Chapter 2
Metrics, Information Theory, Convergence,
and Poisson Approximations

Sometimes it is technically convenient to prove a certain type of convergence
by proving that, for some suitable metric d on the set of CDFs, d(F,,, F) —
0 instead of proving the required convergence directly from the definition.
Here F,,, F are CDFs on some space, say the real line. Metrics are also
useful as statistical tools to assess errors in distribution estimation and to
study convergence properties in such statistical problems. The metric, of
course, will depend on the type of convergence desired.

The central limit theorem justifiably occupies a prominent place in all
of statistics and probability theory. Fourier methods are most commonly
used to prove the central limit theorem. This is technically efficient but
fails to supply any intuition as to why the result should be true. It is in-
teresting that proofs of the central limit theorem have been obtained that
avoid Fourier methods and use instead much more intuitive information-
theoretic methods. These proofs use convergence of entropies and Fisher
information in order to conclude convergence in law to normality. It was
then realized that such information-theoretic methods are useful also to
establish convergence to Poisson limits in suitable paradigms; for exam-
ple, convergence of appropriate Bernoulli sums to a Poisson limit. In any
case, Poisson approximations are extremely useful in numerous compli-
cated problems in both probability theory and statistics. In this chapter,
we give an introduction to the use of metrics and information-theoretic
tools for establishing convergences and also give an introduction to Poisson
approximations.

Good references on metrics on distributions are Dudley (1989),
Rachev (1991), and Reiss (1989). The role of information theory in estab-
lishing central limit theorems can be seen, among many references, in Lin-
nik (1959), Brown (1982), and Barron (1986). Poisson approximations have
along history. There are first-generation methods and then there are the mod-
ern methods, often called the Stein-Chen methods. The literature is huge. A
few references are LeCam (1960), Sevas’tyanov (1972), Stein (1972, 1986),
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Chen (1975), and Barbour, Holst and Janson (1992). Two other references
where interesting applications are given in an easily readable style are Arra-
tia, Goldstein, and Gordon (1990) and Diaconis and Holmes (2004).

2.1 Some Common Metrics and Their Usefulness

There are numerous metrics and distances on probability distributions on
Euclidean spaces. The choice depends on the exact purpose and on technical
feasibility. We mention a few important ones only and give some informa-
tion about their interrelationships, primarily in the form of inequalities. The
inequalities are good to know in any case.

(i) Metric for convergence in probability

dp(X,Y)=FE < lf‘(; f L‘) This extends to the multidimensional case in
the obvious way by using the Euclidean norm || X — Y||.

(i) Kolmogorov metric
dg(F, G) = sup, |F(x) — G(x)|. This definition includes the multidi-
mensional case.

(i) Lévy metric
di(F,G)=infle >0: Fx—€)—e <Gx)< F(x+¢€)+€ Vx}.

(iv) Total variation metric
dry(P, Q) = supgae 4 | P(A) — Q(A)|. This also includes the multi-
dimensional case. If P, Q are both absolutely continuous with respect
to some measure i, then dpy(P, Q) = é f | f(x) — g(x)|du(x), where
f is the density of P with respect to v and g is the density of Q with
respect to (.

(v) Kullback-Leibler distance
K(P,Q) = —f(logZ)dP = — [(log Z)pd,u, where p = fli and

q = ‘ég for some p. Again, the multidimensional case is included.
Note that K is not symmetric in its arguments P, Q.
(vi) Hellinger distance

1/2 .
H(P, Q) = [[(/p — ya)*du] "*, where again p = 4¥ and g = 42
for some p, and the multidimensional case is included.

Theorem 2.1

() X, 2> X iff dp(X,, X) — 0.
(i) X, —=> X iff d,(F,. F) — 0, where X, ~ F, and X ~ F.
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(i) X, LN X if dg(F,, F) — 0, the reverse being true only under addi-
tional conditions.

