-
strap estimates, given in Theorem 29.19, can be combined to produce MSE-
optimal block lengths. For example, for estimating b, by b,, the leading term
in the expansion for the MSE is

2 2
4 Czh (&

h) = .
m(h) 3n3 n2h?

To minimize m(-), we solve m'(h) = 0 to get

) 173
ho t — 361 n1/3
P 212c,
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Similarly, an MSE-optimal block length can be derived for estimating o2

by o:n2 We state the following optimal block-length result of Lahiri (1999)
below.

Theorem 29.20 For the MBB and the CBB, the MSE-optimal block length
for estimating b, by b, satisfies

3 2 1/3
%m:( “1 ) n'3(1 + (1)),

277.’26'2

and the MSE-optimal block length for estimating o> by o:n2 satisfies

32\
hm=(h;) n' (1 +o(1)).

Remark. Recall that the constants ¢; depend on the spectral density f of
the process. So, the optimal block lengths cannot be used directly. Plug-
in estimates for the ¢; may be substituted, or the formulas can be used
to try block lengths proportional to n!/3 with flexible proportionality con-
stants. There are also other methods in the literature on selection of block
lengths; see Hall, Horowitz, and Jing (1995) and Politis and White
(2004).

29.20 Exercises

Exercise 29.1 For n = 10, 20, 50, take a random sample from an N (0, 1)
distribution and bootstrap the sample mean X using a bootstrap Monte Carlo
size B = 200. Construct a histogram and superimpose on it the exact density
of X. Compare the two.

Exercise 29.2 For n = 5, 25, 50, take a random sample from an Exp(1)
density and bootstrap the sample mean X using a bootstrap Monte Carlo size
B = 200. Construct a histogram and superimpose on it the exact density of
X and the CLT approximation. Compare the two and discuss if the bootstrap
is doing something that the CLT answer does not.

Exercise 29.3 * By using combinatorial coefficient matching cleverly, de-
rive a formula for the number of distinct orthodox bootstrap samples with a
general value of n.
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Exercise 29.4 * For which, if any, of the sample mean, the sample median,
and the sample variance is it possible to explicitly obtain the bootstrap dis-
tribution Hpye(x)?

Exercise 29.5 * For n = 3, write an expression for the exact Kolmogorov
distance between H, and Hp,, when the statistic is X and F = N(0, 1).

Exercise 29.6 For n = 5,25, 50, take a random sample from an Exp(1)
density and bootstrap the sample mean X using a bootstrap Monte Carlo
size B = 200 using both the canonical bootstrap and the natural parametric
bootstrap. Construct the corresponding histograms and superimpose them
on the exact density. Is the parametric bootstrap more accurate?

Exercise 29.7 * Prove that under appropriate moment conditions, the boot-
strap is consistent for the sample correlation coefficient  between two
jointly distributed variables X, Y.

Exercise 29.8 * Give examples of three statistics for which the condition in
the rule of thumb on second-order accuracy of the bootstrap does not hold.

Exercise 29.9 * By gradually increasing the value of n, numerically approx-
imate the constant ¢ in the limit theorem for the Kolmogorov distance for the
Poisson(1) case (see the text for the definition of ¢).

Exercise 29.10 * For samples from a uniform distribution, is the bootstrap
consistent for the second-largest order statistic? Prove your assertion.

Exercise 29.11 For n = 5,25, 50, take a random sample from an Exp(1)
density and compute the bootstrap-¢, bootstrap percentile, and the usual ¢
95% lower confidence bounds on the population mean. Use B = 300. Com-
pare them meaningfully.

Exercise 29.12 * Give an example of:

(a) a density such that the bootstrap is not consistent for the median;
(b) a density such that the bootstrap is not consistent for the mean;

(c) a density such that the bootstrap is consistent but not second-order accu-
rate for the mean.

Exercise 29.13 For simulated independent samples from the U[0, ) den-
sity, let 7, = n(0 — X,). For n = 20, 40, 60, numerically approximate
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K (Hpoot.m.n» H,) with varying choices of m and investigate the choice of an
optimal m.

Exercise 29.14 * Suppose (X;, Y;) are iid samples from a bivariate normal
distribution. Simulate n = 25 observations taking p = .5, and compute:

(a) the usual 95% confidence interval,

(b) the interval based on the variance stabilizing transformation (Fisher’s z)
(see Chapter 4);

(c) the bootstrap percentile interval,
(d) the bootstrap hybrid percentile interval;
(e) the bootstrap-t interval with &, as the usual estimate;

(f) the accelerated bias-corrected bootstrap interval using ¢ as Fisher’s z,
0=, :/n (the choice coming from theory), and three different values of
a near zero.
Discuss your findings.

Exercise 29.15 * In which of the following cases are the results in
Hall (1988) not applicable and why?

(a) estimating the 80th percentile of a density on R;

(b) estimating the variance of a Gamma density with known scale and un-
known shape parameter;

(c) estimating 6 in the U [0, 0] density;

(d) estimating P(X > 0) in a location-parameter Cauchy density;

(e) estimating the variance of the ¢-statistic for Weibull data;

(f) estimating a binomial success probability.

Exercise 29.16 Using simulated data, compute a standard CLT-based 95%
confidence interval and the hybrid bootstrap interval for the 90th percentile
of a (i) standard Cauchy distribution and (ii) a Gamma distribution with
scale parameter 1 and shape parameter 3. Compare them and comment. Use
n = 20, 40.

Exercise 29.17 * Are the centers of the CLT-based interval and the hybrid
bootstrap interval for a population quantile always the same? Sometimes the
same?
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Exercise 29.18 * Simulate a series of length 50 from a stationary AR(p)
process with p = 2 and then obtain the starred series by using the scheme
in Bose (1988).

Exercise 29.19 * For the simulated data in Exercise 29.18, obtain the actual
blocks in the NBB and the MBB schemes with 4 = 5. Hence, generate the
starred series by pasting the resampled blocks.

Exercise 29.20 For n = 25, take a random sample from a bivariate normal
distribution with zero means, unit variances, and correlation .6. Implement
the residual bootstrap using B = 150. Compute a bootstrap estimate of
the variance of the LSE of the regression slope parameter. Comment on the
accuracy of this estimate.

Exercise 29.21 For n = 25, take a random sample from a bivariate normal
distri-bution with zero means, unit variances, and correlation .6. Implement
the paired bootstrap using B = 150. Compute a bootstrap estimate of the
variance of the LSE of the regression slope parameter. Compare your results
with the preceding exercise.

Exercise 29.22 * Give an example of two design matrices that do not satisfy
the conditions C1 and C2 in the text.

Exercise 29.23 * Suppose the values of the covariates are x; = 1 ,
i =1,2,---,ninasimple linear regression setup. Prove or disprove that the
residual bootstrap consistently estimates the distribution of the LSE of the
slope parameter if the errors are (i) iid N(0, o?), (ii) iid #(m, 0, '), where
m denotes the degree of freedom.

Exercise 29.24 * Suppose X,, is the sample mean of an iid sample from a
CDF F with a finite variance and X,” is the mean of a bootstrap sample.
Consistency of the bootstrap is a statement about the bootstrap distribution,
conditional on the observed data. What can you say about the unconditional
limit distribution of \/n(X," — i), where y is the mean of F?
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