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Structural Stability

2.1 Structural stability, Darcy model

Structural stability is the study of stability of the model itself. The clas-
sical definition of stability involves continuous dependence of the solution
on changes in the initial data, cf. section 1.1.2. However, it is increasingly
being realised that continuous dependence on changes in the coefficients,
in the model, in boundary data, or even in the partial differential equa-
tions themselves, is very important. This aspect of continuous dependence,
or stability, is what we refer to as structural stability. (Hirsch and Smale,
1974) were prominent in introducing the ideas of structural stability. In
chapter 16 of their book (Hirsch and Smale, 1974) ask, . . . “What effect
does changing the differential equation itself have on the solution? . . . This
is the problem of structural stability.” The book of (Hirsch and Smale, 1974)
gives an authoritative account of structural stability in an ordinary differ-
ential equation context. Structural stability is also emphasized in the books
by (Bellomo and Preziosi, 1995), (Doering and Gibbon, 1995), (Drazin and
Reid, 1981), and (Flavin and Rionero, 1995), although the topic of porous
media is not specifically addressed in the context of structural stability in
these works. In this chapter we focus on examples of structural stability in
the context of the equations of porous media. It is extremely important,
because if a small change in the equations, or a coefficient in an equation,
causes a major change in the solution it may well say something about how
accurate the model is as a vehicle to describe flow in porous media.
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28 2. Structural Stability

Early articles dealing with structural stability questions in porous flows
are those of (Ames and Payne, 1994), (Franchi and Straughan, 1993a;
Franchi and Straughan, 1996), and (Payne and Straughan, 1996) investi-
gates in some detail the continuous dependence of the solution on changes
in the initial-time geometry. We do not describe the work of (Payne and
Straughan, 1999a), but this paper establishes continuous dependence on
the coefficients of Forchheimer and of Brinkman, and also investigates how
the solution to the Brinkman equations converges to that of the Darcy
equations as the Brinkman coefficient tends to zero. We focus on examples
which illustrate various different effects, and the sections on continuous
dependence on the Dufour, Krishnamurti, and Vadasz coefficients are new.

We commence with a result of (Payne and Straughan, 1998b) which
establishes continuous dependence on the cooling coefficient for Newton’s
law of cooling in a Darcy porous material. (Franchi and Straughan, 1996)
proved a similar result for a Brinkman porous material, but their method
is inadequate to deal with the less dissipative Darcy system. (Payne and
Straughan, 1998b) were able to prove a priori continuous dependence in
three space dimensional problems without having to restrict the size of the
time interval or the size of the initial data. In contrast, when one consid-
ers the Navier-Stokes equations, such a restriction is evidently necessary,
(Ames and Payne, 1997)

We do not consider in this chapter structural stability questions for the
porous medium equation model based on a distribution of voids in an elastic
body, see section 7.2. However, this topic is investigated in (Chirita et al.,
2006). (Chirita and Ciarletta, 2008) develop the structural stability analysis
further by including temperature effects in the model.

A class of nonlinear models which possess properties not dissimilar to
those of the model in section 2.1.1 are those studied by (Payne and
Straughan, 1999c). These writers investigated continuous dependence on
the spatial geometry for a Stokes’ flow system when the nonlinearity in
the temperature equation was regarded as important. This class of Stokes’
flow is called a nonlinear Stokes’ problem by (Duka et al., 2007). The
paper by (Duka et al., 2007) derives interesting bounds for a solution to a
nonlinear Stokes’ system for thermal convection in a horizontal annulus.

2.1.1 Newton’s law of cooling

The Darcy equations for non-isothermal flow in a porous medium are as in
chapter 1, sections 1.2, 1.6.1, namely,

vi = − ∂p

∂xi
+ giT, (2.1)

∂vi

∂xi
= 0, (2.2)
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∂T

∂t
+ vi

∂T

∂xi
= ΔT, (2.3)

where vi, T, p and gi are the velocity, temperature, pressure and the gravity
vector. The density ρ in equation (1.15) has been assumed linear in T with
the body force fi = gi, the constant part of the body force being absorbed in
the pressure term. In this section equations (2.1) – (2.3) hold on a bounded
spatial domain Ω with boundary Γ, for positive time. On the boundary Γ
we suppose vi and T satisfy the conditions

vini = 0, and
∂T

∂n
= −κ

(
T − Ta(x, t)

)
, (2.4)

where κ(> 0) is the cooling coefficient, Ta(x, t) is the temperature outside
of the porous body at the boundary, ni is the outward unit normal to Γ,
and ∂/∂n denotes the outward normal derivative. The initial condition is

T (x, t) = T0(x), (2.5)

for T0 given.
To investigate continuous dependence on κ we let (vi, T, p) be a solution

to (2.1) – (2.5) with a cooling coefficient κ2, and we let (ui, S, q) be another
soultion to (2.1) – (2.5) for the same Ta and initial data, but for a different
cooling coefficient κ1. We wish to derive an a priori estimate for a measure
of T − S and vi − ui in terms of the difference κ2 − κ1. To this end let
wi, θ, π and κ be the difference variables

wi = vi − ui, θ = T − S, π = p − q, κ = κ2 − κ1, (2.6)

and then from (2.1) – (2.5) we see that (wi, θ, π) satisfies the partial
differential equations

wi = − ∂π

∂xi
+ giθ, (2.7)

∂wi

∂xi
= 0, (2.8)

∂θ

∂t
+ ui

∂θ

∂xi
+ wi

∂T

∂xi
= Δθ. (2.9)

The boundary and initial conditions are

niwi = 0,
∂θ

∂n
= −κ1θ − κ(T − Ta), on Γ × [0, T ], (2.10)

θ(x, 0) = 0, x ∈ Ω, (2.11)

where T < ∞ is an arbitrary (but preassigned) time.
We assume, without loss of generality, that

|g| ≤ 1. (2.12)
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To establish continuous dependence we multiply (2.7) by wi and integrate
over Ω, and using the Cauchy - Schwarz inequality, one finds

‖w‖2 = gi(θ, wi) ≤ ‖θ‖‖w‖,
and so

‖w‖ ≤ ‖θ‖. (2.13)

Next, multiply (2.9) by θ and integrate over Ω to derive

1
2

d

dt
‖θ‖2 =

∫

Ω

wiTθ,idx−‖∇θ‖2 −κ1

∮

Γ

θ2dA−κ

∮

Γ

θ(T −Ta)dA. (2.14)

Next, employ the arithmetic-geometric mean inequality to see that

−κ

∮

Γ

θ(T1 − Ta)dA ≤ κ

2α

∮

Γ

θ2dA +
κα

2

∮

Γ

(T1 − Ta)2dA, (2.15)

for α > 0 arbitrary. We select α = κ/2κ1, and then use (2.15) in (2.14). In
this manner we derive

1
2

d

dt
‖θ‖2 ≤

∫

Ω

wiTθ,idx − ‖∇θ‖2 +
κ2

4κ1

∮

Γ

(T − Ta)2dA. (2.16)

2.1.2 A priori bound for T

To proceed we require an a priori bound for |T |. We establish such a bound
for a function T satisfying (2.2) and (2.3), following (Payne and Straughan,
1998b). We simply use T, vi and κ, rather than T, vi and κ2. Multiply (2.3)
by T p−1 for p > 1 (we assume the temperature is scaled to be non-negative).
Thus,

d

dt

∫

Ω

T pdx = −p(p − 1)
∫

Ω

T p−2|∇T |2dx − κp

∮

Γ

T p−1(T − Ta)dA.

With the aid of Young’s inequality we have

κpT p−1Ta ≤ κpT p + κT p
a

(p − 1
p

)p−1

.

Employing this in the previous inequality allows us to show that

d

dt

∫

Ω

T pdx ≤ −p(p − 1)
∫

Ω

T p−2|∇T |2dx + κ
(p − 1

p

)p−1
∮

Γ

T p
a dA.

This inequality is integrated after discarding the first term on the right, to
deduce
[∫

Ω

T pdx

]1/p

≤
[∫

Ω

T p
0 dx + κ

(p − 1
p

)p−1
∫ t

0

ds

∮

Γ

T p
a dA

]1/p

. (2.17)

Now, let p → ∞ in (2.17) to see that

sup
Ω

|T | ≤ Tm, (2.18)
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where the constant Tm is given by

Tm = max
{

sup
Ω

|T0| , sup
Γ×[0,T ]

|Ta|
}

.

Equipped with the estimate (2.18) for T (maximum principle), we bound
the first term on the right of (2.16),

∫

Ω

wiTθ,idx ≤Tm‖w‖ ‖∇θ‖,

≤Tm‖θ‖ ‖∇θ‖,
where (2.13) has been used, and then after further use of the arithmetic-
geometric mean inequality,

∫

Ω

wiTθ,idx ≤ T 2
m

4
‖θ‖2 + ‖∇θ‖2. (2.19)

Upon utilizing (2.19) in (2.16) we find

d

dt
‖θ‖2 ≤ T 2

m

2
‖θ‖2 + Aκ2, (2.20)

where the function A is defined by

A(t) =
1

2κ1

∮

Γ

(Tm − Ta)2dA.

In deriving (2.20), bound (2.18) has been extended to the boundary by
continuity. Inequality (2.20) may be integrated by an integrating factor
method to see that

‖θ(t)‖2 ≤ R(t)κ2, (2.21)

where R is defined as

R(t) =
∫ t

0

A(s) exp
[1
2
T 2

m(t − s)
]
ds.

The bound (2.21) is our continuous dependence estimate for θ. Now, from
(2.13) we also find

‖w(t)‖2 ≤ R(t)κ2, (2.22)

which establishes continuous dependence of vi on the cooling coefficient.
Continuous dependence on the cooling coefficient κ is established, since
R(t) is a priori because it only depends on data and the geometry of Ω.

2.2 Structural stability, Forchheimer model

In this section we describe work of (Franchi and Straughan, 2003) who
consider the isothermal Forchheimer equations with quadratic and cubic
terms, namely
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∂ui

∂t
= −aui − b|u|ui − c|u|2ui − p,i,

∂ui

∂xi
= 0, (2.23)

where ui is the average fluid velocity in the porous medium, a is the Darcy
coefficient (viscosity divided by permeability), b and c are the Forchheimer
coefficients, and p is the pressure.

2.2.1 Continuous dependence on b

We commence with a study of continuous dependence on the coefficient b.
Therefore let ui and vi solve the following boundary initial value problems
for different Forchheimer coefficients b1 and b2, but for the same second
Forchheimer coefficient c,

∂ui

∂t
= −aui − b1|u|ui − c|u|2ui − p,i,

∂ui

∂xi
= 0, in Ω × {t > 0},

niui = 0, on Γ × {t > 0},
ui(x, 0) = fi(x), x ∈ Ω,

(2.24)

∂vi

∂t
= −avi − b2|v|vi − c|v|2vi − q,i,

∂vi

∂xi
= 0, in Ω × {t > 0},

nivi = 0, on Γ × {t > 0},
vi(x, 0) = fi(x), x ∈ Ω.

(2.25)

In these problems Ω is a bounded domain in R
3 with boundary Γ, ni is the

unit outward normal to Γ, and fi is the given initial data.
The difference variables wi, π, b are defined by

wi = ui − vi, π = p − q, b = b1 − b2. (2.26)

By subtraction we see that wi satisfies the boundary initial value problem

∂wi

∂t
= −awi −

(
b1|u|ui − b2|v|vi

)
− c
(
|u|2ui − |v|2vi

)
− π,i,

∂wi

∂xi
= 0, in Ω × {t > 0},

niwi = 0, on Γ × {t > 0},
wi(x, 0) = 0, x ∈ Ω.

(2.27)

The first step involves rearranging the b1 and b2 terms as

b1|u|ui − b2|v|vi =
b

2
(|u|ui + |v|vi) + b̃(|u|ui − |v|vi), (2.28)

where b̃ = (b1 + b2)/2, and observing (Payne and Straughan, 1999a) show
that

(|u|ui − |v|vi)wi =
1
2
(|u| + |v|)wiwi +

1
2
(|u| − |v|)2(|u| + |v|). (2.29)
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Next, multiply (2.27)1 by wi and integrate over Ω, to find with the aid of
(2.28) and (2.29),

d

dt

1
2
‖w‖2 = − a‖w‖2 − b

2

∫

Ω

(|u|uiwi + |v|viwi)dx

− b̃

2

∫

Ω

(|u| + |v|)wiwidx

− b̃

2

∫

Ω

(|u| − |v|)2(|u| + |v|)dx

− c

∫

Ω

(|u|2ui − |v|2vi)widx. (2.30)

(Franchi and Straughan, 2003) show that

(|u|2ui−|v|2vi)wi =
1
2
|u|2(ui − vi + vi)wi −

1
2
|v|2viwi

+
1
2
|u|2uiwi +

1
2
|v|2wi(ui − vi − ui)

=
1
2
(|u|2 + |v|2)wiwi +

1
2
(ui + vi)wi(|u|2 − |v|2)

=
1
2
(|u|2 + |v|2)wiwi +

1
2
(|u|2 − |v|2)2. (2.31)

This expression is employed in (2.30) to obtain

d

dt

1
2
‖w‖2 ≤− a‖w‖2 − b

2

∫

Ω

(|u|uiwi + |v|viwi)dx

− b̃

2

∫

Ω

(|u| + |v|)wiwidx − c

2

∫

Ω

(|u|2 + |v|2)wiwidx. (2.32)

We suppose c > 0. The case where c = 0 is covered in (Franchi and
Straughan, 2003). We use the Cauchy-Schwarz and arithmetic-geometric
mean inequalities to see that

− b

2

∣∣∣∣
∫

Ω

(|u|uiwi + |v|viwi)
∣∣∣∣dx ≤ b2

8c

∫

Ω

(uiui + vivi)dx

+
c

2

∫

Ω

(|u|2 + |v|2)wiwidx.

(2.33)

Now use this inequality in (2.32) and discard the b̃ term to derive

d

dt

1
2
‖w‖2 ≤ −a‖w‖2 +

b2

8c

∫

Ω

(uiui + vivi)dx. (2.34)

From equations (2.24) and (2.25) one shows

‖u‖2 ≤ ‖f‖2 exp(−2at) and ‖v‖2 ≤ ‖f‖2 exp(−2at). (2.35)
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These bounds are now used in (2.34) to arrive at

d

dt

1
2
‖w‖2 + a‖w‖2 ≤ b2

4c
exp(−2at)‖f‖2.

With the aid of an integrating factor and integration one sees that

‖w(t)‖2 ≤ b2 ‖f‖2

2c
t exp(−2at). (2.36)

Inequality (2.36) establishes continuous dependence on b when c > 0.

2.2.2 Continuous dependence on c

In this subsection we establish continuous dependence on the coefficient c.
Let now (ui, p) and (vi, q) solve the boundary initial value problems (2.24)
and (2.25) for the same b but with c1 and c2 different.

Define in this case

wi = ui − vi, π = p − q, c = c1 − c2.

Then (wi, π) satisfies the boundary initial value problem

∂wi

∂t
= −awi − b(|u|ui − |v|vi) − c1|u|2ui + c2|v|2vi − π,i,

∂wi

∂xi
= 0, in Ω × {t > 0},

niwi = 0, on Γ × {t > 0},
wi(x, 0) = 0, x ∈ Ω.

(2.37)

(Franchi and Straughan, 2003) use the rearrangement

c1|u|2ui − c2|v|2vi =
c

2
(|u|2ui + |v|2vi) + c̃(|u|2ui − |v|2vi), (2.38)

where c̃ = (c1 + c2)/2.
Now multiply (2.37)1 by wi and integrate over Ω. We employ the

rearrangements (2.29), (2.38) and (2.31) and then show

1
2

d

dt
‖w‖2 = −a‖w‖2 − b

2

∫

Ω

(|u| + |v|)wiwidx

− b

2

∫

Ω

(|u| − |v|)2(|u| + |v|)dx − c

2

∫

Ω

(|u|2uiwi + |v|2viwi)dx

− c̃

2

∫

Ω

(|u|2 + |v|2)wiwidx − c̃

2

∫

Ω

(|u|2 − |v|2)2dx.
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The two b terms and the c̃ term involving (|u|2 − |v|2)2 are discarded to
derive

1
2

d

dt
‖w‖2 + a‖w‖2 ≤− c

2

∫

Ω

(|u|2uiwi + |v|2viwi)dx

− c̃

2

∫

Ω

(|u|2 + |v|2)wiwidx.

(2.39)

Next, the Cauchy-Schwarz and arithmetic-geometric mean inequalities are
employed to see that

c

2

∫

Ω

(|u|2uiwi + |v|2viwi)dx ≤ c2

8c̃

∫

Ω

(|u|4 + |v|4)dx

+
c̃

2

∫

Ω

(|u|2 + |v|2)wiwidx.

(2.40)

Upon use of (2.40) in (2.39) we see after integration,

‖w‖2 + 2a

∫ t

0

‖w‖2ds ≤ c2

4c̃

∫ t

0

∫

Ω

(|u|4 + |v|4)dx ds. (2.41)

The right hand side of (2.41) is estimated by multiplying (2.24) by ui,
(2.25) by vi, and integrating over Ω × (0, t) to show that

∫ t

0

∫

Ω

(|u|4 + |v|4)dx ds ≤
(

c1 + c2

2c1c2

)
‖f‖2.

Upon using this inequality in (2.41) one finds

‖w‖2 + 2a

∫ t

0

‖w‖2ds ≤ ‖f‖2

4c1c2
c2. (2.42)

Inequality (2.42) establishes continuous dependence on c. A further bound
for wi may be obtained from (2.42) with the use of an integrating factor,
this is

∫ t

0

‖w‖2ds ≤ ‖f‖2

8ac1c2
(1 − e−2at) c2.

2.2.3 Energy bounds

Interesting upper and lower bounds for ‖u‖ are obtained by (Franchi and
Straughan, 2003) who follow the method of (Payne and Straughan, 1999a).
To derive these estimates we suppose ui is a solution to (2.24) with b1

replaced by b, so ui satisfies the boundary initial value problem

∂ui

∂t
= −aui − b|u|ui − c|u|2ui − π,i,

∂ui

∂xi
= 0, in Ω × {t > 0},

niui = 0, on Γ × {t > 0},
ui(x, 0) = f(x), x ∈ Ω.