@iv) If X ~ F, where F is continuous and X,, ~ F,, then X, i> X iff
dg(F,, F) — 0 (Polya’s theorem).

W) X, i> X ifdry(P,, P) — 0, where X,, ~ P,, X ~ P (the converse
is not necessarily true).
(vi) H(P, Q) < VK(P, Q).
(vii) H(P, Q) = dv(P, Q).
(vii)) H(P, 0)/~2 < J/drv(P, Q).

Proofs of parts of Theorem 2.1 are available in Reiss (1989).

Corollary 2.1 (a) The total variation distance and the Hellinger distance are
equivalent in the sense dyv(P,, P) - 0 < H(P,, P) — 0.

(b) If P,, P are all absolutely continuous with unimodal densities, and if P,
converges to P in law, then H(P,, P) — 0.

(c) Convergence in Kullback-Leibler distance implies convergence in total
variation and hence convergence in law.

Note that the proof of part (b) also uses Ibragimov’s theorem stated

below.

Remark. The Kullback-Leibler distance is very popular in statistics. Specif-
ically, it is frequently used in problems of model selection, testing for good-
ness of fit, Bayesian modeling and Bayesian asymptotics, and in certain es-
timation methods known as minimum distance estimation. The Kolmogorov
distance is one of the easier ones computationally and has been used in many
problems, too, and notably so in the literature on robustness and Bayesian
robustness. The Hellinger distance is a popular one in problems of den-
sity estimation and in time series problems. The Lévy metric is technically
hard to work with but metrizes weak convergence, a very useful property.
It, too, has been used in the robustness literature, but it is more common
in probability theory. Convergence in total variation is extremely strong,
and many statisticians seem to consider it unimportant. But it has a direct
connection to £; distance, which is intuitive. It has a transformation invari-
ance property and, when it holds, convergence in total variation is extremely
comforting.

Notice the last two parts in Theorem 2.1. We have inequalities in both
directions relating the total variation distance to the Hellinger distance. Since
computation of the total variation distance is usually difficult, Hellinger dis-
tances are useful in establishing useful bounds on total variation.
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2.2 Convergence in Total Variation and Further
Useful Formulas

Next, we state three important results on when convergence in total variation
can be asserted; see Reiss (1989) for all three theorems and also almost any
text on probability for a proof of Scheffé’s theorem.

Theorem 2.2 (Scheffé) Let f,,n > 0 be a sequence of densities with re-
spect to some measure u. If f, — foa.e. (u), then drv(fy, fo) = 0.

Remark. Certain converses to Scheffé’s theorem are available, and the most
recent results are due to Sweeting (1986) and Boos (1985). As we remarked
before, convergence in total variation is very strong, and even for the sim-
plest weak convergence problems, convergence in total variation should not
be expected without some additional structure. The following theorem ex-
emplifies what kind of structure may be necessary. This is a general theorem
(i.e., no assumptions are made on the structural forms of the statistics). In the
Theorem 2.4 below, convergence in total variation is considered for sample
means of iid random variables (i.e., there is a restriction on the structural
form of the underlying statistics). It is not surprising that this theorem needs
fewer conditions than Theorem 2.3 to assert convergence in total variation.

Theorem 2.3 (Ibragimov) Suppose Py and (for large n) P, are unimodal,

with densities f, = ”2};" and f, = ”g;”, where A denotes Lebesgue measure.

Then P, —=> Py iff dry(Py, Py) — O.

Definition 2.1 A random variable X is said to have a lattice distribution if it
is supported on a set of the form {a + nh : n € Z}, where a is a fixed real,
h a fixed positive real, and Z the set of integers.

