Newton’s Laws of Motion
for a Particle Moving
in One Dimension

Living cells exchange energy and matter with their surroundings. They reproduce.
Often they move about. To understand such basic aspects of life, it is essential
to understand how motion is related to force and how force is related to energy.
Explaining these relations for an object moving in one dimension is the goal of this
and the next two chapters.

Before beginning to read and master the formal discussion of motion that follows
in this chapter, however, it is very useful to remind ourselves what it feels like to
move at constant velocity and to accelerate. Recall how it feels to ride in a car along
a straight flat highway that has recently been resurfaced. If the car’s speedometer is
fixed at a constant reading you can close your eyes and not know you are moving at
all, no matter how fast the speedometer says you are moving. Of course, roads aren’t
straight and flat for very long stretches. You feel clues that you are moving from the
little bumps and turns the car makes. Riding in an elevator is probably a better exam-
ple. Once the elevator gets going, only the flashing floor numbers give any hint that
anything is happening, no matter how fast the elevator is traveling or whether you are
going up or down. In both car and elevator examples, when you feel as if you are at
rest you are moving in a straight line at a constant rate. This kind of motion is called
constant velocity. Constant velocity feels exactly like standing still.

When the car turns or goes over a bump or speeds up or slows down, or when the
elevator starts or stops, you definitely feel it. All such instances involve change in
velocity. Change in velocity is called acceleration and acceleration can be felt. If a trin-
ket dangles by a thread from the car’s rear view mirror you can see it deflect from hang-
ing vertically at the same instant you feel acceleration. If by some bizarre chance, you
are standing on a scale as the elevator starts or stops, the scale’s reading will change
when you feel the acceleration.

Why you feel acceleration but not constant velocity, why acceleration causes the
trinket to deflect and the scale reading to change, all require an explanation. That
explanation is contained in Newton’s laws of motion, discussed in this chapter. In
order to understand the content of Newton’s laws, we have to be able to describe
motion with quantitative precision. The major goal of this chapter is to demonstrate
how a body’s interactions with its surroundings can explain changes in its motion. We
use the term force to denote a quantitative measure of interaction. The theme of this
chapter, then, is that force explains (causes) acceleration. As discussed previously, any
macroscopic body is a collection of smaller, more fundamental pieces. A complete
understanding of the changes in motion of a macroscopic body requires keeping track
of the forces experienced by every subpiece of the body due to every other subpiece
(these are called internal forces) and due to every other additional body (external
forces). In this chapter, all bodies are treated as particles and all changes in motion
arise from external interactions. This simplistic view allows us to develop powerful
tools that can subsequently be applied to more general and more realistic behaviors.
The chapter ends with a short discussion of diffusion, the random thermal motion of
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FIGURE 2.1 An object undergoing
rigid translation. All parts do what
the center of mass (+) does.
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small particles, to contrast this type of motion with that described in the rest of the
chapter. Diffusion is an extremely important process in biology, playing a major role
in our existence through, for example, gas, nutrient, and waste exchange in the blood.

1. POSITION, VELOCITY, AND ACCELERATION
IN ONE DIMENSION

Until we get to Chapter 23, we are interested primarily in phenomena associated with
objects that can be seen (perhaps with the aid of a microscope or telescope) with ordi-
nary light. That doesn’t narrow our interests very much. On the small end, we can
certainly see inside living cells; on the large end we can see clusters of galaxies. All
objects that can be seen with light are composite, that is, composed of smaller pieces
of matter. Organisms, for example, are composed of cells; cells are composed of mol-
ecules; molecules are composed of atoms; atoms are composed of nuclei and elec-
trons. As we show in Chapter 6, we can assign to any object a unique point called the
object’s center of mass. The motion of any object can then be thought of as consist-
ing of two parts: motion of the center of mass and motion about the center of mass.
For now, just think of the center of mass as the body’s “center.”

If a body moves so that all of its composite pieces do exactly what the center of mass
does—for example, when the center of mass of the body moves 1 m north each compos-
ite piece also moves 1 m north—the body is said to undergo a rigid translation (see
Figure 2.1). An object undergoing a rigid translation can be treated as a point particle, a
mass without spatial size. Its shape and extent in space are irrelevant.

To start, imagine some object of interest moving along a straight line. The object
can be microscopic (such as a protein molecule or a bacterium) or macroscopic (such
as a car or even you, yourself). Motion along a line is called one-dimensional because
only one coordinate, x, say, is needed to describe it. Here, then, x designates the loca-
tion of the center of mass of a car measured from an arbitrary origin. There are two
directions to go along the coordinate axis from its origin. We distinguish between
them by saying one is the “positive” direction, the other the “negative.” Thus, x is a
signed number having units of length.

Whether it is the motion of our car or the motion of a molecule, in practice we
measure one position at one time, then another position at another time, and so on,
over and over. That is, in any experiment the data we collect are a sample of the
motion acquired at discrete instants. This is true irrespective of what apparatus or
technique we employ. For example, we (or a policeman) might use radar or sonar
to identify where our car is at various moments. Such devices send out a signal
and receive its echo, then another signal and its echo, on and on. Between signals
we know nothing; there are gaps in the data. The same is true if we videotape a
moving object. Video is really a succession of still frames (in the United States,
one every thirteenth of a second). We can get detailed information about the object
every frame, but nothing in between. The results, consequently, comprise a table
of positions (measured with finite precision and limited accuracy) recorded at
discrete sampling times. In other words, our experiment yields a finite set of posi-
tion values {x(z,), x(,), x(#3), . . .} where x(¢)) is the position measured at time 1,,
x(t,) is the position at time 7,, and so on. Although we believe that our car or a bac-

terium moves continuously in time (i.e., the closer ¢, and t, are to
each other, the closer x(z;) and x(z,) are to each other), the best
we can do, even if (as is frequently the case) we are aided by a
high-speed computer with lots of memory, is obtain a broken and
punctuated approximation to its theoretical, continuously flow-
ing motion.

In this book we use the International Standard (SI) units in
which lengths are measured in meters (m), although often we refer
to small fractions of meters (e.g., cm, mm, pm, and so on) or large
multiples of meters (in particular, km); see Table 2.1.
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Table 2.1 Commonly Used Units of Distance

Name Abbreviation Multiple of a Meter Roughly Comparable to
Meter m 1 Length of your arm
Centimeter cm 1072 Length of a (new) pencil eraser
Millimeter mm 1073 Width of a pencil point
Micrometer pm 1076 Length of a cell

Nanometer nm 1079 Diameter of a small molecule
Kilometer km 10™3 Half a mile

A table of numbers is not usually a very useful way to characterize motion. Table 2.2
provides an example. In this table, we see the results of three different observers record-
ing the motion of the same remote control toy model car (Figure 2.2), using the same
coordinate system and the same starting time (i.e., the instant they all call t = 0 s), but
with three different sampling rates (one every 2 s coded in blue, one every 1 s in green,
and one every 0.5 s in red, respectively). (The second, incidentally, is the ST unit of time,
often abbreviated as just s.) There is typically too much to keep track of in a table; it’s
hard, with tabular information, to see a “big picture.”