(2.43)
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Multiply (2.43) by ui and integrate over Ω to find

1
2

d

dt
‖u‖2 = −a‖u‖2 − b

∫

Ω

|u|3dx − c

∫

Ω

|u|4dx. (2.44)

We first derive a lower bound for ‖u‖, and set Φ(t) = ‖u(t)‖2. From (2.44)

dΦ
dt

= −2a‖u‖2 − 2b

∫

Ω

|u|3dx − 2c

∫

Ω

|u|4dx. (2.45)

Define the function χ by

χ(t) = −2a‖u‖2 − 4
3
b

∫

Ω

|u|3dx − c

∫

Ω

|u|4dx, (2.46)

and observe that χ ≤ 0. From (2.46) and (2.45) dΦ/dt ≤ χ, and then

Φ
dχ

dt
= 4‖u‖2(ui,t, ui,t) ≥

(dΦ
dt

)2

≥
(
−dΦ

dt

)(
−χ
)
. (2.47)

Hence, (dχ/dt)/χ ≤ (dΦ/dt)/Φ, which after integration and rearrangement
yields

−χ(t) ≤ Φ(t)
{−χ(0)}
‖f‖2

. (2.48)

We may now show 2χ ≤ dΦ/dt ≤ χ, and so with the aid of (2.48) we
deduce

1
2

dΦ
dt

≥ χ(t) ≥ Φ(t)
χ(0)
‖f‖2

.

After integration we obtain

‖u(t)‖2 ≥ ‖f‖2 exp
[
−2{−χ(0)}t

‖f‖2

]
. (2.49)

From inequality (2.49) one sees that ui cannot vanish identically in a finite
time.

We may use the Cauchy-Schwarz inequality to show

−
∫

Ω

|u|4dx ≤ −‖u‖4

m
,

where m = m(Ω) is the measure of Ω. If this inequality is utilized in (2.45)
one may show

d

dt
‖u‖2 + 2a‖u‖2 +

2c

m
‖u‖4 ≤ 0.

Now since ui cannot vanish in a finite time we divide by ‖u‖4 and solve
the resulting inequality for ‖u‖−2. This leads to the upper bound

‖u(t)‖2 ≤ ‖f‖2

e2at + c‖f‖2(e2at − 1)/am
. (2.50)
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If we combine (2.50) and (2.49) we find the estimates for ‖u(t)‖,
‖f‖2

exp
[(

4a + 8b
∫
Ω
|f |3dx/3‖f‖2 + 2c

∫
Ω
|f |4dx/‖f‖2

)
t

]

≤ ‖u(t)‖2

≤ ‖f‖2

e2at + c‖f‖2(e2at − 1)/am
. (2.51)

2.2.4 Brinkman-Forchheimer model

(Celebi et al., 2006) study structural stability for a version of the Brinkman-
Forchheimer equations, namely, they study the boundary - initial value
problem,

∂ui

∂t
= γΔui − aui − b|u|αui − π,i,

∂ui

∂xi
= 0, in Ω × {t > 0},

ui = 0, on Γ × {t > 0},
ui(x, 0) = f(x), x ∈ Ω,

(2.52)

where γ is a Brinkman coefficient and α ∈ [1, 2] is a constant.
(Celebi et al., 2006) establish existence and uniqueness of a solution

to (2.52), and show that there is a constant D, depending on f and the
coefficients in (2.52), such that

sup
0≤t≤T

‖∇u(t)‖ ≤ D,

∫ T

0

∥∥∥
∂u
∂t

(t)
∥∥∥

2

dt ≤ D,

for any T > 0. They also show that the solution ui depends continuously
on the Forchheimer coefficient b, and on the Brinkman coefficient γ. This
is an interesting paper and the proofs employ the Sobolev inequality in a
non-trivial manner.

2.3 Forchheimer model, non-zero boundary
conditions

(Payne et al., 1999) studied continuous dependence on changes in the vis-
cosity for a Forchheimer and a Brinkman model. The motivation of (Payne
et al., 1999) was to analyse mathematically a model for the process of
salinization, whereby salts are transported upwards in soils in dry regions.
A model for this was developed by (Gilman and Bear, 1996) and this model
has a strong viscosity - concentration dependence. The work of (Gilman and
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Bear, 1996) involves a nonlinear set of equations, and similar models are
studied in (Wooding et al., 1997a; Wooding et al., 1997b) and in (van Duijn
et al., 2002). (Payne et al., 1999) analyses the manner in which the velocity
and concentration depend on changes in the viscosity. The reason for the
need to study continuous dependence on the viscosity is that (Gilman and
Bear, 1996) point out that the viscosity dependence on concentration is 1.5
to 3 times greater than that of pure water. By comparison the variation in
density is only of order 0.15 to 0.30 times greater. Certainly such a strong
variation indicates that convective motion of salt in a porous medium ought
to take into account viscosity dependence on salt concentration.

The model based on Darcy’s law studied by (Payne et al., 1999) is now
presented. If we let ui, c and p denote the fields of velocity, concentra-
tion and pressure, the Forchheimer equations for flow in a porous medium
studied by (Payne et al., 1999) are

bui|u| + (1 + γ1c)ui = −p,i + gic,

∂ui

∂xi
= 0,

∂c

∂t
+ ui

∂c

∂xi
= Δc,

(2.53)

where γ1 and b are positive constants, gi(x) is a gravity field which we
again assume satisfies

|g| ≤ 1. (2.54)

Equations (2.53) hold on the region Ω× (0, T ) for Ω a bounded domain in
R

3 and for some time T , 0 < T < ∞. The viscosity variation is represented
by the term 1+γ1c, i.e. we allow a linear variation in c so that the viscosity μ
has form μ = μ1(1+γ1c). The gic term represents a linear variation in c for
the density, i.e. a Boussinesq like approximation. Since c is a concentration
it is reasonable to assume that it is non-negative, although if we knew
a priori that ui is bounded then c ≥ 0 would follow from the maximum
principle.

On the boundary Γ (of Ω) the conditions imposed are

uini = f(x, t), c = h(x, t), x ∈ Γ, (2.55)

for known functions f and h. The initial condition is that concentration is
prescribed at t = 0, i.e.

c(x, 0) = c0(x), x ∈ Ω, (2.56)

c0 given.
We note in passing that existence and uniqueness questions of solutions

to systems like that studied here may be answered by the methods of (Ly
and Titi, 1999) or those of (Rodrigues, 1986; Rodrigues, 1992).

The work of (Payne et al., 1999) relies on establishing an upper bound
for c. We now give very brief details of how this is achieved.
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2.3.1 A maximum principle for c

To derive a maximum principle for c (Payne et al., 1999) use the method
of (Payne and Straughan, 1998a).

They introduce a function H by

ΔH(x, t) = 0 in Ω × (0, T ),

H(x, t) = h2p−1(x, t) on Γ × (0, T ).

The analysis commences with the identity
∫ t

0

ds

∫

Ω

(H − c2p−1)
{
c,t + uic,i − Δc

}
dx = 0.

An integration by parts and rearrangement leads to
∫

Ω

c2pdx +
2(2p − 1)

p

∫ t

0

ds

∫

Ω

cp
,ic

p
,idx =

∫

Ω

c2p
0 dx

+ 2p(H, c) − 2p(H0, c0) − 2p

∫ t

0

ds

∫

Ω

H,sc dx

+ 2p

∫ t

0

ds

∫

Ω

Huic,idx + 2p

∫ t

0

ds

∮

Γ

∂H

∂n
hdA

−
∫ t

0

ds

∮

Γ

fc2pdA. (2.57)

The remainder of the proof of the maximum principle for c is from this
point very technical. The purpose of this section is to describe continuous
dependence on γ1 and so we refer to (Payne et al., 1999) or (Payne and
Straughan, 1998a) for full details. After many steps the proof arrives at an
inequality of form

‖c‖2p ≤
[
‖c0‖2p

2p +
( 5∑

i=1

ri

)
h2p

m

]1/2p

, (2.58)

where ‖ · ‖2p is the norm on L2p(Ω), ri involve h or c0, and hm =
maxΓ×[0,T ] |h|. Taking the limit 2p → ∞ leads to the a priori bound

sup
Ω×[0,T ]

|c| ≤ max
{
|c0|m , sup

[0,T ]

hm

}
= cm (2.59)

where |c0|m = maxΩ |c0|, and cm is defined as indicated.

2.3.2 Continuous dependence on the viscosity

To investigate continuous dependence on the viscosity coefficient γ1 in
(2.53) suppose (ui, c1, p) and (vi, c2, q) are solutions to (2.53) – (2.56) for
the same data functions f, h and c0, but for different viscosity coefficients,
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γ1 and γ2, respectively. The difference solution (wi, φ, π) is introduced as

wi = ui − vi, φ = c1 − c2, π = p − q, γ = γ1 − γ2. (2.60)

By calculation (wi, φ, π) is seen to satisfy the boundary-initial value
problem

b[ui|u| − vi|v|] + wi + γc1ui + γ2φui + γ2c2wi = −π,i + giφ,

wi,i = 0,

φ,t + wic1,i + viφ,i = Δφ,

(2.61)

in Ω × (0, T ), with the boundary and initial conditions

wi = φ = 0 on Γ, φ(x, 0) = 0, x ∈ Ω. (2.62)

It is convenient to also rearrange (2.61)1 in the form

b[ui|u| − vi|v|] + wi + γ1c1wi + γc1vi + γ2φvi = −π,i + giφ. (2.63)

The proof starts by multiplying (2.61)1 by wi and integrating to find

b

∫

Ω

(ui|u| − vi|v|)widx +
∫

Ω

(1 + γ2c2)wiwidx

= gi(φ,wi) − γ

∫

Ω

c1uiwidx − γ2

∫

Ω

φuiwidx. (2.64)

The right hand side is estimated using the maximum principle and Hölder’s
inequality. Identity (2.29) is used on the first term on the left and we drop
a term to derive

b

2

∫

Ω

(|u| + |v|)wiwidx +
∫

Ω

(1 + γ2c2)wiwidx

≤‖φ‖ ‖w‖ + γcm‖u‖ ‖w‖ + γ2

(∫

Ω

|u|wiwidx

)1/2(∫

Ω

|u|φ2dx

)1/2

≤ 1
2α

‖φ‖2 +
(α

2
+

β

2

)
‖w‖2 +

γ2c2
m

2β
‖u‖2

+ b

∫

Ω

|u|wiwidx +
γ2
2

4b

(∫

Ω

|u|3dx

)1/3(∫

Ω

|φ|3dx

)2/3

, (2.65)

where α, β > 0 are constants to be chosen. We next use the Sobolev
inequality

∫

Ω

φ4dx ≤ k2
(∫

Ω

φ2dx
)1/2(∫

Ω

|∇φ|2dx
)3/2

,
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for k > 0 constant, together with the Cauchy-Schwarz inequality in (2.65)
to obtain

b

2

∫

Ω

(|u| + |v|)wiwidx +
∫

Ω

(1 + γ2c2)wiwidx

≤ 1
2α

‖φ‖2 +
1
2
(α + β)‖w‖2 + γ2 c2

m

2β
‖u‖2

+ b

∫

Ω

|u|wiwidx +
γ2
2k2/3

4b
‖u‖3‖φ‖ ‖∇φ‖. (2.66)

An analogous procedure starting from (2.64) leads to

b

2

∫

Ω

(|u| + |v|)wiwidx +
∫

Ω

(1 + γ1c1)wiwidx

≤ 1
2α

‖φ‖2 +
1
2
(α + β)‖w‖2 + γ2 c2

m

2β
‖v‖2

+ b

∫

Ω

|v|wiwidx +
γ2
2k2/3

4b
‖v‖3‖φ‖ ‖∇φ‖. (2.67)

Upon addition of (2.66) and (2.67) we see that
∫

Ω

(2+γ1c1 + γ2c2)wiwidx ≤ 1
α
‖φ‖2 + (α + β)‖w‖2

+ γ2 c2
m

2β
(‖u‖2 + ‖v‖2) +

γ2
2k2/3

4b
(‖u‖3 + ‖v‖3)‖φ‖ ‖∇φ‖. (2.68)

A further use of the arithmetic-geometric mean inequality shows that, for
a constant ε > 0 to be chosen

[
2 − (α + β)

]
‖w‖2 ≤

[
1
α

+
γ2
2k2/3

64b2ε
(‖u‖3 + ‖v‖3)2

]
‖φ‖2

+ γ2 c2
m

2β
(‖u‖2 + ‖v‖2) + ε‖∇φ‖2. (2.69)

Directly from (2.53) we may deduce for a constant d involving data

‖u‖2 ≤ 4‖c1‖2 + d, ‖u‖3 ≤ 1
b1/3

(4‖c1‖2 + d)1/3,

‖v‖2 ≤ 4‖c2‖2 + d, ‖v‖3 ≤ 1
b1/3

(4‖c2‖2 + d)1/3.

(2.70)

Employing (2.70) in (2.69) yields for computable constants β1, . . . , β3,
dependent only on data, choosing α = β = 1/2, an inequality of form

‖w‖2 ≤ β1‖φ‖2 + β2 + β3‖∇φ‖2. (2.71)

To estimate the ‖φ‖ and ‖∇φ‖ terms we multiply (2.61)3 by φ and
integrate to find

1
2
‖φ‖2 +

∫ t

0

‖∇φ‖2ds =
∫ t

0

ds

∫

Ω

wic1φ,idx.
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Bounding c1 and using the Cauchy-Schwarz inequality yields

‖φ‖2 +
∫ t

0

‖∇φ‖2ds ≤ c2
m

∫ t

0

‖w‖2ds. (2.72)

Use of (2.72) in (2.71) shows that after integration
∫ t

0

‖w‖2ds ≤ k1

∫ t

0

(t − s)‖w‖2ds + k2(t)γ2, (2.73)

where k1, k2 depend only on data. From this inequality we may establish
the estimates
∫ t

0

(t − s)‖w‖2ds ≤ k3(t)γ2, and
∫ t

0

‖w‖2ds ≤ k4γ
2, (2.74)

for k3 and k4 computable data bounds. These are continuous dependence
estimates for wi. An analogous estimate for φ follows from (2.72), of the
form

‖φ(t)‖2 +
∫ t

0

‖∇φ‖2ds ≤ k4c
2
mγ2. (2.75)

The inequalities (2.74) and (2.75) demonstrate continuous dependence
on the viscosity coefficient γ1. They are truly a priori since the coefficients
of γ2 depend only on boundary and initial data, and on the geometry of Ω.

2.4 Brinkman model, non-zero boundary
conditions

In this section we review work of (Payne et al., 1999) which establishes
continuous dependence on the viscosity coefficient γ1 for the following
Brinkman system,

− Δui + (1 + γ1c)ui = −p,i + gic,

∂ui

∂xi
= 0,

∂c

∂t
+ ui

∂c

∂xi
= Δc,

(2.76)

on Ω × (0, T ). The boundary and initial conditions in this case are

ui = fi(x, t), c = h(x, t), x ∈ Γ × {t > 0}, (2.77)

c(x, 0) = c0(x), x ∈ Ω. (2.78)
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(Payne et al., 1999) first compare the solution ui to (2.76) with a solution
ai which solves the Stokes’ flow problem in Ω, namely

Δai = ρ,i,
∂ai

∂xi
= 0 in Ω,

ai = fi on Γ
(2.79)

where ρ is a pressure term. For a data term d0 they go via ai to show that

‖u‖2 ≤ 5‖c‖2 + d0. (2.80)

Continuous dependence on γ1 proceeds via letting (ui, c1, p) and (vi, c2, q)
solve (2.76) – (2.78) for the same data functions fi, h and c0, but for dif-
ferent viscosity coefficients γ1 and γ2, respectively. The difference variables
(wi, φ, π) and γ are defined as in equations (2.60). The boundary-initial
value problem is

− Δwi + (1 + γ2c2)wi + γc1ui + γ2φui = −π,i + giφ,

∂wi

∂xi
= 0,

∂φ

∂t
+ wi

∂c1

∂xi
+ vi

∂φ

∂xi
= Δφ,

wi = φ = 0 on Γ, φ(x, 0) = 0, x ∈ Ω.

(2.81)

By using inequality estimates (Payne et al., 1999) show that one may
compute data constants α1 and α2 such that

‖w(t)‖2 + ‖∇w(t)‖2 ≤ α1γ
2, ‖φ‖2 ≤ α2γ

2. (2.82)

Inequalities (2.82) are a priori bounds which demonstrate continuous
dependence of the solution on the viscosity coefficient γ1. Note that the
stronger dissipation in the Brinkman model allows continuous dependence
to be proven in the ‖w‖ and ‖∇w‖ measures.

Further novel structural stability results for the Brinkman equations may
be found in (Lin and Payne, 2007a; Lin and Payne, 2007b). Also, interest-
ing structural stability results for the Brinkman-Forchheimer equations are
established by (Celebi et al., 2006).

2.5 Convergence, non-zero boundary conditions

(Payne et al., 1999) also consider the question of convergence of the solution
to an equivalent Darcy system to (2.53) to the case where γ1 = 0. That
is, (Payne et al., 1999) also consider the viscosity variation in (2.53), but
they neglect the b (Forchheimer) term. Their goal is to investigate the
behaviour as γ1 → 0. To state this result let (ui, c1, p) satisfy the following
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boundary-initial value problem, where γ1 has been replaced by γ,

(1 + γc1)ui = −p,i + gic1,
∂ui

∂xi
= 0,

∂c1

∂t
+ ui

∂c1

∂xi
= Δc1,

(2.83)

in Ω × (0, T ), with

uini = f, c1 = h on Γ × (0, T ),
c1(x, 0) = c0(x), x ∈ Ω,

(2.84)

i.e. the equivalent Darcy system to (2.53). We let (vi, c2, q) satisfy the
analogous Darcy system when γ = 0, i.e.

vi = −q,i + gic2,
∂vi

∂xi
= 0,

∂c2

∂t
+ vi

∂c2

∂xi
= Δc2,

(2.85)

in Ω × (0, T ), with

vini = f, c2 = h on Γ × (0, T ),
c2(x, 0) = c0(x), x ∈ Ω.

(2.86)

By defining wi = ui − vi (Payne et al., 1999) show that
∫ t

0

‖w‖2ds ≤ α3γ
2, (2.87)

for a data term α3.
Inequality (2.87) demonstrates convergence of ui to vi as γ → 0 in the

measure indicated. (Payne et al., 1999) also obtain convergence of wi in
L2(Ω) norm and convergence of φ = c1 − c2 in L2(Ω) and H1(Ω) norms.

2.6 Continuous dependence, Vadasz coefficient

(Vadasz, 1995; Vadasz, 1996; Vadasz, 1997; Vadasz, 1998a; Vadasz, 1998b)
has made an extensive investigation of convection in a porous medium
when the layer of saturated porous medium is rotating about a fixed axis.
(Vadasz, 1998a) is a very interesting contribution. In this paper he employs
linear instability and weakly nonlinear analysis to investigate the instability
mechanisms governing convection in a rotating porous layer. Of particular
interest is the fact that he discovers that if the inertia term is left in the
momentum equation, then convection may commence by oscillatory con-
vection. This is a striking result which implies that the inertia term plays
a predominant role in determining the character of convection. In view of
this we now examine how the solution to the equations for convection in
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a saturated porous material depends on the coefficient of the inertia term.
The coefficient of the inertia term is denoted by 1/V a, where V a is the
Vadasz number. The usual Darcy law is recovered by letting V a → ∞.