Theorem 2.4 Suppose X, ..., X, are iid nonlattice random variables with
a finite variance and characteristic function ¥ (¢). If, forsome p > 1, ¢ €
LP(A), where A denotes Lebesgue measure, then ‘/"(ﬁ W

N (0, 1) in total variation.

converges to

Example 2.1 Suppose X, is a sequence of random variables on [0, 1] with

density f,(x) = 14cos(2rwnx). Then, X, é U0, 1] by a direct verification
of the definition using CDFs. However, note that the densities f,, do not
converge to the uniform density 1 as n — oo. The limit distribution Py
is unimodal, but the distribution P, of X, is not unimodal. The example
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shows that the condition in Ibragimov’s theorem above that the P, need to
be unimodal as well cannot be relaxed.

Example 2.2 Suppose X1, X», ... are iid x*(2) with density Je /2. The
characteristic function of X is ¥ (t) = 1—12,' ,» which is in L”(2) for any

Jn(X=2)
4, 5

p > 1. Hence, by Theorem 2. converges in total variation to

N(0, 1). We now verify that in fact the density of Z, = ‘/"()2( —2) converges
pointwise to the N (0, 1) density, which by Scheffé’s theorem will also imply
convergence in total variation. The pointwise convergence of the density is
an interesting calculation.

Since S, = Y_/_, X; has the x*(2n) distribution with density e;/;fn) ,

n—1

Zy

. (37(1‘/"+”)(1+j )n—lnn*é
has density f,(z) = F(n)” . Hence, log f,,(z) = —z/n —n +

(n=1)(j, = 3, + O™ +(n— logn—log I'(n) = —zy/n—n+(n—
D, = Z0m )+ —Ylogn—(nlogn —n—!logn +log v/2m +
O(n~')) on using Stirling’s approximation for log I'(n).

On canceling terms, this gives log f,,(z) = —jn — log v/2m — ("_Z:l)zz +

O(n~'/?), implying that log f,(z) — —log~/2m — ZZZ, and hence f,(z) —

1

2
o e 2, establishing the pointwise density convergence.

Example 2.3 The Hellinger and the Kullback-Leibler distances are
generally easier to calculate than the total variation distance. The normal
case itself is a good example. For instance, the Kullback-Leibler distance

K(Ny(it, D, N0, 1) = ||l

Many bounds on the total variation distance between two multivariate
normal distributions are known; we mention a few below that are relatively
neat.

1
drv(N, (1, D), Np(uo, I)) < \/2||M1 — w2l

1

P 2
1 2
drv(Ny(0, X), N,(0, 1)) < min { 12 (;("i — D —log|x ') ,
p2rH|Z — 1]l

where ||A||, denotes the usual Euclidean matrix norm (), ) i aizj)l/ 2 These
and other bounds can be seen in Reiss (1989).
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Example 2.4 Suppose X,, ~ N(u,, o*nz) and Xy ~ N(u, 0%). Then X,, con-
verges to X in total variation if and only if u, — p and 6> — o2. This
can be proved directly by calculation.

Remark. There is some interest in finding projections in total variation of a
fixed distribution to a given class of distributions. This is a good problem but
usually very hard, and even in simple one-dimensional cases, the projection
can only be found by numerical means. Here is an example; the exercises at
the end of the chapter offer some more cases.

Example 2.5 If X, ~ Bin(n, p,) and np, — A,0 < A < oo, then X,
converges in law to the Poi(A) distribution. In practice, this result is used to
approximate a Bin(n, p) distribution for large n and small p by a Poisson
distribution with mean np. One can ask what is the best Poisson approx-
imation for a given Bin(n, p) distribution (e.g., what is the total variation
projection of a given Bin(n, p) distribution onto the class of all Poisson dis-
tributions). An explicit description would not be possible. However, the total
variation projection can be numerically computed.

For instance, if n = 50, p = .01, then the total variation projection is the
Poisson distribution with mean .5025. If n = 100, p = .05, then the total
variation projection is the Poisson distribution with mean 5.015. The best
Poisson approximation seems to have a mean slightly off from np. In fact, if
the total variation projection has mean A,,, then |1, — A| — 0. We will come
back to Poisson approximations to binomials later in this chapter.