Table 2.2 Table of Observations on the Position of a Remote Control Toy Car
as a Function of Time

Observer #1 Observer #2 Observer #3
Time (s) Position (m) Time (s) Position (m) Time (s) Position (m)
0 0.890 0 0.890 0 0.890

0.5 0.663

1 0.567 1 0.567

1.5 0.968

2 0.909 2 0.909 2 0.909
2.5 0.633

3 0.535 3 0.535

3.5 1.008

4 0.700 4 0.700 4 0.700

More useful than a table is to make a plot of the data, plotting position x(¢) versus
time ¢ with 7 (the independent variable) plotted on the horizontal axis and x(¢) (the
dependent variable) plotted on the vertical axis, as in Figure 2.3
using the same color codes for the different observers.

In the figure, we have attempted to fill in missing
information by interpolating between data points (in this case, by
simply “connecting the dots” with straight lines). Interpolation
of Observer #1’s data (in blue) gives a very crude picture of the
car’s motion over the interval O s to 4 s. Observer #2’s data (in
green) provides more detail and #3’s (in red) even more. By
interpolating, we are creating a model of the car’s motion that
will allow us to say something about where the car was at times
not observed.

The word “model” is used a lot in physics. A model is a rep-
resentation or an approximation of a thing, not the thing itself.
Some models are better than others: for example, the blue
model of the car’s motion shown in Figure 2.3 is not as infor-
mative or accurate as the red model. The former model has less
of a “database” to support it than does the latter. The blue model
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FIGURE 2.2 A remote controlled
car whose motion we study.
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position (m)

can be thought of as “provisional,” a kind of first approxima-
tion. As we acquire more and more data that model is replaced
by more and more sophisticated approximations.

We can imagine that if the observed sampling rate is
increased so that data are taken more and more frequently, the
resulting plots would more and more define a smoothly continu-
ous curve of some sort. In fact, if we are lucky we might even be

time (s)

FIGURE 2.3 The position data of
Table 2.2 plotted for each observer.
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able to fit an analytic expression to the data, producing an equa-
tion model for the car’s instantaneous position, x(f), that is, an
explicit relationship between position and time that would allow
us to determine the car’s position at any instant (not just at the
times of measurement). Such analytic models are especially useful because they allow us
to make predictions about events not yet witnessed.

Given a position record such as that shown in Table 2.2, or, equivalently, in
Figure 2.3, we can define a number of useful quantitative tools. First, we have the
notion of distance traveled in some time interval. The total distance traveled in any
interval of time is the sum of the distances traveled during each subinterval of the
motion. Furthermore, each contribution is positive, irrespective of in which direction
the motion takes place. Formally, distance equals the absolute value of change in
position. Thus, according to Observer #1 in Table 2.2, the total distance covered by
the car in 4 s is 0.228 m, that is, from a position of +0.890 m out to +0.909 m (a dis-
tance of 0.019 m), then back to +0.700 m (an additional distance of 0.209 m).
According to #2, the total distance the car travels is 1.204 m, and according to #3 the
total distance is 1.938 m. Make sure you understand why.

The average speed over a certain time interval is the total distance traveled in that
interval divided by the elapsed time. So for the three observers of Table 2.2, #1 assigns
to the car’s motion an average speed of 0.228 m/s = 0.057 m/s, #2, 0.301 m/s, and #3,
0.485 m/s. (Note that in calculations units are treated as algebraic quantities.)

Next, we introduce the notion of the displacement, Ax, in a time interval 1, 1o 1,
(“7” implies “initial”, the beginning of the interval, and “f” “final”, the end of the
interval). (Here, and more generally, the Greek letter A [capital “delta”] denotes a dif-
ference between two values.) Displacement is the directed distance

Ax = x(tf) — x(z,).

Displacement can be positive, negative, or zero (as opposed to distance, which
is never negative), with the sign indicating the net direction of the associated
motion. Thus, in the example of Table 2.2, all three observers agree that the
displacement of the car, Ax, for ;= 0s tot,=2sis +0.019 m (displacement
in the + direction during this interval), for ¢z, =2s to ty=4s is —0.209 m
(displacement in the — direction during this interval), and for the entire interval
froms, =0stor. = 4sis —0.190 m.

The average velocity v of our car is defined for a specific interval of time,
At = 1, — 1, as

Ax

" 2.1

v =
Notice that this expression is different from the average speed, because it is not
the distance traveled but the displacement that is in the numerator. Unlike the aver-
age speed, which is always positive, the average velocity can be positive, negative, or
zero depending on whether Ax is positive (moving to the right), negative (moving to
the left), or zero (either there was no motion or the object has returned to its starting
point). Again, all three observers in Table 2.2 agree that the car’s average velocity is
+0.010 m/s from ;= 0s to = 2s, —0.105 m/s from 1, =2s to t= 45, and
—0.048 m/s from ¢; = 0 s to 7, = 4 s. (Contrast these results with their conclusions
about average speeds over the same interval.)
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Average velocity is a statement about the tendency for an object to move over a
finite time interval. In between the starting time and the ending time, the object can
do lots of interesting things that are not accounted for by the average velocity. Of
course, as we increase our sampling rate and make our time interval smaller and
smaller, less and less departure from the average motion will occur in an interval of
time. This leads us to a still different (more refined) concept, namely, that of instan-
taneous velociry. Imagine starting at some generic time #; = ¢ with our car at x(7) and
going to x(t + Ar) at t,= r + Az, some time later. The instantaneous velocity of the
car at time ¢, v(¢), is defined as

) X
v = lim —. (2.2)

The symbol “lim,, ,,” is read, “in the limit as At approaches 0.” Operationally, it
means “make the sampling rate so fast that the average motion and the exact motion
in the time interval At are indistinguishable.” You can think of this as the velocity
reported by a car’s speedometer.

As we said before, we believe that our car moves continuously in time.
Continuous, here, means that we can make a plot of position versus time without
ever lifting our pencil off our paper. There are no holes or jumps in such a plot. In
other words, we don’t believe that our car (no matter how spiffy) is ever at x(#) one
instant then at a very different x(zr + Ar) an extremely short time later. Thus, despite
the fact that we are making Az exceedingly small in the denominator of Equation
(2.2)—and therefore seemingly threatening to make Ax/Ar exceedingly large—Ax in
the numerator is also getting smaller and smaller, and the ratio of the two remains
nice and finite.

Moreover, we also tacitly believe that the car’s motion is smoothly continuous.
“Smooth” means that there are no instantaneous “jerks.” If the car has a nice, finite
velocity v(¢) at time ¢, its velocity v(¢t + Af) is not much different a short time At later.
As we argue in just a bit, smoothly continuous means a plot with neither holes nor
sharp points (cusps).

Well, the formal definition of a velocity at an instant may be clear, but how do
we actually use the definition? How, for example, do we assign a number to it? The
answers to these questions depend on what information you have at the start. First,
suppose another observer has taken a great deal more of the car’s position data and
fit a smooth curve to the data points. This smooth curve is presented to you as an
accurate model of the car’s motion at any time. Such a plot is shown in Figure 2.4a.

Let’s try to determine, from the curve given to us, the car’s instantaneous
velocity at + = 1s. The position at 1s is +0.567 m. We take a second time,
t + Ar = 4 s, say, and the corresponding position (read from Figure 2.3 or 2.4a or
looked up in Table 2.2) is +0.700 m. We conclude that the average velocity over
that interval is

[+0.700 m] — [+0.567 m]

V= 4s—1s = +0.044 m/s. FIGURE 2.4a Smooth curve of the

position versus time for the car.