If we let ui, T and p be the velocity, temperature and pressure, then the
equations for non-isothermal flow in a saturated porous medium, taking
inertia into account may be taken to be, cf. (Vadasz, 1998a), (Straughan,
2001b),

1
V a

∂ui

∂t
= − ∂p

∂xi
− ui + giT, (2.88)

∂ui

∂xi
= 0, (2.89)

∂T

∂t
+ ui

∂T

∂xi
= ΔT. (2.90)

These equations hold on Ω × (0, T ), Ω ⊂ R
3 bounded, and gi, |g| ≤ 1, is

the gravity vector. The boundary conditions we consider are

uini = 0 and T = h(x, t), (2.91)

where n is the unit outward normal to Γ, the boundary of Ω. The initial
conditions are that

ui(x, 0) = u0
i (x), T (x, 0) = T0(x). (2.92)

It is convenient to employ α = 1/V a in (2.88), so this equation is
rewritten as

α
∂ui

∂t
= −p,i − ui + giT. (2.93)

In this section we study the continuous dependence of the solution on the
coefficient α. To achieve this we need a maximum principle for T .

2.6.1 A maximum principle for T

A weak maximum principle for T is established by (Payne et al., 2001)
(see also (Temam, 1988)) and we outline their proof. For a test function φ
which vanishes on Γ, T satisfies the equation

∫

Ω

(T,tφ − uiTφ,i + T,iφ,i)dx = 0. (2.94)

Note that equation (2.94) may be obtained from (2.90) by multiplying that
equation by φ and integrating over Ω. Define the number Tm by

Tm = max
{

sup
Ω

|T0|, sup
Ω×[0,T ]

|h|
}

. (2.95)

The function φ is chosen as

φ = [T − Tm]+ = sup(T − Tm, 0).
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Since φ,i = T,i when T > Tm, φ,i = 0 for T ≤ Tm, (2.94) reduces to, after
integration

1
2

∫ t

0

ds

∫

Ω

|[T − Tm]+|2,sdx +
∫ t

0

ds

∫

Ω

|∇[T − Tm]+|2dx = 0.

(Note that
∫
Ω

uiTφ,idx = 0.) From the last inequality we deduce that
[T − Tm]+ = 0, or T ≤ Tm.

Next, select φ = [−T −Tm]+ in (2.94). A similar calculation to the above
shows T ≥ −Tm. Thus,

|T | ≤ Tm, (x, t) ∈ Ω × [0, T ]. (2.96)

2.6.2 Continuous dependence on α.

Let (ui, T, p) be a solution to (2.89) – (2.93) with coefficient α1 and let
(vi, S, q) be a solution to (2.89) – (2.93) for the same boundary and initial
functions h, u0

i , T0 in (2.91), (2.92), but for a different Vadasz coefficient
α2. Define the difference variables wi, θ and π, and the difference of the
Vadasz coefficients α by

wi = ui − vi, θ = T − S, π = p − q, α = α1 − α2. (2.97)

From equations (2.89) – (2.93) we find (wi, θ, π) satisfy the boundary-
initial value problem

α1
∂wi

∂t
+ α

∂vi

∂t
= − ∂π

∂xi
+ giθ − wi,

∂wi

∂xi
= 0,

∂θ

∂t
+ wi

∂T

∂xi
+ vi

∂θ

∂xi
= Δθ,

(2.98)

these equations holding on Ω × (0, T ), with

wini = 0, θ = 0, on Γ × [0, T ], (2.99)

wi(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω. (2.100)

The analysis begins by multiplying (2.98)1 by wi and integrating over Ω
to find, with the aid of (2.98)2 and (2.99),

‖w‖2 +
α1

2
d

dt
‖w‖2 =(wi, giθ) − α(vi,t, wi),

≤ 1
2ζ

‖w‖2 +
ζ

2
‖θ‖2 +

α2

2β
(vi,t, vi,t) +

β

2
‖w‖2, (2.101)

where the arithmetic-geometric mean inequality has been employed and
β, ζ > 0 are to be chosen. Next, multiply (2.98)3 by θ and integrate over Ω
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to obtain with the aid of (2.98)2 and (2.99),

d

dt

1
2
‖θ‖2 =(wiT, θ,i) − ‖∇θ‖2,

≤Tm‖w‖ ‖∇θ‖ − ‖∇θ‖2,

≤T 2
m

4
‖w‖2, (2.102)

where T has been bounded using (2.96), and the Cauchy-Schwarz and
arithmetic-geometric mean inequalities have been employed. Integrate
(2.102) over (0, t) and use (2.100) to find

‖θ(t)‖2 ≤ T 2
m

2

∫ t

0

‖w‖2ds. (2.103)

We next integrate (2.101) over (0, t) and pick β/2 + 1/2ζ = 1, e.g. β =
ζ = 1. This yields

α1‖w‖2 ≤
∫ t

0

‖θ‖2ds + α2

∫ t

0

‖vi,s‖2ds. (2.104)

To bound the first term on the right we integrate (2.103) to obtain
∫ t

0

‖θ‖2ds ≤ T 2
mT
2

∫ t

0

‖w‖2ds.

Thus, from (2.104) we may derive,

α1‖w(t)‖2 ≤ T 2
mT
2

∫ t

0

‖w‖2ds + α2

∫ t

0

‖vi,s‖2ds. (2.105)

To estimate the vi,t term we multiply the equivalent vi equation from
(2.93) by vi,t and integrate over Ω then (0, t) to find

α2‖vi,t‖2 +
1
2

d

dt
‖v‖2 = (giS, vi,t),

α2

∫ t

0

‖vi,s‖2ds +
1
2
‖v‖2

≤ 1
2
‖v0‖2 +

α2

2

∫ t

0

‖vi,s‖2ds +
1

2α2

∫ t

0

‖S‖2ds, (2.106)

where the arithmetic-geometric mean inequality has been employed. From
(2.106) we see that

α2

∫ t

0

‖vi,s‖2ds ≤ ‖v0‖2 +
1
α2

∫ t

0

‖S‖2ds ≤ ‖v0‖2 +
T 2

mmt

α2
, (2.107)

where (2.96) has been used.
Now, employ (2.107) in (2.105) and we may show that

‖w‖2 − T 2
mT
2α1

∫ t

0

‖w‖2ds ≤ α2

[
v0

2

α2
+

T 2
mmT
α2

2

]
.
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This inequality is integrated by an integrating factor method and we derive
∫ t

0

‖w‖2ds ≤ Kα2, (2.108)

where

K =
2α1‖v0‖2

α2T 2
mT +

2α1m

α2
2

.

Inequality (2.108) establishes continuous dependence on α in the measure∫ t

0
‖w‖2ds. We may determine continuous dependence estimates in the

measures ‖θ(t)‖2 and ‖w(t)‖2 from (2.103) and (2.105) and (2.107) and
these are

‖θ(t)‖2 ≤ KT 2
m

2
α2, (2.109)

‖w(t)‖2 ≤ K2α
2, (2.110)

where

K2 =
KT 2

mT
2α1

+
‖v0‖2

α1α2
+

mT 2
mT

α1α2
2

.

2.7 Continuous dependence, Krishnamurti
coefficient

A very interesting model to describe a situation of penetrative convection in
a viscous fluid was developed by (Krishnamurti, 1997). She also produced
an experiment which captured the phenomenon and motivated her model.
Linear instability and nonlinear energy stability bounds for a solution to the
Krishnamurti model were derived by (Straughan, 2002b). The theoretical
model of (Krishnamurti, 1997) relies on a pH indicator called thymol blue
being dissolved in water. This gives rise to a double diffusive model with
an equation for the temperature of the fluid coupled to an equation for
the concentration of thymol blue. The penetrative effect is provided by the
heat source depending on the thymol blue concentration. In this section
we consider continuous dependence for a Krishnamurti model in a Darcy
porous medium. Linear instability and nonlinear energy stability analyses
for this model are given by (Hill, 2005a). In his work (Hill, 2005a) also
develops stability analyses for a Brinkman theory, a theory where the heat
source is nonlinear, and for a theory in which the density in the buoyancy
force depends on temperature and concentration.
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The partial differential equations governing the Krishnamurti model in
a Darcy porous medium are

vi = −p,i + giT,

∂vi

∂xi
= 0,

∂T

∂t
+ vi

∂T

∂xi
= ΔT + αC,

∂C

∂t
+ vi

∂C

∂xi
= ΔC.

(2.111)

In these equations vi, p, T, C are the velocity, pressure, temperature and
concentration, gi is the gravity vector (|g| ≤ 1), and the Krishnamurti effect
is introduced via the αC term in (2.111)3. The Krishnamurti term arises
because (Krishnamurti, 1997) takes the heat supply to depend (linearly)
on concentration and this gives rise to equations (2.111)3. We here assume
(2.111) hold on Ω × (0, T ) with the boundary conditions

vini = 0, T = h(x, t), C = r(x, t), on Γ × (0, T ]. (2.112)

The initial conditions are

T (x, 0) = T0(x), C(x, 0) = C0(x). (2.113)

The goal of this section is to show that the solution (vi, p, T, C) depends
continuously on changes in the Krishnamurti coefficient α. It is important
in analysing a model to know that the addition of a term like the αC
Krishnamurti term still retains the well posedness of the original system.

To establish continuous dependence we find it necessary to have an a
priori bound for the temperature T . We may invoke the analysis of section
2.6 to see that C is bounded by its initial and boundary values, precisely,

|C| ≤ Cm = max
{

sup
Ω

|C0|, sup
Ω×[0,T ]

|r|
}

.

The presence of the αC term in (2.111) prevents us from immediately
deducing a maximum principle for T .

2.7.1 An a priori bound for T

We introduce the function H which solves

ΔH = 0 in Ω,

H = h2p−1 on Γ,
(2.114)

where H = H(x, t) since h = h(x, t), and p is an integer.
Because of equation (2.111)3 we may write

∫ t

0

ds

∫

Ω

(T 2p−1 − H)(T,t + viT,i − ΔT − αC)dx = 0. (2.115)
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After several integrations by parts we deduce from (2.115)
∫

Ω

T 2pdx +
2(2p − 1)

p

∫ t

0

ds

∫

Ω

T p
,iT

p
,idx =

∫

Ω

T 2p
0 dx + 2p(H,T )

− 2p(H0, T0) − 2p

∫ t

0

(H,s, T )ds + 2p

∫ t

0

ds

∫

Ω

HviT,idx

+ 2p

∫ t

0

ds

∫

Γ

∂H

∂n
hdA − α

∫ t

0

(H,C)ds

+ α

∫ t

0

ds

∫

Ω

T 2p−1Cdx. (2.116)

The second - sixth terms on the right of (2.116) are handled as in (Payne
and Straughan, 1998a) and the new terms are the seventh and eighth. The
arithmetic-geometric mean inequality is used to see that

−α

∫ t

0

(H,C)ds ≤ α

2

∫ t

0

‖H‖2ds +
mC2

mT
2

α, (2.117)

where m is the measure of Ω. To handle the last term in (2.116) we employ
Young’s inequality as follows,

∫ t

0

ds

∫

Ω

T 2p−1Cdx ≤
(

2p − 1
p

)∫ t

0

ds

∫

Ω

T 2pdx

+
1
2p

∫ t

0

ds

∫

Ω

C2pdx. (2.118)

From the maximum principle, (Protter and Weinberger, 1967), we know
H ≤ h2p−1

m , hm = maxΓ |h|, and then since from (2.111)1 we find ‖v‖ ≤
‖T‖, we use (2.117) and (2.118) and follow the analysis of (Payne and
Straughan, 1998a) to derive
∫

Ω

T 2pdx ≤
∫

Ω

T 2p
0 dx + 2p(‖H‖ ‖T‖ + ‖H0‖ ‖T0‖)

+ 2p

√∫ t

0

‖H,s‖2ds

∫ t

0

‖T‖2ds

+ 2ph2p−1
m

√∫ t

0

‖∇T‖2ds

∫ t

0

‖T‖2ds

+ 2p

√∫ t

0

ds

∫

Γ

h2dA

∫ t

0

ds

∫

Γ

(∂H

∂n

)2

dA

+
α

2

∫ t

0

‖H‖2ds +
mC2

mT
2

α + α
(2p − 1

p

)∫ t

0

ds

∫

Ω

T 2pdx

+
mC2p

m T
2p

α. (2.119)
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The next step is to bound the ‖T‖ and ‖∇T‖ terms and their integrals.
To this end we introduce the function G which satisfies

ΔG = 0 in Ω, G = h(x, t) on Γ. (2.120)

Now form the combination

∫ t

0

ds

∫

Ω

(T − G)(T,t + viT,i − ΔT − αC)dx = 0.

After integrations by parts we may derive from this

1
2
‖T‖2 +

∫ t

0

‖∇T‖2ds =
1
2
‖T0‖2 +

∫ t

0

ds

∫

Ω

T,iG,idx

+ (G,T ) − (G0, T0) −
∫ t

0

ds

∫

Ω

TG,sdx

+
∫ t

0

ds

∫

Ω

GviT,idx + α

∫ t

0

ds

∫

Ω

CTdx

− α

∫ t

0

ds

∫

Ω

CGdx.

We modify the argument of (Payne and Straughan, 1998a), p. 328, to find

∫ t

0

ds

∫

Ω

GviT,idx ≤Gm

∫ t

0

ds

∫

Ω

|v| |∇T | dx

≤h2
m

2

∫ t

0

‖T‖2ds +
1
2

∫ t

0

‖∇T‖2ds.

Thus, use of this and the arithmetic-geometric mean inequality in the above
allows us to deduce

1
4
‖T‖2 +

1
2

∫ t

0

‖∇T‖2ds ≤ ‖T0‖2 +
∫ t

0

ds

∫

Γ

h
∂G

∂n
dA

+ ‖G‖2 +
1
2
‖G0‖2 +

1
2

∫ t

0

‖G,s‖2ds +
α

2

∫ t

0

‖G‖2ds

+ αTmC2
m +
(

1
2

+
α

2
+

h2
m

4

)∫ t

0

‖T‖2ds. (2.121)

(Payne and Straughan, 1998a) show how to use a Rellich identity to
bound the G terms in (2.121). The new term here is the α

∫ t

0
‖G‖2ds/2

one but this also responds to the (Payne and Straughan, 1998a) treat-
ment. We define the data term D1(t), for computable constants h1, . . . , h6
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dependent only on data, by

1
4
D1(t) =h1

∫

Γ

h2dA + h2

∫

Γ

|∇sh|2dA

+ h3

√∫ t

0

ds

∫

Γ

h2dA

∫ t

0

dη

∫

Γ

|∇sh|2dA

+ h4

∫ t

0

ds

∫

Γ

h2
,sdA + h5

∫ t

0

ds

∫

Γ

h2dA

+ h6

∫ t

0

dη

∫

Ω

|∇sh,η|2dA,

where ∇s is the tangential derivative on Γ. We may show D1/4 is a data
bound for all five terms on the right of (2.121) which involve G.

Thus, put a = 2 + 2α + h2
m, then (2.121) leads to

1
4
‖T‖2 +

1
2

∫ t

0

‖∇T‖2ds ≤ ‖T0‖2 +
1
4
D1 + αT C2

mm +
a

4

∫ t

0

‖T‖2ds.

This inequality may be integrated to find

‖T (t)‖2 ≤ D2(t) + a

∫ t

0

‖T‖2ds, (2.122)

where

D2(t) = 4D1 + 4‖T0‖2 + 4mαT C2
m.

Inequality (2.122) may be integrated to obtain the following three bounds,

‖T (t)‖2 ≤ D2 + a

∫ t

0

ea(t−s)D2(s)ds = D3(t),
∫ t

0

‖T‖2ds ≤
∫ t

0

ea(t−s)D2(s)ds = D4(t),
∫ t

0

‖∇T‖2ds ≤ 1
2
D2 +

a

2
D4 = D5(t).

We now return to (2.119). (Payne and Straughan, 1998a) show there are
constants ψ1, c1 > 0 such that

‖H‖2 ≤ ψ1

∫

Γ

h4p−2dA,

‖H,t‖2 ≤ ψ1

∫

Γ

|(h2p−1),t|2dA,

∫

Γ

(
∂H

∂n

)2

dA ≤ c1

∫

Γ

|∇sh
2p−1|2dA.
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Using these inequalities and the bounds for ‖T‖ and ‖∇T‖ in (2.119) we
may derive

∫

Ω

T 2pdx ≤
∫

Ω

T 2p
0 dx + 2p

(
D

1/2
3 max + ‖T0‖

)
ψ

1/2
1

√∫

Γ

h4p−2dA

+ 2pD
1/2
4

√∫ t

0

ψ1dη

∫

Γ

h2
,ηh4p−4dA

+ 2ph2p−1
m

√∫ t

0

D3(s)ds

∫ t

0

D5(s)ds

+ 2pc
1/2
1

√∫ t

0

ds

∫

Γ

h2dA

∫ t

0

dη

∫

Γ

|∇sh2p−1|2dA

+ mαT
(C2p

m

2p
+

C2
m

2

)
+

α

2
ψ1

∫ t

0

ds

∫

Γ

h4p−2dA

+ α

(
2p − 1

p

)∫ t

0

ds

∫

Ω

T 2pdx. (2.123)

The first seven terms on the right of (2.123) are data and we denote these
by F (h). With Q =

∫ t

0
ds
∫
Ω

T 2pdx, (2.123) is

Q′ − μQ ≤ F,

where μ = α(2p − 1)/p. This inequality integrates to yield
∫

Ω

T 2pdx ≤ μ

∫ t

0

F (s)eμ(t−s)ds + F.

We raise both sides of this inequality to the power 1/2p to see that
(∫

Ω

T 2pdx

)1/2p

≤
[
F + μ

∫ t

0

F (s)eμ(t−s)ds

]1/2p

. (2.124)

Let p → ∞ and since the right hand side of (2.124) is composed of
∫
Ω

T 2p
0 dx,

h2p
m , C2p

m raised to the power 1/2p we arrive at

sup
Ω×[0,T ]

|T | ≤ max
{
|T0|m , sup

[0,T ]

hm, Cm

}
= TB. (2.125)

This is the a priori bound we sought to achieve.