2.3 Information-Theoretic Distances, de Bruijn’s
Identity, and Relations to Convergence

Entropy and Fisher information are two principal information-theoretic quan-
tities. Statisticians, by means of well-known connections to inference such
as the Cramér-Rao inequality and maximum likelihood estimates, are very
familiar with the Fisher information. Probabilists, on the other hand, are very
familiar with entropy. We first define them formally.

Definition 2.2 Let f be a density in R¢. The entropy of f, or synony-
mously of a random variable X ~ f,is H(X) = —ff(x)log fx)dx =

—E[log f(X)].
For integer-valued variables, the definition is similar.

Definition 2.3 Let X be integer valued with P(X = j) = p;. Then, the
entropy of X is H(X) = — Zj p(j)log p(j).
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Fisher information is defined only for smooth densities. Here is the defi-
nition.

Definition 2.4 Let f be a density in R¢. Suppose f has one partial deriva-
tive with respect to each coordinate everywhere in its support {x : f(x) >
0}. The Fisher information of f, or synonymously of a random variable
X~ fois 1) = [, 00 ”V]{(ﬂj‘;”zdx = E/[|| v log f(X)|[*], where v(.)
denotes the gradient vector.
Remark. The function v log f(x) is called the score function of f.
Entropy and Fisher information each satisfy certain suitable subadditivity
properties. We record their most basic properties below. Johnson (2004) can
be consulted for proofs of the theorems in this section apart from the specific
references given for particular theorems below.

Theorem 2.5 (a) For jointly distributed random variables X, Y, H(X,Y) <
H(X) + H(Y) with equality iff X, Y are independent:

(b)Foranyo > 0, H(u + o X) =logo + H(X).

(c) For independent random variables X, Y, H(X+Y) > max{H (X), H(Y)}.
(d) For jointly distributed random variables X, Y, I (X, Y)>max{/(X), I1(Y)}.
(e)Forany o, I(u+0X) = 1((7)2()'

(f) For independent random variables X, Y, I(X + Y) < o2 1(X) +
(1 —a)?I(Y)V0 < o < 1 with equality iff X, ¥ are each normal.

-1
(g) For independent random variables X, Y, I(X + Y) < ( l(lX) + 1(ly))

with equality iff X, Y are each normal.

Example 2.6 For some common distributions, we give expressions for the
entropy and Fisher information when available.

Distribution H(X) 1(X)
Exponential(1) 1 1
N(O, 1) Vlog2m) + | 1
Gamma(a, 1) a +logT(e) + (@ — Dy () W@ >2)
(0, 1) — )
N4 (0, X) 4log(2m) +log | X| + ¢ 3!

Remark. In the table above, v is the di-Gamma function (i.e., the derivative
of logI).

Entropy and Fisher information, interestingly, are connected to each other.
They are connected by a link to the normal distribution and also through an
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algebraic relation known as de Bruijn’s identity. We mention the link through
the normal distribution first.

Theorem 2.6 Among all densities with mean 0 and variance o> < oo, the
entropy is maximized by the N (0, o2) density. On the other hand, among all
densities with mean 0 and variance 0> < oo such that the Fisher information
is defined, Fisher information is minimized by the N (0, o%) density.

Remark. The theorem says that normal distributions are extremals in two
optimization problems with a variance constraint, namely the maximum en-
tropy and the minimum Fisher information problems. Actually, although we
state the theorem for N (0, o2), the mean is irrelevant. This theorem estab-
lishes an indirect connection between H and [ inherited from a connection
of each to normal distributions.

We can use H and I to define distances between two different distribu-
tions. These are defined as follows.

Definition 2.5 Let X ~ f, Y ~ g, and assume that g(x) =0 = f(x) = 0.
The entropy divergence or differential entropy between f and g is defined

as
D(fllg) = f Fr)log (f = ) .
glx)

The Fisher information distance between f and g is defined as

I(fllg) = I(X[]Y) = /[II v log f — v log(e)IP1f (x)dx.