Note that this average velocity is the same as the slope of
the line connecting the points (Is, +0.567 m) and (4 s,
+0.700 m) on the graph in Figure 2.4a (because slope is
calculated by dividing rise [or fall] in the vertical direction
by the corresponding run in the horizontal direction, and, in
this case, that is Ax/Ar).

Now, let’s take ¢ + Ar to be 3 s. Given that x(3 s) is
+0.535 m, we calculate the average velocity in this interval
to be —0.017 m/s. Then, take ¢ + Ar = 2's. The average
velocity from 1s to 2s is +0.342 m/s. Every interval we’ve

x (m)
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tangent line to curve
at (1 s, +0.567 m)

picked so far has yielded quite a different average velocity.
None of these can be said to be the instantaneous velocity at
t = 1 s, because the Azs aren’t very small in any of these exam-
ples. Now switch your attention to Figure 2.4b. Here the piece
of the plot between ¢ = 0.75 s and r = 1.25 s is magnified. If we
take t + Ar = 1.25 s, we obtain for an average velocity about

[+0.79 m] — [ +0.567 m]
125s—1s

= +0.89 m/s.

0.4
0.75

1
Time (s)

FIGURE 2.4b Zoom-in around
t = 1 s data from Figure 2.4a.

FIGURE 2.5 Velocity of the car
obtained from its position versus

time curve.

Finally, we take r + Ar = 1.13. The average velocity in this
125  interval is +0.82. These last values are beginning to get closer.

We’re beginning to hone in on the desired velocity.
We see that the bold line connecting the point (1 s,
+0.567 m) to the point (1.13 s, +0.67 m) is difficult to distin-
guish from the curve passing through (1 s, +0.567 m). If we magnify a piece of a
smooth curve enough at any of its points, the curve looks progressively like a little
straight line segment at that point. That line segment is called the tangent line to the
curve at the point. So, in other words, the smaller and smaller we choose At, the closer
and closer the line connecting (1 s, +0.567 m) to (1 s +Az, x(1 s + Ap)) is to being the
tangent line to the position versus time curve at the point of interest (i.e., [1 s, +0.567
m]). And, the instantaneous velocity is the slope of the tangent line at that point (about

+0.66 m/s for our example).

Given a smoothly continuous position versus time graph (such as Figure 2.4a) we
can make a graph of how velocity varies with time by estimating the slope of the tan-
gent line to the curve at successive times and plotting the resulting values. We do this
at some selected times and then connect our best estimates in order to obtain a smooth
curve for a velocity versus time graph. In principle, one can imagine an automatic cal-
culator that could move along the curve in Figure 2.4a continuously finding the tangent,
computing its slope, and then plotting these values as we have done in Figure 2.5.

In Figure 2.5, several tangent lines to the position versus time curve (the lighter
curve) are displayed. All have zero slope and the velocity graph at those correspond-
ing times shows zero velocity. The associated instants in time correspond to “turning
points,” instants where the car changes direction. Between turning points the car
moves continuously in one direction. Thus, from instant a to instant b the car moves
toward the origin, and from instant b to instant c, the car moves away from the ori-
gin. While moving away from the origin (to more positive x-coordinates), the car’s
velocity is positive (the slope of the tangent line to the position versus time curve at
any instant in this interval is positive) and while moving toward the origin (to less
positive x-coordinates), the car’s velocity is negative. Note that at
the moments the car changes direction, its velocity is instanta-

2

position

neously equal to zero; that is, the car is instantaneously at rest.

If we had an equation for the curve in Figure 2.4a, that is, an
explicit relation between x and ¢, we could utilize Equation (2.2) to
determine an equation for how velocity varies in time. The transla-
tion of x(¢) into v(¢) is the heart of what we call calculus. These
days, computers can do this translation for us.

You can see that the velocity of our car portrayed in Figure 2.5
varies in time, much as position does. Because velocity is rate of

2 3 4 change of position, it is also useful to define rate of change of
-0.5 velocity. Indeed, as we show in Chapter 3, rate of change of veloc-
ity is the centerpiece of Newton’s laws of dynamics.
-1 The average acceleration is defined, in a similar way to the
154 velocity average velocity, as

_ A

-2 a=—, (2.3)
Time (s) At

20
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where Ay = v(t) — v(1). Note that the average acceleration 10
reflects the change of the velocity with time and that in order to 8.l velocity
calculate the average acceleration from this definition, you must 6l
first have a graph of (or equations for) the velocity versus time and
then obtain the ratio in Equation (2.3) for the time interval of inter- 47
est. The average acceleration can be positive, negative, or zero 21
depending on whether v is increasing (Av is positive), decreasing . =\
(Av is negative), or is the same at the two ends of the time interval 01 1 o 3 \
of interest (regardless of what occurred during the interval of time). -2 1
Acceleration is change in velocity per unit time, so its units are 4l
velocity units divided by time units: (m/s)/s = m/s?, for the car
example given above. 67 acceleration

We define, analogous to instantaneous velocity, the instanta- -8 7
neous acceleration (or simply the acceleration) as _10

Time (s)
FIGURE 2.6 Acceleration of the car
i obtained from the velocity data of
a= 1AltrPo At 24) Figure 2.5. Y

Just as velocity at any instant (for motion in one dimension) is the slope of the tan-
gent line to the position versus time curve at that instant, the acceleration at any
instant (for motion in one dimension) is the slope of the tangent line to the velocity
versus time curve. Thus, if we are given a plot of v versus #, we can approximate a
versus ¢ by sketching tangent lines at a number of instants, estimating the respective
slopes, plotting those values, then interpolating. Starting with the velocity plot in
Figure 2.5, we can then generate an acceleration plot, as in Figure 2.6. We identify
several instants at which the acceleration vanishes by noting where the velocity ver-
sus time curve has tangent lines with zero slope. Note that the acceleration is not zero
when the velocity is zero nor is the velocity zero when the acceleration is zero. The
two quantities measure different things and it is important to keep them straight.

Previously, we said that the motion of our car (or any other object) should result
in a position versus time graph that is both continuous and smooth, that is, with no
holes (discontinuities) or sharp points (kinks). No holes ensures that the position
doesn’t abruptly change from instant to instant. No kinks ensures that the velocity
doesn’t abruptly change from instant to instant. The analysis of motion could con-
tinue with additional quantities, such as the time-rate-of-change of acceleration, and
the time-rate-of-change of that, and so on. Remarkably, such additional quantities are
unnecessary for a complete understanding of how objects move about. Newton’s laws
of motion, the subject of the next section, tell us that acceleration is the most com-
plicated piece of motion analysis apparatus we need.

2. NEWTON'’S FIRST LAW OF MOTION

The gist of the preceding section is that there is an intimate mathematical connection
among position, velocity, and acceleration. In essence, if we know an object’s position
over time we can infer what its acceleration must have been; inversely, given its accel-
eration we can make inferences about its position. Although they are intertwined, math-
ematics and physics are not the same thing. In this section, we begin to probe the
physical rules that underlie the mathematics of motion. Constant velocity can’t be felt,
but acceleration can be. What you feel when you accelerate is physics. Acceleration is
the key that unlocks the secrets of much of the physical universe. Constant velocity
doesn’t require an explanation, but acceleration does.

