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Loss Functions and Their Risks

Overview. We saw in the introduction that the learning problems
we consider in this book can be described by loss functions and their
associated risks. In this chapter, we present some common examples of
such learning problems and introduce a general notion for losses and
their risks. Furthermore, we discuss some elementary yet fundamental
properties of these concepts.

Prerequisites. Basic knowledge of measure and integration theory
provided in Section A.3.

Usage. Sections 2.1 and 2.2 are essential for the rest of this book, and
Sections 2.3 and 2.4 are used whenever we deal with classification and
regression problems, respectively.

Every learning problem requires that we specify our learning goal, i.e., what we
ideally would like to achieve. We saw in the introduction that the specification
of the learning problems treated in this book needs a loss L(z,y, f(x)) that
describes the cost of the discrepancy between the prediction f(x) and the
observation y at the point z. To the loss L we then associate a risk that is
defined by the average future loss of f. This chapter introduces these concepts
and presents important examples of learning goals described by losses. In
addition, basic yet useful properties of risks are derived from properties of the
corresponding losses.

2.1 Loss Functions: Definition and Examples

In this section, we will first introduce loss functions and their associated risks.
We will then present some basic examples of loss functions that describe the
most important learning scenarios we are dealing with in this book.

In order to avoid notational overload, we assume throughout this chapter
that subsets of R? are equipped with their Borel o-algebra and that products
of measurable spaces are equipped with the corresponding product o-algebra.

Let us now recall from the introduction that we wish to find a function
f X — R such that for (z,y) € X x Y the value f(x) is a good prediction
of y at x. The following definition will help us to define what we mean by
“good”.
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Definition 2.1. Let (X,.A) be a measurable space and Y C R be a closed
subset. Then a function L : X XY x R — [0,00) is called a loss function,
or simply a loss, if it is measurable.

In the following, we will interpret L(zx,y, f(x)) as the cost, or loss, of
predicting y by f(x) if x is observed, i.e., the smaller the value L(z,y, f(x))
is, the better f(z) predicts y in the sense of L. From this it becomes clear
that constant loss functions, such as L := 0, are rather meaningless for our
purposes, since they do not distinguish between good and bad predictions.

Let us now recall from the introduction that our major goal is to have
a small average loss for future unseen observations (x,y). This leads to the
following definition.

Definition 2.2. Let L : X x Y x R — [0,00) be a loss function and P be a
probability measure on X x Y. Then, for a measurable function f : X — R,
the L-risk is defined by

Rop(f) = / Ly, f(x)) dP(z,y) = / / L(xy, f(x)) dP(y|x) dPx (x).
XY

XxXY

Note that the function (x,y) — L(x,y, f(x)) is measurable by our as-
sumptions, and since it is also non-negative, the above integral over X x Y
always exists, although it is not necessarily finite. In addition, our label space
Y C R is closed, and hence Lemma A.3.16 ensures the existence of the regular
conditional probability P(-|z), used in the inner integral.

For a given sequence D := ((z1,y1),---, (Tn,yn)) € (X X Y)™, we write
D := %2;1 O(ws,y:)» Where 6, ..y denotes the Dirac measure at (z;,;). In
other words, D is the empirical measure associated to D. The risk of a function
f X — R with respect to this measure is called the empirical L-risk

Rrp(f) = %ZL(Iuyi, f(@)) - (2.1)

Let us now assume for a moment that D is a sequence of i.i.d. observations
generated by P and f satisfies Rz p(f) < co. Recalling the law of large num-
bers, we then see that the empirical risk Ry, p(f) is close to Ry, p(f) with high
probability. In this sense, the L-risk of f can be seen as an approximation to
the average loss on the observations D (and vice versa).

Now recall that L(z,y, f(z)) was interpreted as a cost that we wish to
keep small, and hence it is natural to look for functions f whose risks are
as small as possible. Since the smallest possible risk plays an important role
throughout this book, we now formally introduce it.

Definition 2.3. Let L : X x Y x R — [0,00) be a loss function and P be a
probability measure on X XY . Then the minimal L-risk

Rip:=inf{Rrp(f)|f: X — R measurable}
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1s called the Bayes risk with respect to P and L. In addition, a measurable
fip: X = RwithRpp(ff p) =Rjp is called a Bayes decision function.

Usually the first step in solving a practical learning problem is finding a
loss function that best describes the often only informally specified learning
goal. In general, the choice of a suitable loss function strongly depends on
the specific application, and hence only a few general statements are possible
in this regard. However, there are a few basic learning scenarios that often
fit the learning problem at hand, and hence we will formally introduce these
scenarios and their corresponding loss functions now.

Ezample 2.4 (Standard binary classification). Let Y := {—1,1} and P be an
unknown data-generating distribution on X x Y. Then the informal goal in
(binary) classification is to predict the label y of a pair (x,y) drawn from P
if only x is observed. The most common loss function describing this learning
goal is the classification loss! L. Y x R — [0, 00), which is defined by

Letass(y, 1) := 1(—o0,0] (y sign t) , yeY, teR, (2.2)

where we use the convention sign 0 := 1. Note that L.j.ss only penalizes predic-
tions t whose signs disagree with that of y, so it indeed reflects our informal
learning goal. Now, for a measurable function f : X — R, an elementary
calculation shows

Retan1) = [ )1 () + (1= (5 i) (1 0)) ()
= P({(x,y) € X xY :sign f(x) # y}) ’

where n(z) := P(y = 1]z), € X. From this we conclude that f is a Bayes
decision function if and only if (2n(z) — 1)sign f(x) > 0 for Px-almost all
z € X. In addition, this consideration yields

chlass,P = / min{n,1 —n}dPx . <
X

The loss function Lj.ss equally weights both types of errors, namely y = 1
while f(z) < 0, and y = —1 while f(z) > 0. This particularly makes sense
in situations in which one wishes to categorize objects such as hand-written
characters or images. In many practical situations, however, both error types
should be weighted differently. For example, if one wants to detect computer
network intrusions, then depending on the available resources for investigating
alarms and the sensitivity of the network, the two types of errors, namely false
alarms and undetected intrusions, are likely to have different actual costs.

! Formally, Lciass is not a loss function; however, we can canonically identify it with
the loss function (x,y,t) — Leiass(y,t), and hence we usually do not distinguish
between Lciass and its associated loss function. Since this kind of identification
also occurs in the following examples, we will later formalize it in Definition 2.7.
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Since this example is rather typical for classification problems in which the
goal is to detect certain objects or events, we now present a weighted version
of the classification scenario above.

Ezample 2.5 (Weighted binary classification). Let Y := {—1,1} and o € (0, 1).
Then the a-weighted classification 1oss Ly-class : Y xR — [0, 00) is defined
by
l—a ify=1landt<0
Lo-class (Y, 1) == ¢ « ify=—-landt>0 (2.3)

0 otherwise

for all y € Y, t € R. Obviously we have 2L/ class = Lclass, i-€., the stan-
dard binary classification scenario is a special case of the general weighted
classification scenario. Now, given a probability measure P on X x Y and a
measurable f: X — R, the L,-cjags-risk can be computed by

Ri () = (1= 0) /

ndPX+a/ (1-n)dPx,
<0

=0

where again n(x) := P(y = 1|z), € X. From this we easily conclude that f is
a Bayes decision function if and only if (n(x) — a) sign f(z) > 0 for P x-almost
all x € X. Finally, the Bayes L -class-1isk is

Rza-class’P = / mln{(l - a)na Ol(l - 77)} dPX . <
X

In the two examples above the goal was to predict labels y from the set
{=1,1}. In the next example, we wish to predict general real-valued labels.