2.7.2 Continuous dependence

We now let (ui, T, C1, p) be a solution to (2.111) – (2.113) for Krishnamurti
coefficient α1 and we let (vi, S, C2, q) be another solution for a different
Krishnamurti coefficient α2, but for the same data functions h, r, T0 and
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C0. Thus (ui, T, C1, p) and (vi, S, C2, q) satisfy the boundary-initial value
problems,

ui = −p,i + giT,

ui,i = 0,

T,t + uiT,i = ΔT + α1C1,

C1,t + uiC1,i = ΔC1,

(2.126)

in Ω × (0, T ),

uini = 0, T = h, C1 = r on Γ × (0, T ], (2.127)

T (x, 0) = T0(x), C1(x, 0) = C0(x), (2.128)

and

vi = −q,i + giS,

vi,i = 0,

S,t + viS,i = ΔS + α2C2,

C2,t + viC2,i = ΔC2,

(2.129)

in Ω × (0, T ),

vini = 0, S = h, C2 = r on Γ × (0, T ], (2.130)

S(x, 0) = S0(x), C2(x, 0) = C0(x). (2.131)

The difference variables wi, θ, φ, π and α are defined by

wi = ui − vi, θ = T − S, φ = C1 − C2, π = p − q, α = α1 − α2. (2.132)

By direct calculation we see that (wi, θ, φ, π) satisfies the boundary-initial
value problem

wi = −π,i + giθ,

wi,i = 0,

θ,t + wiT,i + viθ,i = Δθ + α1φ + αC2,

φ,t + wiC1,i + viφ,i = Δφ,

(2.133)

in Ω × (0, T ),

wini = 0, θ = 0, φ = 0, on Γ × (0, T ], (2.134)

θ(x, 0) = 0, φ(x, 0) = 0. (2.135)

First, observe that multiplying (2.133)1 by wi, integrating over Ω and
using the Cauchy-Schwarz inequality we find

‖w‖ ≤ ‖θ‖. (2.136)
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By multiplying (2.133)3 by θ and integrating over Ω,

d

dt
‖θ‖2 = 2

∫

Ω

wiTθ,idx − 2‖∇θ‖2 + 2α(C2, θ) + 2α1(φ, θ).

Now use the bound for T and the arithmetic-geometric mean inequality to
find

d

dt
‖θ‖2 ≤ a‖θ‖2 + α1‖φ‖2 + kα2, (2.137)

where we have set

a =
T 2

B

2
+ 1 + α1, k = mC2

m.

Next, multiply (2.133)4 by φ and integrate over Ω to find

d

dt
‖φ‖2 =2

∫

Ω

wiC1φ,idx − 2‖∇φ‖2,

≤C2
m

2
‖w‖2,

≤C2
m

2
‖θ‖2, (2.138)

where (2.136) has also been employed.
We put β = a + C2

m/2 and add (2.137) and (2.138) to deduce

d

dt
(‖θ‖2 + ‖φ‖2) ≤ β(‖θ‖2 + ‖φ‖2) + kα2.

This inequality is integrated to arrive at

‖θ(t)‖2 + ‖φ(t)‖2 ≤ ζ(t)α2, (2.139)

where ζ(t) = keβt/β.
Inequality (2.139) is an a priori bound and establishes continuous

dependence on the Krishnamurti coefficient α for equations (2.111).

2.8 Continuous dependence, Dufour coefficient

This section is devoted to studying the influence the Dufour effect has
on double diffusive convective motion in a porous medium of Brinkman
type. We focus on the Brinkman equations rather than the Darcy equa-
tions. As pointed out in chapter 1, the Brinkman equations of flow in
porous media (Brinkman, 1947) have been the subject of intense recent
attention. Among recent papers dealing with Brinkman models we cite
(Franchi and Straughan, 1996), (Givler and Altobelli, 1994), (Guo and
Kaloni, 1995c; Guo and Kaloni, 1995a), (Kladias and Prasad, 1991),
(Kwok and Chen, 1987), (Lombardo and Mulone, 2002a; Lombardo and
Mulone, 2002b; Lombardo and Mulone, 2003), (Nield and Bejan, 2006),
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(Qin and Chadam, 1996), (Qin et al., 1995), (Qin and Kaloni, 1992; Qin
and Kaloni, 1994), (Payne and Song, 1997; Payne and Song, 2000), (Payne
and Straughan, 1996; Payne and Straughan, 1999a), and the references
therein. Double diffusive convective motion is the phenomenon involving
the diffusion and convection of two independent fields, such as tempera-
ture and a salt field. In section 2.7 we analysed another double diffusive
problem. Stability analyses of double diffusive phenomena, in a variety of
practical contexts, have occupied much recent attention, cf. (Avramenko
and Kuznetsov, 2004), (Bardan et al., 2000; Bardan et al., 2001), (Bardan
and Mojtabi, 1998), (Bresch and Sy, 2003), (Budu, 2002), (Carr, 2003a;
Carr, 2003b), (Chang, 2004), (Charrier-Mojtabi et al., 1998), (Clark et al.,
2002), (Guo and Kaloni, 1995c; Guo and Kaloni, 1995a; Guo and Kaloni,
1995b), (Guo et al., 1994), (Hill, 2005a; Hill, 2003; Hill, 2004b; Hill, 2004a;
Hill, 2004c; Hill, 2005b), (Hurle and Jakeman, 1971), (Karimi-Fard et al.,
1999), (Knutti and Stocker, 2000), (Lombardo and Mulone, 2002b), (Lom-
bardo et al., 2001), (Malashetty et al., 2006), (Song, 2002), (Stocker, 2001),
(Stocker and Schmittner, 1997), (Straughan and Tracey, 1999) and (Ybarra
and Velarde, 1979). (Straughan, 2004a), chapter 14 discusses double diffu-
sive and even multi-diffusive convection in detail in a variety of contexts.
Further practical studies of double diffusive convection to energy conversion
and management via a solar pond occupy the papers by (Rothmeyer, 1980),
(Tabor, 1980), and (Zangrando, 1991), the one by Rothmeyer investigat-
ing in particular the Soret effect, which is in some sense the mathematical
adjoint to the Dufour effect.

To describe the Dufour effect, the equations for convective - diffusive
motion in an incompresssible fluid in a Brinkman porous medium may be
written as, employing a Boussinesq approximation in the body force term
in the momentum equation,

vi − λΔvi = −p,i + giT + hiC, vi,i = 0,

T,t + viT,i = −Ji,i ,

C,t + viC,i = −Ki,i ,

(2.140)

where vi, T, C and p represent velocity, temperature, salt concentration
and pressure fields, respectively, gi and hi are the gravity vector terms
arising in the density equation of state, and J and K are fluxes of heat and
solute, respectively. In equations (2.140) λ is the Brinkman coefficient. The
Brinkman equations are discussed at length in (Nield and Bejan, 2006) and
in chapter 1, section 1.4 of this book. We observe that in (2.140)1 the T,C
terms arise from the body force in a Boussinesq approximation. The vi term
is essentially an interaction force between the fluid and porous matrix. The
λΔvi term is an effective viscosity contribution and is believed appropriate
when the porosity is not too small. In the Brinkman equations the nonlinear
convective terms of Navier-Stokes theory are omitted as is the acceleration,
∂vi/∂t, term; this is consistent with flow through a porous matrix where
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the convection and acceleration terms are likely to be negligible. (Hurle
and Jakeman, 1971) argue that the general forms for the fluxes J and K
should be

Ji = −κT,i−ρTC
( ∂μ

∂C

)
D′C,i , Ki = −ρD

[
ST C(1−C)T,i +C,i

]
, (2.141)

where κ,D,D′, ST , ρ and μ are, respectively, thermal conductivity, diffu-
sion constant, Dufour coefficient, Soret coefficient, density and chemical
potential of the solute. Continuous dependence of the solution on the
Soret coefficient is treated in (Straughan and Hutter, 1999). In this sec-
tion we set the Soret coefficient ST = 0 and concentrate on a Dufour
effect. As a first step we treat a linear Dufour effect. This means we
treat the ρTCD′(∂μ/∂C) term in (2.141) as constant. This is in keeping
with the approach of (Ybarra and Velarde, 1979). From a mathematical
viewpoint we may then, without loss of generality, reduce system (2.140),
incorporating the reduced version of (2.141), to the form

vi − λΔvi = −p,i + giT + hiC, vi,i = 0,

T,t + viT,i = ΔT + γΔC ,

C,t + viC,i = ΔC ,

(2.142)

where γ > 0 is a constant and γΔC represents the Dufour effect. We now
develop a priori bounds to enable us to establish continuous dependence of
the solution on changes in the Dufour coefficient (constant) γ.

2.8.1 Continuous dependence on γ.

The continuous dependence result we now establish is truly a priori in
that the coefficients appearing in the stability estimate are dependent only
on initial and boundary data, and on the geometry of the domain. The
proof given here is not identical to that of (Straughan and Hutter, 1999).
However, it can be adapted very quickly since the Soret system studied
in (Straughan and Hutter, 1999) is obtained by exchanging T and C in
(2.142). On the boundary Γ we consider the given data

vi = 0, T = h, C = g, x ∈ Γ, (2.143)

for prescribed functions h and g. Note that since we are dealing with the
Brinkman equations all components of the velocity are prescribed on Γ.
The initial data are

T (x, 0) = T0(x), C(x, 0) = C0(x), x ∈ Ω. (2.144)

To study continuous dependence on γ we let (ui, T, C1, p) and (vi, S, C2, q)
be solutions to (2.142) – (2.144) for the same boundary and initial data,
but for different Dufour coefficients γ1 and γ2. Thus, let (ui, T, C1, p) and
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(vi, S, C2, q) solve the boundary-initial value problems

ui − λΔui = −p,i + giT + hiC1,

ui,i = 0,

T,t + uiT,i = ΔT + γ1ΔC1,

C1,t + uiC1,i = ΔC1,

(2.145)

in Ω × (0, T ),

ui = 0, T = h, C1 = g, on Γ × (0, T ), (2.146)

T (x, 0) = T0(x), C1(x, 0) = C0(x), x ∈ Ω, (2.147)

and

vi − λΔvi = −q,i + giS + hiC2,

vi,i = 0,

S,t + viS,i = ΔS + γ2ΔC2,

C2,t + viC2,i = ΔC2,

(2.148)

in Ω × (0, T ),

vi = 0, S = h, C2 = g, on Γ × (0, T ), (2.149)

S(x, 0) = T0(x), C2(x, 0) = C0(x), x ∈ Ω. (2.150)

Define the difference solution (wi, θ, φ, π) and the gamma-difference, γ,
by

wi = ui − vi, θ = T − S, φ = C1 − C2, π = p − q, γ = γ1 − γ2.

The solution (wi, θ, φ, π) satisfies the partial differential equations

wi − λΔwi = −π,i + giθ + hiφ, wi,i = 0,

θ,t + wiT,i + viθ,i = Δθ + γΔC1 + γ2Δφ ,

φ,t + viφ,i + wiC1,i = Δφ,

(2.151)

in Ω × (0, T ), together with the boundary and initial conditions,

wi = 0, θ = 0, φ = 0, on Γ × (0, T ), (2.152)

θ(x, 0) = 0, φ(x, 0) = 0. (2.153)

Our analysis commences by multiplying (2.151)1 by wi and integrating
over Ω to derive

‖w‖2 + λ‖∇w‖2 = gi(θ, wi) + hi(φ,wi). (2.154)

Again we suppose, |g| ≤ 1, |h| ≤ 1.
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Multiply (2.151)3 by θ and integrate over Ω. Multiply (2.151)4 by φ and
likewise integrate over Ω. In this way one derives

d

dt

1
2
‖θ‖2 = −(wiT,i, θ) − ‖∇θ‖2 − γ(∇C1,∇θ) − γ2(∇θ,∇φ), (2.155)

and

d

dt

1
2
‖φ‖2 = −(wiC1,i, φ) − ‖∇φ‖2. (2.156)

We form the combination (2.155)+Γ(2.156) for a constant Γ(> 0) to be
chosen. In this way we obtain

d

dt

1
2
(
Γ‖φ‖2+‖θ‖2

)
= −Γ(wiC1,i, φ) − (wiT,i, θ) − Γ‖∇φ‖2

− γ2(∇θ,∇φ) − ‖∇θ‖2 − γ(∇C1,∇θ). (2.157)

The first two terms on the right of this expression are cubic. We wish to
make a positive - definite form from the next three. So, the idea now is to
require Γ so large that

Γ‖∇φ‖2 + γ2(∇θ,∇φ) + ‖∇θ‖2 ≥ ξ1‖∇φ‖2 + ξ2‖∇θ‖2 ,

for positive numbers ξ1, ξ2. For example by using the arithmetic-geometric
mean inequality on the γ2 term we may deduce

Γ‖∇φ‖2 + γ2(∇θ,∇φ) + ‖∇θ‖2 ≥
(
Γ − γ2

2α

)
‖∇φ‖2 +

(
1 − αγ2

2

)
‖∇θ‖2 ,

for α > 0 at our disposal. Let us now choose α = 1/γ2 and then select
Γ = γ2

2 . Thus, the inequality above becomes

Γ‖∇φ‖2 + γ2(∇θ,∇φ) + ‖∇θ‖2 ≥ γ2
2

2
‖∇φ‖2 +

1
2
‖∇θ‖2. (2.158)

Now use the arithmetic-geometric mean inequality on the last term of
(2.157). We balance the ‖∇θ‖2 term which arises with a piece of the same
term from (2.158). Thus, (2.157) together with (2.158) allows us to derive

d

dt

1
2
(
Γ‖φ‖2+‖θ‖2

)
≤ −Γ(wiC1,i, φ) − (wiT,i, θ) −

γ2
2

2
‖∇φ‖2

− 1
4
‖∇θ‖2 + γ2‖∇C1‖2. (2.159)

Since we have extra dissipation provided by the Brinkman term (as opposed
to the Darcy term of section 2.7) we can bound the cubic terms in (2.159)
in a different manner. We begin with the following Sobolev inequality

‖w‖4 ≤ c1‖∇w‖, (2.160)

where ‖ · ‖4 is the norm on L4(Ω) and c1 = c1(Ω). We also utilise the
Poincaré inequality λ1‖w‖2 ≤ ‖∇w‖2. Next, use the Cauchy - Schwarz,
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Sobolev and Poincaré inequalities together with the arithmetic-geometric
mean inequality to find

|(wiC1,i, φ)| ≤ ‖∇C1‖ ‖w‖4 ‖φ‖4

≤ c2
1 ‖∇C1‖ ‖∇w‖ ‖∇φ‖

≤ c4
1

2
‖∇C1‖2 ‖∇w‖2 +

1
2
‖∇φ‖2. (2.161)

A similar procedure leads to

|(wiT,i, θ)| ≤ c4
1‖∇T‖2 ‖∇w‖2 +

1
4
‖∇θ‖2. (2.162)

Now, combine (2.161) and (2.162) in inequality (2.159) to arrive at

d

dt

1
2
(
γ2
2‖φ‖2 + ‖θ‖2

)
≤c4

1γ
2
2

2
‖∇C1‖2 ‖∇w‖2

+ c4
1‖∇T‖2 ‖∇w‖2 + γ2‖∇C1‖2. (2.163)

We need to estimate ‖∇w‖2 and then from (2.154) we may find

‖w‖2 + λ‖∇w‖2 =(giθ, wi) + (hiφ,wi)
≤‖θ‖‖w‖ + ‖φ‖‖w‖

and then we use Poincaré’s inequality on a part of ‖∇w‖2 to find

‖w‖2 + λ
√

λ1‖w‖‖∇w‖ ≤ ‖θ‖‖w‖ + ‖φ‖‖w‖.
From this inequality we derive the estimate

‖w‖ + λ
√

λ1‖∇w‖ ≤ ‖θ‖ + ‖φ‖. (2.164)

What we require in (2.159) is an upper bound for ‖∇w‖2 and we may
derive this from (2.164), since this inequality shows

‖∇w‖ ≤ ‖θ‖ + ‖φ‖
λ
√

λ1

,

and squaring

‖∇w‖2 ≤ (‖θ‖ + ‖φ‖)2
λ2λ1

≤ 2
λ2λ1

(‖θ‖2 + ‖φ‖2) . (2.165)

Thus, we employ estimate (2.165) in inequality (2.163) to find

d

dt

1
2

(
γ2
2‖φ‖2 + ‖θ‖2

)
≤ c4

1

λ2λ1

(
γ2
2 ‖∇C1‖2 + 2‖∇T‖2

)
(‖θ‖2 + ‖φ‖2)

+ γ2‖∇C1‖2. (2.166)

We now need a priori bounds for ‖∇C1‖ and ‖∇T‖. To this end we follow
analogous steps to section 2.7 and we introduce the harmonic function, H,
which adopts the same boundary values as C1. Thus, define

ΔH = 0, in Ω × (0, T ), H(x, t) = g(x, t), on Γ × (0, T ). (2.167)
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Form the identity
∫ t

0

∫

Ω

(C1 − H)(C1,t + uiC1,i − ΔC1)dx dη = 0. (2.168)

Next perform several integrations in (2.168) and use the boundary values
and properties of H to see that

1
2
‖C1(t)‖2 − 1

2
‖C0‖2 − (H,C1) + (H0, C0) +

∫ t

0

∫

Ω

H,ηC1dx dη

−
∫ t

0

∫

Ω

HuiC1,idx dη +
∫ t

0

‖∇C1‖2dη −
∫ t

0

∮

Γ

g
∂H

∂n
dAdη = 0. (2.169)

The point of introducing such an H is that we cannot work directly with
T or C1 to form energy-like estimates since they have non-zero boundary
values. Instead we work with identities for T−H or C1−H, functions which
are zero on Γ. We may derive a priori bounds for H in a straightforward
manner. To handle the cubic term in (2.169) we let gm be the maximum
value of g on Γ× [0, T ) (gmis taken positive) and then since H is harmonic
we know by the maximum principle that H ≤ gm. Upon employing the
Cauchy-Schwarz and arithmetic-geometric mean inequalities we derive

∫ t

0

∫

Ω

HuiC1,idx dη ≤gm

√∫ t

0

‖u‖2dη

√∫ t

0

‖∇C1‖2dη

≤1
2

∫ t

0

‖∇C1‖2dη +
1
2
g2

m

∫ t

0

‖u‖2dη, (2.170)

where the coefficient of
∫ t

0
‖∇C1‖2dη has been deliberately chosen less

than 1 so we may dominate it by the equivalent term in (2.169).
From equation (2.145)1 we may show that

‖u‖2 + λ‖∇u‖2 = gi(T, ui) + hi(C1, ui).

We use this equation to derive a bound for
∫ t

0
‖u‖2dη to employ in (2.170).