Perhaps you are puzzled by the last sentence. Everyday experience tells us that to
start a body moving we have to give it a push. When we stop pushing, the body comes
to rest. In our everyday experience, rest is the natural state of things. In our everyday
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experience, it is velocity that requires a cause. It took many centuries of human intel-
lectual development before we (that is to say, Galileo, in the seventeenth century) rec-
ognized that our common experience is dominated by two phenomena that acting
together obscure from us the truth about motion. One of these, gravity, makes things fall
down. The other, friction, makes them stop.

It’s a pity that Galileo didn’t have an “air table” to play with. If he had, he
wouldn’t have had to work so hard to uncover the truth about motion. An air table has
many holes in its top, through which jets of air can be squirted. Maybe you’ve seen an
air table at a game arcade (or, perhaps in an introductory physics laboratory). Often
hockeylike games are played on them using pucks that are levitated by the squirting
air. When the air is turned off and the puck is pushed, it quickly comes to rest. Gravity
makes the puck fall to the table and friction makes it stop. When the table is level and
the air is on, the puck hovers in one place. The jets of air effectively cancel gravity out
and render friction negligible. On a properly leveled air table once a puck is pushed it
travels off at constant speed in a straight line, until it hits a sidewall. Between the ini-
tial push and when it hits the wall, no additional push is required to keep the puck
going. The natural state of a body’s motion is constant velocity (zero velocity, i.e., rest,
is a special case). No external influence is required to keep the puck moving, however,
an influence from outside is certainly required to change its velocity.

Isaac Newton, in his Principia Mathematica (1687), greatly extended Galileo’s
insight that change in motion requires cause. The first of Newton’s laws is a kind of
statement of faith. It says that

1t is possible to find laboratories (“frames of reference”) in which a body’s accel-
eration is solely attributable to interactions between that body and other bodies.

In the laboratories of Newton’s first law a body never accelerates spontaneously;
every acceleration is caused by an interaction. That a body does not spontaneously
accelerate is attributed to a property of all material objects called inertia. The frames
of reference of Newton’s first law are said to be inertial frames.

It is usually desirable to observe and describe motion in inertial laboratories,
because in them every acceleration is caused by identifiable pushes and pulls and, as
we show, the associated quantitative analysis is straightforward. Spontaneous accel-
erations observed in noninertial frames necessitate inventing fictitious causes for
their explanation. For example, suppose you jump off the roof of a building (we are
not recommending you do this!). You will notice that in the frame of reference you
carry with you all objects—such as the building, people standing on the sidewalk
below, and the Earth itself—accelerate towards the sky with exactly the same accel-
eration. There is no identifiable interaction that causes all of these simultaneous
spontaneous accelerations. To explain them requires assigning a fictitious cause.
You’re carrying a poor frame of reference for doing physics, a fact that will be
painfully apparent when the upward accelerating ground reaches you. People stand-
ing on the sidewalk will offer a simpler picture of what is occurring. They will say
that it is you who is accelerating, and that there is an easily identifiable cause: the pull
of gravity of the Earth. This situation is general: any frame of reference in which
accelerations occur without cause must itself be accelerating.

There is another, perhaps more common, way to state Newton’s first law, given
our understanding of an inertial reference frame.

In inertial reference frames, objects traveling at constant velocity will maintain
that velocity unless acted upon by an outside force; as a special case, objects
at rest will remain at rest unless an outside force acts.
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It’s not hard for us to accept that an object at rest will remain at rest, but it is very
hard to accept the fact that an object will move at constant velocity unless an outside
force, one originating from another object, acts. Friction is so common in our expe-
rience that we often don’t realize it is almost always present and acting to slow
objects down.

Noninertial frames of reference abound. For example, while driving your car you
rapidly accelerate from rest at a stoplight. A box of cookies on the seat next to you
spontaneously slides toward the back of the seat and at the same time the trinket
hanging from your rear view mirror also spontaneously accelerates to the rear. No
object can be found that causes these accelerations. By speeding up, your car
becomes an accelerated reference frame. Similarly, if you spin around on a lab stool
you will observe all objects in your vicinity orbit around you in circles. Because they
travel in circular paths in your reference frame, we show later that they must accel-
erate. But, again, no object can be identified as the cause of these accelerations.
A spinning frame is noninertial.

The latter example draws attention to the following cautionary tale. As the day
passes on Earth we see remarkable events in the sky. The sun rises and sets, seem-
ingly orbiting the Earth in a circular path. Then the moon, the stars, and even the most
distant galaxies do the same thing. All traveling in circles about the Earth, all, from
our vantage point, therefore accelerating. To explain how all of these accelerated
motions occur requires a very complicated picture of how the Earth could possibly
cause them. A much simpler explanation is that the Earth is spinning: we, on the
Earth, live in a noninertial frame of reference. Does that mean we have to leave the
Earth in order to observe the validity of Newton’s law(s)? That depends on what you
want to measure. If you are doing an experiment that is completed in a few minutes
and/or is confined to a small region of the Earth, the acceleration of your laboratory
is probably ignorable. On the other hand, if you are interested in the motion of large
volumes of air moving for hours above the Earth, for example, your acceleration will
make what you see more difficult to explain. (The apparent circulation of winds
around high and low pressure cells results from the acceleration of the Earth relative
to the air. There is no body that can be identified as causing those circulations.)

3. FORCE IN ONE DIMENSION

The acceleration of any body is caused by interactions with other bodies. Dynamics
is an exact mathematical formulation of the connection between acceleration and
“interaction.” How is the qualitative notion of “interaction” made mathematically
precise? An interaction is a push or a pull. An interaction has a magnitude, or size,
and a direction. In one dimension, say along the x-axis, there are only two choices for
direction: along the positive x-axis direction or along the negative direction (right or
left along the axis). We call such objects, with both a magnitude and a direction, vec-
tor quantities; a vector quantity in one dimension is simply a signed number mea-
sured in appropriate units. Examples of vector quantities from the first section of this
chapter include position, displacement, velocity, and acceleration. Each of these has
both a magnitude and a direction associated with it. On the other hand, quantities
such as distance traveled or average speed do not have a direction and are called
scalar quantities. We indicate vector quantities by placing an arrow over their sym-
bol, for example, the acceleration vector d. The simplest assumption we can make is
that a physical interaction also can be represented mathematically by a vector quan-
tity. We call such vectors forces and our first goal is to provide an operationally
meaningful definition for force.

The definition of force we seek relies on a sequence of reasonable assumptions
and their logical consequences. First, from our study of kinematics earlier in this
chapter, we recall that acceleration, like force, also has a magnitude and a direction
and is thus a vector quantity. Everyday experience suggests that when we push an

FORCE IN ONE DIMENSION
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FIGURE 2.7 Spring scale used
to measure weight.
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initially resting object in a given direction the object accelerates in that direction. So,
we reasonably assume that when a body experiences a single interaction, the vector
force (the cause) and the vector acceleration (the result) are parallel and that one is,
at most, just a scalar multiple of the other.