Ezample 2.6 (Least squares regression). The informal goal in regression is to
predict the label y € Y := R of a pair (x,y) drawn from an unknown proba-
bility measure P on X X Y if only x is observed. The most common way to
formalize this goal is based on the least squares loss Lyg : Y X R — [0, 00)
defined by

Lis(y,t) := (y — t)?, yeY, teR. (2.4)

In other words, the least squares loss penalizes the discrepancy between y and
t quadratically. Obviously, for a measurable function f : X — R, the Lyg-risk
is

2
Rier($) = [ [ (= @) dPyle) dPx (o).
xJy
By minimizing the inner integral with respect to f(z), we then see that f is a

Bayes decision function if and only if f(z) almost surely equals the expected
Y-value in z, i.e., if and only if

@) = Ep(¥la) = [ yap(ula (2.5)
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for Px-almost all x € X. Moreover, plugging z — Ep(Y|z) into Rz, p(-)
shows that the Bayes L g-risk is the average conditional Y-variance, i.e.,

’ZLS’P:/XEP(Y2|35)—(EP(Y\x))QdPX(x).

Finally, an elementary calculation shows that the excess Lyg-riskof f : X — R
is

River(f) — Ry, p = /X (Ep(Y]z) — f(z))*dPx (z),

Le., if Rp,gp(f) is close to R} . p, then f is close to the Bayes decision
function in the sense of the || - ||, p)- <

Using the least squares loss to make the informal regression goal precise
seems to be rather arbitrary since, for example, for p > 0, the loss function

(yat)'_)|y_t|p7 yEIR,tGIR,

reflects the informal regression goal just as well. Nevertheless, the least
squares loss is often chosen since it “simplifies the mathematical treatment
(and). .. leads naturally to estimates which can be computed rapidly”, as Gyorfi
et al. (2002) write on p. 2. For SVMs, however, we will see later that none
of these properties is exclusive for the least squares loss, and therefore we do
not have to stick to the least squares loss for, e.g., computational reasons.
On the other hand, the least squares loss is (essentially) the only loss whose
Bayes decision functions have the form (2.5) for all distributions P with finite
Bayes risk (see Proposition 3.44 for details), and hence the least squares loss
is often the first choice when we wish to estimate the conditional expecta-
tions Ep(Y]z), € X. Unfortunately, however, we will see in Chapter 10 that
SVMs based on the least squares loss are rather sensitive to large deviations in
y, and hence other losses may be preferred in some situations. We will discuss
these questions in more detail in Sections 3.7 and 3.9 and Chapter 9.

A common feature of the loss functions above is that they are all indepen-
dent of the input value x. Since this will also be the case for many other loss
functions considered later, we introduce the following notion.

Definition 2.7. A function L : Y x R — [0,00) is called a supervised loss
function, or simply a supervised loss, if it is measurable.

Note that a supervised loss L can be canonically identified with the loss
function L : (z,y,t) — L(y,t). As in the examples above, we will thus write
Rirp(f) =R p(f) and R} p := R} , in order to avoid notational overload.

Formally, we can also consider losses that are independent of y, i.e., we
can introduce the following notion.

Definition 2.8. A function L : X x R — [0,00) is called an unsupervised
loss function, or simply an unsupervised loss, if it is measurable.
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Obviously, an unsupervised loss L can be canonically identified with the
loss function L : (z,y,t) — L(xz,t). As for supervised losses, we thus write

RLP07?:Rifﬂﬂ::Z;L@hﬂxndPXCﬂ

and R7 p = R*L,P' Note that, in contrast to the risks for supervised losses,
the risks for unsupervised losses are independent of the supervisor P(-|x)
that generates the labels. This explains the term “unsupervised loss”. Since
unsupervised losses do not depend on labeling information, these loss functions
often occur in learning scenarios that lack labels in the available sample data.
The two most important scenarios of this type are introduced in the following
examples.

Ezample 2.9 (Density level detection). Let us suppose that we have some sam-
ples D := (x1,...,2,) € X™ drawn in an i.i.d. fashion from an unknown dis-
tribution Q on X. Moreover, assume that our informal learning goal is to find
the region where Q has relatively high concentration.

One way to formalize this learning goal is to assume that Q is absolutely
continuous with respect to some known reference measure pu. Let g 1+ X —
[0,00) be the corresponding unknown density with respect to u, i.e., Q = gpu.
Then Q is highly concentrated in exactly the region where g is “large”, i.e., our
informal learning goal is to find the density level sets {g > p} or {g > p}
for some fixed threshold p > 0. In order to find a formal specification of
this learning goal, let us consider the unsupervised density level detection
(DLD) loss Lprp : X x R — [0,00), which is defined by

Lorp(z,t) == 1(_w0)((9(z) — p) signt), reX, teR. (2.6)

Note that for f: X — R the loss LpLp(«, f(x)) penalizes the prediction f(x)
at x if either f(x) > 0 and g(z) < p, or f(zx) < 0 and g(z) > p, whereas it
ignores f(z) if g(z) = p. In this sense, {f > 0} is the prediction of f for our
desired level set. In order to further formalize our informal learning goal, recall
that the risks of unsupervised losses only depend on the marginal distributions
Px. In the density level detection scenario, we are mainly interested in the
case Px = u, and thus we usually use the notation

RhmAn;Rhmmn:/meammwmy

X

From (2.6) it is then easy to conclude that a measurable f : X — R is a Bayes
decision function with respect to p if and only if {g > p} C {f > 0} C {g9 > p}
holds true up to p-zero sets. Consequently, we always have R} =0 and,
in addition, if u({g = p}) = 0, we find

RLDLD7N(f) = U({g > p}A{f > 0}>
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for all measurable f : X — R, where A denotes the symmetric difference
AAB := A\B U B\ A. In this sense, Ry, .(f) measures how well {f > 0}
detects the level set {g > p}.

Finally, observe that, unlike for the supervised loss functions of the previ-
ous examples, we cannot compute Lpip(x,t) since g is unknown to us. Con-
sequently, we cannot use an ERM scheme based on Lppp simply because we
cannot compute the empirical risk Rz, , p(f) for any f : X — R. Moreover,
note that for the same reason we cannot estimate the quality of a found ap-
proximation {f > 0} by Ri,.,,n(f) either. Because of these disadvantages
of Lprp, we will investigate more accessible supervised surrogate losses for
Lpi,p in Section 3.8. <

The density level detection scenario is often used if one wants to iden-
tify anomalous future samples x € X on the basis of unlabeled training data
D := (z1,...,2,) € X™. To this end, it is assumed that anomalous sam-
ples are somewhat atypical in the sense that they are not clustered. In other
words, they occur in regions with low concentration, and consequently they
are described by a level set {g > p} for some suitably specified p.