We now use the Cauchy - Schwarz inequality and Poincaré’s inequality to
derive

‖u‖2 + λ‖∇u‖2 ≤ ‖T‖‖u‖ + ‖C1‖‖u‖,
then

‖u‖2 + λλ1‖u‖2 ≤ ‖T‖‖u‖ + ‖C1‖‖u‖.
Thus,

‖u‖ ≤ ‖T‖ + ‖C1‖
(1 + λλ1)

,

from whence,

‖u‖2 ≤ 2(‖T‖2 + ‖C1‖2)
(1 + λλ1)

. (2.171)
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Therefore, from (2.170),
∫ t

0

∫

Ω

HuiC1,idx dη ≤1
2

∫ t

0

‖∇C1‖2dη

+ g2
m

(∫ t

0

‖T‖2dη +
∫ t

0

‖C1‖2dη

)
. (2.172)

By using the arithmetic-geometric mean inequality we may now show that

(H,C1) ≤ ‖H‖2 +
1
4
‖C1‖2, −(H0, C0) ≤

1
2
‖H0‖2 +

1
2
‖C0‖2, (2.173)

and
∫ t

0

∫

Ω

H,ηC1 dx dη ≤ 1
2a

∫ t

0

∫

Ω

H2
,ηdx dη +

a

2

∫ t

0

∫

Ω

C2
1dx dη, (2.174)

for a > 0 to be selected.
We now use the Poincaré inequality on the C2

1 term on the right, but
since C1 = g on Γ the Poincaré inequality now takes form

λ1

∫

Ω

C2
1dx ≤

∫

Ω

|∇C1|2dx + kP

∫

Γ

g2dA,

where λ1 and kP are positive constants depending on Ω. We integrate this
inequality over (0, t) to find
∫ t

0

ds

∫

Ω

C2
1dx ≤ 1

λ1

∫ t

0

ds

∫

Ω

|∇C1|2dx +
kP

λ1

∫ t

0

ds

∫

Γ

g2dA. (2.175)

Now use estimate (2.175) on the right of (2.174) to find
∫ t

0

∫

Ω

H,ηC1 dx dη ≤ 1
2a

∫ t

0

∫

Ω

H2
,η dx dη +

a

2λ1

∫ t

0

ds

∫

Ω

|∇C1|2dx

+
akP

2λ1

∫ t

0

ds

∫

Γ

g2dA.

We choose a/2λ1 = 1/4, i.e. a = λ1/2, to balance the
∫ t

0
ds
∫
Ω
|∇C1|2dx

piece with an equivalent piece of the analogous term in (2.169). Thus, the
necessary inequality is

∫ t

0

∫

Ω

H,ηC1 dx dη ≤ 1
λ1

∫ t

0

∫

Ω

H2
,η dx dη +

1
4

∫ t

0

ds

∫

Ω

|∇C1|2dx

+
kP

4

∫ t

0

ds

∫

Γ

g2dA. (2.176)

By use of the Cauchy-Schwarz inequality one finds

∫ t

0

∫

Γ

g
∂H

∂n
dAdη ≤

√∫ t

0

∫

Γ

g2dAdη

√∫ t

0

∫

Γ

(∂H

∂n

)2

dAdη . (2.177)
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We next employ (2.173), (2.176) and (2.177) together with (2.170) in
equation (2.169) to arrive at

1
4
‖C1(t)‖2+

1
4

∫ t

0

‖∇C1‖2dη ≤ ‖C0‖2 +
kP

4

∫ t

0

ds

∫

Γ

g2dA + ‖H‖2

+
1
2
‖H0‖2 +

1
2

∫ t

0

‖H,η‖2dη

+

√∫ t

0

∫

Γ

g2dAdη

√∫ t

0

∫

Γ

(∂H

∂n

)2

dAdη

+ g2
m

∫ t

0

‖T‖2dη + g2
m

∫ t

0

‖C1‖2dη. (2.178)

The next stage involves use of a Rellich identity, cf. (Payne and Weinberger,
1958), to estimate the H terms on the right of (2.178). Details appropriate
to the function H are similar to those in (Franchi and Straughan, 1994),
p. 449. We now give details.

Recall how the function H is defined in (2.167). Thus we may write

0 =
∫

Ω

xiH,iΔHdx

=
∫

Ω

(xiH,iH,j),jdx −
∫

Ω

xi
,jH,iH,jdx −

∫

Ω

xiH,ijH,jdx

=
∫

Γ

xiH,injH,jdA −
∫

Ω

δi
jH,iH,jdx −

∫

Ω

xi

2
(H,jH,j),idx

=
∫

Γ

xiH,i
∂H

∂n
dA −

∫

Ω

H,iH,idx

− 1
2

∫

Ω

(xiH,jH,j),idx +
1
2

∫

Ω

xi
,iH,jH,jdx

=
∫

Γ

xiH,i
∂H

∂n
dA − 1

2

∫

Γ

xiniH,jH,jdA

−
∫

Ω

H,iH,idx +
3
2

∫

Ω

H,iH,idx,

where several integrations by parts and use of the divergence theorem have
been performed. Thus, we see that

1
2
‖∇H‖2 =

1
2

∫

Γ

xiniH,jH,jdA −
∫

Γ

xiH,i
∂H

∂n
dA. (2.179)

On Γ we write ∇H as a normal and tangential part, thus

H,i =
∂H

∂n
ni + ∇sH si,

where ∇sH si is the tangential derivative, si∇sH = xi
;αaαβH;β where aαβ

is the first fundamental form on Γ and ;α denotes surface differentiation.
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From this decomposition it follows that H,jH,j = (∂H/∂n)2 + |∇sH|2.
Hence, we write the right hand side (RHS) of (2.179) as

RHS =
1
2

∫

Γ

xini

(∂H

∂n

)2

dA +
1
2

∫

Γ

xini|∇sH|2dA

−
∫

Γ

xini

(∂H

∂n

)2

dA −
∫

Γ

xis
i∇sH

∂H

∂n
dA

= − 1
2

∫

Γ

xini

(∂H

∂n

)2

dA− 1
2

∫

Γ

xini|∇sH|2dA−
∫

Γ

xis
i∇sH

∂H

∂n
dA

So (2.179) becomes

1
2
‖∇H‖2 +

1
2

∫

Γ

xini

(∂H

∂n

)2

dA =
1
2

∫

Γ

xini|∇sH|2dA

−
∫

Γ

xisi
∂H

∂n
∇sH dA. (2.180)

We suppose now Ω is star shaped and put m1 = minΓ xini > 0. Thus,
from (2.180) we may determine positive constants c1 and c2 depending on
Γ such that

‖∇H‖2 + c1

∫

Γ

(∂H

∂n

)2

dA ≤c2

∫

Γ

|∇sH|2dA

=c2

∫

Γ

|∇sg|2dA. (2.181)

The Poincaré inequality for H has form, since H 
= 0 on Γ,

λ1‖H‖2 ≤ ‖∇H‖2 + kP

∫

Γ

H2dA,

where kP = kP (Ω) > 0 and so

‖H‖2 ≤ c2

λ1

∫

Γ

|∇sg|2dA +
kP

λ1

∫

Γ

g2dA. (2.182)

Furthermore, ΔH,t = 0 in Ω × [0, T ], with H,t = g,t on Γ. We may apply
the above analysis to φ = H,t to derive an inequality analogous to (2.181)
and from this we find

‖∇H,t‖2 ≤ c2

∫

Γ

|∇sg,t|2dA. (2.183)

Thus, inequalities (2.180) – (2.183) allow us to obtain estimates for the
H terms on the right of (2.178). Clearly, we may determine constants cα
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dependent on Γ such that

‖H‖2 +
1
2
‖H0‖2 ≤ 3

2
c3

∫

Γ

g2dA +
3
2

c4

∫

Γ

|∇sg|2dA, (2.184)
∫ t

0

‖H,η‖2dη ≤ c5

∫ t

0

∫

Γ

g2
,τdAdτ + c6

∫ t

0

∫

Γ

|∇sg,τ |2dAdτ, (2.185)
∫ t

0

∫

Γ

(∂H

∂n

)2

dAdη ≤ c2

∫ t

0

∫

Γ

|∇sg|2dAdη. (2.186)

If we now denote by D1 a data term of form

D1(t) = 4‖T0‖2 + k1

∫

Γ

g2dA + k2

∫

Γ

|∇sg|2dA + k3

∫ t

0

∫

Γ

g2
,τdAdτ

+ k4

∫ t

0

∫

Γ

|∇sg,τ |2dAdτ + k5

√∫ t

0

∫

Γ

g2dAdη

√∫ t

0

∫

Γ

|∇sg|2dAdη ,

where kα may be computed from (2.184) – (2.186), then from (2.178) we
may arrive at the inequality

‖C1(t)‖2 +
∫ t

0

‖∇C1‖2dη ≤ D1(t) + 4g2
m

∫ t

0

(‖T‖2 + ‖C1‖2)dη. (2.187)

We must now carry out a similar procedure for bounding ‖T‖ and ‖∇T‖
and so we introduce the harmonic function G which assumes the same
boundary values as T, i.e. define G to solve

ΔG = 0, in Ω × (0, T ), G(x, t) = h(x, t), on Γ × (0, T ). (2.188)

Since T satisfies (2.145) we may construct the identity
∫ t

0

∫

Ω

(T − G)(T,t + uiT,i − ΔT − γ1ΔC1)dx dη = 0. (2.189)

We now carry out several integrations in (2.189) to arrive at

1
2
‖T (t)‖2 − 1

2
‖T0‖2 − (G,T ) + (G0, T0) +

∫ t

0

(G,η, T )dη

−
∫ t

0

∫

Ω

GuiT,idx dη +
∫ t

0

‖∇T‖2dη + γ1

∫ t

0

(∇C1,∇T )dη

−
∫ t

0

∫

Γ

h
∂G

∂n
dAdη − γ1

∫ t

0

∫

Γ

g
∂G

∂n
dAdη = 0.

(2.190)

Let hm denote the maximum value of h on Γ. Then following the
procedure leading to (2.170) we estimate the cubic term in (2.190).
The arithmetic-geometric mean inequality is used on the γ1 term and
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these procedures furnish the bound

∫ t

0

∫

Ω

GuiT,idx dη−γ1

∫ t

0

(∇C1,∇T )dη ≤ h2
m

∫ t

0

‖u‖2dη

+
1
2

∫ t

0

‖∇T‖2dη + γ2
1

∫ t

0

‖∇C1‖2dη

≤ 2h2
m

(1 + λλ1)

(∫ t

0

‖T‖2dη +
∫ t

0

‖C1‖2dη

)

+
1
2

∫ t

0

‖∇T‖2dη + γ2
1

∫ t

0

‖∇C1‖2dη, (2.191)

where in the last step (2.171) has been employed.
We estimate the G,η term as

∫ t

0

(G,η, T )dη ≤ 1
2a

∫ t

0

‖G,η‖2dη +
a

2

∫ t

0

‖T‖2dη

≤ 1
2a

∫ t

0

‖G,η‖2dη +
a

2λ1

∫ t

0

‖∇T‖2dη

+
akP

2λ1

∫ t

0

dη

∫

Γ

h2dA

where we have also used the Poincaré inequality for T . Now pick a/2λ1 =
1/4, and then

∫ t

0

(G,η, T )dη ≤ 1
λ1

∫ t

0

‖G,η‖2dη +
1
4

∫ t

0

‖∇T‖2dη

+
kP

4

∫ t

0

dη

∫

Γ

h2dA. (2.192)

Upon employing (2.191) and (2.192) in (2.190) we may further use the
arithmetic-geometric mean inequality to obtain

1
4
‖T (t)‖2+

1
4

∫ t

0

‖∇T‖2dη ≤ ‖T0‖2 +
1
2
‖G0‖2 + ‖G‖2 +

1
λ1

∫ t

0

‖G,η‖2dη

+
∫ t

0

∫

Γ

h
∂G

∂n
dAdη + γ1

∫ t

0

∫

Γ

g
∂G

∂n
dAdη + γ2

1

∫ t

0

‖∇C1‖2dη

+ 2g2
m

∫ t

0

‖C1‖2dη + 2g2
m

∫ t

0

‖T‖2dη. (2.193)
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Next use the Cauchy-Schwarz inequality on the boundary terms,
∫ t

0

∫

Γ

h
∂G

∂n
dAdη+γ1

∫ t

0

∫

Γ

g
∂G

∂n
dAdη

≤

√∫ t

0

∫

Γ

h2dAdη

√∫ t

0

∫

Γ

(∂G

∂n

)2

dAdη

+ γ1

√∫ t

0

∫

Γ

g2dAdη

√∫ t

0

∫

Γ

(∂G

∂n

)2

dAdη (2.194)

By using a Rellich identity argument one may show that analogous
inequalities to (2.184) – (2.186) hold for G. We then define the data term
D2 for computable constants �1, . . . , �5 as

D2(t) =4‖T0‖2 + �1

∫

Γ

h2dA + �2

∫

Γ

|∇sh|2dA

+ �3

∫ t

0

∫

Γ

h2
,τdAdτ + �4

∫ t

0

∫

Γ

|∇sh,τ |2dAdτ

+ �5

√∫ t

0

∫

Γ

h2dAdη

√∫ t

0

∫

Γ

|∇sh|2dAdη

+ �5γ1

√∫ t

0

∫

Γ

g2dAdη

√∫ t

0

∫

Γ

|∇sh|2dAdη. (2.195)

Upon using (2.194) and (2.195) in (2.193) one may produce the inequality

‖T (t)‖2+
∫ t

0

‖∇T‖2dη ≤ D2(t) + 8g2
m

∫ t

0

‖C1‖2dη

+ 8g2
m

∫ t

0

‖T‖2dη + 4γ2
1

∫ t

0

‖∇C1‖2dη. (2.196)

We now let α be a constant such that α > 4γ2
1 and then form α(2.187)+

(2.196). In this manner we obtain the bound

α‖C1(t)‖2 + (α − 4γ2
1)
∫ t

0

‖∇C1‖2dη + ‖T (t)‖2 +
∫ t

0

‖∇T‖2dη

≤ αD1 + D2 +
[
4αg2

m + 8h2
m

] ∫ t

0

‖C1‖2dη

+ (4αg2
m + 8h2

m)
∫ t

0

‖T‖2dη. (2.197)

Define now K1 = 4αg2
m + 8h2

m, D(t) = αD1 + D2, and K = K1 if α > 1 or
K = K1/α if α < 1. Then from (2.197) one may discard the ‖∇C1‖2 and
‖∇T‖2 terms to derive

α‖C1(t)‖2 + ‖T (t)‖2 ≤ D + K

[
α

∫ t

0

‖C1‖2dη +
∫ t

0

‖T‖2dη

]
.
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Thus upon integration we see that

α

∫ t

0

‖C1‖2dη +
∫ t

0

‖T‖2dη ≤ P (t), (2.198)

where P is the data term

P (t) =
∫ t

0

eK(t−s)D(s)ds. (2.199)

We still need a priori estimates for
∫ t

0
‖∇T‖2dη and

∫ t

0
‖∇C1‖2dη and these

follow by using (2.198) in (2.197) to find
∫ t

0

‖∇T‖2dη ≤ P2(t),
∫ t

0

‖∇C1‖2dη ≤ P1(t), (2.200)

where P1 and P2 are data terms given by

P1(t) =
1

(α − 4γ2
1)
[
D(t) + KP (t)

]
, P2(t) = D(t) + KP (t).

We are now in a position to complete the continuous dependence estimate
on γ. An integration of (2.166) yields

γ2
2‖φ(t)‖2 + ‖θ(t)‖2 ≤ 2c4

1

λ2λ1

∫ t

0

[
γ2
2‖∇C1‖2 + 2‖∇T‖2

]
(‖φ‖2 + ‖θ‖2)dη

+ γ2

∫ t

0

‖∇C1‖2dη,

≤ 2K1c
4
1

λ2λ1

∫ t

0

[
γ2
2‖∇C1‖2 + 2‖∇T‖2

]
(γ2

2‖φ‖2 + ‖θ‖2)dη

+ γ2P1(t), (2.201)

where K2 = max {1, γ−2
2 }. Now define f(t) = 2K2c

4
1[γ

2
2‖∇C1‖2 +

2‖∇T‖2]/λ2λ1. Then an application of Gronwall’s inequality to (2.201)
furnishes the estimate

γ2
2‖φ(t)‖2 + ‖θ(t)‖2 ≤ γ2P1(t) + γ2

∫ t

0

P1(s)f(s)
[
exp
∫ t

s

f(u)du

]
ds,

≤ γ2P1(t) + γ2

[
exp
∫ t

0

f(s)ds

]
P̄1(t)

∫ t

0

f(s)ds, (2.202)

where P̄1(t) = maxs∈[0,t] P1(s). Thanks to (2.200) we have
∫ t

0
f(s)ds ≤

P3(t), where the data term P3 is given by P3(t) = 2K2c
4
1

[
γ2
2P2(t) +

2P1(t)
]
/λ2λ1. Therefore, from inequality (2.202) we may deduce

γ2
2‖φ(t)‖2 + ‖θ(t)‖2 ≤ R(t)γ2, (2.203)

where R(t) is the data term given by R(t) = P1(t)+ P̄1(t)P3(t) exp
[
P3(t)

]
.

Inequality (2.203) demonstrates continuous dependence on the Dufour
coefficient γ, for the salt concentration C and temperature T .
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We may also derive a continuous dependence inequality for the velocity u
by employing (2.154) in combination with (2.203). From (2.154) one easily
derives the estimates

‖w‖ ≤ ‖θ‖ + ‖φ‖
(1 + λλ1)

, and ‖∇w‖ ≤ 1
λ
√

λ1

(‖θ‖ + ‖φ‖).

These inequalities together with (2.203) yield

‖w(t)‖2 ≤ 2K2R(t)
(1 + λλ1)2

γ2, and ‖∇w(t)‖2 ≤ 2K2

λ2λ1
R(t) γ2.

(2.204)

Inequalities (2.204) establish continuous dependence on the Dufour
coefficient γ in the L2 and H1 measures of w as indicated.

Very interesting a priori bounds and continuous dependence on the Soret
coefficient for the system of equations (2.140) are established by (Lin and
Payne, 2007a). These writers study equations (2.140) with zero flux bound-
ary conditions. The methods they use are very interesting and of necessity
different from those described in this section.