Next, suppose a body experiences more than one interaction at any instant.
Interactions are represented by force vectors, therefore we assume that the vector
sum of the individual forces is equivalent to a single force that would yield the same
acceleration. The vector sum in one dimension is simply obtained by adding the
signed numbers representing the individual vectors. For example, given two accel-
eration vectors with magnitudes of 3 and 4 m/s2, both pointing along the positive x-
axis, the vector sum is 7 m/s? also along the positive x-axis, whereas if the second
vector points along the negative x-axis, the vector sum of the two is (3 — 4) = —1
m/s2, where the negative sign indicates that the direction is along the negative x-axis.
Clearly it only makes sense to add two vectors that represent the same physical
quantity, for example, accelerations. (Just as you shouldn’t add “apples and
oranges” because the result mixes the two kinds of fruit together and has no imme-
diate interpretation, adding a force to a velocity doesn’t make physical sense either.)
Vector addition in one dimension can be generalized to add any number of vectors
using simple arithmetic (Just adding positive and negative numbers). If the vectors
we are adding are force vectors acting on an object, the vector sum represents the
net force on the object. In particular, if a body is at rest or traveling with a constant
velocity (i.e., not accelerating) the vector sum of all forces acting on the body must
be zero, assuming we are in an inertial reference frame. We can exploit this quite
reasonable assumption to develop a method for measuring force.

We know that all objects near the Earth fall if they are not supported. The cause
of this downward acceleration is a field force. We say that the Earth is responsible for
this force because it exerts a “gravitational pull” on all bodies in its vicinity. It is tra-
ditional to call the force of gravity of the Earth on any object the object’s weight. We
often measure weights by using a spring scale, such as the familiar hanging scales in
a grocery store. When we place some tomatoes on a grocery scale, the tomatoes cause
a spring to stretch and a needle to deflect. The deflection of the needle is taken to be
a measure of the “weight” of the tomatoes. This happens primarily because the Earth
somehow pulls the tomatoes down toward it and the scale somehow gets in the way
and keeps the tomatoes from falling. The word more commonly used by physicists
for a pull (or a push) is force. The force the Earth exerts on the tomatoes is called
gravity. There’s a wondrous thing about gravity: gravitational pulls exist even though
the bodies involved don’t touch. The Earth reaches out across empty space and pulls
on the tomatoes. (Of course, the space between the Earth and the tomatoes isn’t really
empty: it’s filled with air. But, we can get rid of the air, in a vacuum chamber, for
example, and when we do we find that the pull of gravity is almost exactly the same.)
Forces that exist across empty space are said to be field forces. In the field force pic-
ture, the Earth is viewed as creating a “gravitational force field” in the space around
it. When the tomatoes are placed in the Earth’s field they respond by falling toward
the Earth. The scale, on the other hand, is doing something more directly to the toma-
toes. It appears to stretch only when it is in direct contact with the tomatoes. The
force the scale exerts on the tomatoes is an example of what is called a con-
tact force. When the tomatoes hang from the scale without moving, the
force down on them by the Earth is said to equal the force up on them by
the scale.

This works because of a very useful property of springs. Suspend a
simple spring from a fixed support. Attach an object to the free end of the
spring and gradually lower the object until it can be let go and remain at
rest. In this state of persistent rest, the object is not accelerating so the
spring must be exerting an upward (contact) force on the object, balancing
out the Earth’s downward pull (field) on it. We note that the spring is
stretched. The amount by which the spring has been stretched can be used
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to measure the force it is exerting. (See Figure 2.7.)
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Suppose we have another object that is identical to the one that is already hang-
ing from the spring. (We can check whether the weights of the two objects are iden-
tical by suspending them individually from the spring and noting that the stretch is
the same in both cases.) Attach the second object to the end of the spring along with
the first. We assume that these two bodies together are equivalent to a third body
whose weight is twice that of the individuals. As long as the two hanging bodies are
not too heavy (so that their combined weight does not permanently deform the
spring) the new stretch is observed to be twice that when the spring is supporting just
one of the bodies. In other words, the amount of stretch is directly proportional to the
weight the spring supports, or, equivalently, the amount of stretch of a spring is a
direct measure of how much force the spring exerts. Similarly, if we have two iden-
tical springs (two springs that stretch exactly the same amount when the same mass
is suspended from each) and we hang a single weight by both springs as in Figure
2.8, we find that they each stretch by half the distance they would stretch if they each
supported the full hanging weight. This should make sense because each spring is
supporting half the weight with an equal upward force.

In principle, we can imagine measuring any force on any object by replacing the
force we are interested in by an appropriately calibrated, stretched spring (big stiff
ones for large forces, and tiny flexible ones for small forces), keeping all other forces
as before, and generating the same acceleration as when the replaced force is present.
Because a spring exerts a force along its length, the direction of the spring corre-
sponds to the direction of the replaced force and the stretch of the spring determines
the force’s magnitude.

4. MASS AND NEWTON’S LAW OF GRAVITY

The Earth isn’t the only object that creates gravity. Every mass creates a gravitational
pull on every other mass. You actually pull the tomatoes you weigh in the grocery
toward you a little (and they pull you, too). It’s just that the Earth’s pull is so much
greater than yours, you don’t realize you’re doing it. Mass plays two roles in pro-
ducing a gravitational force. First, one mass creates a gravitational field in the space
around it. Then, a second mass placed in the field of the first experiences a force due
to the first’s field. The two masses reciprocate in their pulls. The second makes a field
of its own and the first, being in the field of the second, feels a force due to it. We say
that a gravitational field has a direction—it points toward the mass making it—and a
size, or magnitude. Let’s call the magnitude of the gravitational field made by a mass
M, g,,. The magnitude of the force this field produces when a mass m is placed in it
is defined to be F of Monm — M&ur- Like mass and length, force has its own SI unit, the
newton (N). (You don’t find the newton in Table 1.1 because force is not defined as
a fundamental quantity. It is expressible in terms of mass, length, and time, as we
show in the next section. Because it is expressible in terms of fundamental units it is
called a derived unit.) Gravitational field is gravitational force divided by mass, so
the units of gravitational field are newtons per kilogram, N/kg.

We say that a body’s weight (near the Earth) is the gravitational force the Earth
exerts on that body. Thus, a mass m weighs

Wmass m FEarth onm  M8Earth (2‘5)

ST units of mass (the kg), distance (the m), time (the s), and force (the N) were his-
torically developed to be independent of the Earth’s gravitational pull. Thus, a
mass of 1 kg does not weigh 1 N, for example. Rather, under the SI conventions,
we find that a mass of 1kg near the Earth actually weighs about 9.8 N.
Consequently, we say that the gravitational field of the Earth is about 9.8 N/kg
near the Earth’s surface.

Why is the condition “near the Earth’s surface” important? Well, it turns out that the
strength of a mass’s gravitational field gets weaker the farther away one is from the mass.

MAss AND NEWTON’S LAW OF GRAVITY
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Very careful measurements in the laboratory show that if the centers of two uniform (i.e.,
no holes or irregularities), spherical masses, M and m, are separated by a distance r, then
M pulls m with a gravitational force whose magnitude is given by (see Figure 2.9)

Mm

FMonm=G7 (2.6)

The quantity G is independent of which masses are interacting and any other physi-
cal condition. It is a so-called “universal constant” and in SI units its value is close
to 6.67 X 10~ N-m%/kg?. Equation (2.6) is known as Newton’s law of universal
gravitation. If we divide both sides of Equation (2.6) by m we get the gravitational
field produced by M at a distance r from its center:

M

8y =G~ 2.7)
r

Although Equations (2.6) and (2.7) are rigorously correct for uniform spherical
masses, they can be applied to arbitrary shaped masses to obtain approximate values
for gravitational forces and fields.

Example 2.1 What is the order of magnitude of the mass of the Earth?