In some sense, the density level detection scenario is an unsupervised coun-
terpart of binary classification, and in fact we will establish a precise connec-
tion between these two in Section 3.8. The following, last example describes
in a similar way an unsupervised counterpart of the regression scenario.

Ezample 2.10 (Density estimation). Let u be a known probability measure on
X and g : X — [0,00) be an unknown density with respect to u. Let us further
assume that our goal is to estimate the density g. Then one possible way to
specify this goal is based on the unsupervised loss Ly : X xR — [0, 00), ¢ > 0,
defined by

Ly(z,t) == |g(z) — t}q, re X, teR. (2.7)

As for the DLD problem, we are usually interested in distributions P with
Px = p, and for such we have

Ru,p(f) = /X l9(2) — £(@)|" du(z)

for all measurable f : X — R. From this we find Rsz = 0 and, in addition,
it is not hard to see that every Bayes decision function equals g modulo some
p-zero set. 4

The presented examples of unsupervised learning scenarios suggest that
the absence of labels is characteristic for situations where unsupervised losses
occur. However, we will see in Chapter 3 that unsupervised losses are also
a very powerful tool for investigating certain questions related to supervised
learning scenarios.
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2.2 Basic Properties of Loss Functions and Their Risks

In this section, we introduce some additional features of loss functions such as
convexity, continuity, and differentiability and relate these features to analo-
gous features of the associated risks. Since the results of this section will be
used throughout this book, we recommend that even the experienced reader
becomes familiar with the material of this section.

Our first lemma shows that under some circumstances risk functionals are
measurable.

Lemma 2.11 (Measurability of risks). Let L: X x Y xR — [0,00) be a
loss and F C Lo(X) be a subset that is equipped with a complete and separable
metric d and its corresponding Borel o-algebra. Assume that the metric d
dominates the pointwise convergence, i.c.,

nlin;o d(fn,f) =0 = lim f,(x) = f(x), z e X, (2.8)

n—oo

for all f, f,, € F. Then the evaluation map

FxX—=R
(f, ) = f(2)

is measurable, and consequently the map (x,y, f) — L(z,y, f(x)) defined on
X XY x F is also measurable. Finally, given a distribution P on X XY, the
risk functional Ry p : F — [0, 00] is measurable.

Proof. Since d dominates the pointwise convergence, we see that, for fixed
x € X, the R-valued map f — f(x) defined on F is continuous with respect
to d. Furthermore, 7 C Ly(X) implies that, for fixed f € F, the R-valued
map x — f(z) defined on X is measurable. By Lemma A.3.17, we then obtain
the first assertion. Since this implies that the map (z,y, f) — (x,y, f(x)) is
measurable, we obtain the second assertion. The third assertion now follows
from the measurability statement in Tonelli’s Theorem A.3.10. O

Obviously, the metric defined by the supremum norm || - || dominates the
pointwise convergence for every F C L (X). Moreover, we will see in Section
4.2 that the metric of reproducing kernel Hilbert spaces also dominates the
pointwise convergence.

Let us now consider some additional properties of loss functions and their
risks. We begin with convexity.

Definition 2.12. A loss L : X xY xR — [0, 00) is called (strictly) convex
if L(z,y, - ) : R — [0,00) is (strictly) convez for allz € X andy €Y.

If L is a supervised or unsupervised loss function, then we call L (strictly)
convex if its canonically associated loss function L is (strictly) convex. In the
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following, we will analogously assign other properties to L via its identification
with L.

The next simple lemma, whose proof is left as an exercise, shows that
convexity of the loss implies convexity of its risks.

Lemma 2.13 (Convexity of risks). Let L : X x Y xR — [0,00) be a
(strictly) convez loss and P be a distribution on X xY . Then Ry p : Lo(X) —
[0, 00] is (strictly) convex.

Besides convexity we also need some notions of continuity for loss func-
tions. We begin with a qualitative definition.

Definition 2.14. A loss L : X XY x R — [0,00) is called continuous if
L(z,y, -): R — [0,00) is continuous for allz € X,y €Y.

If we have a continuous loss function L : X x Y x R — [0,00) and a
sequence (f,,) of measurable functions f,, : X — R that converges pointwise to
a function f : X — R, then we obviously have L(z,y, fn(z)) — L(z,y, f(x))
for all (z,y) € X x Y. However, it is well-known from integration theory
that such a convergence does not imply a convergence of the corresponding
integrals, i.e., in general we cannot conclude R p(f,) — Rrp(f). However,
the following, weaker result always holds.

Lemma 2.15 (Lower semi-continuity of risks). Let L : X xY xR —
[0,00) be a continuous loss, P be a distribution on X XY, and (f,) C Lo(Px)
be a sequence that converges to an f € Lo(Px) in probability with respect to
the marginal distribution Px. Then we have

RL)p(f) S hmmfRLp(fn) .
n— 00

Proof. Since (f,) converges in probability Px, there exists a subsequence

(fn,) of (fn) with
khm RL,P(fnk) = hnniioréfRL,P(fn)

and fp, (z) — f(z) for Px-almost all x € X. By the continuity of L, we then
have L(z,y, fn,(x)) — L(z,y, f(x)) for P-almost all (x,y) € X xY, and hence
Fatou’s lemma (see Theorem A.3.4) gives

Rup(f) = / lim L (2,9, fu, (z)) dP(z, y)

XxYy k=0

< liminf/X YL(x7y,fn,c(a:)) dP(z,y)

k—oo
= liminf RL’p(fn) . (]
If we have an integrable majorant of the sequence L(-, -, f,(-)) in the

proof above, Lebesgue’s Theorem A.3.6 obviously gives Ry p(fn) — R, p(f).
The following definition describes losses for which we have such a majorant.
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Definition 2.16. We call a loss L : X xY x R — [0,00) a Nemitski loss
if there exist a measurable function b : X xY — [0,00) and an increasing
function h : [0,00) — [0,00) such that

L(z,y,t) <b(z,y) + h(]t]), (,y,8) € X XY xR (2.9)

Furthermore, we say that L is a Nemitski loss of order p € (0,00) if there
exists a constant ¢ > 0 such that

L(z,y,t) < b(z,y) +clt]’, (z,y,t) € X xY x R.

Finally, if P is a distribution on X XY with b € L£1(P), we say that L is a
P-integrable Nemitski loss.

Note that P-integrable Nemitski losses L satisfy Rpp(f) < oo for all
f € Lo(Px), and consequently we also have Ry p(0) < oo and Rip < oo.
In addition, we should keep in mind that the notion of Nemitski losses will
become of particular interest when dealing with unbounded Y, which is typical
for the regression problems treated in Chapters 9 and 10.

Let us now investigate the continuity of risks based on Nemitski losses.