2.9 Initial - final value problems

Recently a new class of problem has been shown to be relevant to many
applied mathematical situations. This is where the data are not given at
time t = 0, but instead are prescribed as a linear combination at times
t = 0 and t = T. We shall refer to such situations as initial - final value
problems. Specific applications of these ideas are in (Payne and Schae-
fer, 2002), (Payne et al., 2004), (Ames et al., 2004a; Ames et al., 2004b),
(Quintanilla and Straughan, 2005b; Quintanilla and Straughan, 2005a) and
the references therein. This class of problem was originally introduced in
order to stabilize solutions to the improperly posed problem when the data
is given at t = T and one wishes to compute the solution backward in
time, see (Ames et al., 1998), (Ames and Payne, 1999) and the references
therein. (Ames et al., 2004a) study an initial - final value problem for the
first order abstract equation ut + Au = f. (Ames et al., 2004b) investigate
an initial - final value problem for the diffusion equation with the spatial
domain being an infinite cylinder. (Payne and Schaefer, 2002) study an
initial - final value problem for the second order in time abstract equation
utt + Au = F. They also investigate a similar initial - final value prob-
lem for the equation utt + aut + Au = 0, for a > 0 a constant. (Payne
et al., 2004) study an initial - final value problem for some fluid mechanics
problems, especially in connection with Stokes flow. Further analyses of ini-
tial - final value problems are by (Quintanilla and Straughan, 2005b) who
investigate thermoelasticity according to the new developments of (Green
and Naghdi, 1991; Green and Naghdi, 1992; Green and Naghdi, 1993).
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Further analysis of these theories may be found in (Quintanilla and Racke,
2003), (Quintanilla and Straughan, 2000; Quintanilla and Straughan, 2002;
Quintanilla and Straughan, 2004), (Zhang and Zuazua, 2003), (Puri and
Jordan, 2004). Another article dealing with initial - final value problems
is that of (Quintanilla and Straughan, 2005a) who concentrate on dipo-
lar fluids, see also (Bleustein and Green, 1967), (Green and Naghdi, 1968;
Green and Naghdi, 1970), (Green et al., 1965), (Green and Rivlin, 1967),
(Akyildiz and Bellout, 2004), (Jordan and Puri, 1999; Jordan and Puri,
2002), (Puri and Jordan, 1999b; Puri and Jordan, 1999a), on the (Green
and Naghdi, 1996) extended theory of viscous fluids, and on the Brinkman-
Forchheimer model of flow in porous media. The last topic is of interest in
this book.

The article of (Quintanilla and Straughan, 2005a) analyses the
Brinkman-Forchheimer equations, as used by (Qin and Kaloni, 1998),
namely

Aui,t = − p,i − ui + λΔui − β|u|ui,

ui,i =0.
(2.205)

In these equations ui, p represent the velocity and pressure, and A, λ, β are
positive constants.

We take equations (2.205) to be defined on a bounded domain Ω ⊂ R
3

on the time interval (0, T ) for some T < ∞, with the boundary conditions
being

ui = 0 on Γ. (2.206)

The study of (Quintanilla and Straughan, 2005a) uses the initial - final
condition

ui(T ) + αui(0) = fi, (2.207)

where α is a constant, and fi(x) is a prescribed function. (The standard
initial boundary value problem for (2.205) would replace (2.207) by ui(0) =
fi. The standard final boundary value problem for (2.205) would employ
ui(T ) = fi instead of (2.207).) Here, the objective is to obtain a bound on
ui in terms of fi and α, employing the relation (2.207).

(Quintanilla and Straughan, 2005a) note that for the final value problem
for (2.205), (2.206), i.e. with α = 0, a global solution does not exist. By
transforming t → T − t one may show (cf. for example, the arguments
in (Straughan, 1998))

‖u(t)‖ ≥ ‖u(0)‖
e−γt − k2‖u(0)‖(1 − e−γt)/2γ

. (2.208)

In this inequality γ = (λλ1 +1)/A, k2 = 2β/Am1/2, with λ1 being the first
eigenvalue in the membrane problem for Ω and where m is the volume of Ω.
The right hand side of (2.208) blows-up at time T = [A/(λλ1 +1)] log {1+
[(λλ1 + 1)m1/2/β‖u(0)‖]}, and so ui cannot exist classically beyond this
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time. (Quintanilla and Straughan, 2005a) then argue that care must be
taken with the initial - final value problem defined by (2.205) – (2.207).

(Quintanilla and Straughan, 2005a) derive a bound for ui by commenc-
ing with multiplication of (2.205) by ui and integration over Ω using the
boundary conditions to find

d

dt

A

2
‖u‖2 = −‖u‖2 − λ‖∇u‖2 − β

∫

Ω

|u|3dx. (2.209)

We employ the Poincaré inequality −‖∇u‖2 ≤ −λ1‖u‖2 and the Cauchy-
Schwarz inequality to find −

∫
Ω
|u|3dx ≤ −‖u‖3/2/m1/2. Then from (2.209)

with Φ(t) = ‖u(t)‖2 one may show

dΦ
dt

≤ −c1Φ − c2Φ3/2, (2.210)

where the constants c1 and c2 are given by

c1 =
2(1 + λλ1)

A
, c2 =

2β

Am1/2
.

Inequality (2.210) is integrated to obtain

‖u(t)‖ ≤ ‖u(0)‖e−c1t/2

1 + c2‖u(0)‖(1 − e−γt)/c1
, (2.211)

for t in the interval 0 ≤ t ≤ T.
This is a bound for ui(t) in terms of ui(0). However, ui(0) is unknown. We

need to remove ‖u(0)‖ in (2.211) and convert it to an estimate involving
fi and α. The key is also to retain the c2 term since this contains the
Forchheimer effect (the β term). It is necessary to bound ‖u(0)‖ from both
above and below.

(Quintanilla and Straughan, 2005a) show that one may demonstrate

‖u(0)‖ ≥ ‖f‖√
2(α2 + e−c1T )

, (2.212)

and provided |α| > e−c1T/2,

‖u(0)‖ ≤ 1
(|α| − e−c1T/2)

‖f‖. (2.213)

The lower and upper bounds (2.212) and (2.213) used in (2.211) lead to
the estimate

‖u(t)‖ ≤ e−c1t/2 ‖f‖
(|α| − e−c1T/2)

[
1 +

c2(1 − e−c1t/2)‖f‖
c1

√
2(α2 + e−c1T )

]−1

, (2.214)

provided |α| > e−c1T/2, for t in the interval 0 ≤ t ≤ T.
(Quintanilla and Straughan, 2005a) observe that while the bound in

(2.214) is not optimal, the system of equations (2.205) is nonlinear, and so
an optimal bound would be hard to achieve. If instead one were to consider
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the equivalent problem for the Brinkman equations, i.e. take β = 0 in
(2.205), we may derive an optimal estimate. We do not include details
since they follow very closely the arguments of (Payne et al., 2004) for the
Stokes equations. The difference is the addition of the −ui term in (2.205).
The Lagrange identity and non-uniqueness proofs of (Payne et al., 2004)
apply here, mutatis mutandis.

2.10 The interface problem

In this section we study the problem where a viscous fluid adjoins a porous
medium saturated with the same fluid. In thermal convection this was
addressed in the fundamental papers by (Nield, 1977) and by (Chen and
Chen, 1988). One of the fundamental problems in modelling flow of a fluid
over a porous medium is that the conditions at the interface between the
fluid and the porous medium are a contentious matter, see e.g. (Beavers
and Joseph, 1967), (Caviglia et al., 1992b),(Ciesjko and Kubik, 1999),
(Jäger and Mikelic, 1998), (Jäger et al., 1999), (Jones, 1973), (McKay,
2001), (Murdoch and Soliman, 1999), (Nield and Bejan, 2006), pp. 17 – 19,
(Ochoa-Tapia and Whitaker, 1995a; Ochoa-Tapia and Whitaker, 1995b;
Ochoa-Tapia and Whitaker, 1997), (Saffman, 1971), (Taylor, 1971). Very
good agreement with experiment is often achieved by employing the exper-
imentally suggested condition proposed by (Beavers and Joseph, 1967), or
its generalization by (Jones, 1973). (Straughan, 2001c; Straughan, 2002a),
(Carr, 2004) and (Carr and Straughan, 2003) have investigated various
aspects and generalisations of the Nield and Chen-Chen problems. They
find that the Beavers-Joseph and Jones boundary conditions give good
results over a wide range of parameters. The Beavers-Joseph condition has
been successful in the slow flow of a fluid past a porous sphere (Qin and
Kaloni, 1993). If one is employing a method based on linearized instability
and so is using Stokes’ flow, use of a Beavers-Joseph or a Jones condition is
probably justified. Numerical schemes are developed for the coupled fluid
flow and porous flow problems by (Discacciati et al., 2002), by (Miglio et al.,
2003), by (Hoppe et al., 2007), and by (Mu and Xu, 2007). Several com-
putational simulations are reported in these papers. Another interesting
numerical contribution to porous/fluid flow is by (Das et al., 2002). This
paper presents a finite volume method in three-dimensions. The porous
part of the domain is allowed to be anisotropic. It is shown that flow cir-
culation may occur inside the porous medium and the direction of flow
may reverse at the interface between the porous medium and fluid. (Lay-
ton et al., 2003) prove existence for weak solutions to the problem of Darcy
porous media flow coupled to the Stokes equations in a fluid with the
Beavers - Joseph interface boundary condition. They also analyse in detail
a finite element scheme which formulates the coupled problem as uncoupled
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steps in the porous and fluid regions thereby allowing a user to employ some
of the many existing numerical codes for the separate flow regions. (Das
and Lewis, 2007) is another recent very interesting contribution. These
writers are interested in the three-dimensional flow pattern and how het-
erogeneities in the porous medium will affect this. To achieve their aim
they interestingly employ two porous layers with different permeabilities.

The purpose of this section is to review work of (Payne and Straughan,
1998a) which studies the manner in which a solution to flow in a fluid which
borders a porous medium depends on a coefficient in the Jones boundary
conditions. We adopt the notation of (Payne and Straughan, 1998a) and
thus, let an appropriate part of the plane z = x3 = 0 denote the boundary
between a porous medium occupying a bounded region Ω2 in R

3, and a
linear viscous fluid occupying a bounded region Ω1 in R

3. The porous region
is in z ≥ 0 while the fluid domain is in z < 0, although both Ω1 and Ω2

are bounded. The interface between Ω1 and Ω2 is denoted by L while the
remaining parts of the boundaries of Ω1 and Ω2 are denoted, respectively,
by Γ1 and Γ2. In Ω1 the fluid velocity is slow such that the governing
equations may be taken to be those of Stokes flow. The question of Navier-
Stokes flow is addressed in (Payne and Straughan, 1998a). In the porous
region Ω2 the flow is assumed to satisfy the Darcy (1856) equations.

Let (ui, T, p) denote the velocity, temperature and pressure in Ω1 while
(um

i , Tm, pm) denotes the velocity, temperature and pressure in Ω2. The
Stokes flow equations which hold in the fluid region are

∂ui

∂t
= − ∂p

∂xi
+ μΔui + giT,

∂ui

∂xi
= 0 ,

∂T

∂t
+ ui

∂T

∂xi
= κΔT,

(2.215)

in Ω1× (0, T ), where μ is the dynamic viscosity, κ is the thermal diffusivity
and gi is the gravity vector which is scaled such that |g| ≤ 1.

The relevant Darcy equations which hold in the porous region are,

μ

k
um

i = −∂pm

∂xi
+ giT

m,
∂um

i

∂xi
= 0 ,

∂Tm

∂t
+ um

i

∂Tm

∂xi
= κmΔTm,

(2.216)

in Ω2 × (0, T ). The constant k is the permeability and κm is the thermal
diffusivity of the porous medium.

The functions ui, T and Tm satisfy the initial data

ui(x, 0) = fi(x), T (x, 0) = T0(x), x ∈ Ω1,

Tm(x, 0) = Tm
0 (x), x ∈ Ω2.

(2.217)
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On the outer boundary Γ1 ∪ Γ2 we consider

ui = 0, T = TU (x, t), on Γ1 × (0, T ),
um

i ni = 0, Tm = TL(x, t), on Γ2 × (0, T ),
(2.218)

for prescribed functions TU and TL, with ni being the unit outward normal.
The conditions on the interface L chosen by (Payne and Straughan, 1998a)
are

u3 = um
3 , T = Tm, κT,3 = κmTm

,3 ,

pm = p − 2μu3,3, uβ,3 + u3,β =
α1√

k
uβ .

(2.219)

The coefficient α1 is determined by experiment for a given fluid and a given
porous solid. These boundary conditions are discussed at length in (Nield
and Bejan, 2006), see also chapter 6. The condition uβ,3 +u3,β = uβα1/

√
k

essentially derives from the work of (Jones, 1973). The motivation for
this arose from (Beavers and Joseph, 1967) who argued on the basis of
experimental results that

uβ,3 =
α1√

k
(uβ − um

β ), on L (2.220)

and (Jones, 1973) generalised this to include the shear stress at the
interface, i.e.

uβ,3 + u3,β =
α1√

k
(uβ − um

β ). (2.221)

(Nield and Bejan, 2006) write that (Saffman, 1971) argues that the
last term may essentially be dropped in equation (2.220). This is the
justification for (2.219)5.

The object of this section is to describe an a priori estimate showing how
(ui, T ) and (um

i , Tm) depend continuously on the interface coefficient α1.
To do this, let (ui, p, T ) and (um

i , pm, Tm) satisfy (2.215) – (2.219) and let
(vi, q, S) and (vm

i , qm, Sm) solve the same boundary initial value problem
with identical data functions fi, T0, T

m
0 , TU and TL, but with the Jones

coefficient α1 replaced by a different value α2. The difference variables
(wi, π, θ) and σ are defined by

wi = ui − vi, π = p − q, θ = T − S, σ = α1 − α2. (2.222)

By direct calculation one finds that (wi, π, θ) satisfy the partial differential
equations

∂wi

∂t
= − ∂π

∂xi
+ μΔwi + giθ,

∂wi

∂xi
= 0 ,

∂θ

∂t
+ ui

∂θ

∂xi
+ wi

∂S

∂xi
= κΔθ,

(2.223)
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in Ω1 × (0, T ),

μ

k
wm

i = −∂πm

∂xi
+ giθ

m,

∂wm
i

∂xi
= 0 ,

∂θm

∂t
+ um

i

∂θm

∂xi
+ wm

i

∂Sm

∂xi
= κmΔθm,

(2.224)

in Ω2 × (0, T ).
The initial conditions become

wi(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω1, θm(x, 0) = 0, x ∈ Ω2. (2.225)

On the outer boundary the relevant conditions become

wi = 0, θ = 0, on Γ1 × (0, T ),
wm

i ni = 0, θm = 0, on Γ2 × (0, T ).
(2.226)

The interface boundary conditions may be written

w3 = wm
3 , θ = θm, κθ,3 = κmθm

,3 ,

πm = π − 2μw3,3, wβ,3 + w3,β =
α1√

k
wβ +

σ√
k

vβ ,
(2.227)

these holding on L × (0, T ).
(Payne and Straughan, 1998a) establish the following theorem which

demonstrates continuous dependence of a solution on the interface
coefficient α1.

Theorem 2.10.1 Suppose ∂T/∂n ∈ L1(Γ1 × (0, T )) and ∂Tm/∂n ∈
L1(Γ2 × (0, T )). Then there exist constants γ(< 2μ/k), B,C and Â,
determined in (Payne and Straughan, 1998a) such that

∫

Ω1

wiwi dx+B

∫ t

0

∫

Ω1

wiwi dx dη + γ

∫

Ω2

wm
i wm

i dx

≤CeBt

α1α2

(∫

Ω1

fifi dx + ÂtT 2
m

)
σ2. (2.228)

Furthermore, there is a constant M, depending on t, such that
∫

Ω1

θ2dx +
∫

Ω2

(
θm
)2

dx ≤ M

α1α2
σ2. (2.229)

The proof of this theorem is technical, care must be taken with the
interface terms, and we refer to (Payne and Straughan, 1998a) for full
details. Nevertheless we note that the proof is interesting and is based on
a combination function Φ(t) of the form

Φ(t) =
∫

Ω1

wiwidx + γ

∫ t

0

∫

Ω2

wm
i wm

i dx dη .
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2.11 Lower bounds on the blow-up time

(Payne and Schaefer, 2006; Payne and Schaefer, 2007) and (Payne and
Song, 2007a) produce a clever argument to show that one can derive lower
bounds for the blow-up time for a nonlinear differential equation and for
the Navier-Stokes equations with nonlinear forcing terms. Prior to this
work there had been many analyses of blow-up which had derived upper
bounds on the blow-up time. However, the work of (Payne and Schaefer,
2006; Payne and Schaefer, 2007) and (Payne and Song, 2007a) is novel in
that it produces a lower bound for the blow-up time. (Suzuki, 2006) shows
how to derive a universal bound, independent of the initial data, which is
useful in calculating the initial blow-up rate of a solution, whereas (Hirota
and Ozawa, 2006) consider numerical techniques for estimating the blow-
up time and the rate of solution increase. (Kirane et al., 2005) investigate
critical exponents of Fujita type when fractional derivatives are present.
(Fila and Winkler, 2008) demonstrate a solution which blows up in a finite
time at a point with the solution remaining bounded elsewhere. Other
interesting blow-up results and analysis showing prevention of blow-up are
due to (Bhandar et al., 2004), (Boutat et al., 2004), (Tersenov, 2004).

We now consider an analogue of the (Payne and Song, 2007a) problem
but for a Brinkman porous medium. The equations for the Brinkman prob-
lem with a non-zero inertia and nonlinear forces depending on temperature
are, cf. equations (2.76)

α
∂ui

∂t
= −ui + λΔui −

∂p

∂xi
+ hi(T ),

∂ui

∂xi
= 0,

∂T

∂t
+ ui

∂T

∂xi
= ΔT + f(T ).

(2.230)

In these equations ui, T, p are velocity, temperature and pressure, α, λ are
the inertia and Brinkman coefficients and hi(T ) and f(T ) are nonlinear
functions of temperature. Equations (2.230) are defined on a bounded
spatial region Ω over a time interval (0, T ). The boundary conditions
considered are

ui = 0, T = 0 on Γ × (0, T ), (2.231)

while the initial conditions are

ui(x, 0) = u0
i (x), T (x, 0) = T0(x) ≥ 0. (2.232)

We here only consider the Brinkman model, but one could consider a Darcy
model. Also, we only consider Dirichlet conditions on the boundary whereas
one could alternatively employ Neumann boundary conditions following
(Payne and Schaefer, 2006), (Payne and Song, 2007a). We also note that
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we could employ T = constant in (2.231) although care would then need
to be taken with the function f .

Since both equation (2.230)1 and equation (2.230)3 are forced by non-
linear functions of temperature, one may ask if blow-up occurs, will this
be in the first instance via the velocity or the temperature field? We follow
(Payne and Song, 2007a) to show this must be via the temperature.