Using the normal distribution as a benchmark, we can define a standardized
Fisher information as follows.

Definition 2.6 Let X ~ f have finite variance 0. The standardized Fisher
information of f is defined as I,(f) = I,(X) = o2I(f||N(0, 62)).

The advantage of the standardization is that /;(f) can be zero only when
f itself is a normal density. Similarly, the entropy divergence of a density f
with a normal density can be zero only if f is that same normal density.

We state the elegant algebraic connection between entropy divergence and
standardized Fisher information next.

Theorem 2.7 (De Bruijn’s Identity) Let X ~ f have variance 1. Let Z be
a standard normal variable independent of X. For t > 0, let f; denote the
density of X + +/tZ. Then, I(f,) = 25 [H(f)].
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Remark. De Bruijn’s identity (which extends to higher dimensions) is a
consequence of the heat equation of partial differential equations; see John-
son (2004). A large number of such jt identities of use in statistics (although
not de Bruijn’s identity itself) are proved in Brown et al. (2006). That such
a neat algebraic identity links entropy with Fisher information is a pleasant
surprise.

We now describe how convergence in entropy divergence is a very strong
form of convergence.

Theorem 2.8 Letf,, f be densities in R?. Suppose D(f,||f) — 0. Then
[ converges to f in total variation; in particular, convergence in distribution
follows.

This theorem has completely general densities f,, f. In statistics, often
one is interested in densities of normalized convolutions. Calculating their
entropies or entropy distances from the density of the limiting N (0, 1) dis-
tribution could be hard because convolution densities are difficult to write.
In a remarkable result, Barron (1986) proved the following.

Theorem 2.9 Let X, X,, --- be iid zero-mean, unit-variance random vari-
ables and let £, denote the density (assuming it exists) of /nX. If, for some
m, D(f,||N(, 1)) < oo, then D(f,||N(0, 1)) — 0.

Analogously, one can use Fisher information in order to establish weak
convergence. The intuition is that if the Fisher information of \/nX is con-
verging to 1, which is the Fisher information of the N(0, 1) distribution,
then by virtue of the unique Fisher information minimizing property of the
N(0, 1) subject to a fixed variance of 1 (stated above), it ought to be the case
that /nX is converging to N (0, 1) in distribution. The intuition is pushed to
a proof in Brown (1982), as stated below.

Theorem 2.10 Let X, X», - - - beiid zero-mean, unit-variance random vari-
ables and Z, Z,, --- be an iid N(0, 1) sequence independent of the {X;}.
Letv > 0 and Y,(v) = «/nX + /vZ,. Then, for any v, I,(Y,(v)) — 0 and

hence /nX = N(0, 1).

Remark. It had been suspected for a long time that there should be such a
proof of the central limit theorem by using Fisher information. It was later
found that Brown’s technique was so powerful that it extended to central
limit theorems for many kinds of non-iid variables. These results amounted
to a triumph of information theory tools and provided much more intuitive
proofs of the central limit results than proofs based on Fourier methods.

An interesting question to ask is what can be said about the rates of con-
vergence of the entropy divergence and the standardized Fisher information
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in the canonical CLT situation (i.e., for v/nX when X; are iid with mean
0 and variance 1). This is a difficult question. In general, one can hope for
convergence at the rate of i . The following is true.

Theorem 2.11 Let X, X, - - - beiid zero-mean, unit-variance random vari-
ables. Then, each of D(\/nX||N(0, 1)) and I;(v/nX) is O(}).

Remark. This is quite a bit weaker than the best results that are now known.
In fact, one can get bounds valid for all n, although they involve constants
that usually cannot be computed. Johnson and Barron (2003) may be con-
sulted to see the details.

