2
Structural Stability

2.1 Structural stability, Darcy model

Structural stability is the study of stability of the model itself. The clas-
sical definition of stability involves continuous dependence of the solution
on changes in the initial data, cf. section 1.1.2. However, it is increasingly
being realised that continuous dependence on changes in the coefficients,
in the model, in boundary data, or even in the partial differential equa-
tions themselves, is very important. This aspect of continuous dependence,
or stability, is what we refer to as structural stability. (Hirsch and Smale,
1974) were prominent in introducing the ideas of structural stability. In
chapter 16 of their book (Hirsch and Smale, 1974) ask, ... “What effect
does changing the differential equation itself have on the solution? ... This
is the problem of structural stability.” The book of (Hirsch and Smale, 1974)
gives an authoritative account of structural stability in an ordinary differ-
ential equation context. Structural stability is also emphasized in the books
by (Bellomo and Preziosi, 1995), (Doering and Gibbon, 1995), (Drazin and
Reid, 1981), and (Flavin and Rionero, 1995), although the topic of porous
media is not specifically addressed in the context of structural stability in
these works. In this chapter we focus on examples of structural stability in
the context of the equations of porous media. It is extremely important,
because if a small change in the equations, or a coeflicient in an equation,
causes a major change in the solution it may well say something about how
accurate the model is as a vehicle to describe flow in porous media.

B. Straughan, Stability and Wave Motion in Porous Media,
DOI: 10.1007/978-0-387-76543-3_2, (© Springer Science+Business Media, LLC 2008



28 2. Structural Stability

Early articles dealing with structural stability questions in porous flows
are those of (Ames and Payne, 1994), (Franchi and Straughan, 1993a;
Franchi and Straughan, 1996), and (Payne and Straughan, 1996) investi-
gates in some detail the continuous dependence of the solution on changes
in the initial-time geometry. We do not describe the work of (Payne and
Straughan, 1999a), but this paper establishes continuous dependence on
the coefficients of Forchheimer and of Brinkman, and also investigates how
the solution to the Brinkman equations converges to that of the Darcy
equations as the Brinkman coefficient tends to zero. We focus on examples
which illustrate various different effects, and the sections on continuous
dependence on the Dufour, Krishnamurti, and Vadasz coefficients are new.

We commence with a result of (Payne and Straughan, 1998b) which
establishes continuous dependence on the cooling coefficient for Newton’s
law of cooling in a Darcy porous material. (Franchi and Straughan, 1996)
proved a similar result for a Brinkman porous material, but their method
is inadequate to deal with the less dissipative Darcy system. (Payne and
Straughan, 1998b) were able to prove a priori continuous dependence in
three space dimensional problems without having to restrict the size of the
time interval or the size of the initial data. In contrast, when one consid-
ers the Navier-Stokes equations, such a restriction is evidently necessary,
(Ames and Payne, 1997)

We do not consider in this chapter structural stability questions for the
porous medium equation model based on a distribution of voids in an elastic
body, see section 7.2. However, this topic is investigated in (Chirita et al.,
2006). (Chirita and Ciarletta, 2008) develop the structural stability analysis
further by including temperature effects in the model.

A class of nonlinear models which possess properties not dissimilar to
those of the model in section 2.1.1 are those studied by (Payne and
Straughan, 1999c). These writers investigated continuous dependence on
the spatial geometry for a Stokes’ flow system when the nonlinearity in
the temperature equation was regarded as important. This class of Stokes’
flow is called a nonlinear Stokes’ problem by (Duka et al., 2007). The
paper by (Duka et al., 2007) derives interesting bounds for a solution to a
nonlinear Stokes’ system for thermal convection in a horizontal annulus.

2.1.1 Newton’s law of cooling

The Darcy equations for non-isothermal flow in a porous medium are as in
chapter 1, sections 1.2, 1.6.1, namely,

dp
% _ (2.2)

8:61- ’



2.1. Structural stability, Darcy model 29

or or

where v;, T, p and g; are the velocity, temperature, pressure and the gravity
vector. The density p in equation (1.15) has been assumed linear in 7" with
the body force f; = g;, the constant part of the body force being absorbed in
the pressure term. In this section equations (2.1) — (2.3) hold on a bounded
spatial domain € with boundary I', for positive time. On the boundary I"
we suppose v; and T satisfy the conditions

or
on
where k(> 0) is the cooling coefficient, T;,(x,1) is the temperature outside

of the porous body at the boundary, n; is the outward unit normal to T,
and 9/0n denotes the outward normal derivative. The initial condition is

vin; =0, and = —k(T — Ta(x,t)) , (2.4)

T(Xa t) = TO(X)v (25)

for Ty given.

To investigate continuous dependence on k we let (v;, T, p) be a solution
to (2.1) — (2.5) with a cooling coefficient k2, and we let (u;, S, ¢) be another
soultion to (2.1) — (2.5) for the same T, and initial data, but for a different
cooling coefficient k1. We wish to derive an a priori estimate for a measure
of T — S and v; — u; in terms of the difference ko — k1. To this end let
w;, 0, m and k be the difference variables

w;, =v;—u;, 0=T-8 7wT=p—q, K=FKy—K1, (2.6)

and then from (2.1) — (2.5) we see that (w;,6,7) satisfies the partial
differential equations

or

w oz, T9 (2.7)
awi
= 2.
=0, (28)
00 00 oT
E + Ul‘a—xi + ’wla—xz = Af. (2.9)
The boundary and initial conditions are
00
n;w; = 0, o —k10 — k(T — T,), on T x [0,7], (2.10)
0(x,0) =0, ze€Q, (2.11)

where 7 < oo is an arbitrary (but preassigned) time.
We assume, without loss of generality, that

g < 1. (2.12)
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To establish continuous dependence we multiply (2.7) by w; and integrate
over ), and using the Cauchy - Schwarz inequality, one finds

1wl = g:(8,wi) < [|0]l[Iw]],
and so
[wi < 6] (2.13)
Next, multiply (2.9) by 6 and integrate over 2 to derive
L2 = / wiTO sz — |VO|? — k1 j{ 92dA—/i7{ 0T —T,)dA. (2.14)
2 dt Q ’ T T

Next, employ the arithmetic-geometric mean inequality to see that

—nf O(T, — T,)dA < — f@QdAJr 7jI{(T1 T,)?dA, (2.15)

for o > 0 arbitrary. We select &« = £/2k1, and then use (2.15) in (2.14). In
this manner we derive

2
2 < | w0, de — || VO "—7{T—T 2dA. 2.1
3108 < [ wi.do =90 + 1= § (7 7,7 (2.16)

2.1.2 A priori bound for T

To proceed we require an a priori bound for |T'|. We establish such a bound
for a function T satisfying (2.2) and (2.3), following (Payne and Straughan,
1998b). We simply use 7', v; and k, rather than 7', v; and xo. Multiply (2.3)
by TP~ for p > 1 (we assume the temperature is scaled to be non-negative).
Thus,

d

dt

With the aid of Young’s inequality we have

Tpdx = —p(p— 1)/ TP2|\VT|*dx — pr T°P~YT —T,)dA.
Q r

—1\r-1
kpTP T, </ipr+/<;T”( ) .
p

Employing this in the previous inequality allows us to show that

d _ p—1\p-1
— | TPde < —p(p—1) | TP2|VT|?d %TpdA.
& [ 1rin <o) [ rEeTPa e n(P2)T 1

This inequality is integrated after discarding the first term on the right, to

deduce
l/p p 1
[/ Tpdx] < [/ TVdx + /@ / ds?{TpdA} . (2.17)
Q
sup |T| < T, (2.18)
Q

Now, let p — oo in (2.17) to see that
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where the constant T, is given by

T,, = max {sup |To|, sup |Ta|} .
Q I'x[0,7]

Equipped with the estimate (2.18) for 7' (maximum principle), we bound
the first term on the right of (2.16),

/ w;T0 ydx < Ty [|w| VO,
Q

<Tnloll Ve,

where (2.13) has been used, and then after further use of the arithmetic-
geometric mean inequality,

T2
/wiTe,idxg o)1 + V6. (2.19)
Q
Upon utilizing (2.19) in (2.16) we find
d oo Do 2
il < m .
Loy < 2 oy + ax?, (220)
where the function A is defined by
1
A(t) = — ¢ (T, — T,)%dA.
0 =5 $T0=T)

In deriving (2.20), bound (2.18) has been extended to the boundary by
continuity. Inequality (2.20) may be integrated by an integrating factor
method to see that

168)]1* < R(t)x?, (2.21)
where R is defined as

! 1

R(t) = / Als)exp [ STE (L~ 5)|ds.

0 2
The bound (2.21) is our continuous dependence estimate for . Now, from
(2.13) we also find

[w(t)||* < R(t)x?, (2.22)

which establishes continuous dependence of v; on the cooling coefficient.
Continuous dependence on the cooling coefficient  is established, since
R(t) is a priori because it only depends on data and the geometry of .

2.2 Structural stability, Forchheimer model
In this section we describe work of (Franchi and Straughan, 2003) who

consider the isothermal Forchheimer equations with quadratic and cubic
terms, namely
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Ou; s

atl = —au; — b|u|u1 — c|u|2uz- 7])11'7 (97,’1}2 = 0, (223)
where u; is the average fluid velocity in the porous medium, a is the Darcy
coefficient (viscosity divided by permeability), b and ¢ are the Forchheimer

coefficients, and p is the pressure.

2.2.1 Continuous dependence on b

We commence with a study of continuous dependence on the coefficient b.
Therefore let u; and v; solve the following boundary initial value problems
for different Forchheimer coefficients by and by, but for the same second
Forchheimer coefficient ¢,

Ou; ous
81? = —au; — by [ulu; — clu*u; — p, 87;: =0, in Qx {t >0},
niu; =0, on I' x {t > 0}, (2.24)
ui(x,0) = fi(z), 2eqQ,
81}' av. .
8; = —av; — b2|V|'Ui - C|v‘21)i — Qi 895: =0, in O % {t > 0}7
(2.25)

n;v; = 0, on I' x {t > 0},
vi(x,0) = fi(z), x e Q.
In these problems € is a bounded domain in R? with boundary I, n; is the

unit outward normal to I', and f; is the given initial data.
The difference variables w;, 7w, b are defined by

w; =U; —v;, T™=p—gq, b=0by — ba. (2.26)
By subtraction we see that w; satisfies the boundary initial value problem
dw;
8“; = —aw; — (b1|u|ul — b2|V|’U¢) — c(|u|2ui — ‘V|2’UZ‘) — 7T,i7
ow; .
0z, 0, inQx{t>0} (2.27)

n;w; = 0, on ' x {t > 0},
w;(x,0) =0, x € .
The first step involves rearranging the b; and by terms as

b By
bilulu; — be|v|v; = §(|U|Ui + [v]vi) + b(Julu; — [vl|v;), (2.28)

where b = (b + by)/2, and observing (Payne and Straughan, 1999a) show
that

(Jufus — vlocywi = 3 (ful + [vywsw + 5 (] = [v)? (] + |v]).  (2:29)
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Next, multiply (2.27); by w; and integrate over Q, to find with the aid of
(2.28) and (2.29),

LRy

b
2w =—ﬂWW—§Aﬂmww+WMWﬂx

b
- */(\u\+|v|)wiwid$
2 Ja

— 5 [l = Wl + vy

- c/ (|ul?u; — |v|*vs)wida. (2.30)
Q
(Franchi and Straughan, 2003) show that
2 2 Lo Lo
(af i = |v[Foi)wi = Sluf*(u; —vi +vi)wi — S |v[ oiw;
Lo Lo
+ §|u| U;W; + §‘V| wl(ul —V; — ul)

1
5 ([l + vwiw + 5 (ui + vwi(fuf* = |v[?)

1 1
= 5(\11\2 + [V wiw; + §(|11|2 — V)2 (2.31)

This expression is employed in (2.30) to obtain
d1

b
S < = alwl? = 5 [ (fufuws + fvlon)ds

b ¢
- = / (Ju] + |v)wjw;dx — = / (Jul?* + v )wywsdz. (2.32)
2 Ja 2 Ja

We suppose ¢ > 0. The case where ¢ = 0 is covered in (Franchi and
Straughan, 2003). We use the Cauchy-Schwarz and arithmetic-geometric
mean inequalities to see that

b b?
‘/(|U|inz‘+|vvi’wz‘) dx S*/(Uiﬂﬂrvivi)dx
2| Ja 8¢ Jo

(2.33)
+5 [l + vPywwda,
2 Ja
Now use this inequality in (2.32) and discard the b term to derive
d1 b?
=Wl < —alwl? + o /Q(uiui + vgvi)d. (2.34)

From equations (2.24) and (2.25) one shows

Hu||2 < HszeXp(—Qat) and ||v||2 < ||fH2eXp(—2at). (2.35)
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These bounds are now used in (2.34) to arrive at

EEHWHQ +allw|? < bje (—2at)||£]?
dt 2 ~ 4de P '

With the aid of an integrating factor and integration one sees that
2 _ 2 I
lw(@®)||- <b 3¢ texp(—2at). (2.36)
c

Inequality (2.36) establishes continuous dependence on b when ¢ > 0.

2.2.2  Continuous dependence on c

In this subsection we establish continuous dependence on the coefficient c.
Let now (u;,p) and (v;, ) solve the boundary initial value problems (2.24)
and (2.25) for the same b but with ¢; and ¢y different.

Define in this case

Wiy =Uj =V, T=pP—(g, C=C—C2.

Then (w;, 7) satisfies the boundary initial value problem

ow;

atz = —aw; — b(|ulu; — |v|vs) — cr|ul?u; 4 co|v|*v; — T s

ow; .

oz, =0, inQx {t > 0}, (2.37)

n;w; = 0, on I' x {t > 0},
w;(x,0) =0, x € Q.

(Franchi and Straughan, 2003) use the rearrangement

crlulu; — co|v|?v = = ([ul?wi + |v?vi) + é(JulPu; — [v[2v;), (2.38)

€
2
where ¢ = (¢1 + ¢2)/2.

Now multiply (2.37); by w; and integrate over Q. We employ the
rearrangements (2.29), (2.38) and (2.31) and then show

1d b
517 = =alwlP = 3 [ (ul + wiwids
Q
b
— 5 [l = WPl + e = [ (P, + oo

=5 [P wPwads - 5 [ (uf - v .
Q Q
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The two b terms and the ¢ term involving (Jul? — |v|?)? are discarded to
derive

1d

5 llwl? +allwl? < - £ /Q(|u|2uiwi T o) de

(2.39)

_ E/(|u|2+|v\2)wiwid9&.
2 Jo

Next, the Cauchy-Schwarz and arithmetic-geometric mean inequalities are
employed to see that

C C2
5 [ uPuws + vPowdds < [ (uft+ v}tz
@ @ (2.40)

c
+ = / (|u|® + |v|*)wiw;da.
2 Jo

Upon use of (2.40) in (2.39) we see after integration,

||w||2+2a/ |w|?ds < —/ / lu|* + [v|*)dx ds. (2.41)

The right hand side of (2.41) is estimated by multiplying (2.24) by u,,
(2.25) by v;, and integrating over  x (0,t) to show that

t
4 4 c1+cz) 5

ul® + |v|%)drds < f|~.
it witaeas < (552 ) el

Upon using this inequality in (2.41) one finds

lwl)? + 2a /t wipPds < 1 2. (2.42)
0 - 40162

Inequality (2.42) establishes continuous dependence on ¢. A further bound
for w; may be obtained from (2.42) with the use of an integrating factor,

this is
I£]? “2aty 2
|| [Pds < Z——(1 — e ") .