Let t1 be the blow-up time of the temperature T and t2 be the blow-up
time of the velocity ui. We wish to show that t1 < t2. Suppose, therefore,
this is false so that t2 < t1. Then, for t < t2, we multiply equation (2.230)1
by ui and integrate over Ω to find after integrations by parts and use of
the boundary conditions and (2.230)2,

d

dt

α

2
‖u‖2 = −‖u‖2 − λ‖∇u‖2 +

∫

Ω

hiuidx.

We employ the Poincaré inequality λ1‖u‖2 ≤ ‖∇u‖2 and the arithmetic-
geometric mean inequality for γ > 0 to now see that

d

dt

α

2
‖u‖2 ≤ −

(
1 + λλ1 −

γ

2

)
‖u‖2 +

‖h‖2

2γ
. (2.233)

Pick γ = (1 + λλ1) and then from (2.233) one sees that

d

dt
‖u‖2 ≤ −γ

α
‖u‖2 +

‖h‖2

γα
. (2.234)

Since t < t2 < t1, hi(T ) is bounded and so ‖h‖2 ≤ M2, for some constant
M . Employ this bound in (2.234), and integrate with an integrating factor
to obtain

‖u(t)‖2 ≤ ‖u0‖2 exp
[
−
(1 + λλ1

α

)
t

]

+
M2

(1 + λλ1)2

{
1 − exp

[
−
(1 + λλ1

α

)
t

]}
,

(2.235)

where t ≤ t2. Now let t → t2. By assumption ‖u(t)‖2 blows up at t = t2,
but inequality (2.235) contradicts this. Thus, t1 ≤ t2, and so t1 is a lower
bound for the blow-up time.

The conditions we now impose on the nonlinear function f(T ) are the
same as those of (Payne and Schaefer, 2007), namely

f(0) = 0, f(s) > 0, for s > 0, (2.236)
∫ ∞

T

ds

f(s)
is bounded for T > 0, (2.237)
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and there are constants n > 2 and β > 0 such that

f(T )
(∫ ∞

T

ds

f(s)

)n+1

→ ∞ as T → 0+, (2.238)

f ′(T )
∫ ∞

T

ds

f(s)
≤ n + 1 − β. (2.239)

As (Payne and Schaefer, 2007) remark, from the work of (Ball, 1977)
and (Kielhöfer, 1975), when the solution does cease to exist globally then
the behaviour is that of blow-up.

To now derive a lower bound for the blow-up time t1 we follow (Payne and
Schaefer, 2007), (Payne and Song, 2007a). Put R =

∫∞
T

ds/f(s), v = 1/R,
and define the function φ(t) by

φ(t) =
∫

Ω

vndx.

By differentiation

dφ

dt
=n

∫

Ω

vn−1vtdx

=n

∫

Ω

vn+1

f(T )
Tt dx

=n

∫

Ω

vn+1

f(T )
[
ΔT − uiT,i + f(T )

]
dx. (2.240)

Using the chain rule one shows
∫

Ω

vn+1 uiT,i

f(T )
dx =

1
n

∫

Ω

(vn),iuidx

=
1
n

[∫

Ω

(vnui),idx −
∫

Ω

vnui,idx

]
= 0 .

Thus, equation (2.240) reduces to

dφ

dt
= n

∫

Ω

vn+1

f(T )
[
ΔT + f(T )

]
dx. (2.241)

From this point, the estimate for t1 effectively follows from the arguments of
(Payne and Schaefer, 2007). Integrate the first term on the right of (2.241)
by parts to find

n

∫

Ω

vn+1ΔT

f(T )
dx = −n

∫

Ω

(vn+1

f

)

,i
T,idx + n

∫

Γ

vn+1

f(T )
∂T

∂ν
dS, (2.242)

where ∂/∂ν denotes the unit outward normal derivative. Thanks to con-
dition (2.238) the last term in (2.242) is zero. The first term in (2.242) is
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expanded and then (2.239) is employed to find

n

∫

Ω

vn+1ΔT

f(T )
dx = n

∫

Ω

vn+1f ′(T )
f2

T,iT,idx

− n(n + 1)
∫

Ω

T,i

f2
vn+2T,idx,

≤ n

∫

Ω

vn+2

f2
T,iT,i[n + 1 − β]dx − n(n + 1)

∫

Ω

vn+2

f2
T,iT,idx

= −βn

∫

Ω

vn+2

f2
T,iT,idx . (2.243)

Inequality (2.243) is now employed in equation (2.241) to find

dφ

dt
≤ −βn

∫

Ω

vn+2

f2
T,iT,idx + n

∫

Ω

vn+1dx.

Noting that v(n/2+1)T,i/f = 2(vn/2),i/n this inequality is rearranged as

dφ

dt
≤ −4β

n

∫

Ω

(vn/2),i(vn/2),idx + n

∫

Ω

vn+1dx. (2.244)

If m denotes the measure of Ω then from Hölder’s inequality and the
Cauchy-Schwarz inequality one sees

∫

Ω

vn+1dx ≤m(n−2)/3n

(∫

Ω

v3n/2dx

)2(n+1)/3n

≤m(n−2)/3n

(∫

Ω

v2ndx

∫

Ω

vndx

)(n+1)/3n

. (2.245)

We next use the Sobolev inequality

∫

Ω

ψ4dx ≤ C

(∫

Ω

ψ2dx

)1/2(∫

Ω

ψ,iψ,idx

)3/2

,

where a value for C is calculated in (Payne, 1964), taking ψ = vn/2 to find

∫

Ω

v2ndx ≤ C

(∫

Ω

vndx

)1/2[∫

Ω

(vn/2),i(vn/2),idx

]3/2

.

This estimate is now used in (2.245) to obtain

∫

Ω

vn+1dx ≤ m(n−2)/3nC(n+1)/3n

(
α1

∫

Ω

|∇vn/2|2dx

)(n+1)/2n

×
(

1
α1

∫

Ω

vndx

)(n+1)/2n

,

(2.246)
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where the constant α1 > 0 has been added to allow removal of the |∇vn/2|2
term. Next, employ Young’s inequality

XY ≤ Xp

p
+

Y s

s
,

1
p

+
1
s

= 1,

with X = α1

∫
Ω
|∇vn/2|2dx, Y =

∫
Ω

vndx/α1 , p = 2n/(n + 1) > 1, and
s = 2n/(n − 1) . Then, from (2.246) we derive
∫

Ω

vn+1dx ≤m(n−2)/3nC(n+1)/3n
(n + 1

2n

)
α

2n/(n+1)
1

∫

Ω

|∇vn/2|2dx

+ m(n−2)/3nC(n+1)/3n
(n − 1

2n

) 1

α
2n/(n−1)
1

×
(∫

Ω

vndx

)(n+1)/(n−1)

. (2.247)

Inequality (2.247) is next employed in inequality (2.244) to find

dφ

dt
≤
[
nm(n−2)/3nC(n+1)/3n

(n + 1
2n

)
α

2n/(n+1)
1 − 4β

n

] ∫

Ω

|∇vn/2|2dx

+ nm(n−2)/3nC(n+1)/3n
(n − 1

2n

) 1

α
2n/(n−1)
1

φ(n+1)/(n−1) . (2.248)

The constant α1 is now selected to make the first term on the right of
(2.248) zero. Thus, for K computable, from (2.248) we derive

dφ

dt
≤ Kφ(n+1)/(n−1) .

This inequality is integrated to obtain
1

[φ(0)]2/(n−1)
− 1

[φ(t)]2/(n−1)
≤ 2Kt

(n − 1)
. (2.249)

When t → t1 (the blow-up time), then (2.249) yields the lower bound t̂ for
t1, where

t1 ≥ t̂ =
(n − 1

2K

) 1
[φ(0)]2/(n−1)

=
(n − 1

2K

)(∫

Ω

[∫ ∞

T0(x)

ds

f(s)

]−n

dx

)−2/(n−1)

. (2.250)

The above derivation simply adapts the clever analyses of (Payne and
Schaefer, 2007) and (Payne and Song, 2007a) to a Brinkman model.

A lower bound with a more direct derivation may be found by adapting
the method of (Payne, 1975), pp. 49, 50. To do this we work with equa-
tion (2.230)3. The assumption on the nonlinearity is now inequality (8.31)
of (Payne, 1975), namely

∫

Ω

T 2p−1f(T )dx ≤
∫

Ω

|T |2p+γ , (2.251)
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where γ is a positive constant, and (2.251) holds for any positive integer p.
Introduce the function

Φp(t) =
∫

Ω

T 2pdx.

Then,

dΦp

dt
=2p

∫

Ω

T 2p−1 ∂T

∂t
dx

=2p

∫

Ω

T 2p−1ΔT dx + 2p

∫

Ω

T 2p−1f(T )dx

−
∫

Ω

T 2p−1ui
∂T

∂xi
dx. (2.252)

Integrating by parts and using the boundary conditions,
∫

Ω

T 2p−1ui
∂T

∂xi
dx =

1
2p

∫

Ω

ui
∂

∂xi
T 2p dx

=
1
2p

∫

Γ

uiniT
2p dS − 1

2p

∫

Ω

ui,iT
2p dx

= 0. (2.253)

Further integration by parts and use of the boundary conditions yield

2p

∫

Ω

T 2p−1ΔT dx =2p

∫

Γ

T 2p−1 ∂T

∂n
dS − 2p(2p − 1)

∫

Ω

T 2p−2T,iT,idx

= − 2p(2p − 1)
∫

Ω

T 2p−2T,iT,idx . (2.254)

Now, use (2.253), (2.254) and inequality (2.251) in equation (2.252) to see
that

dΦp

dt
≤− 2(2p − 1)

p

∫

Ω

T p
,iT

p
,i dx + 2p

∫

Ω

|T |2p+γ dx

≤ 2p

∫

Ω

T 2p+γdx . (2.255)

Next, put

T∗(t) = sup
x∈Ω

|T (x, t)| .

Then from (2.255) we may derive

dΦp

dt
≤ 2pT γ

∗ Φp .

An integration of this inequality yields

Φp(t) ≤ Φp(0) exp
[
2p

∫ t

0

T γ
∗ (s)ds

]
.
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Raise both sides of this inequality to the power 1/2p and then let p → ∞.
In this manner we obtain

T∗(t) ≤ T∗(0) exp
[∫ t

0

T γ
∗ (s)ds

]
. (2.256)

Since t1 is the blow-up time for T we must have T∗(t) → ∞ as t → t1,
and assuming T is sufficiently regular,

∫ t1

0

T γ
∗ (s)ds = ∞. (2.257)

The next step is to raise both sides of inequality (2.256) to the power γ
and then, provided t ≤ t1, this inequality yields

T γ
∗ (t) exp

[
−γ

∫ t

0

T γ
∗ (s)ds

]
≤ T γ

∗ (0).

A further integration of this inequality over 0, t < t1, leads to

1 − exp
[
−γ

∫ t

0

T γ
∗ (s)ds

]
≤ γtT γ

∗ (0).

Let now t → t1 and employ condition (2.257). In this way we find
1

γT γ
∗ (0)

≤ t1 . (2.258)

Inequality (2.258) represents an alternative lower bound for the blow-up
time t1 to the estimate (2.250).

The above proof is a straightforward adaptation of the demonstration
of (Payne, 1975), pp. 49, 50.

2.12 Uniqueness in compressible porous flows

So far in this book we have concentrated on fluid flow in a porous medium
where the fluid may be treated as incompressible. However, sound propa-
gation through a porous medium is one important example of a situation
where flow of a compressible gas in a porous material is necessary. We study
in detail wave motion of a compressible fluid in a porous medium in chapter
8 with related material given in chapter 7. Therefore, in this chapter we
commence a study of the well posedness of a theory for compressible flow
in a porous medium by establishing a uniqueness theorem. Since the wave
motion in chapter 8 is typically for sound waves propagating in an infi-
nite medium we here establish a uniqueness theorem for flow in an infinite
spatial region. To establish our theorem we appeal to a beautiful result of
Dario Graffi, (Graffi, 1960) although Graffi’s paper is conveniently found
in the selected works, (Graffi, 1999), pages 273 – 280.

The model for compressible flow in a porous material is taken from
(De Ville, 1996). It consists of the equations for flow of a barotropic per-
fect fluid, cf. (Fabrizio, 1994), to which have been added a Darcy term and
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a Forchheimer term to represent the interaction with the porous matrix.
This model is one of equivalent fluid type, and these are discussed in greater
detail in section 8.1. The equations we employ are those of (De Ville, 1996),
equations (4) and (5), although we assume the fluid is polytropic so that the
pressure - density relation is of form p = aργ , where p and ρ are pressure
and density, a is a positive constant, and γ is a constant with 1 < γ < 2.
With vi being the fluid velocity, k, λ, b1 positive constants the model of
(De Ville, 1996) may be written

∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi

∂xi
= 0,

∂vi

∂t
+ vj

∂vi

∂xj
+ b1vvi +

k

ρ
vi = −aγ

λ
ργ−2ρ,i ,

(2.259)

where we adopt the (Graffi, 1960; Graffi, 1999) notation v = |v|.
(Graffi, 1960; Graffi, 1999) establishes uniqueness for (2.259) when

b1 = 0, k = 0. The extension to include these terms is non-trivial and
given below. Nevertheless, we extend the (Graffi, 1999) method and employ
his notation. Henceforth, we employ the notation (Graffi, 1999) to denote
paper 22 of the selected works, pages 273 – 280.

Equations (2.259) are defined on a space - time domain. The time domain
is (0, T ) and the spatial domain D is either R

3 or the exterior of a bounded
domain σ0 in R

3. In either case D is an unbounded domain. We impose the
same hypotheses as (Graffi, 1999), and in particular his hypotheses (a) –
(g). However, we have already mentioned hypothesis (b) which states that
the pressure is polytropic and we have no need for hypothesis (c) which
concerns the body force, since one may regard equation (2.259)2 as defining
a particular form for the body force. The remaining hypotheses (a) and (d)
– (g) are stated below.

(a) In the domain D × (0, T ) the velocity v and density ρ are uniformly
bounded together with their first derivatives in space and time.

(d) If D has an interior boundary ∂σ0, then on ∂σ0 we assign v ·n, n being
the unit outward normal to ∂σ0, and where the fluid enters so that
v · n < 0 we assign ρ and v.

(e) The values of ρ(x, 0) and vi(x, 0) are assigned.

(f) The density ρ is positive and |∇ρ|/ρ is bounded in D × (0, T ).

(g) Let R denote the distance from the origin in D, then ρ ≥ c/Rβ , where
c is a positive constant and β ≥ 0 is a constant.

Let us observe that the last relation is physically necessary. It allows the
density to vanish as R → ∞ although not in an arbitrary way. In fact, it
is condition (g) which makes the extension of the (Graffi, 1999) result to
system (2.259) non-trivial. One now has to also handle the terms b1vvi and
kvi/ρ.
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Figure 2.1. Geometry for uniqueness proof

We now denote by S the intersection of the ball of radius R with D. The
geometrical configuration is shown in figure 2.1.

The outer boundary of S, i.e. the spherical surface of radius R, is denoted
by σ.

To study uniqueness we follow (Graffi, 1999) and let ρ, vi and ρ+ρ1, vi+v1
i

be two solutions to equations (2.259) which both satisfy hypotheses (a) and
(d) – (g). By subtraction we find ρ1 and v1

i satisfy the equations

∂ρ1

∂t
+

∂

∂xi

[
(ρ + ρ1)(vi + v1

i ) − ρvi

]
= 0,

∂v1
i

∂t
+ v1

j

∂(vi + v1
i )

∂xj
+ vj

∂v1
i

∂xj

= −b

{
(ρ + ρ1)γ−2 ∂

∂xi
(ρ + ρ1) − ργ−2 ∂ρ

∂xi

}

− k

{(vi + v1
i

ρ + ρ1

)
− vi

ρ

}

− b1

{
(v + v1)(vi + v1

i ) − vvi

}
,

(2.260)
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where we have put b = aγ/λ. The proof of (Graffi, 1999) is very clever and
balances the v1 · ∇ρ1 term which arises from (2.260)1 with an equivalent
term from (2.260)2. This necessitates the use of a weighted L2 energy for
ρ1, weighted by both ργ−3 and (ρ + ρ1)γ−3.

We begin by multiplying (2.260)2 by v1
i and find

1
2

∂

∂t
v2
1 = − v1

i v1
j (vi + v1

i ),j − v1
i vjv

1
i,j

− bv1
i

{
(ρ + ρ1)γ−2(ρ + ρ1),i − ργ−2ρ,i

}

− kv1
i

{(vi + v1
i

ρ + ρ1

)
− vi

ρ

}

− b1v
1
i

{
(v + v1)(vi + v1

i ) − vvi

}
.

(2.261)

Employ the rearrangement (5) of (Graffi, 1999),

(ρ + ρ1)γ−2(ρ + ρ1),i − ργ−2ρ,i

=
1
2
{
(ρ + ρ1)γ−2 − ργ−2

}{
(ρ + ρ1),i + ρ,i

}

+
1
2
ργ−2ρ1,i + (ρ + ρ1)γ−2ρ1,i .

(2.262)

The first term on the right of (2.262) is handled by firstly noting that from
hypothesis (f) there is a positive constant n such that

|(ρ + ρ1),i| ≤ n(ρ + ρ1), |ρ,i| ≤ nρ,

then
∣∣{(ρ + ρ1)γ−2 − ργ−2

}{
(ρ + ρ1),i + ρ,i

}∣∣

≤ n(ρ + ρ1 + ρ)|(ρ + ρ1)γ−2 − ργ−2|
= n|(ρ + ρ1)γ−1 − ργ−1 + ρ(ρ + ρ1)γ−2 − (ρ + ρ1)ργ−2| . (2.263)

To bound the terms on the right of (2.263) one uses the intermediate value
theorem, and for 0 < θ < 1, and 0 < θ′ < 1, one finds

|(ρ + ρ1)γ−1 − ργ−1| ≤ |(γ − 1)(ρ + θρ1)γ−2ρ1|, (2.264)

and

|ρ(ρ + ρ1)γ−2 − (ρ + ρ1)ργ−2| = ρ(ρ + ρ1)
∣∣∣∣

1
(ρ + ρ1)3−γ

− 1
ρ3−γ

∣∣∣∣

= ρ(ρ + ρ1)
∣∣∣∣
(ρ + ρ1)3−γ − ρ3−γ

(ρ + ρ1)3−γρ3−γ

∣∣∣∣

=
∣∣∣∣
(3 − γ)(ρ + θ′ρ1)2−γρ1

(ρ + ρ1)2−γρ2−γ

∣∣∣∣ . (2.265)
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Combining (2.264) and (2.265) in (2.263) one then obtains

∣∣{(ρ + ρ1)γ−2 − ργ−2
}{

(ρ + ρ1),i + ρ,i

}∣∣

≤ n

∣∣∣∣(γ − 1)(ρ + θρ1)γ−2 +
(3 − γ)(ρ + θ′ρ1)2−γ

(ρ + ρ1)2−γρ2−γ

∣∣∣∣ |ρ1| .
(2.266)

If ρ1 is positive then the greater value of the right of (2.266) is achieved
with θ = 0, θ′ = 1 (since γ − 2 < 0) whereas if ρ1 is negative we select
θ = 1, θ′ = 0, which in turn yield,

∣∣{(ρ + ρ1)γ−2 − ργ−2
}{

(ρ + ρ1),i + ρ,i

}∣∣ ≤ 2nργ−2|ρ1|,∣∣{(ρ + ρ1)γ−2 − ργ−2
}{

(ρ + ρ1),i + ρ,i

}∣∣ ≤ 2n(ρ + ρ1)γ−2|ρ1|.