Solution: The Earth is approximately a sphere with radius R, = 6.38 X 10°m
(about 4000 mi) ~ 107 m. At the Earth’s surface the r in Equation (2.7) is r ~ 107
m and we know that g, . ~ 10 N/kg at the surface. So, solving Equation (2.7)
for M, we find M, ,, ~ (10 N/kg)(107 m)*(10~'° N-m?/kg?) ~ 10% kg. (Make
sure you see how the units work out. A careful calculation yields 5.98 X 10%* kg.)
In other words, by making a laboratory measurement of G (and a measurement
of Rp) it is possible to “weigh the Earth.”

Example 2.2 What is the gravitational field of a typical person 1 m from
the person?

Solution: The point of this example is to obtain an approximate value we can com-
pare with the Earth’s field. Thus, we treat the person as if she were a sphere of
radius less than 1 m and take some typical value for mass, such as ~ 102kg
(remember, 1 kg weighs 2.2 pounds). One meter from the center of a 10? kg sphere
the gravitational field due to that mass is ~(10710 N-m2/kg?)(10? kg)/(1 m)? ~
1078 N/kg. Compared with the Earth’s field this is a tiny value. No wonder a
person weighing tomatoes doesn’t affect the tomatoes very much.

Example 2.3 What is an accurate value of the Earth’s gravitational field at an
altitude of 300 km (about the altitude of the Space Shuttle when it is in orbit)?

Solution: Here we want to do a formal calculation to compare with 9.8 N/kg. Recall
that in Equation (2.6) or (2.7) r is the distance from the center of the sphere causing
the field. An “altitude” is a distance above the surface of the Earth, so that r
equals Ry, 4 + 300 km. Now, a km is 1000 m, so 300 km = 3 X 10°m = 0.3 X
10°m and, therefore, r = 6.38 X 10°m + 0.3 X 10°m = 6.68 X 10° m. Putting
this value into Equation (2.7) along with Mg, = 5.98 X 10**kg results in a
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gravitational field equal to 8.9 N/kg. In other words, where the Shuttle orbits, the
Earth’s gravitational pull is only about 9% less than at the Earth’s surface. A Shuttle
astronaut who weighs 150 pounds on Earth weighs about 137 pounds in orbit. The
pull of Earth’s gravity is what keeps weather and communications satellites and
even the moon orbiting the Earth. The Earth’s gravitational pull doesn’t suddenly
stop at the top of the atmosphere; it extends, in principle, “to infinity,” getting
weaker as r gets bigger as 1/72.

The last statement may run counter to what you’ve heard or read about astro-
nauts in orbit. In orbit, things are said to be “weightless.” You’ve surely seen video
of astronauts floating about aboard the Shuttle. If a 150 pound astronaut tried to step
on a scale while in orbit, he wouldn’t succeed in getting a reading, because the scale
would float away. The resolution to the seeming contradiction that an astronaut can
be apparently “weightless” and yet weigh 137 pounds requires knowing something
about Newton’s laws of motion, a topic we are just beginning to explore.

Thus far in this section we have been discussing the gravitational attraction of
masses. Historically, in such discussions mass was referred to as gravitational mass,
a property that produces gravitational fields leading to gravitational forces. We now
turn to a seemingly different property of mass, inertia.

As mentioned previously, the fact that bodies are reluctant to accelerate is said to
result from an intrinsic property of matter called inertia. A body’s inertia can be assigned
a numerical value, referred to as its mass. It is a remarkable law of nature that if two bod-
ies experience the same net force (which we can check with calibrated springs) the ratio
of the magnitudes of the resulting accelerations, a,/a,, has the same numerical value
irrespective of what forces are acting, how the bodies were initially moving, or any other
external aspect of the measurement (such as the time of day, the temperature, where the
experiment is performed, and so on). With the same net force acting on each body, this
ratio depends only on which two bodies’ accelerations are being compared. The ratio
must be directly related to an intrinsic property of the bodies. Furthermore, there is a
kind of reciprocity between “heaviness” and acceleration: if body 1 feels heavier than
body 2 (so that intuitively it would seem to have more mass) the ratio a,/a, is less than 1,
and vice versa. We define the ratio of the mass of body 2 to that of body 1 to be the
numerical value of a,/a, determined by exposing both to the same net force; that is,

my, 4

— = — (2.8)
my a4

More massive objects will experience smaller accelerations for the same force, with
the accelerations inversely related to the respective masses. The unit for mass is the
kilogram (kg, defined below). When used with the meter and second, the kilogram
defines the SI (Systéme International) units (formerly known as the mks system of
units). We can define the mass (m,, say) of an object through this equation by using a
standard of mass as another object (m; = 1 kg) and by measuring the accelerations of
the two objects under the action of the same force (m, would then be just a,/a, in kg).

Example 2.4 A body with mass equal to 1 kg is pulled across a leveled air table
by a spring with constant stretch of 1 cm. The resulting acceleration of the 1 kg
mass is observed to be 0.30 m/s2. A second body of unknown mass is pulled by
the same spring with the same constant stretch. The observed acceleration of the
second mass is 0.45 m/s2. What is the mass of the second body?

(Continued)
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FIGURE 2.10 An atomic clock at
NIST (National Institute of Standards
and Technology) with an accuracy of
about 1 s in 20 million years.
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Solution: We assume that under the conditions cited, both bodies experience the
same overall force due to the spring. Because the second body has a higher
acceleration, we expect it has a mass less than 1 kg. We let m; = 1 kg and m, be
the unknown mass. Then using Equation (2.8) we have

m, = (0.30 m/s? / 0.45 m/s?) - (1 kg)
= 0.67 kg.

The procedure outlined above could be used, in principle, to measure the mass of
any object. Of course, this is not done in practice because interactions (such as colli-
sions) have the nasty potential for altering our standard and because the force that
would impart a nice acceleration to an electron would imperceptibly perturb the
motion of a kilogram. In practice, a wide range of secondary mass standards has to
be used to measure unknown masses.

The standard kilogram (kg) is a platinum—iridium alloy cylinder kept at the
International Bureau of Weights and Measures. Incidentally, standards for the meter
and second are defined more reproducibly: the second is defined as the time
needed for 9,192,631,770 vibrations of a cesium atom (a so-called atomic clock) and
the meter is defined as the distance traveled by light in a vacuum in a time of
1/299,792,458 s (Figure 2.10). This, in fact, defines the speed of light in vacuum to
be exactly ¢ = 299,792,458 m/s. In other words, the speed of light was so well deter-
mined that in 1983 the meter was redefined so as to fix the speed of light.

Although fractions and multiples of kilograms suffice for quantifying mass in
many situations, in the microworld of atoms and molecules another mass unit is more
useful: the atomic mass unit (u) is defined to be exactly 1/12 of the mass of a neutral
“carbon twelve” atom (an atom with 6 protons, 6 neutrons, and 6 electrons, often des-
ignated by the symbol 12C). The atomic mass unit is preferred over kilograms when
dealing with molecules because 1 u = 1.66 X 1027 kg, and the latter is a very small
and ungainly number with which to deal. The term dalton (D) is sometimes used to
denote the same mass unit.