— 8acyco

2.2.8  FEnergy bounds

Interesting upper and lower bounds for ||ul| are obtained by (Franchi and
Straughan, 2003) who follow the method of (Payne and Straughan, 1999a).
To derive these estimates we suppose u; is a solution to (2.24) with b,
replaced by b, so u; satisfies the boundary initial value problem

0 i 0 7 .
5; = —au; — bluju; — cjul*u; — 74, - 0, in Q x {t > 0},

ox;
nju; = 0, on T x {t > 0},
UZ(J?,O):f(ﬂ?), z €

(2.43)
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Multiply (2.43) by u; and integrate over € to find

1d
1P = —afju)? - b/ af*dz —c/ fulda. (2.44)
We first derive a lower bound for |[ul|, and set ®(t) = ||u(t)||?>. From (2.44)
d®
9 _ ol - 2b/ uafPdz — 20/ ful*da. (2.45)
Define the function x by
4
x(t) = —2a|lul|* - fb/ lu|da — c/ lu|*dz, (2.46)
3 Ja Q
and observe that x < 0. From (2.46) and (2.45) d®/dt < x, and then
dx 9 dd\2 dd
A _ ) > () > (=22 ) (=), )
ot Mme@W”—(ﬁ>—( ﬁ>(@ (247)

Hence, (dx/dt)/x < (d®/dt)/®, which after integration and rearrangement
yields
—x(0
—x(t) < B(t) {”)f<|(|2)} (2.48)

We may now show 2y < d®/dt < x, and so with the aid of (2.48) we
deduce

1d® x(0)
5@2)(()2 q)(t)W-

After integration we obtain

()2 > ]2 exp [W} | (2.49)

From inequality (2.49) one sees that u; cannot vanish identically in a finite
time.
We may use the Cauchy-Schwarz inequality to show

4
_/ |u|4d$§—M,
Q m

where m = m(Q) is the measure of . If this inequality is utilized in (2.45)
one may show

d 2
=l + 2a]jul + = juf* < 0.

Now since u; cannot vanish in a finite time we divide by ||u|* and solve

the resulting inequality for |Ju||~2. This leads to the upper bound
111>

P (e = 1) fam

lu()]* < (2.50)
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If we combine (2.50) and (2.49) we find the estimates for ||u(¢)||,
£
exp [(4a+8bfQ £[3dz /312 + 2¢ [, |f|4dx/||f|2>t}

< Ju@®)?

2
§ I£1

. 2.51
= T oA (e~ 1) am 250

2.2.4  Brinkman-Forchheimer model

(Celebi et al., 2006) study structural stability for a version of the Brinkman-
Forchheimer equations, namely, they study the boundary - initial value
problem,

aazii = vAu; — au; — blu|“u; — 7,
Ou; .
oz, — O mx{t >0} (2.52)

u; =0, on ' x {t > 0},
u;i(z,0) = f(x), x € Q,

where v is a Brinkman coefficient and « € [1,2] is a constant.

(Celebi et al., 2006) establish existence and uniqueness of a solution
to (2.52), and show that there is a constant D, depending on f and the
coefficients in (2.52), such that

T\1ou 2
sw [Va@| <D [ |5 @[ a<D.
0<t<T o IOt
for any T' > 0. They also show that the solution u; depends continuously
on the Forchheimer coefficient b, and on the Brinkman coefficient ~. This
is an interesting paper and the proofs employ the Sobolev inequality in a
non-trivial manner.

2.3 Forchheimer model, non-zero boundary
conditions

(Payne et al., 1999) studied continuous dependence on changes in the vis-
cosity for a Forchheimer and a Brinkman model. The motivation of (Payne
et al., 1999) was to analyse mathematically a model for the process of
salinization, whereby salts are transported upwards in soils in dry regions.
A model for this was developed by (Gilman and Bear, 1996) and this model
has a strong viscosity - concentration dependence. The work of (Gilman and
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Bear, 1996) involves a nonlinear set of equations, and similar models are
studied in (Wooding et al., 1997a; Wooding et al., 1997b) and in (van Duijn
et al., 2002). (Payne et al., 1999) analyses the manner in which the velocity
and concentration depend on changes in the viscosity. The reason for the
need to study continuous dependence on the viscosity is that (Gilman and
Bear, 1996) point out that the viscosity dependence on concentration is 1.5
to 3 times greater than that of pure water. By comparison the variation in
density is only of order 0.15 to 0.30 times greater. Certainly such a strong
variation indicates that convective motion of salt in a porous medium ought
to take into account viscosity dependence on salt concentration.

The model based on Darcy’s law studied by (Payne et al., 1999) is now
presented. If we let u;,c and p denote the fields of velocity, concentra-
tion and pressure, the Forchheimer equations for flow in a porous medium
studied by (Payne et al., 1999) are

builul + (1 +y1¢)u; = —p,; + gic,

ox; (2.53)
Oc Oc
a + Uiaimi = AC,

where v and b are positive constants, g;(x) is a gravity field which we
again assume satisfies

gl <1 (2.54)

Equations (2.53) hold on the region Q x (0,7) for 2 a bounded domain in
R? and for some time 7, 0 < 7 < oo. The viscosity variation is represented
by the term 143 c¢, i.e. we allow a linear variation in ¢ so that the viscosity u
has form g = p1(1+71¢). The g;c term represents a linear variation in ¢ for
the density, i.e. a Boussinesq like approximation. Since ¢ is a concentration
it is reasonable to assume that it is non-negative, although if we knew
a priori that u; is bounded then ¢ > 0 would follow from the maximum
principle.
On the boundary ' (of Q) the conditions imposed are

wn; = f(x,t), c=h(x,t), xeTl, (2.55)

for known functions f and h. The initial condition is that concentration is
prescribed at ¢ = 0, i.e.

c(x,0) = ¢o(x), x € Q, (2.56)

co given.

We note in passing that existence and uniqueness questions of solutions
to systems like that studied here may be answered by the methods of (Ly
and Titi, 1999) or those of (Rodrigues, 1986; Rodrigues, 1992).

The work of (Payne et al., 1999) relies on establishing an upper bound
for c¢. We now give very brief details of how this is achieved.
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2.3.1 A mazimum principle for c

To derive a maximum principle for ¢ (Payne et al., 1999) use the method
of (Payne and Straughan, 1998a).
They introduce a function H by

AH(x,t) =0 in Qx(0,7),
H(x,t) = h*~1(x,1) on I'x (0,7).

The analysis commences with the identity

t
/ ds/ (H — czp*l){c’t +uic; — Ac} dx = 0.
0 Q

An integration by parts and rearrangement leads to

22p—1) [*
/chdw—i—L/ ds/c’;c’;dx:/cgpdx
Q p 0 Q Q

t
+2p(H, ¢) — 2p(Ho, co) — 2p / ds / H .cda
0 Q

t t
OH

+2p/ ds/ Huic,idx—i—Zp/ ds%—hdA
0 Q 0 r on

- /O t ds ?g f*PdA. (2.57)

The remainder of the proof of the maximum principle for ¢ is from this
point very technical. The purpose of this section is to describe continuous
dependence on 7 and so we refer to (Payne et al., 1999) or (Payne and
Straughan, 1998a) for full details. After many steps the proof arrives at an
inequality of form

5

1/2p
lelln < [l + ()] (258)

i=1
where || - ||l2p is the norm on L?!(Q), r; involve h or ¢y, and h,, =

maxrpyo,7] |h|. Taking the limit 2p — oo leads to the a priori bound

sup |c| < max{\c0|m, sup hm} =cm (2.59)
Qx[0,7] [0,7]

where |co|, = maxq |co|, and ¢, is defined as indicated.

2.3.2  Continuous dependence on the viscosity

To investigate continuous dependence on the viscosity coefficient ~y; in
(2.53) suppose (u;,c1,p) and (v;, ca,q) are solutions to (2.53) — (2.56) for
the same data functions f, h and ¢y, but for different viscosity coefficients,
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~v1 and 79, respectively. The difference solution (w;, ¢, 7) is introduced as
w; =u; —v, ¢=c1—c, T=p—q, Y=Y "2 (2.60)

By calculation (w;,¢,m) is seen to satisfy the boundary-initial value
problem

bluilul — v |[v]] + w; + yeru; + V2ou; + Yacow; = —m; + g; 9,
wm- = 0, (261)
¢+ wict; +vip; = Ag,

in Q x (0,7), with the boundary and initial conditions
wi=¢=0 onT, o(x,0) =0, x€N. (2.62)
It is convenient to also rearrange (2.61); in the form
bluilul — v |v|] + w; + yicrw; + ye1v; + Y2 v, = =7 + Gih. (2.63)

The proof starts by multiplying (2.61); by w; and integrating to find
b/ (uiu| — vi|v|)w;dx + / (1 + yac2)w;w;dx
Q Q

= 9i(¢,w;) — ’Y/

cuw;dr — ’}/2/ ou;w;dx. (2.64)
Q Q

The right hand side is estimated using the maximum principle and Holder’s
inequality. Identity (2.29) is used on the first term on the left and we drop
a term to derive

2

1/2 1/2
<Jlél ||W||+VCmUI||W||+72( / |u|wiwidx> ( / |u|¢2dx)

1 2 a B s Ve 2
< P _m
<5allol” + (5 +5)IwlP + 25 ul

2 1/3 2/3
+b/ lu|wiwidz + 22 /|u|3dx /|¢\3dw : (2.65)

where a, 3 > 0 are constants to be chosen. We next use the Sobolev
inequality

b
Q Q

) ddz < k2( ) ¢2dx>1/2 (/Q |V¢|2da:)3/2,
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for k > 0 constant, together with the Cauchy-Schwarz inequality in (2.65)
to obtain

b
v / (Jul + [v])wswidz + / (1 + ypca)wswida
2 Q Q

2
261 + 5@+ B)wl + 222 ul?
e
e I (2.66)

An analogous procedure starting from (2.64) leads to
b
5 / (la] + [v)w;w;dx + / (1 + y101)w;widx

SE v

<—H<25||2 ( + AWl +25 2%

21.2/3
g
2 v lsllol IVl (2.67)

Upon addition of (2.66) and (2.67) we see that

—|—b/ |v|w;w;dx +
Q

1
/ (2+mer +raeaywrwide < |6l + (o + ) [w?
Q

k: 2/3
+77 m(||u||2+IIVI| )+ 72 ([[alls + Ivlla)lol Vel (2.68)

A further use of the anthmetlc—geometrlc mean inequality shows that, for
a constant € > 0 to be chosen

1 ’)/2162/3
2 2 2 2
2 (a+ Iwl? < 5+ e e+ 1
+7 (Hu||2+||VH ) + €l Vol (2.69)

Directly from (2.53) we may deduce for a constant d involving data

[l < 4flea[|* + d, g (dlle ) + )2,

u 3 =

IVI* < 4lleal|* +d, 7 (4llez ) + )72

Ivlls < 7175

Employing (2.70) in (2.69) yields for computable constants fi,..., 33,
dependent only on data, choosing & = 3 = 1/2, an inequality of form

[wl* < Billoll* + B2 + B[ Vol (2.71)

To estimate the [|¢[ and |[V¢| terms we multiply (2.61)3 by ¢ and
integrate to find

1 t t
slol? + [ 1velds = [ ds [ wierosd.
0 0 Q
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Bounding ¢; and using the Cauchy-Schwarz inequality yields

t t
1] + / IVo|2ds < 2, / wl|?ds. (2.72)
0 0

Use of (2.72) in (2.71) shows that after integration

t t
/ IwiPds < &y / (t — s)|[wl2ds + o), (2.73)
0 0

where ki, ko depend only on data. From this inequality we may establish
the estimates

t ¢
/ (t— s)||w||2ds < k3(t)72, and / ||w||2ds < ka2, (2.74)
0 0

for k3 and k4 computable data bounds. These are continuous dependence
estimates for w;. An analogous estimate for ¢ follows from (2.72), of the
form

t
16(0)] + / IV6lPds < kac?in®. (2.75)

The inequalities (2.74) and (2.75) demonstrate continuous dependence
on the viscosity coefficient ;. They are truly a priori since the coefficients
of 42 depend only on boundary and initial data, and on the geometry of Q.

2.4 Brinkman model, non-zero boundary
conditions

In this section we review work of (Payne et al., 1999) which establishes
continuous dependence on the viscosity coefficient +; for the following
Brinkman system,

— Au; + (1 +mic)ui = —p; + gic,

6ui -
oc Oc
a + Ulaixl = AC,

on Q x (0,7). The boundary and initial conditions in this case are

w; = fi(x,t), c¢=h(x,1t), x eI x {t>0}, (2.77)

e(x,0) = co(x), x € Q. (2.78)
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(Payne et al., 1999) first compare the solution u; to (2.76) with a solution
a; which solves the Stokes’ flow problem in 2, namely
da; .
Aa; = p, @i _ 0 in €,
’ Ox; (2.79)
a; = fz on I

where p is a pressure term. For a data term dj they go via a; to show that
[ull® < 5]l¢]|* + do. (2.80)

Continuous dependence on 7, proceeds via letting (u;, ¢1,p) and (v;, ¢2, q)
solve (2.76) — (2.78) for the same data functions f;, h and co, but for dif-
ferent viscosity coefficients 1 and ~y9, respectively. The difference variables
(wi, ¢, m) and ~ are defined as in equations (2.60). The boundary-initial
value problem is

— Aw; + (14 yac2)w; + yeru; + y20u; = =7 + i,

Li
% o 06 _ A (2.81)
ot ZBxi Z@a:i a ’

wi=¢=0onT, ¢x,0)=0, x€Q.

By using inequality estimates (Payne et al., 1999) show that one may
compute data constants a; and as such that

W@+ 1Vw®* < a1y?, llgl* < a2n™. (2.82)

Inequalities (2.82) are a priori bounds which demonstrate continuous
dependence of the solution on the viscosity coefficient ;. Note that the
stronger dissipation in the Brinkman model allows continuous dependence
to be proven in the ||w|| and ||[Vw]|| measures.

Further novel structural stability results for the Brinkman equations may
be found in (Lin and Payne, 2007a; Lin and Payne, 2007b). Also, interest-
ing structural stability results for the Brinkman-Forchheimer equations are
established by (Celebi et al., 2006).