These results together in (2.266) lead to

∣∣{(ρ + ρ1)γ−2 − ργ−2
}{

(ρ + ρ1),i + ρ,i

}∣∣

≤ 2n
{
(ρ + ρ1)γ−2 + ργ−2

}
|ρ1|.

(2.267)

We now see that from (2.267)

∣∣∣∣−
b

2
v1

i

{
(ρ + ρ1)γ−2(ρ + ρ1),i − ργ−2ρ,i

}∣∣∣∣

≤ bn
{
(ρ + ρ1)γ−2 + ργ−2

}
|ρ1v1|

≤ bn

2
{
(ρ + ρ1)2γ−4ρ2

1 + ρ2γ−4ρ2
1 + 2v2

1

}
, (2.268)

where in the last line the arithmetic-geometric mean inequality has been
employed. Thus, from (2.268), (2.262) and (2.261) we obtain

1
2

∂

∂t
v2
1 ≤− v1

i v1
j (vi + v1

i ),j − v1
i vjv

1
i,j

+
bn

2
{
(ρ + ρ1)2γ−4ρ2

1 + ρ2γ−4ρ2
1 + 2v2

1

}

− b

2
v1

i

{
ργ−2ρ1,i + (ρ + ρ1)γ−2ρ1,i

}

− kv1
i

{(vi + v1
i

ρ + ρ1

)
− vi

ρ

}

− b1v
1
i

{
(v + v1)(vi + v1

i ) − vvi

}
.

(2.269)

The first two terms on the right of (2.269) are written as

−v1
i v1

j (vi + v1
i ),j −

1
2

∂

∂xj
(vjv

2
1) +

1
2
vj,jv

2
1 . (2.270)
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The final term of (2.269) is handled with the identity, (Payne and
Straughan, 1999a),

[
(v + v1)(vi + v1

i )−vvi

]
v1

i =
1
2
(v + v1 + v)v2

1

+
1
2
(|v + v1| − |v|)2(v + v1 + v) . (2.271)

Thus, recalling hypothesis (a) the gradients of v and v + v1 are bounded
in (2.270) and then from employment of (2.271) and (2.270) in inequality
(2.269) we deduce that, after integration over S,

d

dt

1
2

∫

S

v2
1dx ≤ 3

2
N1

∫

S

v2
1dx − 1

2

∫

S

∂

∂xj
(vjv

2
1)dx

+
bn

2

∫

S

[
(ρ + ρ1)2γ−4ρ2

1 + ρ2γ−4ρ2
1 + 2v2

1

]
dx

− b

2

∫

S

v1
i

[
ργ−2ρ1,i + (ρ + ρ1)γ−2ρ1,i

]
dx

− k

∫

S

v1
i

[(vi + v1
i

ρ + ρ1

)
− vi

ρ

]
dx ,

(2.272)

where N1 is a bound for |∇v| and |∇(v + v1)| and we have discarded the
last term of (2.269) thanks to (2.271). (In studying continuous dependence
one may desire to retain the right hand side of (2.271) and then use the
effect of v1 in L3, cf. section 4.6.2.)

To handle the last term in (2.272) we note

− k

∫

S

v1
i

[(vi + v1
i

ρ + ρ1

)
− vi

ρ

]
dx

= −k

∫

S

v2
1

(ρ + ρ1)
dx + k

∫

S

ρ1viv
1
i

ρ(ρ + ρ1)
dx .

(2.273)

The arithmetic-geometric mean inequality is used on the last term in the
form

k

∫

S

ρ1viv
1
i

ρ(ρ + ρ1)
dx ≤ k

∫

S

v2
1

(ρ + ρ1)
dx +

k

4

∫

S

v2ρ2
1

ρ2(ρ + ρ1)
dx .
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This inequality is inserted in (2.273) and the result employed in (2.272) to
find

d

dt

1
2

∫

S

v2
1dx ≤ 3

2
N1

∫

S

v2
1dx − 1

2

∫

σ∪∂σ0

niv
2
1vidS

+
bn

2

∫

S

[
(ρ + ρ1)2γ−4ρ2

1 + ρ2γ−4ρ2
1 + 2v2

1

]
dx

− b

2

∫

S

v1
i

[
ργ−2ρ1,i + (ρ + ρ1)γ−2ρ1,i

]
dx

+
k

4

∫

S

v2ρ2
1

ρ2(ρ + ρ1)
dx .

(2.274)

To continue we note that from (2.259)2,

kvi = −ρvi,t − ρvjvi,j − b1ρvvi − bργ−1ρ,i .

Thus, recollecting hypotheses (a) and (f) we see there are constants n1, n2

such that

v ≤ n1ρ + n2ρ
γ .

Thus, there are further constants m1,m2,m3, �1, �2 and �3 such that

v2 ≤ m1ρ
2 + m2ρ

γ+1 + m3ρ
2γ ,

and
kv2

4ρ2(ρ + ρ1)
≤ �1 + �2ρ

γ−1 + �3ρ
2γ−2

(ρ + ρ1)
. (2.275)

To incorporate the (Graffi, 1999) weights ργ−3, (ρ + ρ1)γ−3 we write

�1
ρ + ρ1

= (ρ + ρ1)γ−3 · �1(ρ + ρ1)2−γ . (2.276)

Then we use Young’s inequality for arbitrary α > 0,

�3ρ
2γ−2

ρ + ρ1
≤ �3

[
(αρ2γ−2)p

p
+

[
α−1(ρ + ρ1)−1

]q

q

]

p−1 + q−1 = 1. Pick q = 3 − γ > 1, then p = (3 − γ)/(2 − γ) > 1. Thus,

�3ρ
2γ−2

ρ + ρ1
≤ �3

(3 − γ)α(3−γ)
(ρ + ρ1)γ−3

+
�3(2 − γ)α(3−γ)/(2−γ)

(3 − γ)
ργ(3−γ)/(2−γ) · ργ−3 .

(2.277)

A similar calculation utilizing Young’s inequality shows

�2ρ
γ−1

ρ + ρ1
≤ �2

(3 − γ)β(3−γ)
(ρ + ρ1)γ−3

+
�2(2 − γ)β(3−γ)/(2−γ)

(3 − γ)
ρ(3−γ)/(2−γ) · ργ−3 .

(2.278)
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Thus, (2.275) – (2.278) in inequality (2.274) give

d

dt

1
2

∫

S

v2
1dx ≤ 3

2
N1

∫

S

v2
1dx − 1

2

∫

σ∪∂σ0

niv
2
1vidS

+
bn

2

∫

S

[
(ρ + ρ1)2γ−4ρ2

1 + ρ2γ−4ρ2
1 + 2v2

1

]
dx

− b

2

∫

S

v1
i

[
ργ−2ρ1,i + (ρ + ρ1)γ−2ρ1,i

]
dx

+
∫

S

(ρ + ρ1)γ−3

[
�1(ρ + ρ1)2−γ

+
�2

(3 − γ)β3−γ
+

�3
(3 − γ)α3−γ

]
ρ2
1dx

∫

S

ργ−3 (2 − γ)
(3 − γ)

[
�2β

(3−γ)/(2−γ)ρ(3−γ)/(2−γ)

+ �3α
(3−γ)/(2−γ)ργ(3−γ)/(2−γ)

]
ρ2
1dx .

(2.279)

The next step is to multiply equation (2.260)1 by ργ−3ρ1 and then by
(ρ + ρ1)γ−3ρ1 and integrate over S. This part of the calculation follows
that of (Graffi, 1999).

Upon multiplying (2.260)1 by ργ−3ρ1 one may show that

1
2

∂

∂t
(ργ−3ρ2

1) = ργ−2ρ1,iv
1
i

− ∂

∂xi

[
ργ−2ρ1v

1
i +

1
2
ργ−3ρ2

1(vi + v1
i )
]

+
ρ2
1

2
∂

∂t
ργ−3 +

[
(ργ−2),i − ργ−3ρ,i

]
ρ1v

1
i

− 1
2
ργ−3ρ2

1(vi + v1
i ),i +

1
2
(ργ−3),i(vi + v1

i )ρ2
1.

(2.280)

For the fourth term on the right,
∣∣[(ργ−2),i − ργ−3ρ,i

]
ρ1v

1
i

∣∣ = |(3 − γ)ργ−3ρ,iviρ1|
≤ n(3 − γ)ργ−2|ρ1v1|

≤ n

2
(3 − γ)

[
ρ2γ−4ρ2

1 + v2
1

]
, (2.281)

where hypothesis (f) has been employed. Further, using hypotheses (a) and
(f), we have for constants q1, q2,

∣∣− 1
2
ργ−3ρ2

1(vi + v1
i ),i

∣∣ ≤ q1ρ
γ−3ρ2

1, (2.282)

∣∣1
2
(ργ−3),i(vi + v1

i )ρ2
1

∣∣ ≤ q2ρ
γ−3ρ2

1. (2.283)
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The third term on the right of (2.280) is handled by noting

ρ2
1

2
∂

∂t
ργ−3 ≤ (3 − γ)

2
ρ2
1

∣∣∣∣
ρt

ρ

∣∣∣∣ρ
γ−3 .

Then, from (2.259)1,

ρt

ρ
= −vi

ρ
ρ,i − vi,i .

Using hypotheses (a) and (f),
∣∣∣∣
ρt

ρ

∣∣∣∣ ≤ q3,

for a constant q3. Then, for a further constant q4 > 0,

ρ2
1

2
∂

∂t
ργ−3 ≤ q4ρ

γ−3ρ2
1. (2.284)

Thus, combining (2.281) – (2.284) in equation (2.280) we find

1
2

∂

∂t
(ργ−3ρ2

1) = ργ−2ρ1,iv
1
i

− ∂

∂xi

[
ργ−2ρ1v

1
i +

1
2
ργ−3ρ2

1(vi + v1
i )
]

+ m2ρ
2γ−4ρ2

1 + m3v
2
1 + m4ρ

γ−3ρ2
1 .

(2.285)

Similarly, we multiply equation (2.260)1 by (ρ + ρ1)γ−3ρ1 and obtain

1
2

∂

∂t

[
(ρ + ρ1)γ−3ρ2

1

]
= −ρ2

1

2
∂

∂t
(ρ + ρ1)γ−3

+ (ρ + ρ1)γ−3ρ1

[
ρvi − (ρ + ρ1)(vi + v1

i )
]
,i

.

The last term of this expression may be rewritten

(ρ + ρ1)γ−3ρ1

{
−
[
(ρ + ρ1)v1

i

]
,i
− (ρ1vi),i

}

= −
[
(ρ + ρ1)γ−2ρ1v

1
i

]
,i

+ (ρ + ρ1)γ−2v1
i ρ1,i

− (ρ + ρ1)γ−3ρ2
1vi,i − (ρ + ρ1)γ−3 vi

2
(ρ2

1),i

= − ∂

∂xi

[
(ρ + ρ1)γ−2ρ1v

1
i +

1
2
(ρ + ρ1)γ−3viρ

2
1

]

− 1
2
(ρ + ρ1)γ−3vi,iρ

2
1

+
(γ − 3)

2
vi

(ρ + ρ1),i

(ρ + ρ1)
(ρ + ρ1)γ−3ρ2

1 + (ρ + ρ1)γ−2v1
i ρ1,i .
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Hence, we find

1
2

∂

∂t

[
(ρ + ρ1)γ−3ρ2

1

]
= −ρ2

1

2
∂

∂t
(ρ + ρ1)γ−3

− ∂

∂xi

[
(ρ + ρ1)γ−2ρ1v

1
i +

1
2
(ρ + ρ1)γ−3viρ

2
1

]

− 1
2
(ρ + ρ1)γ−3vi,iρ

2
1

+
(γ − 3)

2
vi

(ρ + ρ1),i

(ρ + ρ1)
(ρ + ρ1)γ−3ρ2

1 + (ρ + ρ1)γ−2v1
i ρ1,i .

(2.286)

From equation (2.259)1

(ρ + ρ1)t

(ρ + ρ1)
= − (vi + v1

i )
(ρ + ρ1)

(ρ + ρ1),i − (vi + v1
i ),i

and hence recollecting hypotheses (a) and (f) we find from (2.286) that
there is a constant m5 such that

1
2

∂

∂t

[
(ρ + ρ1)γ−3ρ2

1

]
≤ m5(ρ + ρ1)γ−3ρ2

1

− ∂

∂xi

[
(ρ + ρ1)γ−2ρ1v

1
i +

1
2
(ρ + ρ1)γ−3viρ

2
1

]

+ (ρ + ρ1)γ−2v1
i ρ1,i .

(2.287)

Upon adding (2.285) and (2.287) and integrating over S we may derive,

1
2

d

dt

∫

S

{[
ργ−3 + (ρ + ρ1)γ−3

]
ρ2
1

}
dx ≤

∫

S

[
ργ−2 + (ρ + ρ1)γ−2

]
v1

i ρ1,idx

−
∫

σ∪∂σ0

ni

[{
ργ−2 + (ρ + ρ1)γ−2

}
ρ1v

1
i

+
1
2
ργ−3ρ2

1(vi + v1
i ) +

1
2
(ρ + ρ1)γ−3viρ

2
1

]
dS

+ m2

∫

S

ρ2γ−4ρ2
1dx + m3

∫

S

v2
1dx

+
∫

S

[
m4ρ

γ−3 + m5(ρ + ρ1)γ−3
]
ρ2
1dx. (2.288)
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The idea is now to add (2.279) and (2.288) together in such a way that
the terms involving v1

i ρ1,i add to zero. So, we add (2.279)+(b/2)(2.288) to
derive

d

dt

[
1
2

∫

S

v2
1dx +

b

4

∫

S

ργ−3ρ2
1dx +

b

4

∫

S

(ρ + ρ1)γ−3ρ2
1dx

]

≤
∫

σ

1
2
[
ρ2γ−4 + (ρ + ρ1)2γ−4

]
ρ2
1dS +

1
2

∫

σ

(1 + n1)v2
1dS

+
∫

σ

n1

2
[
ργ−3 + (ρ + ρ1)γ−3

]
ρ2
1dS

+
∫

S

ρ2
1ρ

γ−3[m4 + r1ρ
γ−1 + r2ρ

(3−γ)/(2−γ) + r3ρ
γ(3−γ)/(2−γ)]dx

+
∫

S

ρ2
1(ρ + ρ1)γ−3

[
r4 +

bn

2
(ρ + ρ1)γ−1

]
dx

+ r4

∫

S

v2
1dx , (2.289)

where

r1 = m2 +
bn

2
, r2 =

(2 − γ

3 − γ

)
�2β

(3−γ)/(2−γ),

r3 =
(2 − γ

3 − γ

)
�3α

(3−γ)/(2−γ),

r4 = m5 +
�2

(3 − γ)β3−γ
+

�3
(3 − γ)α3−γ

, r5 = m3 +
3N1

2
+ bn .

Now invoke hypothesis (a), let n1 be a bound for ρ, ρ + ρ1, and integrate
(2.289) twice over the time interval (0, h) to see that

∫ h

0

dt

∫

S

[1
2
v2
1 +

b

4
ργ−3ρ2

1 +
b

4
(ρ + ρ1)γ−3ρ2

1

]
dx

≤
∫ h

0

dt

∫

σ

h(nγ−1
1 + n1)

[
ργ−3 + (ρ + ρ1)γ−3

]
ρ2
1dS

+
∫ h

0

dt

∫

σ

h
(1 + n1)

2
v2
1dS +

∫ h

0

dt

∫

S

hk1

[
ργ−3 + (ρ + ρ1)γ−3

]
ρ2
1dx

+ r4h

∫ h

0

dt

∫

S

v2
1dx , (2.290)
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for a constant k1 independent of h. Let nγ−1
1 + n1, (1 + n1)/2 be denoted

by constants r5, r6. Then we rewrite (2.290) as
∫ h

0

dt

∫

S

v2
1(1 − 2r4h)dx +

∫ h

0

dt

∫

S

ρ2
1ρ

γ−3
( b

2
− 2k1h

)
dx

+
∫ h

0

dt

∫

S

ρ2
1(ρ + ρ1)γ−3

( b

2
− 2k1h

)
dx

≤ 2r6h

∫ h

0

dt

∫

σ

v2
1dS + 2r5h

∫ h

0

dt

∫

σ

ργ−3ρ2
1dS

+ 2r5h

∫ h

0

dt

∫

σ

(ρ + ρ1)γ−3ρ2
1dS . (2.291)

Now suppose h is such that

1 − 2r4h ≥ 1
2

,
b

2
− 2k1h ≥ b

4
,

then define the Graffi function G(R) by

G(R) =
∫ h

0

dt

∫

S

(
v2
1 +

b

2
[
ργ−3 + (ρ + ρ1)γ−3

]
ρ2
1

)
dx . (2.292)

Then from (2.291) we see that for a constant A = max{8r6h, 8r5h/b},
G(R) ≤ AG′(R).

This inequality integrates to see that for R ≥ R0 > 0,

G(R) ≥ G(R0) exp
(

R − R0

A

)
. (2.293)

Now, |ρ1| = |ρ + ρ1 − ρ| ≤ |ρ + ρ1| + |ρ| and so by hypothesis (a), |ρ1| and
v1 are bounded then G(R) has maximum growth in R like Rβ(3−γ)+3 using
also hypothesis (g). Thus,

lim
R→0

G(R)
Rβ(3−γ)+3+ε

= 0.

This contradicts (2.293) and so v1
i ≡ 0, ρ1 ≡ 0 on S × (0, h). Since the

bounds in hypotheses (a), (d)-(g) are independent of h we may reapply the
argument on (h, 2h) etc., to conclude uniqueness on S × (0, T ).
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