Lemma 2.17 (Continuity of risks). Let P be a distribution on X XY and
L:XXxY xR — [0,00) be a continuous, P-integrable Nemitski loss. Then
the following statements hold:

i) Let fr, : X = R, n > 1, be bounded, measurable functions for which there
exists a constant B > 0 with || fnllcc < B for all n > 1. If the sequence
(fn) converges Px-almost surely to a function f: X — R, then we have

nlLH;O RL,p(fn) = RL,P(f) .

i1) The map Rrp : Loo(Px) — [0,00) is well-defined and continuous.
iii) If L is of order p € [1,00), then Rrp : L,(Px) — [0,00) is well-defined
and continuous.

Proof. i). Obviously, f is a bounded and measurable function with || f|lec < B.
Furthermore, the continuity of L shows

lim |L(:c,y, fa(z)) — L(x,y,f(:c))| =0

n—oo

for P-almost all (z,y) € X x Y. In addition, we have

|L(z,y, fa()) = Lz, y, f(2))| < 2b(z,y) + h(|fu()]) + h(| f(2)])
< 2b(x,y) + 2h(B)

for all (z,y) € X xY and all n > 1. Since the function 2b(-, -) + 2h(B) is
P-integrable, Lebesgue’s theorem together with
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[Rep(fa) = Rep(D < [ LGy fula)) = Ly f(a)] dPGa.v)
XxXY

gives the assertion.

ii). Condition (2.9) together with b € £;(P) obviously ensures Ry p(f) <
oo for all f € Loo(Px), i.e., Rr p actually maps Lo (Px) into [0, 00). More-
over, the continuity is a direct consequence of 7).

i11). Since L is a P-integrable Nemitski loss of order p, we obviously have
Rrp(f) < oo forall f e L,(Px). Now let (f,) C L,(Px) be a convergent
sequence with limit f € L,(Px). Since convergence in L,(Px) implies con-
vergence in probability Py, Lemma 2.15 then yields

Rep(f) < linlgiolgf Rep(fn)-

Moreover, L(x,y,t) = b(z,y) + c|t|’ — L(z,y,t) defines a continuous loss
function, and hence Lemma 2.15 also gives

16l z, ey + el fllp — Rep(f) =R p(f)
< liminfRLP(fn)

= liminf (|[b]lz, p) + el fullf = ReL.p(fn)) -
Using that || - [P is continuous on L,(Px), we thus obtain

limsup Rpp(fn) < Rrp(f). o

n—o0

Let us now turn to a quantitative notion of continuity for loss functions.

Definition 2.18. A loss L: X xY xR — [0,00) is called locally Lipschitz
continuous if for all a > 0 there exists a constant ¢, > 0 such that

sup |L(z,y,t) — L(z,y,t')| < ca|t — 1], t,t' € [—a,a].  (2.10)
reX
yey
Moreover, for a > 0, the smallest such constant ¢, is denoted by |L|, 1. Finally,
if we have |L|y 1= sup,>q |L|a,1 < 00, we call L Lipschitz continuous.

Note that if Y is finite and L : Y x R — [0,00) is a supervised convex
loss, then L is locally Lipschitz continuous since every convex function is
locally Lipschitz continuous by Lemma A.6.5. Furthermore, a locally Lipschitz
continuous loss L is a Nemitski loss since the definition of |L|; ; yields

L(z,y,t) < L(z,y,0) + [L|jy 1t , (z,y) e X xY, t€R. (2.11)

In particular, a locally Lipschitz continuous loss L is a P-integrable Nemitski
loss if and only if Ry, p(0) < co. Finally, if L is Lipschitz continuous, then L
is a Nemitski loss of order p = 1.

The following lemma, whose proof is left as an exercise, relates the (local)
Lipschitz continuity of L to the (local) Lipschitz continuity of its risk.
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Lemma 2.19 (Lipschitz continuity of risks). Let L : X XY xR — [0, c0)
be a locally Lipschitz continuous loss and P be a distribution on X XY . Then
forall B> 0 and all f,g € Loo(Px) with ||f|lec < B and ||g]lcc < B, we have

Rep(f) —Rep(9)| < ILlsa-IIf —gllL,px) -

Our next goal is to consider the differentiability of risks. To this end, we
first have to introduce differentiable loss functions in the following definition.

Definition 2.20. A loss L : X x Y x R — [0,00) is called differentiable if
L(z,y, -) : R — [0,00) is differentiable for all x € X, y € Y. In this case,
L'(z,y,t) denotes the derivative of L(x,y, -) att € R.

In general, we cannot expect that the risk of a differentiable loss function is
differentiable. However, for certain integrable Nemitski losses, we can actually
establish the differentiability of the associated risk.

Lemma 2.21 (Differentiability of risks). Let P be a distribution on X XY
and L : X xY x R — [0,00) be a differentiable loss such that both L and
L' : X xY xR — [0,00) are P-integrable Nemitski losses. Then the risk
functional Ry, p : Loo(Px) — [0,00) is Fréchet differentiable and its derivative
at f € Loo(Px) is the bounded linear operator Ry, p(f) : Loo(Px) — R given
by
Ryp(flg= /X Yg(x)l/(x,y, f()) dP(z,y), g € Loo(Px).
X

Proof. We first observe that the derivative L' : X x Y x R — R is measurable
since

> n—oo 1/n

Now let f € Loo(Px) and (f,) C Loo(Px) be a sequence with f, # 0, n > 1,
and limy, . || frlloc = 0. Without loss of generality, we additionally assume
for later use that || fn]lco <1 for allm > 1. For (z,y) € X xY and n > 1, we
now define

, (z,y,t) €e X xY x R.

L(z,y, f(@) + fulx)) — L(z,y, f(z))
fu(®)

if f,(x) #0, and G, (z,y) := 0 otherwise. Now an easy estimation gives

Rep(f+ fu) = Rep(f) = RLp(f)fn

Gulars) = - (o0 0)

[Fulloe
Lo,/ (2) + @) = Lo,y f0) = Fule) L (9, 5@) |
= /‘ [Folloe ’dP( )
XXY
< / Gn(z,y) dP(z,y) (2.12)

XxY
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for all n > 1. Furthermore, for (z,y) € X x Y, the definitions of G,, and
L'(z,y, -) obviously yield

lim G, (z,y) =0. (2.13)

n—oo

Moreover, for (z,y) € X x Y and n > 1 with f,(z) # 0, the mean value
theorem shows that there exists a g, (z,y) with |g,(z,9)| € [0, ]f.(z)]] and

fn(2)

Since |L'| is a P-integrable Nemitski loss, there also exist a b: X XY — [0, 00)
with b € L1 (P) and an increasing function h : [0, 00) — [0, 00) with

1L (@, y,t)| < blx,y) +h(t), (2,5,1) € X x Y x R.
This together with || f,|lcc < 1, n > 1, implies

L(z,y, (@) + fo(2)) = L(z,y, f(2))
o)

< bz, y) + (|| flloo +1)

for all (z,y) € X xY and n > 1 with f,(x) # 0. Since these estimates show
that
Gn(,y) < 20(z,y) + 2h ([ fll + 1)

for all (z,y) € X xY and n > 1, we then obtain the assertion by (2.12),
(2.13), and Lebesgue’s Theorem A.3.6. O

Our last goal in this section is to investigate loss functions that in some
sense can be restricted to domains of the form X x Y x [-M, M].