2.5 Convergence, non-zero boundary conditions

(Payne et al., 1999) also consider the question of convergence of the solution
to an equivalent Darcy system to (2.53) to the case where v; = 0. That
is, (Payne et al., 1999) also consider the viscosity variation in (2.53), but
they neglect the b (Forchheimer) term. Their goal is to investigate the
behaviour as y; — 0. To state this result let (u;, ¢1,p) satisfy the following
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boundary-initial value problem, where ~; has been replaced by ~,

ou;
(1 +~er)u; = —pi + gica, e A 0,

al’i

(2.83)
% + u% = Ac
ot ox, TV
in  x (0,7), with

uin; = f, cp=h onI x (0,7),

c1(x,0) = co(x), x € Q,

i.e. the equivalent Darcy system to (2.53). We let (v;,ca,q) satisfy the
analogous Darcy system when v = 0, i.e.

8%
Vi = —¢,; + giC2, i 0,
3
2.
ez U.aCQ — Ac (25)
ot " lox, 7
in Q x (0,7), with
vin; = f, co=nh onI x (0,7),
foe (0,7) 56)
c2(x,0) = ¢p(x), x € .
By defining w; = u; — v; (Payne et al., 1999) show that
¢
/ [wl|*ds < a3v?, (2.87)
0

for a data term «s.

Inequality (2.87) demonstrates convergence of u; to v; as v — 0 in the
measure indicated. (Payne et al., 1999) also obtain convergence of w; in
L?(92) norm and convergence of ¢ = ¢; — ¢o in L*(2) and H'(Q) norms.

2.6 Continuous dependence, Vadasz coefficient

(Vadasz, 1995; Vadasz, 1996; Vadasz, 1997; Vadasz, 1998a; Vadasz, 1998b)
has made an extensive investigation of convection in a porous medium
when the layer of saturated porous medium is rotating about a fixed axis.
(Vadasz, 1998a) is a very interesting contribution. In this paper he employs
linear instability and weakly nonlinear analysis to investigate the instability
mechanisms governing convection in a rotating porous layer. Of particular
interest is the fact that he discovers that if the inertia term is left in the
momentum equation, then convection may commence by oscillatory con-
vection. This is a striking result which implies that the inertia term plays
a predominant role in determining the character of convection. In view of
this we now examine how the solution to the equations for convection in
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a saturated porous material depends on the coefficient of the inertia term.
The coefficient of the inertia term is denoted by 1/Va, where Va is the
Vadasz number. The usual Darcy law is recovered by letting Va — oo.

If we let u;, T and p be the velocity, temperature and pressure, then the
equations for non-isothermal flow in a saturated porous medium, taking
inertia into account may be taken to be, cf. (Vadasz, 1998a), (Straughan,
2001b),

1 Ou;  Op
(9ul-
p— 2.
Ay 0, (2.89)
oT or

These equations hold on  x (0,7), @ C R? bounded, and g;, |g| < 1, is
the gravity vector. The boundary conditions we consider are

uin; =0 and T = h(x,1), (2.91)

where n is the unit outward normal to I', the boundary of 2. The initial
conditions are that

ui(x,0) = ud(x),  T(x,0) = To(x). (2.92)
It is convenient to employ o = 1/Va in (2.88), so this equation is
rewritten as
Ou;
o 5; =—pi—u+gT. (2.93)

In this section we study the continuous dependence of the solution on the
coefficient . To achieve this we need a maximum principle for T

2.6.1 A maximum principle for T

A weak maximum principle for T is established by (Payne et al., 2001)
(see also (Temam, 1988)) and we outline their proof. For a test function ¢
which vanishes on I', T satisfies the equation

/ (T7t¢ — U;iT¢)i + T7i¢,i)dx =0. (294)
Q

Note that equation (2.94) may be obtained from (2.90) by multiplying that
equation by ¢ and integrating over (2. Define the number T}, by

T = max{sup |To|, sup |h|} . (2.95)
Q Qx[0,7]

The function ¢ is chosen as

¢o=|T-— Tm]+ =sup(T — T),,0).
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Since ¢; =T; when T > T, ¢; = 0 for T < T, (2.94) reduces to, after
integration

1 t t
f/ ds/ |[T—Tm]+|28dm+/ ds/ V[T — T, ]* Pdz = 0.
2 Jo Q ’ 0 Q

(Note that [, u;T¢;dx = 0.) From the last inequality we deduce that
[T — Tp]t =0, or T < T

Next, select ¢ = [-T —T,,] " in (2.94). A similar calculation to the above
shows T' > —T,,. Thus,

IT| < Ty (x,1) € Q% [0,7]. (2.96)

2.6.2 Continuous dependence on .

Let (u;, T,p) be a solution to (2.89) — (2.93) with coefficient ay and let
(vi, S, q) be a solution to (2.89) — (2.93) for the same boundary and initial
functions h,u?, Ty in (2.91), (2.92), but for a different Vadasz coefficient

. Define the difference variables w;,# and w, and the difference of the
Vadasz coefficients a by

w,=u;—v;, 0=T-S, Tw=p—q, «o=a;—as. (2.97)

From equations (2.89) — (2.93) we find (w;, 0, 7) satisfy the boundary-
initial value problem

ow; ov; or

Gy tagy = Ty, Tl
8wi

= 2.98
oz, 0, (2.98)
@erialJrvi o6 = A0,

ot dr; ' Ox;
these equations holding on Q x (0,7), with
win; =0, 6=0, on T x [0,7], (2.99)

w;(x,0) =0, 6(x,0)=0, x €. (2.100)

The analysis begins by multiplying (2.98); by w; and integrating over {2
to find, with the aid of (2.98)5 and (2.99),

a1 d
Jwl|* + 5 %HWH2 =(wi, 9i0) — a(vi ¢, w;),
1 ¢ o? &
<—[lw|?+ 2[10]1* + = (Vi viz) + = |lw]]?, (2.101
< IWI+ 51612 + 55 (0 vi) + G, (2:100)

where the arithmetic-geometric mean inequality has been employed and
B3,¢ > 0 are to be chosen. Next, multiply (2.98)3 by 6 and integrate over §2
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to obtain with the aid of (2.98) and (2.99),
L1012 =(wiT.0,) — [0,
<Tnllw|| VO] — VO],

T2
<2 w2, (2.102)

dt2

where T' has been bounded using (2.96), and the Cauchy-Schwarz and
arithmetic-geometric mean inequalities have been employed. Integrate
(2.102) over (0,t) and use (2.100) to find

2 [
ool < = [ Iwlias. (2.10)

We next integrate (2.101) over (0,¢) and pick 5/2+1/2( =1, e.g. 8 =
¢ = 1. This yields

t t
. / 16]2ds + a2/ vi.|2ds. (2.104)
0 0
To bound the first term on the right we integrate (2.103) to obtain

t 2 t
T:T
/H9||2d8§—m /HWH2d8~
0 2 0

Thus, from (2.104) we may derive,

32T [* !
arlw(t)|]* < mT/ |w||>ds + a2/ |vis || % ds. (2.105)
0 0

To estimate the v;; term we multiply the equivalent v; equation from
(2.93) by v; ; and integrate over € then (0,t) to find

asllvil® + 5 5 dt” v[? = (9:S, vie),
¢ 1
0 [ usalas+ 517
< gl + % [ fonalias + o [lsias (2.106)

where the arithmetic-geometric mean 1nequahty has been employed. From
(2.106) we see that

t t 2

1 T mt
az/ 0,6 ]|*ds < ||Vo|\2+—/ 1S]1%ds < [lvol* + 2—,  (2.107)
0 a2 Jo Q2

where (2.96) has been used.
Now, employ (2.107) in (2.105) and we may show that

27 [* 2mT
2 ~m 2 < )
ol = 2 [ wias < 0?24 Lo

Qa3
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This inequality is integrated by an integrating factor method and we derive
t
/ |w|?ds < Ka?, (2.108)
0

where

K= 20&1||V0H2 20[1771
T2 T a3

Inequality (2.108) establishes continuous dependence on « in the measure

fot |w||?ds. We may determine continuous dependence estimates in the
measures [|0(¢)||? and ||w(t)||? from (2.103) and (2.105) and (2.107) and
these are

KT?2
o)) < ?’”oﬂ, (2.109)
[w(t)]* < Kza?, (2.110)

where

KT2T ||vol*> mT:T
+ + :

2

Ko =
2001 a0 opai

2.7 Continuous dependence, Krishnamurti
coefficient

A very interesting model to describe a situation of penetrative convection in
a viscous fluid was developed by (Krishnamurti, 1997). She also produced
an experiment which captured the phenomenon and motivated her model.
Linear instability and nonlinear energy stability bounds for a solution to the
Krishnamurti model were derived by (Straughan, 2002b). The theoretical
model of (Krishnamurti, 1997) relies on a pH indicator called thymol blue
being dissolved in water. This gives rise to a double diffusive model with
an equation for the temperature of the fluid coupled to an equation for
the concentration of thymol blue. The penetrative effect is provided by the
heat source depending on the thymol blue concentration. In this section
we consider continuous dependence for a Krishnamurti model in a Darcy
porous medium. Linear instability and nonlinear energy stability analyses
for this model are given by (Hill, 2005a). In his work (Hill, 2005a) also
develops stability analyses for a Brinkman theory, a theory where the heat
source is nonlinear, and for a theory in which the density in the buoyancy
force depends on temperature and concentration.
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The partial differential equations governing the Krishnamurti model in
a Darcy porous medium are

v = —p;+ 9T,
0v;

a;}i =0

?,Tf + UZSTZ = AC.

In these equations v;,p, T, C are the velocity, pressure, temperature and
concentration, g; is the gravity vector (|g| < 1), and the Krishnamurti effect
is introduced via the aC' term in (2.111)3. The Krishnamurti term arises
because (Krishnamurti, 1997) takes the heat supply to depend (linearly)
on concentration and this gives rise to equations (2.111)3. We here assume
(2.111) hold on € x (0,7) with the boundary conditions

vin; =0, T =h(xt), C=r(xt), on T x (0,7]. (2.112)
The initial conditions are
T(x,0) = Ty(x), C(x,0) = Cp(x). (2.113)

The goal of this section is to show that the solution (v;,p, T, C) depends
continuously on changes in the Krishnamurti coefficient «. It is important
in analysing a model to know that the addition of a term like the aC'
Krishnamurti term still retains the well posedness of the original system.

To establish continuous dependence we find it necessary to have an a
priori bound for the temperature 7. We may invoke the analysis of section
2.6 to see that C' is bounded by its initial and boundary values, precisely,

|IC| < C,, = max {Sllp |Co|, sup |’”‘}
Q Qx[0,7]

The presence of the aC' term in (2.111) prevents us from immediately
deducing a maximum principle for 7.

2.7.1 An a priori bound for T

We introduce the function H which solves
AH =0 in €,

Ho— p2et onT, (2.114)

where H = H(x,t) since h = h(x,t), and p is an integer.
Because of equation (2.111)3 we may write

t
/ ds/ (T*~' — H)(Ty +vT; — AT — aC)dx = 0. (2.115)
0 Q
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After several integrations by parts we deduce from (2.115)

202p—1) [!
/T2pdz+L/ ds/T?dex:/Tgpdx+2p(H,T)
Q p 0 Q Q

t t
—2p(Ho, Tp) — 2p/ (Hs,T)ds + 2p/ ds | Hv,T;dx
0 Q

t
+2p/ ds/—hdA—a/ (H,C)ds
0
+a/ ds/T2p—1Cdx. (2.116)
0 Q

The second - sixth terms on the right of (2.116) are handled as in (Payne
and Straughan, 1998a) and the new terms are the seventh and eighth. The
arithmetic-geometric mean inequality is used to see that

t t 2
—a/ (H,C)ds < %/ ||H\|2ds+%a, (2.117)
0 0

where m is the measure of ). To handle the last term in (2.116) we employ
Young’s inequality as follows,

/ ds/T2p LOda <<2p >/ /TQde
+ — ds/ C?Pdz. 2.118
2]0/0 Q ( )

From the maximum principle, (Protter and Weinberger, 1967), we know
H < h?P=1 h,, = maxr |h|, and then since from (2.111); we find ||v| <
|7, we use (2.117) and (2.118) and follow the analysis of (Payne and
Straughan, 1998a) to derive

/Q T?dy < / T2dx 1 2p(|H| [T + | Holl | To])

t t
+2p¢ s [ s
0 0
t t
+ 2ph2r—1 /||VT|\2ds/ | T||2ds
0 0
t t aH
+2p\// ds/thA/ ds/(—
0 r 0 r on

t 2 t
2T 2 — 1
+3/ | H||2ds + —=m a+a( p )/ ds/Tdea:
2 Jo p 0 Q

mC2PT
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The next step is to bound the | T|| and ||[VT|| terms and their integrals.
To this end we introduce the function G which satisfies

AG =0 inQ, G =h(x,t) onT. (2.120)
Now form the combination

t
/ ds/(T—G)(Tt+vifi—AT—aC)dm:
0 Q

After integrations by parts we may derive from this

1 ¢ 1 K
ST+ [ IvTas = Sl + [ ds [ 7.6G.de
2 0 2 0 o
t
+(G,T)—(G0,TO)—/ ds/TC{de
0 Q
t t
+/ ds/ Gv,;T,,;dera/ ds/ CTdx
0 Q 0 Q
t
—a/ ds/ CGdzx.
0 Q

We modify the argument of (Payne and Straughan, 1998a), p. 328, to find

t t
/ ds/ Gv;T ;dx SGm/ ds/ [v||VT|dz
0 Q 0 Q
[N — e 2
<= | T|*ds+ 5 [ |IVT||*ds.
2 Jo 2.Jo

Thus, use of this and the arithmetic-geometric mean inequality in the above
allows us to deduce

1 1t
Z||T||2+§/ IVT|*ds < ||T0||2+/ ds/h—dA
0

1 I
HWW+ﬂ&W+f/W%W@+—/HW%S

+aT,C2 + ( +24 > / |T|[2ds. (2.121)

(Payne and Straughan, 1998a) show how to use a Rellich identity to
bound the G terms in (2.121). The new term here is the afot |G|?ds/2
one but this also responds to the (Payne and Straughan, 1998a) treat-
ment. We define the data term D(t), for computable constants hi, ..., hg
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dependent only on data, by

1Dl(t) :hl/hszJrhg/ |V h|?dA
4 I I

t t
W [ [ran ['an [ 9.0z
0 T 0 r
t t
+h4/ ds/h?sdA+h5/ ds/thA
0 r 0 r
t
+h6/ dn/ |Vsh.n|?dA,
0 Q

where V; is the tangential derivative on I'. We may show D;/4 is a data
bound for all five terms on the right of (2.121) which involve G.
Thus, put a = 2 + 2a + h2,, then (2.121) leads to

1 1/t 1 a [t
—\TI? + 5 [ IVT|?ds < | To||> + ~D1 + T CZm + 7/ |7 ds.
4 2 Jo 4 4 Jo
This inequality may be integrated to find
t
7)< Datt) +a [ 7] (2.122)
0

where
Dy(t) = 4Dy + 4||Tp||* + 4maT C2,.