2.4 Poisson Approximations

Exercise 1.5 in Chapter 1 asks to show that the sequence of Bin(n, rll) dis-
tributions converges in law to the Poisson distribution with mean 1. The
Bin(n, rll) is a sum of n independent Bernoullis but with a success probabil-
ity that is small and also depends on n. The Bin(n, rll) is a count of the total
number of occurrences among n independent rare events. It turns out that
convergence to a Poisson distribution can occur even if the individual suc-
cess probabilities are small but not the same, and even if the Bernoulli vari-
ables are not independent. Indeed, approximations by Poisson distributions
are extremely useful and accurate in many problems. The problems arise in
diverse areas. Poisson approximation is a huge area, with an enormous body
of literature, and there are many book-length treatments. We provide here a
glimpse into the area with some examples.

Definition 2.7 Let p, g be two mass functions on the integers. The total vari-
ation distance between p and ¢ is defined as drv(p, ¢) = sup,cz [Pp(X €

A) = Py(X € A)|, whichequals , 3~ [p(j) — ¢(j)I.
A simple and classic result is the following.

Theorem 2.12 (LeCam (1960)) (a) drv(Bin(n, ), Poi(A)) < **. (b) For
n > 1, let {X;,}7_, be a triangular array of independent Ber(p;,) vari-
ables. Let S, = Y !, X;y and &, = )Y :_, pin. Then, dpv(S,, Poi(),)) <
8 S p2Lif Cl<i<n<!
An i=1 Pin>1 maX{Pm, <i<n}< 4

A neat corollary of LeCam’s theorem is the following.

Corollary 2.2 If X;, is a triangular array of independent Ber(p;,) variables
such that max{p;,, 1 <i <n} - 0,and A, =Y |, pin = 4,0 < A < 00,

then dtvy(S,, Poi(A)) — 0 and hence S, =L> Poi(}).
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The Poisson distribution has the property of having equal mean and vari-
ance, so intuition would suggest that if a sum of independent Bernoulli
variables had, asymptotically, an equal mean and variance, then it should
converge to a Poisson distribution. That, too, is true.

Corollary 2.3 If X;, is a triangular array of independent Ber(p;,) variables
such that ) ', piy and Y | pin(1 — p;n) each converge to 1,0 < A < o0,

then S, =L> Poi(}).

It is a fact that, in many applications, although the variable can be rep-
resented as a sum of Bernoulli variables, they are not independent. The
question arises if a Poisson limit can still be proved. The question is rather
old. Techniques that we call first-generation techniques, using combinatorial
methods, are successful in some interesting problems. These methods typ-
ically use generating functions or sharp Bonferroni inequalities. Two very
good references for looking at those techniques are Kolchin, Sevas’tyanov,
and Chistyakov (1978) and Galambos and Simonelli (1996). Here is perhaps
the most basic result of that type.

Theorem 2.13 For N > 1, let X;,,,i = 1,2,--- ,n = n(N) be a triangular
array of Bernoulli random variables, and let A; = A;, denote the event
where X;, = 1. For a given k, let M; = M, be the kth binomial moment of
Syiie., My = Z;:k (i)P(Sn = j). If there exists 0 < A < oo such that, for

)Lk

w1 a8 N — oo, then S, :£> Poi()).

every fixed k, M; —

Remark. In some problems, typically of a combinatorial nature, careful
counting lets one apply this basic theorem and establish convergence to a
Poisson distribution.

Example 2.7 (The Matching Problem) Cards are drawn one at a time from
a well-shuffled deck containing N cards, and a match occurs if the card bear-
ing a number, say j, is drawn at precisely the jth draw from the deck. Let Sy
be the total number of matches. Theorem 2.13 can be used in this example.

The binomial moment M}, can be shown to be M) = (IZ) N(N_l).f(N_kH), and

from here, by Stirling’s approximation, for every fixed k, M; — kl!, estab-
lishing that the total number of matches converges to a Poisson distribution
with mean 1 as the deck size N — oo. Note that the mean value of Sy is
exactly 1 for any N. Convergence to a Poisson distribution is extremely fast
in this problem; even for N = 5, the Poisson approximation is quite good.