Definition 2.22. We say that a loss L: X xY xR — [0,00) can be clipped
at M >0 if, for all (z,y,t) € X xY x R, we have

L(z,y,%) < L(z,y,1),
where T denotes the clipped value of t at =M, that is
-M  ift<-—-M

Ti=1t ift € [-M, M] (2.14)
M ift>M.

Moreover, we say that L can be clipped if it can be clipped at some M > 0.

For most losses, it is elementary to check whether they can be clipped,
but for convex losses this work can be further simplified by the following
elementary criterion.
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Lemma 2.23 (Clipped convex losses). Let L : X xY x R — [0,00) be a
convex loss and M > 0. Then the following statements are equivalent:

i) L can be clipped at M.
it) For all (x,y) € X x Y, the function L(z,y, -) : R — [0,00) has at least
one global minimizer in [—M, M].

Proof. For (z,y) € X x Y, we denote the set of minimizers of L(x,y, -) by
Mgy ={t" € R: L(z,y,t*) = infcr L(x,y,t)}. For later use, note that the
convexity of L implies that M, , is a closed interval by Lemma A.6.2.

i) = ii). Assume that there exists a pair (z,y) € X x Y such that
Mgy N [=M,M] = 0. In the case M, , = 0, the convexity of L shows that
L(z,y, ) : R — [0,00) is strictly monotone and hence L cannot be clipped
at any real number. Therefore we may assume without loss of generality that
t :=inf M, , satisfies M < t < co. However, in this case we have

L(z,y,T) = L(z,y, M) > L(z,y,t) ,

i.e., L cannot be clipped at M.

it) = i). Our assumption ii) guarantees M, , N [—M, M| # (), and hence
we have inf M, , < M and sup M, , > —M. Moreover, the convexity of
L shows that L(z,y,-) : R — [0,00) is increasing on [sup M, ,,00) and
decreasing on (—oo,inf M, ,|, and hence L can be clipped at M. a

The criterion above will be of particular interest in Section 7.4, where we
investigate the statistical properties of SVMs that use clippable losses. There-
fore, it will be important to remember that, for the loss functions introduced
in the following sections, condition i) is usually elementary to check.

2.3 Margin-Based Losses for Classification Problems

In Examples 2.4 and 2.5, we considered the (weighted) binary classification
scenario, which is described by the supervised loss functions Lejass and Lo-class,
respectively. Now observe that both loss functions are not convex, which may
lead to computational problems if, for example, one tries to minimize an
empirical risk Ry, . p(-) over some set F of functions f : X — R. This
is the reason why many machine learning algorithms consider the empirical
risk R p(-) of a surrogate loss function L : Y x R — [0, 00) instead. In this
section, we will introduce some commonly used surrogate losses and establish
a few basic properties of these losses. Finally, we show why the hinge loss used
in SVMs for classification is a good surrogate.

Throughout this section, we assume Y := {—1,1}. Let us begin with the
following basic definition, which introduces a type of loss function often used
in classification algorithms.
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Least Squares Hinge Trunc. Least Squares Logistic

15

10

Fig. 2.1. The shape of the representing function ¢ for some margin-based loss
functions considered in the text.

Definition 2.24. A supervised loss L : Y x R — [0,00) is called margin-
based if there exists a representing function ¢ : R — [0,00) such that

L(y,t) = o(yt), yeY,teR.

The following lemma relates some simple properties of margin-based losses
to analogous properties of their representing functions.

Lemma 2.25 (Properties of margin-based losses). Let L be a margin-
based loss represented by p. Then the following statements are true:

i) L is (strictly) convez if and only if ¢ is (strictly) convez.
it) L is continuous if and only if ¢ is.
i11) L is (locally) Lipschitz continuous if and only if ¢ is.
i) If L is convex, then it is locally Lipschitz continuous.
v) L is a P-integrable Nemitski loss for all measurable spaces X and all
distributions P on X x Y.

Proof. Recalling the definitions of Section 2.2, the first three assertions are
trivial and iv) follows from Lemma A.6.5. Finally, v) follows from

L(y,t) < max{p(—t),o(t)}, yeY, teR. O

Note that the classification loss L¢jass is not margin-based, while many
commonly used surrogates for Lj.ss are margin-based. We are in particular
interested in the following examples (see also Figure 2.1 for some illustrations).

Ezxample 2.26. The least squares loss L1 is margin-based since it satisfies
Lis(y,t) = (y—t)? = (1 —yt)?, y==+1,teR.

In addition, Lrg is obviously strictly convex, and for a > 0 its local Lipschitz
constant is |Lrg|q,1 = 2a + 2 by Lemma A.6.8. Finally, Ly,g can be clipped at
M =1. <
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Ezample 2.27. The hinge loss Luinge : Y X R — [0, 00) is defined by
Linge(y, t) := max{0,1 — yt}, y==+1,teR.

It is clearly a margin-based loss that linearly penalizes every prediction ¢ with
yt < 1. In addition, it is obviously convex and Lipschitz continuous with
|Lhinge|1 = 1. Finally, Luinge can be clipped at M = 1. <

Ezample 2.28. The truncated least squares loss or squared hinge loss
is defined by

Livuncas(y, t) == (max{(), 1-— yt})2 , y==+1,t€R.

It is obviously a margin-based loss that quadratically penalizes every predic-
tion ¢ with y¢t < 1. In addition, it is convex, and its local Lipschitz constants
are | Liruncs|la,1 = 2a + 2, @ > 0. Finally, Lyg can be clipped at M = 1. <

Ezxample 2.29. The logistic loss for classification L jogist is defined by
Lc—logist(y7 t) = ln(l + eXp(_yt)) s Y= :tl, t€R.

It is obviously a margin-based loss function whose shape is close to that of the
hinge loss. However, unlike the hinge loss, the logistic loss is infinitely many
times differentiable. In addition, it is strictly convex and Lipschitz continuous
with |Leiogist|1 = 1. Finally, Leiogist cannot be clipped. <

Let us finally investigate in which sense the hinge loss used in the soft
margin SVM is a reasonable surrogate for the classification loss. To this end,
we need the following elementary lemma.

Lemma 2.30. For alln € [0,1] and all t € [-1,1], we have
20 — 1|1 (_co,0)((2n — 1) signt) < |2n—1|- |t —sign(2n—1)].  (2.15)

Proof. Forn = 1/2, there is nothing to prove. In order to prove the other cases,
let us first recall our convention sign0 := 1. For n € [0,1/2) and ¢ € [-1,0),
we now have (2 — 1) signt > 0, and hence the left-hand side of (2.15) equals
zero. From this we immediately obtain the assertion. Moreover, for ¢ € [0, 1],
we have (2 — 1) signt < 0, which in turn yields

27— 1|1 (_oo,0 (27 — 1) signt) < [2n—1[- (t+1) = [2n—1]- |t —sign(2n —1)].