To recap this section on mass, we have discussed mass from two seemingly different
approaches: gravitational mass, through Newton’s law of gravity, which produces
gravitational fields and forces on other masses, and inertial mass, defined through
the acceleration produced by forces acting on the mass. Gravitational mass is a “static”
mass with no motion required, gravitational fields and forces depending only on gravi-
tational masses and distances. Inertial mass, on the other hand, is a “dynamic” mass,
defined in terms of the acceleration response of the inertial mass to a given force of any
kind. It is not necessarily apparent that these two concepts should lead to the exact same
number for the mass of an object, but we have used the same sym-
bol m for each because it has been shown that these masses have
the same value to within better than 1 part in 10'2. This equiva-
lence of inertial and gravitational mass has been a subject of
discussion and experiment since Galileo and is still under active
research.

5. NEWTON’S SECOND LAW OF MOTION
IN ONE DIMENSION

Newton’s first law tells us that in an inertial frame of reference
a body accelerates only when it experiences a net force due to
all other bodies. Equipped with the definitions of force and
mass given above, the idea embodied in Newton’s first law—
that acceleration has a cause—can be made more precise. Thus,
Newton’s second law of motion says that
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In an inertial frame of reference, the acceleration of a body of mass m,
undergoing rigid translation, is given by

-

F .
— _—  netonm
a = etonm, 2.9)
where ﬁnet on m 18 the net external force acting on the body (i.e., the sum of all

forces due to all bodies other than the mass m that push and pull on m).

Embedded in Newton’s second law are several important notions. (1) The law
says that when the acceleration of a body arises from forces, the acceleration is
caused by agents outside the body. A body cannot accelerate itself. Acceleration
requires external force. (2) When there is a net (unbalanced) force on a body, the
acceleration is in the same direction as the net force. The constant of proportionality
that converts force into acceleration is the reciprocal of the body’s mass. For a given
force, the larger the mass, the smaller the acceleration, and vice versa. (3) Finally, as
stated here, Newton’s second law is applicable to a body in rigid translation, a body
whose extent in space is ignorable, a point particle. For bodies that are tumbling or
flexing or breaking into pieces the law of motion stated above has to be clarified and
supplemented in ways we examine later.

Note that according to Equation (2.9), force has the units of mass times acceler-
ation. Thus, in SI units one unit of force is equal to 1 kg-m/s2. Because of the central
role that force plays in describing nature, force units are given their own name.
Honoring the founder of dynamics, 1kg-m/s? is defined as 1 newton (1 N). (For
calibration, a quarter pound hamburger with its bun, but minus the tomato and pickle,
weighs about 1 N.)

Mass should be carefully distinguished from weight. Mass is an intrinsic prop-
erty of an object whereas weight is the magnitude of the force of the gravitational pull
of the Earth. If a body is in free fall, Equation (2.9) says

F_ .
a=g=—"20 (2.10)

m
where g is the magnitude of the acceleration due to gravity (9.8 m/s? near the Earth’s
surface). The force Fyrayity is due to the pull of the Earth on the body whose mass is m.
The magnitude, mg, of the gravitational force is also called the body’s weight. A 1 kg
mass thus weighs 9.8 N, because, for such a body, F aravity — 1 kg X 9.8 m/s?. Note that
weight exists whether or not the object is actually accef:arating downward with accel-
eration g. A 1 kg body resting on a table near the surface of the Earth still weighs 9.8 N;
the downward pull of the Earth on it must be canceled by an upward force of 9.8 N
exerted by the table to keep it at rest. The weight of an object will vary depending on
its location. For example, an object on the moon’s surface weighs only about 1/6
what it does on Earth. This difference is due to the difference in the gravitational pull
of the moon and has to do both with the moon’s mass and radius compared to those

of the Earth.

Equation (2.9) can be used to extract acceleration information from known forces
or force information from known acceleration. For example, if all the forces acting
on a particle of a given mass are known at every instant, the acceleration of that
particle for every instant can be determined from the forces. Then, by measuring the
particle’s position and velocity at any one time, this dynamically inferred accelera-
tion can be used (along with the methods we study in the next chapter) to predict the
entire future motion of the particle, as well as deduce its entire past motion.
Alternatively, if a complete record of a particle’s motion is available, the particle’s
acceleration for every instant can be calculated from kinematics and forces required
to produce that motion can then be determined.

NEWTON’S SECOND LAW OF MOTION IN ONE DIMENSION
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Example 2.5 Television pictures are created by the collisions of a narrow beam of
rapidly moving electrons with phosphor molecules on the screen of the picture tube.
Suppose an electron (mass = 9.1 X 10731 kg) in a TV is released from rest. After
release it experiences a constant electrical force of 0.001 pN (where 1 pN = 1
piconewton = 1072 N). What is the electron’s acceleration under this force?

Y

FIGURE 2.11 An electron, initially located
at the origin experiences a constant force F.

Solution: We choose a coordinate system with the x-axis lined up along the direc-
tion of the constant force and with the origin where the electron is released (see
Figure 2.11). The magnitude of the acceleration is found from Newton’s second law

a, = F /m=0.001 X 10712N/9.1 X 1073 kg = 1.1 X 10'5 m/s?,

Because the force is constant throughout this region of space, the acceleration
remains constant there as well, always pointing along the x-axis. Note that
gravity pulls the electron toward the Earth with an acceleration equal to about
10 m/s?. The electrical force on the electron in this picture tube is about 10!
times larger than gravity! TV designers don’t have to worry about gravity
making their pictures sag.

Newton’s second law has a wonderful range of validity and usefulness. It can be
used to aim electrons to make a better TV picture. It can tell us how macromolecules
vibrate and tumble in a cell when DNA is undergoing replication. It allows us to design
more effective brakes to make cars safer. With it we can calculate the trajectories of plan-
ets and rocket-launched satellites to explore the bodies of our solar system. (A powerful
example of such calculations is the collision of the comet Shoemaker-Levy 9 with the
planet Jupiter in which the collision time was predicted with tremendous accuracy
(Figure 2.12).) Newton’s second law is arguably one of the central ideas of all of physics.
You certainly could do less important things than practice the mantra, “Acceleration is
net force over mass; acceleration is net force over mass, . ...”

6. NEWTON’S THIRD LAW

According to Newton’s second law, acceleration requires force from outside. Swimming
fish, flying birds, and human bicyclists all accelerate because something pushes on them,
according to the second law. At first, that may sound preposterous. For example, think
of what it feels like to increase your speed while running. You feel strain in the muscles
of your legs. Or, accelerate your car to pass on a highway. You have to push down the
gas pedal. Obviously, in both cases something internal is causing the acceleration.
Well, that’s not exactly correct. Suppose you are asked to exert the same strain in your
legs but instead of running on a dry track you are placed on a beach with loosely packed,
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dry sand. The same effort doesn’t result in nearly the same accel-
eration. If you are placed instead on an ice rink, the same effort
produces even less of an outcome. Finally, if you were put in a
space suit and placed in the vacuum of space outside the Space
Shuttle, moving your legs with the same strain as before would
produce no acceleration at all. Clearly, moving your legs is
important in producing acceleration, but what you are standing
on is also important. You have to be able to push against some-
thing. That is equally true for fish and birds and accelerating cars.