Inequality (2.122) may be integrated to obtain the following three bounds,

t
IT(t)||> < Dy + a/o et Dy (s)ds = Ds(t),

t t
/ IT[*ds < / (=) Dy (s)ds = Dy (t),
0 0
K 9 1 a
/ |VT|2ds < =Dy + =Dy = Ds(t).
0 2 2

We now return to (2.119). (Payne and Straughan, 1998a) show there are
constants 11, c; > 0 such that

IHI? < oy / hP24 A,
I

IHA1? < oy / (n21) ,dA,

/<3H> dA < ¢, /|V h?P12dA.
on
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Using these inequalities and the bounds for ||T']| and ||[VT]| in (2.119) we
may derive

/ T*dy < / T3%de + 2p( D3y + I1Tol )17 / hir=2dA
Q Q r
t
+2pD}/? / brdn / h2,hir=1d A
0 r
t t
+ 2ph2P~1 /Dg(S)dS Ds(s)ds
0 0
t t
+ 2pey/? / ds/thA/ dn/|V5h2p71|2dA

+ma7(c—+— + wl/ ds/h4p 24A

+a( )/0 ds/Qszda:. (2.123)

The first seven terms on the right of (2.123) are data and we denote these
by F(h). With Q = [} ds [, T?"dz, (2.123) is

Q/ - /’(’Q < F7
where = a(2p — 1)/p. This inequality integrates to yield

¢
/ T?Pdx < u/ F(s)e"(t=9)ds + F.
Q 0

We raise both sides of this inequality to the power 1/2p to see that

1/2p t 1/2p
( / szdz> < {FJr,u / F(s)e“(ts)ds} . (2.124)
Q 0

Let p — oo and since the right hand side of (2.124) is composed of [, TP de,
h2P C2P raised to the power 1/2p we arrive at

sup |T| < max{|T0|m , Sup hm,Cm} =T5. (2.125)
Qx[0,7] [0,7]

This is the a priori bound we sought to achieve.

2.7.2  Continuous dependence

We now let (u;, T, Cy, p) be a solution to (2.111) — (2.113) for Krishnamurti
coefficient «; and we let (v;,.5,Cq,¢q) be another solution for a different
Krishnamurti coefficient as, but for the same data functions h,r, Ty and
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Cy. Thus (u;, T,C1,p) and (v;, S, Cs, q) satisfy the boundary-initial value
problems,

u; = —pi + gi7T,

u;; =0,

Tt Ty = AT + oxC, (2.126)
Cre +u;Cri = ACH,
in Qx (0,7),
un; =0, T=h, Ci=r on I' x (0,7], (2.127)
T(x,0) = To(x), C1(x,0) = Ch(x), (2.128)
and
Vi = —q,;i + 9iS,
i;l:—f— UOZ,S’Z =AS 4+ asCy, (2.129)
Cat +viC2; = ACs,
in Qx (0,7),
ving=0, S=h, Cy=r on T x (0,7], (2.130)
S(x,0) = Sp(x), C2(x,0) = Ch(x). (2.131)

The difference variables w;, 0, ¢, m and « are defined by
wi=u; =0, 0=T-8,¢=C1 —Co,m=p—¢q,a=a; —az. (2.132)

By direct calculation we see that (w;, 0, ¢, ) satisfies the boundary-initial
value problem

w; = —7; + git),

Z)Z:' w(z)’Tz + v ; = A0+ 19 + aCy, (2.138)
¢t +wiChi +vig; = Ad,
in x (0,7),
win; =0, 6=0, ¢=0, on I x (0,77, (2.134)
0(x,0) =0, &(x,0) = 0. (2.135)

First, observe that multiplying (2.133); by w;, integrating over Q and
using the Cauchy-Schwarz inequality we find

[[wil < [6]]. (2.136)
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By multiplying (2.133)5 by 6 and integrating over €2,
d
GO =2 [ w6 dz 2|96 +2(Ca.0) + 201(6.6).
Q

Now use the bound for 7" and the arithmetic-geometric mean inequality to
find

d
%IIGH2 < all0]? + a|| ¢l + ka?, (2.137)
where we have set
T3 >
a:7+1+a1, k=mC,.

Next, multiply (2.133)4 by ¢ and integrate over € to find

d
G0l =2 [ wiCrodo — 2102,
Q
02

<2 wl?,
2
<=2, (2.138)

where (2.136) has also been employed.
We put 3 =a+ C2 /2 and add (2.137) and (2.138) to deduce

L1012 +1101) < B1612 + 191%) + ko
dt
This inequality is integrated to arrive at
10117 + o)1 < ¢ (t)a?, (2.139)

where ((t) = keft /(.
Inequality (2.139) is an a priori bound and establishes continuous
dependence on the Krishnamurti coefficient « for equations (2.111).

2.8 Continuous dependence, Dufour coefficient

This section is devoted to studying the influence the Dufour effect has
on double diffusive convective motion in a porous medium of Brinkman
type. We focus on the Brinkman equations rather than the Darcy equa-
tions. As pointed out in chapter 1, the Brinkman equations of flow in
porous media (Brinkman, 1947) have been the subject of intense recent
attention. Among recent papers dealing with Brinkman models we cite
(Franchi and Straughan, 1996), (Givler and Altobelli, 1994), (Guo and
Kaloni, 1995c; Guo and Kaloni, 1995a), (Kladias and Prasad, 1991),
(Kwok and Chen, 1987), (Lombardo and Mulone, 2002a; Lombardo and
Mulone, 2002b; Lombardo and Mulone, 2003), (Nield and Bejan, 2006),
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(Qin and Chadam, 1996), (Qin et al., 1995), (Qin and Kaloni, 1992; Qin
and Kaloni, 1994), (Payne and Song, 1997; Payne and Song, 2000), (Payne
and Straughan, 1996; Payne and Straughan, 1999a), and the references
therein. Double diffusive convective motion is the phenomenon involving
the diffusion and convection of two independent fields, such as tempera-
ture and a salt field. In section 2.7 we analysed another double diffusive
problem. Stability analyses of double diffusive phenomena, in a variety of
practical contexts, have occupied much recent attention, cf. (Avramenko
and Kuznetsov, 2004), (Bardan et al., 2000; Bardan et al., 2001), (Bardan
and Mojtabi, 1998), (Bresch and Sy, 2003), (Budu, 2002), (Carr, 2003a;
Carr, 2003b), (Chang, 2004), (Charrier-Mojtabi et al., 1998), (Clark et al.,
2002), (Guo and Kaloni, 1995¢; Guo and Kaloni, 1995a; Guo and Kaloni,
1995b), (Guo et al., 1994), (Hill, 2005a; Hill, 2003; Hill, 2004b; Hill, 2004a;
Hill, 2004c; Hill, 2005b), (Hurle and Jakeman, 1971), (Karimi-Fard et al.,
1999), (Knutti and Stocker, 2000), (Lombardo and Mulone, 2002b), (Lom-
bardo et al., 2001), (Malashetty et al., 2006), (Song, 2002), (Stocker, 2001),
(Stocker and Schmittner, 1997), (Straughan and Tracey, 1999) and (Ybarra
and Velarde, 1979). (Straughan, 2004a), chapter 14 discusses double diffu-
sive and even multi-diffusive convection in detail in a variety of contexts.
Further practical studies of double diffusive convection to energy conversion
and management via a solar pond occupy the papers by (Rothmeyer, 1980),
(Tabor, 1980), and (Zangrando, 1991), the one by Rothmeyer investigat-
ing in particular the Soret effect, which is in some sense the mathematical
adjoint to the Dufour effect.

To describe the Dufour effect, the equations for convective - diffusive
motion in an incompresssible fluid in a Brinkman porous medium may be
written as, employing a Boussinesq approximation in the body force term
in the momentum equation,

v; — M = —p; + 9T + hiC, v, =0,

)

Ty +uT; =—Jii, (2.140)
Ci+vC;=-K,;,

where v;,T,C and p represent velocity, temperature, salt concentration
and pressure fields, respectively, g; and h; are the gravity vector terms
arising in the density equation of state, and J and K are fluxes of heat and
solute, respectively. In equations (2.140) A is the Brinkman coefficient. The
Brinkman equations are discussed at length in (Nield and Bejan, 2006) and
in chapter 1, section 1.4 of this book. We observe that in (2.140); the T, C
terms arise from the body force in a Boussinesq approximation. The v; term
is essentially an interaction force between the fluid and porous matrix. The
AAw; term is an effective viscosity contribution and is believed appropriate
when the porosity is not too small. In the Brinkman equations the nonlinear
convective terms of Navier-Stokes theory are omitted as is the acceleration,
Ov; /Ot, term; this is consistent with flow through a porous matrix where
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the convection and acceleration terms are likely to be negligible. (Hurle
and Jakeman, 1971) argue that the general forms for the fluxes J and K
should be

Ji = —nT,i—pTc(%)D'qi, Ki = —pD[SrC(1-C)T;+C.], (2.141)

where k, D, D', St,p and p are, respectively, thermal conductivity, diffu-
sion constant, Dufour coefficient, Soret coefficient, density and chemical
potential of the solute. Continuous dependence of the solution on the
Soret coefficient is treated in (Straughan and Hutter, 1999). In this sec-
tion we set the Soret coefficient St = 0 and concentrate on a Dufour
effect. As a first step we treat a linear Dufour effect. This means we
treat the pTCD'(Ou/0C) term in (2.141) as constant. This is in keeping
with the approach of (Ybarra and Velarde, 1979). From a mathematical
viewpoint we may then, without loss of generality, reduce system (2.140),
incorporating the reduced version of (2.141), to the form

v; — AN = —p; + g T + h;C, v;; = 0,
T, +vT;=AT+~yAC, (2.142)
C,+vC,;,=AC,

where v > 0 is a constant and yAC represents the Dufour effect. We now
develop a priori bounds to enable us to establish continuous dependence of
the solution on changes in the Dufour coefficient (constant) ~.

2.8.1 Continuous dependence on 7.

The continuous dependence result we now establish is truly a priori in
that the coefficients appearing in the stability estimate are dependent only
on initial and boundary data, and on the geometry of the domain. The
proof given here is not identical to that of (Straughan and Hutter, 1999).
However, it can be adapted very quickly since the Soret system studied
in (Straughan and Hutter, 1999) is obtained by exchanging T and C in
(2.142). On the boundary I we consider the given data

v;=0, T=h C=g, zel, (2.143)

for prescribed functions h and g. Note that since we are dealing with the
Brinkman equations all components of the velocity are prescribed on T'.
The initial data are

T(x,0) =To(x), C(x,0)=Coh(x), x €. (2.144)

To study continuous dependence on v we let (u;, T, C1,p) and (v;, S, Ca, q)
be solutions to (2.142) — (2.144) for the same boundary and initial data,
but for different Dufour coefficients v; and . Thus, let (u;, T, C1,p) and
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(vi, S, Cq, q) solve the boundary-initial value problems

u; — AAu; = —p; + g:T + hiCh,

ui; =0,

(2.145)
Ty +uwT; = AT + v AC,
Crt +u;iCr; = ACy,
in 2 x (0,7),
U; = O7 T = h, Cl =9, onI' x (O,T), (2.146)
T(x,0) = To(x), C1(x,0)=Ch(x), x€Q, (2.147)
and
v; — AMw; = —q; + giS + hiCy,
o0 = 0s (2.148)
S+ viS; = AS + 12 ACs, '
Cat +v;Co; = ACy,
in 2 x (0,7),
v, =0, S=h, Cy=y, onT x (0,7), (2.149)
S(X, 0) = To(x), C’Q(X, 0) = Co(X), x € Q. (2150)

Define the difference solution (w;, 6, ¢, 7) and the gamma-difference, =,
by

wi=u; —v;, 0=T-5, ¢=C1—-Cy, T=p—q, 7Y=7—"2
The solution (w;, 0, ¢, 7) satisfies the partial differential equations

w; — ANAw; = —T; + gi0 + h; o, w;; =0,
9,25 + wifi + ’02‘9’2‘ = A0 +~vACT + Ao, (2151)
¢4 +vid; +wiCri = Ad,

in Q x (0,7), together with the boundary and initial conditions,
w; =0, =0, ¢=0, onI'x (0,7), (2.152)

0(x,0) =0, ¢(x,0)=0. (2.153)

Our analysis commences by multiplying (2.151); by w; and integrating
over {2 to derive

[wll® + MVwl* = gi(0, w:) + hi($, ws). (2.154)

Again we suppose, |g| <1, |h| <1.
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Multiply (2.151)3 by € and integrate over . Multiply (2.151)4 by ¢ and
likewise integrate over 2. In this way one derives

d1
51017 = =(iT5,0) = [VO]* = 4(VC1, VO) = 12(V0,V6),  (2.155)
and
a1, ., ,
%5”@‘ = —(w;Cr,i,9) — ||V~ (2.156)

We form the combination (2.155)+I1'(2.156) for a constant I'(> 0) to be
chosen. In this way we obtain

d1l
—(T)Il*+0]1*) = —T(wiCh,¢) — (wiT,;,0) — L[| V>

dt 2
—72(V0,Vo) — ||VO|* — ~(VC, V0). (2.157)

The first two terms on the right of this expression are cubic. We wish to
make a positive - definite form from the next three. So, the idea now is to
require I' so large that

LIVol* +72(V0, V) + [ VOI* > &1[Vol* + & V6|,

for positive numbers &1, &;. For example by using the arithmetic-geometric
mean inequality on the 72 term we may deduce

2 2 S 2 2 oy 2
DIV +72(V0, Ve) + V812 > (T = 22)[IVe|2 + (1= S2) Vo],

for @« > 0 at our disposal. Let us now choose a@ = 1/72 and then select
I' = 2. Thus, the inequality above becomes

2
1
LIVel* +72(V0, V) + || VO||* > %2||W5||2 + 5 Ivol*. (2.158)

Now use the arithmetic-geometric mean inequality on the last term of
(2.157). We balance the ||[V6||? term which arises with a piece of the same
term from (2.158). Thus, (2.157) together with (2.158) allows us to derive

d1 2
=5 (CISIP+101%) < ~T(wiCri, ) — (wiTs,0) — 2|Vl

1
= 1 IVOIZ + 2V Cr . (2.159)
Since we have extra dissipation provided by the Brinkman term (as opposed

to the Darcy term of section 2.7) we can bound the cubic terms in (2.159)
in a different manner. We begin with the following Sobolev inequality

[wlls < || Vw, (2.160)

where || - [|4 is the norm on L*(Q) and ¢; = ¢;1(Q2). We also utilise the
Poincaré inequality A;[|w||* < [[Vw]|?. Next, use the Cauchy - Schwarz,
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Sobolev and Poincaré inequalities together with the arithmetic-geometric
mean inequality to find
[(wiChi, @) < IVCL| [wlla [[@]l4
< G IVC] [Vw Vel
cf 2 2 1 2
< 5 IVGF VW + SVl (2.161)
A similar procedure leads to
1
(wiT,0)| < i |VTI* [Vw]? + AL (2.162)

Now, combine (2.161) and (2.162) in inequality (2.159) to arrive at
d1 cin?
92 GRI6I + 1017) <D ey vwi?
+alVTIP [[Vwlf? + 72 VO, (2.163)
We need to estimate |[Vw||? and then from (2.154) we may find
IWI* + X[Vw][* =(g:6, wi) + (hi¢, w;)
<[ellwil + lellwl

and then we use Poincaré’s inequality on a part of |[Vw]|? to find
Wl + A/ Al wlllvw] < ollllwl + lo][[wll-
From this inequality we derive the estimate
W]l + AV AVl < (0] + [|o]l- (2.164)