For N = 10, it is almost exact!
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For information, we note the following superexponential bound on the
error of the Poisson approximation in this problem; this is proved in Das-
Gupta (1999).

Theorem 2.14 dry(Sy. Poi(1)) < ) VN.

Example 2.8 (The Committee Problem) From n people, N = N(n) com-
mittees are formed, each committee of a fixed size m. We let N, n — oo,
holding m fixed. The Bernoulli variable X}, is the indicator of the event that
the ith person is not included in any committee. Under the usual assumptions
of independence and also the assumption of random selection, the binomial
[ (n;k) ]N .

()

Stirling’s approximation shows that M ~ e *NG+00™) a5y 5 oo,

moment M, can be shown to be M) = (2’)

One now sees on inspection that if N, n are related as N = " lfng" —nlogA+

km .
o(n~') for some 0 < A < oo, then My — %, and so, from the basic

convergence theorem above, the number of people who are left out of all
committees converges to Poi(A™).

Example 2.9 (The Birthday Problem) This is one of the most colorful ex-
amples in probability theory. Suppose each person in a group of n people
has, mutually independently, a probability 1i/ of being born on any given day
of a year with N calendar days. Let S, be the total number of pairs of people
(i, j) such that they have the same birthday. P(S, > 0) is the probability
that there is at least one pair of people in the group who share the same
birthday. It turns out that if n, N are related as n> = 2NA + o(N), for some

0 < XA < o0, then S, é Poi(A). For example, if N = 365, n = 30, then S,
is roughly Poisson with mean 1.233.

A review of the birthday and matching problems is given in
DasGupta (2005). Many of the references given at the beginning of this
chapter also discuss Poisson approximation in these problems.

We earlier described the binomial moment method as a first-generation
method for establishing Poisson convergence. The modern method, which
has been fantastically successful in hard problems, is known as the Stein-
Chen method. It has a very interesting history. In 1972, Stein gave a novel
method of obtaining error bounds in the central limit theorem. Stein (1972)
gave a technique that allowed him to have dependent summands and also
allowed him to use non-Fourier methods, which are the classical meth-
ods in that problem. We go into those results, generally called Berry-
Esseen bounds, later in the book (see Chapter 11). Stein’s method was
based on a very simple identity, now universally known as Stein’s iden-
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tity (published later in Stein (1981)), which says that if Z ~ N(O, 1),
then for nice functions f, E[Zf(Z)] = E[f’(Z)]. It was later found that if
Stein’s identity holds for many nice functions, then the underlying variable
Z must be N(0, 1). So, the intuition is that if for some random variable
Z = Z,,E[Zf(Z) — f'(Z)] ~ 0, then Z should be close to N(0, 1) in
distribution. In a manner that many still find mysterious, Stein reduced this
to a comparison of the mean of a suitable function %, related to f by a
differential equation, under the true distribution of Z and the N (0, 1) distri-
bution. From here, he was able to obtain non-Fourier bounds on errors in the
CLT for dependent random variables. A Stein type identity was later found
for the Poisson case in the decision theory literature; see Hwang (1982).
Stein’s method for the normal case was successfully adapted to the Pois-
son case in Chen (1975). The Stein-Chen method is now regarded as the
principal tool in establishing Poisson limits for sums of dependent Bernoulli
variables. Roughly speaking, the dependence should be weak, and for any
single Bernoulli variable, the number of other Bernoulli variables with which
it shares a dependence relation should not be very large. The Stein-Chen
method has undergone a lot of evolution with increasing sophistication since
Chen (1975). The references given in the first section of this chapter contain
a wealth of techniques, results, and, most of all, numerous new applica-
tions. Specifically, we recommend Arratia, Goldstein, and Gordon (1990),
Barbour, Holst and Janson (1992), Dembo and Rinott (1996), and the re-
cent monograph by Diaconis and Holmes (2004). See Barbour, Chen, and
Loh (1992) for use of the Stein-Chen technique for compound Poisson
approximations.