In other words, we have shown the assertion for n < 1/2. The case n > 1/2
can be shown completely analogously and is left as an additional exercise for
the reader. O

With the help of the lemma above we can now investigate the relationship
between the Lyinge-risk and the classification risk.
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Theorem 2.31 (Zhang’s inequality). Given a distribution P on X XY,
we write n(x) = P(y = 1|x), € X. Moreover, let ff  p be the Bayes

classification function given by fr — p(x) = sign(2n(z) — 1), x € X. Then,
for all measurable f: X — [—1,1], we have

R Linge P () = RLpep = /X |f (@) = fLpuep @) [20(z) — 1] dPx (2) .
Moreover, for every measurable f : X — R, we have

RicueeP(f) = RLpep < RipugeP(f) = RLp-
Proof. For f: X — [—1,1], the definition of the hinge loss yields
Risse($) = [ (1= 1) 1(@) + 1+ F(@)(1 = n(w) dPx (2)
= [ 1+ @)1 = 20() dPx (a).

which in turn implies R} = Rp,;,,..p(f],,... p) since the hinge loss can
be clipped at M =1 by Lemma 2.23. From this we conclude that

Ripp(f) = Ry o = /X F(@)(1 = 20(z)) + [20(x) — 1] dPx (2)

- /X F@) = fip(@)] - [20(2) — 1] dPx(x),

i.e., we have shown the first assertion. To prove the second assertion, we first
use that Lyjnge can be clipped at M =1 to obtain

~
RLhingeyp(f) - thinge,P < RLhingeyp(f) - thinge,l:’

for the clipped version ? of a function f : X — R. Moreover, this clipped
version also satisfies

~
RicaeP () = Riep = RicaaP(f) = R

and consequently it suffices to show the second assertion for f: X — [—1,1].
Now recall Example 2.4, where we saw R}~ p =Rp,...p(ff. p)and

RLclassyP(f) - chlassyp

= /X N1 (—o0,0)(f) + (1 = 1) 1,00y (f) — min{n, 1 —n} dPx

class»

class» class»

- /X 120(2) — 1] 1 oe.0) ((20(x) — 1) sign f(x)) dPx ().

Lemma 2.30 and the first assertion then yield the second assertion. a



38 2 Loss Functions and Their Risks

Recall that the goal in binary classification was to find a function f whose
excess classification risk Ry, p(f) =R} . p is small. By Theorem 2.31, we
now see that we achieve this goal whenever Rp,,,..p(f)—R7, . pissmall. In
this sense, the hinge loss is a reasonable surrogate for the classification loss.
Finally, note that we will show in Section 3.4 that the other margin-based
losses introduced in this section are also reasonable surrogates.

Finally, observe that all calculations in the preceding proof are solely in
terms of n(x) = P(y = 1|x) and f(z). This observation will be the key trick
for analyzing general surrogate losses in Chapter 3.

2.4 Distance-Based Losses for Regression Problems

In regression, the problem is to predict a real-valued output y given an input
2. The discrepancy between the prediction f(z) and the observation y is often
measured by the least squares loss we introduced in Example 2.6. However, we
also mentioned there that this is by no means the only reasonable loss. In this
section, we therefore introduce some other loss functions for the regression
problem. In addition, we establish some basic properties of these losses and
their associated risks.
Let us begin with the following basic definitions.

Definition 2.32. We say that a supervised loss L : R x R — [0, 00) is:

i) distance-based if there exists a representing function ¢ : R — [0, 00)
satisfying ¥(0) = 0 and

Ly, t) =4y —1), yey, teR;
1) symmetric if L is distance-based and its representing function v satisfies

(r) =¢(—r), r e R.

Obviously, the least squares loss as well as the family of losses mentioned
after Example 2.6 are symmetric loss functions. Further examples of this type
of loss will be presented later in this section. Let us first, however, establish
some basic properties of distance-based losses and their associated risks. We
begin with the following lemma, which relates properties of L with properties
of . Its proof is left as an exercise.

Lemma 2.33 (Properties of distance-based losses). Let L be a distance-
based loss with representing function v : R — [0,00). Then we have:

i) L is (strictly) convex if and only if ¢ is (strictly) convez.
it) L is continuous if and only if v is continuous.
i11) L is Lipschitz continuous if and only if 1 is Lipschilz continuous.
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Note that the local Lipschitz continuity of ¢ does not imply the local
Lipschitz continuity of the corresponding distance-based loss function as, for
example, the least squares loss shows.

Our next goal is to investigate under which conditions on the distribution
P a distance-based loss function is a P-integrable Nemitski loss. This analysis
will be conducted in two steps: a) the analysis of the integrals of the form

Cralt) == /R L(y.1) dQ(y). (2.16)

which occur for Q := P(Y|z) as inner integrals in the definition of the L-risk,
and b) a subsequent analysis of the averaging with respect to P x. For the first
step, we need the following definition, which will be used to describe the tail
behavior of the conditional distributions P(Y|z).

Definition 2.34. For a distribution Q on R, the p-th moment, p € (0, 00),

is defined by )
1/p
Qo= ([ 1o aqa)

Moreover, its co-moment is defined by |Q|o := sup|supr|.

Note that in general the p-th moment of a distribution Q on R is not
finite. In particular, we have |Q|s < oo if and only if Q has a bounded
support. Moreover, for 0 < p < ¢ < oo, we always have |Q|, < |Q|,.

Besides controlling the tail behavior of the conditional distributions we
also need to describe the growth behavior of the loss function considered.
This is done in the following definition.

Definition 2.35. Let p € (0,00) and L : R x R — [0,00) be a distance-based
loss with representing function ¥. We say that L is of:

i) upper growth p if there is a constant ¢ > 0 such that
Y(r) <c(|rfP+1), reR;
i1) lower growth p if there is a constant ¢ > 0 such that
P(r) zc(|r\p—1), r € R;

iit) growth type p if L is of both upper and lower growth type p.

Our next goal is to relate the tail behavior of the conditional distributions
with the growth behavior of L and the integrals (2.16). To this end, recall
that convex functions are locally Lipschitz continuous (see Lemma A.6.5),
and hence, for conver distance-based loss functions L, the representing 1 is
locally Lipschitz continuous on every interval [—r, r]. Consequently,

e TR P r >0, (2.17)
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defines an increasing, non-negative function. The following lemma establishes
some basic properties of this function and relates them to the growth type of
distance-based loss functions.

Lemma 2.36 (Growth type and moments). Let L be a distance-based loss
with representing function v and Q be a distribution on R. For p € (0, 00),
we then have:

i) If ¢ is convexr and lim, o 1 (r) = 0o, then L is of lower growth type 1.
i1) If ¢ is Lipschitz continuous, then L is of upper growth type 1.
ii1) If 1 is convex, then for all r > 0 we have

2
|w|[fr,r]|1 < ; ||w|[72r,2r]||oo < 4‘w|[72r,2r]‘1 .

i) If L is convex and of upper growth type 1, then it is Lipschitz continuous.
v) If L is of upper growth type p, then there exists a constant cr, > 0
independent of Q such that

Cra) < cop(lQB+ [t +1), teR. (2.18)

Moreover, L is a Nemitski loss of order p.
vi) If L is of lower growth type p, then there exists a constant cr,, > 0 inde-
pendent of Q such that

QI < crp(Crt) + [t +1), teR, (2.19)

and
[t < crp(Crqlt) +1QE+1), t e R. (2.20)

vii) If L is of growth type p, then we have Cj o < oo if and only if |Q|, < oco.