What we require in (2.159) is an upper bound for ||[Vw]|? and we may
derive this from (2.164), since this inequality shows

101 + 1l
Vwl|| < —F———,
V] < A
and squaring
ol +llel)* _ 2
2 - 2 2y 9.1
vl < ST < 2 Gl + ol (2165)
Thus, we employ estimate (2.165) in inequality (2.163) to find
dl¢ o0 2 2 ‘i 2 2 2 2 2
Sl <
25 (B161 + 1612) <555 (22 IV CulP + 219712 ) (101 + 1)
+ 2V 2. (2.166)

We now need a priori bounds for ||[VC|| and || VT||. To this end we follow
analogous steps to section 2.7 and we introduce the harmonic function, H,
which adopts the same boundary values as C;. Thus, define

AH=0,in Qx(0,7), H(x,t)=g(xt), onT x (0,7). (2.167)
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Form the identity

/ / (Cy — H)(Crs + w:Cry — ACy)da dy = 0. (2.168)

Next perform several integrations in (2.168) and use the boundary values
and properties of H to see that

1 1
SN = SOl — (H,Ch) + (Ho, Co) / / H.,Cda dy

/ /HulC’“dxdnJr/ |V Cy||2dn — /j{g—dAdn—O (2.169)

The point of introducing such an H is that we cannot work directly with
T or C; to form energy-like estimates since they have non-zero boundary
values. Instead we work with identities for T'— H or C; — H, functions which
are zero on I'. We may derive a priori bounds for H in a straightforward
manner. To handle the cubic term in (2.169) we let g, be the maximum
value of g on T' x [0,7) (gmis taken positive) and then since H is harmonic
we know by the maximum principle that H < g,,. Upon employing the
Cauchy-Schwarz and arithmetic-geometric mean inequalities we derive

t t t
/ / HuiC yda dn ng\/ / ||u2dn\/ / IV Cy 2dn
0 Q 0 0

1 [t 1 t
S§/ IVCy|[*dn + 5931/ [ul®dy,  (2.170)
0 0

where the coefficient of fot [VC1||?dn has been deliberately chosen less
than 1 so we may dominate it by the equivalent term in (2.169).
From equation (2.145); we may show that

[l + M Vul* = g;(T, ui) + hi(Cr, wi).
We use this equation to derive a bound for fg lul|2dn to employ in (2.170).

We now use the Cauchy - Schwarz inequality and Poincaré’s inequality to
derive

[l + X[ Vall* < Tl [al| + |C1[[}ul,
then
[all® + M [[ul® < |7 [[u]| + ICy [ [u]-
Thus,
(14N
from whence,

2017112 + 1€ 112)
(I4+2\)

[ul* < (2.171)
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Therefore, from (2.170),

t 1 t
/ H’U,iCLid.ﬁdﬁ S*/ ||VC’1||2dn
0 JQ 2 0

t t
+g?n( [ i+ | ||cl||2dn). (2.172)
0 0

By using the arithmetic-geometric mean inequality we may now show that
1 1 1
(H,Cv) < [HI* + ZlIC %, = (Ho, Co) < SlIHoll* + 5lICol*, (2.173)

and

//H C’ldmdn<—/ /sza:dn—i- //C’lda:dn, (2.174)

for a > 0 to be selected.
We now use the Poincaré inequality on the C? term on the right, but
since C7 = g on I the Poincaré inequality now takes form

)\1/ Clzdarg/WCl\zdm—&-kp/deA
Q Q T

where A\ and kp are positive constants depending on 2. We integrate this
inequality over (0,t) to find

/ds/Cldx<—/ds/|VCl\ dx—f——/ ds/ 2dA.  (2.175)

Now use estimate (2.175) on the right of (2.174) to find

1
//HﬂCldxdn gf/ /H dxdn + —— /ds/ \VCy [*dx
0o Jao 2\ Q

akp 2
A.
2)\1 ; ds/ d

We choose a/2)\; = 1/4, i.e. a = \1/2, to balance the fot ds [, |VCi|?dx
piece with an equivalent piece of the analogous term in (2.169). Thus, the
necessary inequality is

t 1 t
/ /HWC’ldxdn <—/ dxd77+ /ds VO, |2dx
0 4 0 Q
+—/ ds/ 2dA. (2.176)

By use of the Cauchy-Schwarz inequality one finds

K OH ¢ ¢ OHN 2
a_ < 2 . .
/0 ,/pgﬁn dAdn_\//O /Fg dAdn\//O /F(8n> dAdn (2.177)
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We next employ (2.173), (2.176) and (2.177) together with (2.170) in
equation (2.169) to arrive at

1 1 [t kp [*
sles@ P+ [ 1vean <ol + 22 [ds [ gaa+ a?
0 0 T

1 , 1 [t )
+ S Holl” + 5 [ Hyll7dn
2 2 Jo

! b OHN?
[ o[ [y
\/ 0 rg 77\/ 0 p<8n) N
t t
+93@/ IITHZdn+g§i/ 1C1 |12 dn. (2.178)
0 0

The next stage involves use of a Rellich identity, cf. (Payne and Weinberger,
1958), to estimate the H terms on the right of (2.178). Details appropriate
to the function H are similar to those in (Franchi and Straughan, 1994),
p- 449. We now give details.

Recall how the function H is defined in (2.167). Thus we may write

0= / ' H ;AHdx
Q
:/(xiH’iH,j)yjdx—/xin,iHyjdz—/xiH’in,jdm
Q Q' Q
:/miHinjdeA—/éi-Hidex—/ L (H;H ;) dx
r ' ’ Q I Q 2 e

:/leZaH dA*/HﬂH,ZdI’
T Q

“on
1 ) 1 4
— 5 Q(ZE H_’jH_’j)’Z'dfﬂ + 5 ch,iH,jH,jdx
H 1
:/IlHlaidA— */inniHjdeA
. * On 2 . ) )

3
—/HiH,*dl‘—F*/HiHida?,
Q ’ ’ 2 SZ kl ’

where several integrations by parts and use of the divergence theorem have
been performed. Thus, we see that

1 1 0H
5||VH||2 = i/rxiniH,jH,jdAf /F:ciHﬂ'%dA. (2.179)
On I' we write VH as a normal and tangential part, thus
0H
H7i =—mn; + V.Hs;,
on

where V,H s; is the tangential derivative, s'V ,H = xfaa“ﬁH;,@ where a*?
is the first fundamental form on I' and ., denotes surface differentiation.
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From this decomposition it follows that H jH ; = (0H/0n)? + |V H|?.
Hence, we write the right hand side (RHS) of (2.179) as

1 OH 2
RHS _§/Fx,nl(8n) dA + = /xmz|VSH| dA

OH i oOH
f/F:Einl(an) dA — /Fxls VSH%dA

1 oH , i o
o i/rxml<8n> dA“/FWWsHI dA—/ins VoH S dA

So (2.179) becomes

1 oOH
ZI\VHI? + A== ;| V H|?dA
HV II“ + /Fxml(an> d /Fxml|Vs |“d

OH
- iSi — VsH dA. 2.180
/Fxs anV (2.180)

We suppose now ) is star shaped and put m; = minr z;n; > 0. Thus,
from (2.180) we may determine positive constants ¢; and ¢y depending on
I" such that

OH\?
||VH||2+C1/(—) dA gcQ/ IV, H|2dA
r\on r
262/ |V.g|?dA. (2.181)
r
The Poincaré inequality for H has form, since H # 0 on T,
MIH|? < |IVH|? + kp/HQdA,
r
where kp = kp(2) > 0 and so
k
|H|? < Ci/ IVegl?dA + —P/g2dA. (2.182)
AL r A T

Furthermore, AH,; = 0 in Q x [0,7], with H; = g, on I'. We may apply
the above analysis to ¢ = H ; to derive an inequality analogous to (2.181)
and from this we find

[VH,|? < CQ/ Vg [2dA. (2.183)
I

Thus, inequalities (2.180) — (2.183) allow us to obtain estimates for the
H terms on the right of (2.178). Clearly, we may determine constants c,,
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dependent on I" such that

1 3 3
2+ S0 < e [ Paa+ S [ 1V.gPda (2180
r r

t t t
/ ||H7,7||2d17§05/ /g2TdAdT+06/ /\ng,7|2dAdT, (2.185)
0 o Jr’ o Jr
t H 2 t
/ /(%) dAdn§c2/ /|V59|2dAdn. (2.186)
o Jryon o Jr

If we now denote by D; a data term of form

Dy ()_4|\T0||2+k1/ 2dA+k2/\ng| dA+k3/ /g A dr

+k4/ /|vng| dAdT—i-ks\// / 2dAd77\// /|V59|2dAdn,

where k, may be computed from (2.184) — (2.186), then from (2.178) we
may arrive at the inequality

t t
||C1(75)H2+/0 IIVC1||2dnSD1(t)+4931/O (I + IC1][*)dn.  (2.187)

We must now carry out a similar procedure for bounding ||T|| and ||VT||
and so we introduce the harmonic function G which assumes the same
boundary values as T, i.e. define G to solve

AG =0, inQx(0,7), G(x,t) = h(x,t), onT x (0,7). (2.188)
Since T satisfies (2.145) we may construct the identity

//T G)(T+uwT; — AT — v ACy)dz dn = 0. (2.189)

We now carry out several integrations in (2.189) to arrive at
1 2 1 2 '
FITOF = SITIE = (G.7) + (Go. 7o)+ [ (G T
¢ ¢ ¢
—/ / Gu;T ;dz dn +/ |VT||2dn +'yl/ (VCy,VT)dn  (2.190)
0 Jo 0 0

t t
—/ /ha—GdAdn—'yl/ /ga—GdAdn:O.
o Jr On o Jron

Let h,, denote the maximum value of A on I'. Then following the
procedure leading to (2.170) we estimate the cubic term in (2.190).
The arithmetic-geometric mean inequality is used on the ; term and
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these procedures furnish the bound

t t t
/ / GuiTda dip—s / (V1. VT)dn < 12, / ]2y
0 Q 0 0
1 t t
! / IVT|2dy + 42 / IV Cy |2dn

2h2,
([ yriean+ [ jcuean)

+§/ IIVTIIan+fy%/ IVCy|2dn,  (2.191)
0 0

where in the last step (2.171) has been employed.
We estimate the G, term as

t 1 t ) a t )
[ @ nan<g; [16 a5 [ iz
t
a
/ IG.olPdn+ 55 [ 19T

where we have also used the Poincaré inequality for T'. Now pick a/2\ =
1/4, and then

t 1 t 1 t
/ (G T)dn < / 1G oy + - / IV T|dn
0 )‘1 0 4 0

k t
+—P/ dn/thA. (2.192)
4 0 r

Upon employing (2.191) and (2.192) in (2.190) we may further use the
arithmetic-geometric mean inequality to obtain

1 I 1 I
TP+ [ 19TIRdn < IZIP + 51Gal? + IGIP + 1= [ 16.0[Pdn
0 1.Jo

troaG trooG i
+/ /h—dAdnJrfyl/ /g—dAdef/ [VCy||2dn
o Jr on o Jr on 0

t t
+293n/ ||01||2d77+293n/ |7 dn. (2.193)
0 0
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Next use the Cauchy-Schwarz inequality on the boundary terms,

t t
//ha—GdAdm—'yl//ga—GdAdn
0 r 3n 0 T 8”
t t aG 2
< h2dAd // — ) dAd
[ feanan [ [ (2 aaan
t t 8G 2
— W/ 06\ 4 (2194
71\/0 9 A F(an) n )

By using a Rellich identity argument one may show that analogous
inequalities to (2.184) — (2.186) hold for G. We then define the data term
Dy for computable constants £1,..., 05 as

Dy (t) :4||T0||2+£1/h2dA+€2/ |V h|?dA
r r

t t
+£3/ /h?TdAdT+£4/ /|V5h,7|2dAdT
0o JI 0o JI
t t
+ 5 / /h2dAdn / /|Vsh\2dAdn
0 JI 0 JI
t t
+ l5m / /deAdn / /|Vsh|2dAd77. (2.195)
0o JI 0 JI

Upon using (2.194) and (2.195) in (2.193) one may produce the inequality

t t
1T () 2+ / IVT|2dy < Da(t) + 8g2, / |G|

t t
+89§i/ IIT\\an+4vf/ IV Oy |2dn. (2.196)
0 0

We now let o be a constant such that v > 447 and then form «(2.187) +
(2.196). In this manner we obtain the bound

O + (@) [ Ve a7l + [ 19T
< aDy+ Dy + [4o<g,2n + 8h$,J /Ot |C1|%dn
+ (4ag?, +8h2) /Ot |7 dn. (2.197)
Define now K; = 4ag?, +8h2,, D(t) = aD; + Dy, and K = K; if a > 1 or

K = Ky /a if @ < 1. Then from (2.197) one may discard the ||[VC;||? and
|[VT||? terms to derive

t t
a01<t>||2+||T<t>||2<D+K[a [cizan+ | ||T|2dn].
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Thus upon integration we see that

t t
a / |G |2dn + / IT|2dn < P(1), (2.198)
0 0

where P is the data term
t
P(t) = / K= D(s)ds. (2.199)
0

We still need a priori estimates for fot |VT||*dn and fot |[VCi]|?dn and these
follow by using (2.198) in (2.197) to find

t t
[ vt < ro. [ vera < po, (2200)
0 0
where P; and P, are data terms given by
1
P(t)= — |D(t)+ KP(t Py(t) = D(t) + KP(t).
1(t) (a—4’y%)[()+ (1], 2(t) = D(t) + KP(t)

We are now in a position to complete the continuous dependence estimate
on 7. An integration of (2.166) yields

2c] t
RI61? + 10017 < - [ VP + 20971 ol + o1

t
7 [ Iveilan
0

2K10411 ! 2 2 2| /.2 2 2
= o YIVCL[]® +2[VT* | (2 lloll* + [10]])dn
+72Pu(t), (2.201)

where Ko = max{l,v,2}. Now define f(t) = 2Kaci[y3||VCi|? +
2|[VT||?]/A2A1. Then an application of Gronwall’s inequality to (2.201)
furnishes the estimate

B2 + 002 < 12Pi(t) + 42 / P1<s>f(s>[exp / f<u>du] ds,

<5pi0)+ 7o [ | i) [ syt (2209

where Pi(t) = max,c[4 Pi(s). Thanks to (2.200) we have f; f(s)ds <
P5(t), where the data term Pj is given by P3(t) = 2Kyci[v3Ps(t) +
2Py (t)] /A%A1. Therefore, from inequality (2.202) we may deduce

Bl +100)]* < R(t)7?, (2.203)

where R(t) is the data term given by R(t) = Py(t)+ Py (t)P3(t) exp [Ps(t)].
Inequality (2.203) demonstrates continuous dependence on the Dufour
coefficient v, for the salt concentration C' and temperature 7.
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We may also derive a continuous dependence inequality for the velocity u
by employing (2.154) in combination with (2.203). From (2.154) one easily
derives the estimates

191l + ll¢l L
s d \V4 < -
(1 + )\)\1) an H W” — A /Al

These inequalities together with (2.203) yield
2K5R(t)
FESYWERE

[wll <

(el =+ liglh-

2K,

2 <
Iw()? < e

and  [Vw(OIP < 52 R() 72

(2.204)

Inequalities (2.204) establish continuous dependence on the Dufour
coefficient v in the L? and H' measures of w as indicated.