2.5 Exercises

Exercise 2.1 * Let X ~ F with density < ixZ)’ —00 < x < 0. Find the
total variation projection of F' onto the family of all normal distributions.

Exercise 2.2 For each of the following cases, evaluate the indicated dis-
tances.

(1) dry(P, Q) when P = Bin(20, .05) and Q = Poisson(1).
(ii) dg(F, G)when F = N(0, 0?) and G = Cauchy(0, 7?).
(iii) H(P, Q) when P = N(,0%) and Q = N(v, t2).

Exercise 2.3 * Write an expansion in powers of € for dpy(P, Q) when P =
N(0,1)and Q = N(e, 1).
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Exercise 2.4 Calculate and plot (as a function of u) H(P, Q) and drv(P, Q)
when P = N(0, 1) and Q = N(u, 1).

Exercise 2.5 * Suppose P, = Bin(n, p,) and P = Poi(X). Give a suffi-
cient condition for dry(P,, P) — 0. Can you give a nontrivial necessary
condition?

Exercise 2.6 Show thatif X ~ P, Y ~ Q, thendypy(P, Q) < P(X #Y).

. indep. indep.
Exercise 2.7 Suppose X; ~ P, Y; ~ Q;. Then dpy(P; % Py % -+ %
P,O %*Q0x%---%x0,) < Z?:l drv(P;, Q;), where * denotes convolution.

Exercise 2.8 Suppose X, is a Poisson variable with mean ', and X is
Poisson with mean 1.

(a) Show that the total variation distance between the distributions of X,, and
X converges to zero.

(b) * (Harder) Find the rate of convergence to zero in part (a).

Exercise 2.9 * Let P = N(0,1) and Q = N(u, o?). Plot the set § =
{(n, o) : dry(P, Q) < €} for some selected values of €.

Exercise 2.10 Suppose X, X, ... are iid Exp(1). Does /n(X — 1) con-
verge to standard normal in total variation?

Exercise 2.11 If X; are iid, show that X, —> 0iff £ (| 3. ) = 0.
Exercise 2.12 * Let X ~ U[—1, 1]. Find the total variation projection of X

onto the class of all normal distributions.

Exercise 2.13 * Consider the family of densities with mean equal to a spec-
ified . Find the density in this family that maximizes the entropy.

Exercise 2.14 * (Projection in Entropy Distance) Suppose X has a density
with mean u and variance o>. Show that the projection of X onto the class
of all normal distributions has the same mean and variance as X.

Exercise 2.15 * (Projection in Entropy Distance Continued) Suppose X
is an integer-valued random variable with mean p. Show that the projection
of X onto the class of all Poisson distributions has the same mean as X.
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Exercise 2.16 * First write the exact formula for the entropy of a Poisson
distribution, and then prove that the entropy grows at the rate of log A as the
mean A — 00.

Exercise 2.17 What can you say about the existence of entropy and Fisher
information for Beta densities? What about the double exponential density?

Exercise 2.18 Prove that the standardized Fisher information of a

Gamma(e, 1) density converges to zero at the rate ‘i ,a being the shape
parameter.

Exercise 2.19 * Consider the Le Cam bound drvy(Bin(n, p), Poi(np)) < 8p.
Compute the ratio “™v®nPFI) for 4 01id of (1, p) pairs and investigate
the best constant in Le Cam’s inequality.

Exercise 2.20 * For N = 5, 10, 20, 30, compute the distribution of the total
number of matches in the matching problem, and verify that the distribution
in each case is unimodal.

Exercise 2.21 Give an example of a sequence of binomial distributions that
converge neither to a normal (on centering and norming) nor to a Poisson
distribution.
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