Proof. iii). Follows immediately from Lemma A.6.5.

iv). Follows from the left inequality of #i7) and Lemma 2.33.

ii). Follows from |¢(s)| = |(s) — (0)] < |[¢]1 |s] for all s € R.

i). The assumption lim,| o ¥(r) = oo implies that |¢_,.[1 > 0 for all
sufficiently large r > 0. Moreover, it shows that ¢ is decreasing on (—o0, 0]
and increasing on [0, 00). Consequently, we have [|¢—.g)l|cc = 9(r) for 7 <0,
and [|9)[0,]]|cc = (r) for 7 > 0. Now, the assertion follows from applying the
first part of Lemma A.6.5 to the convex functions 1(_ g% and 1jg o0)?).

v). Writing ¢, := max{1,2P~1}, the second assertion follows from

L(y,t) =y —t) < c(cplyl” + cplt|P + 1), y,t € R. (2.21)

Using this inequality, we then immediately obtain

Crolt) = /Rw(y — 1) dQ(y) < cep(QE + [t) +c.
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vi). We fix a t € R and write ¢, := max{1,2P~'}. Since without loss of
generality we may assume Cr, () < 0o, we can estimate

Q= /R P dQ() < ¢ /R ly— 17 + [ dQy)

C
=2 [ eyt = 1) dQ) + 6 + ey e

C
f Cr.q(t) +cp + cplt]”.

IN

Now we easily find (2.19). Moreover, (2.20) can be shown analogously.
vii). The assertion immediately follows from v) and vi). O

So far we have analyzed the interplay between the growth behavior of L
and the tail behavior of the conditional distributions P(-|z). Our next step
is to investigate the effect of the integration with respect to Px. To this end,
we need the following definition.

Definition 2.37. For a distribution P on X xR, the average p-th moment,
p € (0,00), is defined by

= (/[ |y|de<:c,y>)l/p= (/ |P<-|x>|§dPX<z>)l/p.

Moreover, its average 0-moment is defined by |P|o := 1 and its average
co-moment is defined by |P|oo := ess-sup,¢ x |P(- |1:)|Oo

Again, the p-th moment of a distribution P on X x R is not necessarily
finite. In particular, it is easy to see that |P|s, < oo if and only if there is an
M > 0 such that supp P(-|z) C [-M, M] for Px-almost all z € X. Finally,
for 0 < p < ¢ < oo we again have |P|, < |P|,.

Let us now investigate how average moments and risks interplay.

Lemma 2.38 (Average moments and risks). Let L be a distance-based
loss and P be a distribution on X x Y. For p > 0, we then have:

i) If L is of upper growth type p, there exists a constant cr, , > 0 independent
of P such that, for all measurable f : X — R, we have

Rep(f) < eop(PR+ 117, e +1)- (2.22)

Moreover, if |P|, < oo, then L is a P-integrable Nemitski loss of order p,
and Rpp(-): Ly,(Px) — [0,00) is well-defined and continuous.

it) If L is convex and of upper growth type p with p > 1, then for all ¢ €
[p — 1,00] with ¢ > 0 there exists a constant cr,p q > 0 independent of P
such that, for all measurable f: X — R and g : X — R, we have

|Rep(f) —Rep(9)l
< (P 4 IS8 (o) 1915 (o) + 1)1 = glle_y_ - (2:23)

+1



42 2 Loss Functions and Their Risks

iii) If L is of lower growth type p, there exists a constant cr, , > 0 independent
of P such that, for all measurable f : X — R, we have

Pl < cp(Rep(f) + 11, @y +1) (2.24)

and
A7 ey < crp(Rep(f)+ [Pl +1). (2.25)

Proof. i). Inequality (2.22) follows from integrating (2.18). The second asser-
tion follows from Inequality (2.21) and the last assertion is a consequence of
Lemma 2.17.

it). We define r(x,y) := |y|+|f(z)|+]g9(z)|+1, (z,y) € X xY. By Lemma
2.36, we then obtain

|Rep(f) —Rrp(g)| < /

XxXY

[y = 1)) = ¥y — 9(@)|dP(w,)

S/ i) @]y [f(@) = g(x)|dP(z,y)
XxY

H’(/}|[727‘(93 y),2r(z,y)] Hoo
SQ/ S f(x) — g(z)|dP(z,y
[ emtsrteale | ) - g0)|ip(e.)

2r(a )l +1
<of BRI (@) - gta)|ipay)

for a suitable constant ¢ > 0 only depending on L. Using tpTH < 2tP~1 for all
t > 1 and Holder’s inequality, we then conclude

’RL,P(f) - RL,P(Q)‘ < QPC/X . Ir(z, y)|P~* |f(95) - 9(33)’6113(557?/)

1/s , 1/s’
<wel [ prear) ([ jreafar)
XxY XxXY

where s := ﬁ and é =1- % =11 %. Using the definition of r,
we further find

1/s
(/ |r(P—1>SdP)
XxY

for a suitable constant ¢, > 0. By combining the estimates, we then obtain
the assertion.

ii1). The inequalities (2.24) and (2.25) follow from integrating (2.19) and
(2.20), respectively. |

(r—1)/q
([ 151+ b + 1)"apen)
X XY

p—1
< Cq(\P|q + 1 fllz,ex) + lgllL,ex) + 1)
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Fig. 2.2. The shape of the representing function ¢ for some distance-based loss

functions considered in the text.

If L is a distance-based loss function of growth type p and P is a distribu-
tion on X x R with |P|, = oo, the preceding lemma shows Ry, p(f) = oo for
all f € L,(Px). This suggests that we may even have Ry p = oo. However,
in general, this is not the case, as Exercise 2.6 shows.

Let us finally consider some examples of distance-based loss functions (see
also Figure 2.2 for some illustrations) together with some of their basic prop-
erties. We will see later in Section 3.7 that the first three losses can be used
to estimate the conditional mean whenever P(-|z) is symmetric.
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Ezxample 2.39. For p > 0, the p-th power absolute distance loss L,_gis is
the distance-based loss function represented by

() = |r|?, reR.

Note that for p = 2 this definition recovers the least squares loss. Moreover,
for p = 1, we call Ly gis¢ simply the absolute distance loss. It is not hard
to see that Ly._qist is of growth type p and that L, qis is convex if and only
if p > 1. Furthermore, L,_qis; is strictly convex if and only if p > 1, and it is
Lipschitz continuous if and only if p = 1. <

Ezample 2.40. The distance-based logistic loss for regression L,.jgs is
represented by
4e”
r)=—In———, reR.
Some simple calculations show that Li.jogist is strictly convex and Lipschitz
continuous, and consequently L, jogist is of growth type 1. <

Ezxample 2.41. For o« > 0, Huber’s loss L,_guber is the distance-based loss

represented by
2
- if |r] < «
P(r) = { 2 o2 Irl <

alr| = % otherwise.