Very interesting a priori bounds and continuous dependence on the Soret
coefficient for the system of equations (2.140) are established by (Lin and
Payne, 2007a). These writers study equations (2.140) with zero flux bound-
ary conditions. The methods they use are very interesting and of necessity
different from those described in this section.

2.9 Initial - final value problems

Recently a new class of problem has been shown to be relevant to many
applied mathematical situations. This is where the data are not given at
time ¢ = 0, but instead are prescribed as a linear combination at times
t = 0 and t = T. We shall refer to such situations as initial - final value
problems. Specific applications of these ideas are in (Payne and Schae-
fer, 2002), (Payne et al., 2004), (Ames et al., 2004a; Ames et al., 2004Db),
(Quintanilla and Straughan, 2005b; Quintanilla and Straughan, 2005a) and
the references therein. This class of problem was originally introduced in
order to stabilize solutions to the improperly posed problem when the data
is given at t = T and one wishes to compute the solution backward in
time, see (Ames et al., 1998), (Ames and Payne, 1999) and the references
therein. (Ames et al., 2004a) study an initial - final value problem for the
first order abstract equation u; + Au = f. (Ames et al., 2004b) investigate
an initial - final value problem for the diffusion equation with the spatial
domain being an infinite cylinder. (Payne and Schaefer, 2002) study an
initial - final value problem for the second order in time abstract equation
uyy + Au = F. They also investigate a similar initial - final value prob-
lem for the equation uy + auy + Au = 0, for a > 0 a constant. (Payne
et al., 2004) study an initial - final value problem for some fluid mechanics
problems; especially in connection with Stokes flow. Further analyses of ini-
tial - final value problems are by (Quintanilla and Straughan, 2005b) who
investigate thermoelasticity according to the new developments of (Green
and Naghdi, 1991; Green and Naghdi, 1992; Green and Naghdi, 1993).
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Further analysis of these theories may be found in (Quintanilla and Racke,
2003), (Quintanilla and Straughan, 2000; Quintanilla and Straughan, 2002;
Quintanilla and Straughan, 2004), (Zhang and Zuazua, 2003), (Puri and
Jordan, 2004). Another article dealing with initial - final value problems
is that of (Quintanilla and Straughan, 2005a) who concentrate on dipo-
lar fluids, see also (Bleustein and Green, 1967), (Green and Naghdi, 1968;
Green and Naghdi, 1970), (Green et al., 1965), (Green and Rivlin, 1967),
(Akyildiz and Bellout, 2004), (Jordan and Puri, 1999; Jordan and Puri,
2002), (Puri and Jordan, 1999b; Puri and Jordan, 1999a), on the (Green
and Naghdi, 1996) extended theory of viscous fluids, and on the Brinkman-
Forchheimer model of flow in porous media. The last topic is of interest in
this book.

The article of (Quintanilla and Straughan, 2005a) analyses the
Brinkman-Forchheimer equations, as used by (Qin and Kaloni, 1998),
namely

Ay = —pi — ui + ANAu,; — Blulu,,

2.205

In these equations u;, p represent the velocity and pressure, and A, \, 3 are
positive constants.

We take equations (2.205) to be defined on a bounded domain Q C R?
on the time interval (0,7 for some T' < oo, with the boundary conditions
being

u; =0 on I (2.206)

The study of (Quintanilla and Straughan, 2005a) uses the initial - final
condition

ui(T) + o (0) = fi, (2.207)

where « is a constant, and f;(x) is a prescribed function. (The standard
initial boundary value problem for (2.205) would replace (2.207) by u;(0) =
fi. The standard final boundary value problem for (2.205) would employ
u;(T) = f; instead of (2.207).) Here, the objective is to obtain a bound on
u; in terms of f; and «, employing the relation (2.207).

(Quintanilla and Straughan, 2005a) note that for the final value problem
for (2.205), (2.206), i.e. with o = 0, a global solution does not exist. By
transforming ¢ — T — ¢ one may show (cf. for example, the arguments
in (Straughan, 1998))

[ (0)]l
t)|| > . 2.208

O = @I — 2y (2205
In this inequality v = (A + 1)/A, ko = 26/Am*/?, with A\; being the first
eigenvalue in the membrane problem for €2 and where m is the volume of €.
The right hand side of (2.208) blows-up at time 7 = [A/(A\; +1)]log {1+
(AN + 1)mY/2/3||u(0)[]}, and so u; cannot exist classically beyond this
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time. (Quintanilla and Straughan, 2005a) then argue that care must be
taken with the initial - final value problem defined by (2.205) — (2.207).
(Quintanilla and Straughan, 2005a) derive a bound for u; by commenc-
ing with multiplication of (2.205) by u; and integration over € using the
boundary conditions to find
d A

Gl = <l = AVl = 5 [ jufdn. (2200
Q

We employ the Poincaré inequality —||Vul|? < —A;|lul|? and the Cauchy-
Schwarz inequality to find — [, [u*dz < —[[u|*/?/m!/2. Then from (2.209)
with ®(t) = ||u(t)||*> one may show

E < —Clq) - Cz‘i)g/Z7 (2210)
where the constants ¢; and ¢y are given by
214+ 2\) 2
AETTA 2T A

Inequality (2.210) is integrated to obtain

u [u(0)]|e=<1t/2
R N O RIS

for ¢ in the interval 0 <t <T.

This is a bound for u;(t) in terms of u;(0). However, u;(0) is unknown. We
need to remove ||u(0)| in (2.211) and convert it to an estimate involving
fi and a. The key is also to retain the co term since this contains the
Forchheimer effect (the § term). It is necessary to bound ||u(0)|| from both
above and below.

(Quintanilla and Straughan, 2005a) show that one may demonstrate

]l

(2.211)

) > —120 2.212
o)) > i (2212)
and provided |a| > e~17/2]
1
()]} < [£]]- (2.213)

(ol =173
The lower and upper bounds (2.212) and (2.213) used in (2.211) lead to
the estimate
E [, el
(la| —e=T/2) c11/2(a2 + eaT)

lu(t)]| < et/ o (2.214)

provided |a| > e="/2 for ¢ in the interval 0 <t < T.
(Quintanilla and Straughan, 2005a) observe that while the bound in

(2.214) is not optimal, the system of equations (2.205) is nonlinear, and so
an optimal bound would be hard to achieve. If instead one were to consider
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the equivalent problem for the Brinkman equations, i.e. take § = 0 in
(2.205), we may derive an optimal estimate. We do not include details
since they follow very closely the arguments of (Payne et al., 2004) for the
Stokes equations. The difference is the addition of the —u; term in (2.205).
The Lagrange identity and non-uniqueness proofs of (Payne et al., 2004)
apply here, mutatis mutandis.

2.10 The interface problem

In this section we study the problem where a viscous fluid adjoins a porous
medium saturated with the same fluid. In thermal convection this was
addressed in the fundamental papers by (Nield, 1977) and by (Chen and
Chen, 1988). One of the fundamental problems in modelling flow of a fluid
over a porous medium is that the conditions at the interface between the
fluid and the porous medium are a contentious matter, see e.g. (Beavers
and Joseph, 1967), (Caviglia et al., 1992b),(Ciesjko and Kubik, 1999),
(Jager and Mikelic, 1998), (Jiger et al., 1999), (Jones, 1973), (McKay,
2001), (Murdoch and Soliman, 1999), (Nield and Bejan, 2006), pp. 17 — 19,
(Ochoa-Tapia and Whitaker, 1995a; Ochoa-Tapia and Whitaker, 1995b;
Ochoa-Tapia and Whitaker, 1997), (Saffman, 1971), (Taylor, 1971). Very
good agreement with experiment is often achieved by employing the exper-
imentally suggested condition proposed by (Beavers and Joseph, 1967), or
its generalization by (Jones, 1973). (Straughan, 2001c; Straughan, 2002a),
(Carr, 2004) and (Carr and Straughan, 2003) have investigated various
aspects and generalisations of the Nield and Chen-Chen problems. They
find that the Beavers-Joseph and Jones boundary conditions give good
results over a wide range of parameters. The Beavers-Joseph condition has
been successful in the slow flow of a fluid past a porous sphere (Qin and
Kaloni, 1993). If one is employing a method based on linearized instability
and so is using Stokes’ flow, use of a Beavers-Joseph or a Jones condition is
probably justified. Numerical schemes are developed for the coupled fluid
flow and porous flow problems by (Discacciati et al., 2002), by (Miglio et al.,
2003), by (Hoppe et al., 2007), and by (Mu and Xu, 2007). Several com-
putational simulations are reported in these papers. Another interesting
numerical contribution to porous/fluid flow is by (Das et al., 2002). This
paper presents a finite volume method in three-dimensions. The porous
part of the domain is allowed to be anisotropic. It is shown that flow cir-
culation may occur inside the porous medium and the direction of flow
may reverse at the interface between the porous medium and fluid. (Lay-
ton et al., 2003) prove existence for weak solutions to the problem of Darcy
porous media flow coupled to the Stokes equations in a fluid with the
Beavers - Joseph interface boundary condition. They also analyse in detail
a finite element scheme which formulates the coupled problem as uncoupled
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steps in the porous and fluid regions thereby allowing a user to employ some
of the many existing numerical codes for the separate flow regions. (Das
and Lewis, 2007) is another recent very interesting contribution. These
writers are interested in the three-dimensional flow pattern and how het-
erogeneities in the porous medium will affect this. To achieve their aim
they interestingly employ two porous layers with different permeabilities.

The purpose of this section is to review work of (Payne and Straughan,
1998a) which studies the manner in which a solution to flow in a fluid which
borders a porous medium depends on a coefficient in the Jones boundary
conditions. We adopt the notation of (Payne and Straughan, 1998a) and
thus, let an appropriate part of the plane z = x3 = 0 denote the boundary
between a porous medium occupying a bounded region € in R?, and a
linear viscous fluid occupying a bounded region €2; in R3. The porous region
is in z > 0 while the fluid domain is in z < 0, although both ©; and Q5
are bounded. The interface between €2y and €25 is denoted by L while the
remaining parts of the boundaries of 2; and €y are denoted, respectively,
by I'y and T's. In Q; the fluid velocity is slow such that the governing
equations may be taken to be those of Stokes flow. The question of Navier-
Stokes flow is addressed in (Payne and Straughan, 1998a). In the porous
region 2y the flow is assumed to satisfy the Darcy (1856) equations.

Let (u;, T, p) denote the velocity, temperature and pressure in §2; while
(u*, T™,p™) denotes the velocity, temperature and pressure in . The
Stokes flow equations which hold in the fluid region are

Qu __ 9p + pAu; + g;T, Oui _ 0,
ot ox; Ox;
(2.215)
8£ + 87T — AT
ﬁt i 811 - ’

in Q1 x (0,7), where u is the dynamic viscosity, « is the thermal diffusivity
and g; is the gravity vector which is scaled such that |g| < 1.
The relevant Darcy equations which hold in the porous region are,

M m_ _8pm - ou™ —o0,
k 81:,- 8xz
o S (2.216)
Y e N
ot U g, " ’

in Q9 x (0,7). The constant k is the permeability and x™ is the thermal
diffusivity of the porous medium.
The functions u;,T" and T™ satisfy the initial data

ui(z,0) = f;(x), T(x,0) =Tp(x), x €,

2.217
T™(2,0) =T (x), z € Qo. ( )
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On the outer boundary I'y U Ty we consider
u; =0, T=Ty(zt), on Ty x(0,7),

2.218
u'n; =0, TM =Tr(x,t), on Iy x(0,7), ( )

for prescribed functions Ty and 77, with n; being the unit outward normal.
The conditions on the interface L chosen by (Payne and Straughan, 1998a)
are

us = uy', T=Tm", kT3 =r"TY,
% (2.219)
—= ug.
N
The coefficient « is determined by experiment for a given fluid and a given
porous solid. These boundary conditions are discussed at length in (Nield
and Bejan, 2006), see also chapter 6. The condition ug 3+ us3 g = uﬂal/\/E
essentially derives from the work of (Jones, 1973). The motivation for
this arose from (Beavers and Joseph, 1967) who argued on the basis of
experimental results that

P =p—2puuzz3, ug,3 +usg =

(5] m
ugs3 = — (ug —ug ), on L 2.220
8.3 \/E( s — ug') (2.220)

and (Jones, 1973) generalised this to include the shear stress at the
interface, i.e.

o m
ug,3 +usp = 71% (ug —ug'). (2.221)

(Nield and Bejan, 2006) write that (Saffman, 1971) argues that the
last term may essentially be dropped in equation (2.220). This is the
justification for (2.219)s.

The object of this section is to describe an a priori estimate showing how
(u;, T) and (u*,T™) depend continuously on the interface coefficient o.
To do this, let (u;,p,T) and (ul™, p™,T™) satisfy (2.215) — (2.219) and let
(viyq,S) and (v, ¢™,S™) solve the same boundary initial value problem
with identical data functions f;, Ty, 13", Ty and 17, but with the Jones
coeflicient «; replaced by a different value as. The difference variables
(w;, m,0) and o are defined by

w; =u;—vy, w™=p—gq, 0=T -5, o= — as. (2.222)

By direct calculation one finds that (w;, 7, ) satisfy the partial differential
equations

8wi or

T L
3w,~

— 2.223
i, (2:223)
2 90 a8
v v O2 A
ot Tligg, TWigg = A0
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in 4 x (0,7),
%w:ﬂ —%7;7 +g:0™,
?T{n =0, (2.224)
ag;n +u" 869: + w” %i? =r"AO™,

in Qg x (0,7).

The initial conditions become
wi(z,0) =0, 6(z,0)=0, x¢€Q, 0™ (x,0) =0, z€Qy. (2.225)
On the outer boundary the relevant conditions become

w; =0, 6=0, on Ty x(0,7),

2.226
wi'n; =0, 0™ =0, on Iy x (0,7). ( )
The interface boundary conditions may be written
w3 = wy", 0=0m, kb3 = k"0,
(2.227)

" =71 —2uw wg 3+ w alw—i—av
=T = 3,3 3 3.8 = —F= —= vg,
) B B \/E B \/E B
these holding on L x (0,7).

(Payne and Straughan, 1998a) establish the following theorem which
demonstrates continuous dependence of a solution on the interface
coefficient «;.

Theorem 2.10.1 Suppose dT/0n € L'(Ty x (0,7)) and dT™/dn €
LY (Ty x (0,7)). Then there exist constants v(< 2u/k), B,C and A,
determined in (Payne and Straughan, 1998a) such that

t
/ wiwid:quB// wiwidzdnJrfy/ ww] dx
Q1 0 Q1 Qo

CeBt R
< ( fifidw + AtT%) ol (2.228)
931

esEe?)