Note that, for small r, Huber’s loss has the shape of the least squares loss,
whereas for large r it has the shape of the absolute distance loss. Consequently,
Lo Huber is convex but not strictly convex. Furthermore, it is Lipschitz contin-
uous, and thus L, guper is of growth type 1. Finally, note that the derivative
of ¥ equals the clipping operation (2.14) for M = a. <

Ezample 2.42. For ¢ > 0, the distance-based e-insensitive loss L insens i
represented by

¥(r) := max{0, |r| — €}, r € R.

The e-insensitive loss ignores deviances smaller than e, whereas it linearly pe-
nalizes larger deviances. It is easy to see that L. insens is Lipschitz continuous
and convex but not strictly convex. Therefore it is of growth type 1. We will
see in Section 9.5 that this loss function can be used to estimate the condi-
tional median, i.e., the median of P(-|z), € X, whenever these conditional
distributions are symmetric and have, for example, a Lebesgue density that
is bounded away from zero on the support of P(-|z). <

Ezample 2.43. For T € (0,1), the distance-based pinball loss L, ;, is repre-
sented by

T, if r > 0.

o(r) = {—(1 —7)r, ifr<0 (2.26)
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Obviously, this loss function is convex and Lipschitz continuous, but for 7 #
1/2 it is not symmetric. We will see in Sections 3.9 and 9.3 that this loss
function can be used to estimate conditional T-quantiles defined by

fip(@) = {t" € R:P((—o0,t*]|z) > 7 and P([t*,00) [z) > 1 —7}. <

2.5 Further Reading and Advanced Topics

Loss functions and their associated risks have a long history in mathemat-
ical statistics and machine learning. For example, the least squares loss for
regression was already used by Legendre, Gauss, and Adrain in the early 19th
century (see, e.g., Harter, 1983; Stigler, 1981; and the references therein),
and the classification loss function dates back to the beginning of machine
learning.

In the statistical literature, density level detection has been studied by
Hartigan (1987), Miiller and Sawitzki (1991), Polonik (1995), Sawitzki (1996),
and Tsybakov (1997), among others. Most of these authors focus on the so-
called excess mass approach. Steinwart et al. (2005) showed that this approach
is equivalent to an empirical risk minimization approach using a particular
classification problem, and based on this observation the authors derived an
SVM for the density level detection problem (see also Sections 3.8 and 8.6).
Moreover, the risk based on the density level detection loss defined in (2.6) was
proposed by Polonik (1995) and later also used by, e.g., Tsybakov (1997) and
Ben-David and Lindenbaum (1997). Various applications of the DLD problem,
such as cluster analysis, testing for multimodality, and spectral analysis, are
described by Hartigan (1975), Miiller and Sawitzki (1991), and Polonik (1995).
Finally, using DLD for anomaly detection is a widely known technique; see
Davies and Gather (1993) and Ripley (1996), for example.

It is well-known that empirical risk minimization for the classification loss
typically leads to combinatorial optimization problems that in many cases
are NP-hard to solve (see, e.g., Hoffgen et al., 1995). Using a margin-based
loss as a surrogate for the classification loss is a well-known trick in ma-
chine learning to make the training process algorithmically more tractable
(see, e.g., the motivation for the hinge loss by Cortes and Vapnik, 1995). In
particular, for SVMs, the first surrogates for the classification loss were the
hinge loss and its squared variant, the truncated least squares loss. Later,
other loss functions, such as the least squares loss and the logistic loss, were
introduced into the support vector machine literature by Suykens and Van-
dewalle (1999), see also Poggio and Girosi (1990), Wahba (1990), and Girosi
et al. (1995) for earlier work in this direction, and Wahba (1999), respec-
tively. Other margin-based loss functions used in the literature include the
exponential loss ¢(t) := exp(—t), t € R, used in the AdaBoost algorithm
(see Freund and Schapire, 1996; Breiman, 1999b) and the loss ¢(t) := (1 —t)°
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used in the ARC-X4 procedure of Breiman (1998). Some further margin-based
losses used in boosting algorithms are listed by Mason et al. (2000). Finally,
Zhang’s inequality was shown by Zhang (2004b).

The importance of Nemitski losses for conditional distributions with un-
bounded support was first discovered by De Vito et al. (2004), and the growth
type of distance-based losses was introduced by Christmann and Steinwart
(2007).

Huber’s loss was proposed by Huber (1964) in the context of robust sta-
tistics, and the logistic loss function was already used in the Princeton study
by Andrews et al. (1972). Moreover, the pinball loss was utilized by Koenker
and Bassett (1978) in the context of quantile regression. Last but not least,
for a comparison between the absolute distance loss and the least squares loss
regarding computational speed for certain algorithms, we refer to Portnoy and
Koenker (1997).

2.6 Summary

In this chapter, we introduced loss functions and their associated risks. We saw
in Section 2.1 that loss functions can be used to formalize many learning goals,
including classification, regression, and density level detection problems. We
then investigated simple yet important properties of loss functions. Among
them, the notion of integrable Nemitski losses will be a central tool in the
following chapters.

Since the classification loss typically leads to computationally hard opti-
mization problems, we presented margin-based surrogates in Section 2.3. For
one of these surrogates, namely the hinge loss, we explicitly showed in Zhang’s
inequality how its excess risk relates to the excess classification risk. In Chap-
ter 3, we will see that a similar relation holds for the other margin-based losses
we presented.

Finally, we investigated distance-based loss functions for regression prob-
lems in Section 2.4. There, we first showed how the growth behavior of the loss
function L together with the average conditional tail behavior of the distribu-
tion P determines whether L is a P-integrable Nemitski loss. These consider-
ations will play a crucial role in Chapter 9, where we investigate the learning
capabilities of SVMs in regression problems. At the end of Section 2.4, we
presented some examples of distance-based losses, including the least squares
loss, the pinball loss, the logistic loss, Huber’s loss, and the e-insensitive loss.
In Chapter 3, we will investigate their relationships to each other.

2.7 Exercises

2.1. Convex and Lipschitz continuous risks (x)
Prove Lemma 2.13 and Lemma 2.19.
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2.2. Properties of some margin-based losses (%)

Verify the assertions made in the examples of Section 2.3. Moreover, inves-
tigate the properties of the exponential loss represented by ¢(t) := exp(—t),
t € R, and the sigmoid loss represented by ¢(t) := 1 — tanh(¢), t € R.

2.3. A surrogate inequality for the logistic loss (kkx*x)

Try to find an inequality between the excess classification risk and the excess
Lc.1ogist-risk. Compare your findings with the inequality we will obtain in
Section 3.4.

2.4. Properties of some distance-based losses (x)
Verify the assertions made in the examples of Section 2.4.

2.5. Clippable convex distance-based losses (x*)

Let L be a distance-based loss function whose representing function ¢ satisfies
lim, 40 ¥(r) = co. Show that L can be clipped at some M > 0 if and only
if Y is bounded.

2.6. Infinite Bayes risk for regression (%)
Let L be a distance-based loss of growth type p and X := Y := R. Find
a distribution P on X x Y such that |P|, = oo and R p(f) = oo for all
f € Ly(Px) but R} p < 0.

Hint: Use a measurable function g : X — R with g ¢ L,(Px).
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