Furthermore, there is a constant M, depending on t, such that

/92dx+/ (™) 2z < 2L o2, (2.229)
Ql Qz

109

The proof of this theorem is technical, care must be taken with the
interface terms, and we refer to (Payne and Straughan, 1998a) for full
details. Nevertheless we note that the proof is interesting and is based on
a combination function ®(t) of the form

t
D(t) :/ wiwidx—l—’y/ / wtw™ dx dn .
(951 0 Qo
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2.11 Lower bounds on the blow-up time

(Payne and Schaefer, 2006; Payne and Schaefer, 2007) and (Payne and
Song, 2007a) produce a clever argument to show that one can derive lower
bounds for the blow-up time for a nonlinear differential equation and for
the Navier-Stokes equations with nonlinear forcing terms. Prior to this
work there had been many analyses of blow-up which had derived upper
bounds on the blow-up time. However, the work of (Payne and Schaefer,
2006; Payne and Schaefer, 2007) and (Payne and Song, 2007a) is novel in
that it produces a lower bound for the blow-up time. (Suzuki, 2006) shows
how to derive a universal bound, independent of the initial data, which is
useful in calculating the initial blow-up rate of a solution, whereas (Hirota
and Ozawa, 2006) consider numerical techniques for estimating the blow-
up time and the rate of solution increase. (Kirane et al., 2005) investigate
critical exponents of Fujita type when fractional derivatives are present.
(Fila and Winkler, 2008) demonstrate a solution which blows up in a finite
time at a point with the solution remaining bounded elsewhere. Other
interesting blow-up results and analysis showing prevention of blow-up are
due to (Bhandar et al., 2004), (Boutat et al., 2004), (Tersenov, 2004).

We now consider an analogue of the (Payne and Song, 2007a) problem
but for a Brinkman porous medium. The equations for the Brinkman prob-
lem with a non-zero inertia and nonlinear forces depending on temperature
are, cf. equations (2.76)

Ou; op
« ot 77U1’+>\AUZ787];14+}LZ(T),
8ui
_ 2.230
oz, =0 (2.230)
oT oT

In these equations u;, T, p are velocity, temperature and pressure, a, A are
the inertia and Brinkman coefficients and h;(T) and f(T) are nonlinear
functions of temperature. Equations (2.230) are defined on a bounded
spatial region ) over a time interval (0,7). The boundary conditions
considered are

w; =0, T=0 onT' x (0,7), (2.231)
while the initial conditions are

ui(x,0) = ud(x), T(x,0)=Tp(x) > 0. (2.232)
We here only consider the Brinkman model, but one could consider a Darcy
model. Also, we only consider Dirichlet conditions on the boundary whereas
one could alternatively employ Neumann boundary conditions following
(Payne and Schaefer, 2006), (Payne and Song, 2007a). We also note that
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we could employ T = constant in (2.231) although care would then need
to be taken with the function f.

Since both equation (2.230); and equation (2.230)3 are forced by non-
linear functions of temperature, one may ask if blow-up occurs, will this
be in the first instance via the velocity or the temperature field? We follow
(Payne and Song, 2007a) to show this must be via the temperature.

Let t1 be the blow-up time of the temperature T and t5 be the blow-up
time of the velocity u;. We wish to show that ¢; < t5. Suppose, therefore,
this is false so that to < t1. Then, for t < t, we multiply equation (2.230);
by u; and integrate over ) to find after integrations by parts and use of
the boundary conditions and (2.230)s,

d « 9 9 9 /
— —|[ul||* = —||lul|* = A||Vul|*+ | h;u;dx.
gl =l - X vug+ [

We employ the Poincaré inequality A [lul|? < ||[Vu||? and the arithmetic-
geometric mean inequality for v > 0 to now see that

d o 2 i 2 ||h||2
LY <—(1 A)\77> s iy 2.2
g7 < = (e = )l 5 (2:233)
Pick v = (1 + A\1) and then from (2.233) one sees that
d v [
Sl < == fa? 4+ 7= (2.234)

Since t < ty < t1, h;i(T) is bounded and so ||h||? < M2, for some constant
M. Employ this bound in (2.234), and integrate with an integrating factor
to obtain

a(®)I < fual? exp |- (<220)e

* e (e ()]

I

(2.235)

where t < t5. Now let t — 2. By assumption ||u(t)||* blows up at t = ta,
but inequality (2.235) contradicts this. Thus, t; < t5, and so t; is a lower
bound for the blow-up time.

The conditions we now impose on the nonlinear function f(T') are the
same as those of (Payne and Schaefer, 2007), namely

f0)=0, f(s)>0, for s > 0, (2.236)
* ds

—— is bounded for T" > 0, 2.237

[ 7 (2237)
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and there are constants n > 2 and 3 > 0 such that

© gs \"! "
f(0) (/T f(s)) —o00 as T — 07, (2.238)
, > ds B
F(T) /T O (2.239)

As (Payne and Schaefer, 2007) remark, from the work of (Ball, 1977)
and (Kielhofer, 1975), when the solution does cease to exist globally then
the behaviour is that of blow-up.

To now derive a lower bound for the blow-up time ¢; we follow (Payne and
Schacefer, 2007), (Payne and Song, 2007a). Put R = [ ds/f(s), v =1/R,
and define the function ¢(t) by

By differentiation

d _
d—f :n/Qv" Lordz

=n | — [AT —w;,T; + f(T)] dx. (2.240)

Using the chain rule one shows

i1 1
R Rt U / (v") quidx
/Q f(T) nJo

1
= — |:/ (v”ui),idw — / ’Un’LLi’id{L‘:| =0.
nija Q

Thus, equation (2.240) reduces to

d(b ,UnJrl

7 =" T [AT + f(T)] de. (2.241)

From this point, the estimate for t; effectively follows from the arguments of
(Payne and Schaefer, 2007). Integrate the first term on the right of (2.241)
by parts to find

v HIAT / ptl L aT
n | ———dr=-n — ) T,;dx+ n/ —— —dS, 2.242
o T ()T @ o S (2242)

where 9/0v denotes the unit outward normal derivative. Thanks to con-
dition (2.238) the last term in (2.242) is zero. The first term in (2.242) is
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expanded and then (2.239) is employed to find

V" FLAT / ,Un—',-lf/(T)
n| ———dr=n | ———=T,T,;dx
o [f(T) o 7 o

T,
—n(n+1) / - V"2 T d,
of

,UnJr2 ,Un+2
Un+2
= —ﬁn/ T T,iT)id.’L‘. (2.243)
o f
Inequality (2.243) is now employed in equation (2.241) to find
dt — f

Noting that v("/2*D T,/ f = 2(v"™/?) ;/n this inequality is rearranged as

d n+2
a9 < —ﬂn/ v—QTZTdeJrn/ v .
Q Q

4
@9 < ——ﬁ/(v"/g)i(v”m) idx—i—n/ 0" . (2.244)
dt n Jo ' ’ Q

If m denotes the measure of  then from Holder’s inequality and the
Cauchy-Schwarz inequality one sees

2(n+1)/3n
/Un+1d$ Sm(n72)/3n </ U3n/2d$>
Q Q

(n+1)/3n
<m(n=2)/3n </ vznda:/ v"dx) . (2.245)
Q Q

We next use the Sobolev inequality

1/2 3/2
e < C( dea:) ( / w,iw,idar> ;
Q Q Q

where a value for C is calculated in (Payne, 1964), taking 1) = v™/? to find

1/2 3/2
/ v da < C(/ v"dx) {/ (v"/2)7i(v"/2)7id:c] .
Q Q Q

This estimate is now used in (2.245) to obtain

/vn+1dx§m(n2)/3nc(n+1)/3n<al/ ‘V’Un/2|2df£
Q Q

1 (n+1)/2n
X (—/ v”dx) ,
a1 Jo

> (n+1)/2n

(2.246)
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where the constant o;; > 0 has been added to allow removal of the |Vo™/2|?

term. Next, employ Young’s inequality
‘ 1 1
XY < —+—, -+-=1
p S p s
with X = oy [, |[Vv"/22dz, Y = [,v"dz/a1, p = 2n/(n+1) > 1, and
s=2n/(n —1). Then, from (2.246) we derive

/ vy <m(”—2)/3”C("+1)/3"(—n+ 1)a§"/<”+1> / Vo2 2 de
Q B 2n Q

(n—2)/3n ~(n+1)/3n n—l) 1
+m C (Qn a%n/(nq)

(n+1)/(n—1)
X </ v”dm) . (2.247)
Q

Inequality (2.247) is next employed in inequality (2.244) to find

o < mnwz)/3no<n+1>/3n(_”+ 1)a§"/<”+1> _% / Vo2 P da
dt 2n n | Jo

4 (n=2)/3n G (n+1)/3n (” - 1) 1
2n

o2/

V(=1 (2 948)

The constant a; is now selected to make the first term on the right of
(2.248) zero. Thus, for K computable, from (2.248) we derive

do

¥ < KpntD/(n=1)
dt — ¢

This inequality is integrated to obtain

1 1 2Kt

PO~ GO0 = 1)

When t — t; (the blow-up time), then (2.249) yields the lower bound # for
t1, where

(2.249)

n—1 1
2K )[(;5(0)]2/(”—1)

_ (”2;) </Q [/T:z) %} ndz) e (2.250)

The above derivation simply adapts the clever analyses of (Payne and
Schaefer, 2007) and (Payne and Song, 2007a) to a Brinkman model.

A lower bound with a more direct derivation may be found by adapting
the method of (Payne, 1975), pp. 49, 50. To do this we work with equa-
tion (2.230)3. The assumption on the nonlinearity is now inequality (8.31)
of (Payne, 1975), namely

/T2p‘1f(T)dx§/ TP+, (2.251)
Q Q

t12£:<
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where v is a positive constant, and (2.251) holds for any positive integer p.
Introduce the function

D, (t) = /Q TP dz.

Then,

o, oo L OT
27r o T2p—19%
a7 /Q ar

:2p/ T2p—1Ade—|—2p/ 7?7~ f(T)dx
Q Q

oT
- / 7?7y, — dax. (2.252)
Q 0z;
Integrating by parts and using the boundary conditions,

oT 1 0
/ T2y, de =— | wy TP dx
Q Ox; 2p Jo 0w

1 1
=— / un; T dS — — / w; ;T dx
2p Jr 2p Jo

=0. (2.253)

Further integration by parts and use of the boundary conditions yield
T
2p/ TP~ AT dx =2p/ 7201 or dS —2p(2p — 1) / T?P=2T,T ;dx
Q r on Q

= —2p(2p— 1) / T?P=2T,Tdx . (2.254)
Q

Now, use (2.253), (2.254) and inequality (2.251) in equation (2.252) to see

that

dd 2(2p — 1
—F<— L/ T?T’;deer/ |T|?P* da
dt D Q Q
<2p / 2P dg (2.255)
Q

Next, put

T (t) = sup [T(x,1)].
zeQ

Then from (2.255) we may derive

ae,

—L < 2T D, .
at =P

An integration of this inequality yields

®,(t) < ®,(0) exp [2]9 /Ot Tg(s)ds} .
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Raise both sides of this inequality to the power 1/2p and then let p — cc.
In this manner we obtain

T.(t) < T.(0)exp {/Ot Tﬂ(s)ds} . (2.256)

Since ¢; is the blow-up time for 7' we must have T, () — oo as t — tq,
and assuming 7T is sufficiently regular,

/tl T7 (s)ds = oc. (2.257)
0

The next step is to raise both sides of inequality (2.256) to the power v
and then, provided ¢t < tq, this inequality yields

rwes [ [ T26)s] <70)

A further integration of this inequality over 0,¢ < ¢, leads to

1~ exp {—y /0 t Tj(s)ds} < T7(0).

Let now ¢t — ¢; and employ condition (2.257). In this way we find

1
— <. 2.258
~T7(0) = ( )
Inequality (2.258) represents an alternative lower bound for the blow-up
time ¢; to the estimate (2.250).
The above proof is a straightforward adaptation of the demonstration
of (Payne, 1975), pp. 49, 50.

2.12  Uniqueness in compressible porous flows

So far in this book we have concentrated on fluid flow in a porous medium
where the fluid may be treated as incompressible. However, sound propa-
gation through a porous medium is one important example of a situation
where flow of a compressible gas in a porous material is necessary. We study
in detail wave motion of a compressible fluid in a porous medium in chapter
8 with related material given in chapter 7. Therefore, in this chapter we
commence a study of the well posedness of a theory for compressible flow
in a porous medium by establishing a uniqueness theorem. Since the wave
motion in chapter 8 is typically for sound waves propagating in an infi-
nite medium we here establish a uniqueness theorem for flow in an infinite
spatial region. To establish our theorem we appeal to a beautiful result of
Dario Graffi, (Graffi, 1960) although Graffi’s paper is conveniently found
in the selected works, (Graffi, 1999), pages 273 — 280.

The model for compressible flow in a porous material is taken from
(De Ville, 1996). It consists of the equations for flow of a barotropic per-
fect fluid, cf. (Fabrizio, 1994), to which have been added a Darcy term and
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a Forchheimer term to represent the interaction with the porous matrix.
This model is one of equivalent fluid type, and these are discussed in greater
detail in section 8.1. The equations we employ are those of (De Ville, 1996),
equations (4) and (5), although we assume the fluid is polytropic so that the
pressure - density relation is of form p = ap?”, where p and p are pressure
and density, a is a positive constant, and « is a constant with 1 < v < 2.
With v; being the fluid velocity, k, A, b; positive constants the model of
(De Ville, 1996) may be written

dp dp ov;

A 7 :Oa

ot Yo o, 950
%+U~%+b ’UU‘+§’U'*7Q Y—2, ( )
ot ! O PR DY pr P

where we adopt the (Graffi, 1960; Graffi, 1999) notation v = |v]|.

(Graffi, 1960; Graffi, 1999) establishes uniqueness for (2.259) when
by = 0,k = 0. The extension to include these terms is non-trivial and
given below. Nevertheless, we extend the (Graffi, 1999) method and employ
his notation. Henceforth, we employ the notation (Graffi, 1999) to denote
paper 22 of the selected works, pages 273 — 280.

Equations (2.259) are defined on a space - time domain. The time domain
is (0,7) and the spatial domain D is either R? or the exterior of a bounded
domain o in R3. In either case D is an unbounded domain. We impose the
same hypotheses as (Graffi, 1999), and in particular his hypotheses (a) —
(g). However, we have already mentioned hypothesis (b) which states that
the pressure is polytropic and we have no need for hypothesis (¢) which
concerns the body force, since one may regard equation (2.259) as defining
a particular form for the body force. The remaining hypotheses (a) and (d)
— (g) are stated below.

(a) In the domain D x (0,7) the velocity v and density p are uniformly
bounded together with their first derivatives in space and time.

(d) If D has an interior boundary dog, then on doy we assign v-n, n being
the unit outward normal to dog, and where the fluid enters so that
v-n < 0 we assign p and v.

(e) The values of p(x,0) and v;(x,0) are assigned.
(f) The density p is positive and |Vp|/p is bounded in D x (0,7).

(g) Let R denote the distance from the origin in D, then p > ¢/R?, where
c is a positive constant and § > 0 is a constant.

Let us observe that the last relation is physically necessary. It allows the
density to vanish as R — oo although not in an arbitrary way. In fact, it
is condition (g) which makes the extension of the (Graffi, 1999) result to
system (2.259) non-trivial. One now has to also handle the terms byvv; and

kvi/p.
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Figure 2.1. Geometry for uniqueness proof

We now denote by S the intersection of the ball of radius R with D. The
geometrical configuration is shown in figure 2.1.

The outer boundary of S, i.e. the spherical surface of radius R, is denoted
by o.

To study uniqueness we follow (Graffi, 1999) and let p, v; and p+p1, v;+v}
be two solutions to equations (2.259) which both satisfy hypotheses (a) and
(d) - (g). By subtraction we find p; and v} satisfy the equations

8p1 0 1 -
a0 T o, (P TP ) = pui] =0,
81} 10(v; +v}) v}
e T* i 9,
0
b{ (p+p1)7%5 (p+p1) p ‘285} (2.260)

k{ vz—i—v vz}
P+P1 p

— b1 {(v+v1)(vi +v]) —ov; },
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where we have put b = ay/\. The proof of (Graffi, 1999) is very clever and
balances the vy - Vp; term which arises from (2.260); with an equivalent
term from (2.260),. This necessitates the use of a weighted L? energy for
p1, weighted by both p7=3 and (p + p1)773.

We begin by multiplying (2.260)2 by v} and find

10
2 114 o1y o1 1
01 = — v (v + ;) 5 — v

20t
— b {(p+p1)" 2 (p+p1)i—p" 2pi}

2.261
_,w.l{(M)_ﬂ} (2.261)
LNt p
— b {(v+v1)(v; +v]) — oo}
Employ the rearrangement (5) of (Graffi, 1999),

(p+p1) 2+ p1)i = " 2pa
1 _ _

=5{lo+p) 7 =P {(p+ p1)i + 0} (2.262)

1
+ ipv_zpl,i +(p+p1) Ppri-

The first term on the right of (2.262) is handled by firstly noting that from
hypothesis (f) there is a positive constant n such that

[(p+ p1)il <nlp+p1), lp.il < np,

then
Hp+p)"2 =0 H(p+p1)i +p.i}]

<n(p+pi+p)llp+p)2—p 72
=nl(p+p) " =p" o+ p1) 2= (p+p)p" P (2.263)

To bound the terms on the right of (2.263) one uses the intermediate value
theorem, and for 0 < 6 < 1, and 0 < ' < 1, one finds

(p+p1)" =" < (v =D(p+6p1)" *p1l, (2.264)
and

1 1
(p+pr)>=r pP

lp(p+ 1) % = (p+p1)p" %[ = p(p+ p1)

(p+p)* 7 =p*
(p+ )37~

_ ‘ B=+0p)* "m

| (e p)er |

= p(p+ p1)

(2.265)
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Combining (2.264) and (2.265) in (2.263) one then obtains

{(o+p1) 2 =02 {(p+ p1).i + 0}
B=N(p+8p)*" (2.266)
(p+pr)>7p> 1'

<nl(y=D(p+0p1) %+

If py is positive then the greater value of the right of (2.266) is achieved
with @ = 0,0" = 1 (since v — 2 < 0) whereas if p; is negative we select
6 = 1,0’ =0, which in turn yield,

{o+p)" 2 =" 2o+ p1)i + pa}| < 2007 2|1l
{o+p) 2 =2 o+ p1) i + 0| <2000+ p1) 2|l

These results together in (2.266) lead to

Lo+ p) 72 =" H{(p+ p1)i + pai}| (2.267)
< 20{(p+p1)" 2+ " }|pal.
We now see that from (2.267)
- —v H{o+)2(p+p1)a—0"pa}
< bn{(p+p)"2+p 2} v
< %n{(p+ p1)pt + pP Pt 4 207 (2.268)

where in the last line the arithmetic-geometric mean inequality has been
employed. Thus, from (2.268), (2.262) and (2.261) we obtain

1o
2 ot

2 11 1 11
vi < =005 (v +v;) 5 — Vv

bn
+—{ (p+p1)> 07 + p*7pt + 207}

N _v 004 (ot 1)) (2.269)
_ kvg{(w_m _ _}
p+p1 p
— b} { (v +v1)(v; +v}) — v}
The first two terms on the right of (2.269) are written as
10 1
1,1 1 2 2
—v;v; (v + ;) j — = (vv7) + zv; V7. (2.270)
j 1T 3 g, IV T gt
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The final term of (2.269) is handled with the identity, (Payne and
Straughan, 1999a),

1
[(v+v1)(vi + v))—vvs v = 5(1} + vy +v)vd

+ (v 4+ v = V) (v +v1 +v). (2.271)

Thus, recalling hypothesis (a) the gradients of v and v + v! are bounded
in (2.270) and then from employment of (2.271) and (2.270) in inequality
(2.269) we deduce that, after integration over S,

d1 3 1 0
%é/svfdxg §N1/S’U%dl‘—§/sa—%(vj’l)%)dl'
bn _ -
+7/S[(p+p1)27 ot + pP T + 207 dx

b

(2.272)
-5 /s v [PW_QPM + (p+ P1)7_2P1,i} dx

2
) 1 )
k/v;{(wvz) &}dx,
s p+p1 P

where N; is a bound for |[Vv| and |V (v + v!)| and we have discarded the
last term of (2.269) thanks to (2.271). (In studying continuous dependence
one may desire to retain the right hand side of (2.271) and then use the
effect of vy in L3, cf. section 4.6.2.)

To handle the last term in (2.272) we note

) 1 )
_k/v}[(vl+vl> _ﬁ]dx
s p+p1 p

2 1
:_k/v_lde/de
s (p+p1) s p(p+p1)

The arithmetic-geometric mean inequality is used on the last term in the
form

(2.273)

1 2 2 2
k/—p“’”’z dz gk/—”l dm+5/—2”p1 da .
s p(p+p1) s (p+p1) 4 Js p*(p+ p1)
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This inequality is inserted in (2.273) and the result employed in (2.272) to

find
d1 3 1
——/v%dwﬁ —Nl/v%dx——/ nvivdS
dt2 Js 2 s 2 JoUdoao

bn _ _
+ 7/ [(p+ p1)> 0T + p*7 " p + 207]da
s (2.274)

2

k 2.2
+_/2v¢dx_
4 Js p*(p+ p1)

To continue we note that from (2.259)s,

b _ _
——/SU} [P 2pri+ (p+p1) prilde

kv; = —pv; s — pvjvi; — bipvv; —bp " lp ;.

Thus, recollecting hypotheses (a) and (f) we see there are constants ny,ns
such that

v <nip+ngp’.

Thus, there are further constants my, mo, ms, £1,f> and f3 such that

v? <mip® + mop? T + myp™,
and
k 2 Y Y/ v—1 /¢ 2v—2
SN L i L (2.275)
4p*(p + p1) (p+p1)
To incorporate the (Graffi, 1999) weights p?=3, (p+ p1)7 ™2 we write
él -3 2—
L (o)l )2 2.276
o+ p1 (p+p1) 1(p+p1) ( )

Then we use Young’s inequality for arbitrary o > 0,

27—2 27—2\p —1 —174
L2, [ [a™ (p+p1)7"]
p+p1 P q
pl4+q¢ =1 Pickg=3—-v>1,thenp=(3—7)/(2—7) > 1. Thus,
63P2W72 (3 _3
< +p1)7
ptp = Boyarm P -
l3(2 = 7)o/ PB=D/@=) | y=3
B—=17)
A similar calculation utilizing Young’s inequality shows
lop? ™t ls -3
< (p+p1)”
+ 3—~)pG-7
ptpr — (3-8 (2.278)

(2 — 7)1/ pB=N/C2=) | =3
3=
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Thus, (2.275) — (2.278) in inequality (2.274) give

d1 3 1
——/v%dxg —Nl/ufdm— —/ nivivdS
dt2 Js 2 s 2 JoUda,

bn _ _
+7/S[(p+p1)2” Yo+ P 0} + 207 da
b _ _
- 5/%‘1 [PW 2P1,i +(p+p1) 2,01,1']6533
s

’ /s(p +p)° {gl(p +p)* (2.279)

62 ES 2

BN w)aw} e

/ 3277 [gQ BE=/(2=) y(3-1)/(2=7)
S (3=7)

4 3B/ pv(3—7)/(2—7)] Rz

The next step is to multiply equation (2.260); by p?~3p; and then by
(p+ p1)"2p1 and integrate over S. This part of the calculation follows
that of (Graffi, 1999).

Upon multiplying (2.260); by p?”~3p; one may show that

10, _
5P TPl =P vl
8 y—2 1 1 y—3 2 1
= (07 2prv; + 5P pi(vi +v;)]
e (2.280)
AU (G Rl A R VU
1 1, .-
=37t (v o)+ 5 (07 (v + vt
For the fourth term on the right,
(07 2)i = " Ppilprvi| = 1B =) *pavip]
<n(B—7)p"?|p1v1
n _
< @[t 0], (2.281)

where hypothesis (f) has been employed. Further, using hypotheses (a) and
(f), we have for constants ¢1, o,

1 B
| = 5P Pt +v7) il < @p? Pk, (2.282)
1 ~

|57 i(vs + vi)pi] < @207t (2.283)
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The third term on the right of (2.280) is handled by noting

2
ﬂgpvf?’ < —(3 77);)% Pl =3,
2 Ot 2 P
Then, from (2.259)1,
Pt Vi
—_— = — p’i /U’L,Z
PP

Using hypotheses (a) and (f),
‘&‘ < qs3,
p
for a constant g3. Then, for a further constant g4 > 0,

2
pi 0 v—3 -3 2
Lt < qup” :
B ('%p > qap P

Thus, combining (2.281) — (2.284) in equation (2.280) we find

18

—(p7—3,2
20t

(P %p}) = p" P10}
9

B 8.%1'

+maop®pi + maof +map??pt

1
[0 2p1v; + 507 P (vi 4 v;)]

(2.284)

(2.285)

Similarly, we multiply equation (2.260); by (p + p1)?~2p;1 and obtain

0 _ p? 0 _
Sillo+p) 0t = =S oo+ p1)

+(p+p1)" P prfpvi = (p+ p1)(vi +07)] ;-

N | =

The last term of this expression may be rewritten

(p+p1)" " p {— [(p+p1)vi] ; — (Plvi),i}
—[(o+p1)"?p1vi]  + (p+ p1) v pr

J— J— UV
—(p+p1)" pivii — (p+p1)” 351(0%),1'
1

0 _ _
I [(p+p1) 2 proj + S t+p)? Svipt]
3

1 _
- 5(0 +p1)” BUi,ip%

(v=3) (p+p1)i

+ vi (p+p1) 2P+ (p+ 1) " vipri-

2 T (p+m)
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Hence, we find

|

2
[(p+ 1)) =~ L0 (p 4y
t ! 2 Ot
0 _ 1 _
~ 9 [(p+ p1)" %provf + §(P + 1) Pvpl]

DN =
D

. i (2.286)
= 5(p+p1) v

(y=3) (p+p1)i —3 2 —2.1
+ v = (p+p1)" o1+ (p+p1) 0P
2 (p+p1) ( ) 1+ )

From equation (2.259);

(p+p)e _ (vitw)) ol
rp) ooy PP it

and hence recollecting hypotheses (a) and (f) we find from (2.286) that
there is a constant mjs such that

10 ) .
55710+ 1) 28] < msp+ p1)T 03
i) ) ) .
= 5 Lo+ 0 P10l 4 S+ p1)ipd] (2.287)

+(p+p1) vl
Upon adding (2.285) and (2.287) and integrating over S we may derive,

%%/g{[p”‘3+(p+p1)7‘3]pf}dxS/

(0772 + (p+ p1)" %] vi p1ide
S
- / ni [{/ﬂ‘g +(p+p) 1o}
oUdog

1 1
+ 57" ki v]) + 50+ p1) il dS
+ mo / P2 plda 4+ ms / vida
5 5

+ / [map? ™ +ms(p+ p1)??] plda. (2.288)
s
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The idea is now to add (2.279) and (2.288) together in such a way that
the terms involving v} p1; add to zero. So, we add (2.279)+(b/2)(2.288) to
derive

1 _ b _
%[5/5 vide + < / SP%d$+Z/S(P+P1)7 3P%d4

1
[,0 +(p+p1)2’y—4}p%ds+ 5/( +ﬂ1)111d5

o

d

1
< Z
=3
ni

5 [P (p+ 1) P pldS

+ [ 207 3+ rip? " 4 ropBT ) g py BN/ =N gy

+

\m\q\

bn
pl(erpl)7 3[r4+ (p+p1)~ 1} dx

2
—|—r4/v1da:, (2.289)
s

where

+bn (2
rL=m —, ry =
1 2t 3 2 3~

s = (2 V)g a3/
3—=7

)g BB=N/2=7)

Uy L ls
B=7p7  B=yad’

3N
r4 =ms+ r5:m3+T+bn.

Now invoke hypothesis (a), let n; be a bound for p, p + p1, and integrate
(2.289) twice over the time interval (0, k) to see that

b
/ dt/ SV o e (et )T 3pf}d
/ dt/ n] ™ ) [+ (p 4 p1) P pRdS
1+ h _ _

+/0 dt/thlv%dSJr/o dt/shkl (072 + (p+p1)" %] plda
h

+r4h/ dt/ufdx, (2.290)
0 S
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for a constant k; independent of h. Let nl_l + n1, (1 4+ n1)/2 be denoted
by constants 75, 6. Then we rewrite (2.290) as

/ dt/vl (1 - 2r4h) dx—i—/ dt/plpW 3 f—2k1h)d
/b
+/ dt/pf(p+p1)wfd(ff2k1h>dz
0 s 2
h h
< 2r6h/ dt/vfds+2r5h/ dt/p%?’pfds
0 o 0 o

h
+2r5h/ dt/(p+p1)”‘3p§ds. (2.291)
0 o

Now suppose h is such that

1 b
1—2r4h > = S 2kh> -
7"4h =3 5 2 klh =7 ,
then define the Graffi function G(R) by

h
b
:/0 dt/s(v%Q[p”3+(p+p1)”3}p§>d:c. (2.292)

Then from (2.291) we see that for a constant A = max{8rgh, 8r5h/b},
G(R) < AG'(R).
This inequality integrates to see that for R > Ry > 0,

R—-R
G(R) > G(Ry) exp ( 1 0) . (2.293)
Now, |p1| = |p + p1 = p| < [p+ p1] + |p| and so by hypothesis (a), |p1] and
vy are bounded then G(R) has maximum growth in R like R#(3=7)+3 yusing
also hypothesis (g). Thus,

i G(R)
30 RBGB—)T3+e

This contradicts (2.293) and so v} = 0, p1 = 0 on S x (0,h). Since the
bounds in hypotheses (a), (d)-(g) are independent of A we may reapply the
argument on (h,2h) etc., to conclude uniqueness on S x (0,7).

=0.
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