The reconciliation of examples of apparent self-propulsion
with Newton’s second law, which says that self-propulsion is
impossible, requires another law of motion:

When one body exerts a force on a second body, the
second exerts a force in the opposite direction and
of equal magnitude on the first; that is,

F20nl:_F10n2

This law, Newton’s third law of motion, is sometimes referred to
as the law of action—reaction: every “‘action” generates an equal
and opposite “reaction.” Thus, the feet of a runner do not acceler-
ate the runner. Rather, the feet exert a force on the track, and it is
the reaction force of the track back on the feet that accelerates the
runner. When you run on a track a given effort leads to a certain

push on the Earth; the Earth pushes back on you and that push results in your acceleration.
When you run in loose sand, or on ice, you can’t exert the same force on the Earth as you
can by pushing on a dry track; the weaker push by you on the Earth is reciprocated with a

weaker push back, and, therefore, less acceleration. In space, running doesn’t result in an
acceleration because there is nothing to push against and therefore nothing to push on you.

“xample 2.6 Newton’s third law can be a source of confusion to someone who
is thinking about such things for the first time. Here’s an example. A young
woman kicks a soccer ball 30 m downfield. But how? (Caution: The reasoning
that follows contains an error! Can you spot it?) That is, Newton’s third law says
that the force of her foot on the ball is exactly countered by a reaction force
exerted by the ball on her foot. The two are equal in magnitude and oppositely
directed. The sum of two equal and opposite forces is zero, so according to
Newton’s second law, if there is no net force, no acceleration is possible. But, of
course the ball does go downfield, so what goes on?

Solution: The wording of this problem illustrates a common pitfall in applying
Newton’s laws of motion. You have to be careful about identifying what is the
body of interest and what are its surroundings. If we are interested in the flight of
the soccer ball, then we have to keep track of the forces on the ball, and only those
forces. If we are interested in the motion of the woman’s foot, then we have to
keep track of the forces on her foot. The foot exerts force on the ball and the ball
accelerates as a result. The ball exerts a force on the foot and the foot accelerates
(slows down) as a result. The two forces are equal and oppositely directed,
however, they act on different bodies and each produces its own acceleration. The
two don’t act together on any one body and the fact that they add up to zero is
irrelevant for understanding what happens to the ball.

NEWTON’S THIRD LAW

FIGURE 2.12 Time series showing
the collision of a comet with Jupiter
in July 1994 as detected by the
Galileo satellite probe; the comet,
made from over 20 fragments, had
been tracked for a year and the
location and time of the impact, the
first-ever observed collision of two
solar system objects, had been
calculated very precisely.
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You may be tempted, in thinking about this example, to say something like,
“Well, the ball goes downfield because the woman is more powerful or more massive
than the ball.” Resist that temptation if you feel it creeping up on you. Keep in mind
that a not very powerful nor massive 50 kg woman can easily accelerate a 1000 kg
car (in neutral, with its brakes off, on a horizontal surface) by pushing it.

Example 2.7 Two ice skaters, a 90 kg father and his 40 kg daughter standing face
to face and holding hands, push off from each other with a constant force of 20 N
(Figure 2.13). Find their accelerations during the time they are pushing each other.

Father

Daughter

Force of daughter on father Force of father on daughter

FIGURE 2.13 Two ice skaters pushing off from each other.

Solution: Each skater exerts a 20 N force on the other. Assuming there are no
other horizontal forces acting, the man’s acceleration will be @ = 20 N/90 kg
= (.22 m/s? to the left, whereas the girl’s acceleration will be a . = 20 N/40 kg
= 0.5 m/s? to the right. These accelerations occur only during the time when the
skaters are pushing against each other. Note that no matter which person (or
both) actually takes the active role in doing the pushing, the force on each per-
son has the same magnitude.

ai

Example 2.8 A book lies at rest on a horizontal table. Identify all forces acting
on the book and for each identify the appropriate reaction force.

Solution: The forces labeled “1” and “3” in Figure 2.14 are forces on the
book. Forces “2” and “4” are exerted by the book in reaction to “1” and “3”.
Force “1” is the book’s weight. It is due to the Earth’s gravitational field. If
the Earth pulls on the book, Newton’s third law says that the book must pull
back on the Earth with a force of equal magnitude. The reaction force to “1”
is a gravitational pull exerted by the book on the Earth, and is labeled “2” in
the figure. Its magnitude is the same as the book’s weight. The force “3” is an
upward force exerted by the table on the book because of contact between the
table and the book. We know there is such a force because we know the book
lies at rest, so the net force on it must be zero. When the force exerted on the
book by the table is added to the force exerted on the book by the Earth, the
two cancel. Clearly, the upward force of the table on the book must also have
the same magnitude as the book’s weight. The reaction force to “3” is a con-
tact force, “4,” exerted by the book on the table. It points down and it, too, has
the same magnitude as the book’s weight but it is not the book’s weight. If
suddenly a hole bigger than the book opened in the table below it, both “3”
and “4” would suddenly disappear, but the book’s weight “1”” and the reaction
force “2” would still exist.

So, if the force “2” is due to a gravitational pull of the book how come the
Earth doesn’t accelerate toward the book with an acceleration g? Newton’s
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book

; table

Earth

FIGURE 2.14 Forces involved with a book on a table.
Forces 1 and 3 act on the book, whereas 3 and 4, and
1 and 2 represent action-reaction pairs (see discussion
of Example 2.8).

third law says that action—reaction forces are equal, not the accelerations they
produce! To find out about those, use Newton’s second law: the magnitude of the
Earth’s acceleration is the magnitude of the force on it divided by the Earth’s
mass. In other words,

. F book on Earth Myook 8 . Myook
Agarth — - -

M, Earth M, Earth M, Earth

(remember, the magnitude of the force exerted by the book is equal to the book’s
weight) and because the ratio of the mass of the book to the mass of the Earth is
on the order of 10723 the book’s pull on the Earth produces a negligible accel-
eration. Of course, if the book had a lot more mass—Iike that of another
planet—and was as close to the Earth as the book (fortunately, the pull of gravity
also depends on distance) then the acceleration of the Earth would not be negli-
gible. But, that’s another story.

7. DIFFUSION

An E. coli bacterium typically swims in a straight line for some distance, during which
time its flagella undergo a coordinated helical motion driven by a rotary molecular
motor located in the membrane at the flagella attachment sites (we study this molec-
ular motor further in Section 3 in Chapter 7; see also Figure 1.2 for a cartoon sketch).
In response to external stimuli of, for example, nutrient or oxygen level, the molecu-
lar motor may reverse and cause the flagella to become uncoordinated, resulting in a
characteristic “twiddling” motion in which the bacterium randomly gyrates about,
before finally taking off in a straight-line trajectory in some other direction. E. coli
have been shown to respond to variations in environmental factors, being attracted to
higher levels of nutrients and oxygen and repelled by poisons; this response is known
as chemotaxis. If the E. coli are either killed or have their flagella removed they are
no longer motile but they still move due to a phenomenon known as Brownian motion,
named after Robert Brown who in 1827 noticed the random thermal motions of

DIFFUSION
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0:‘0 s ‘:. oo .ﬁ °. o ° suspended pollen grains under a microscope. Rapid and numerous collisions
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FIGURE 2.15 Diffusion will tend to
equalize the numbers of molecules
in the left and right sides of the
initially sharp boundary.

FIGURE 2.16 One-dimensional ran-
dom walk with equal step size and
time interval.
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of solvent molecules with the E. coli produce random erratic motions. The
Brownian motions of such “killed” E. coli, as well as the random motions of
the solvent molecules themselves, are examples of a general process known as diffu-
sion, which is the term for such thermally driven motions at the molecular level.

Although diffusion appears, at first glance, to be random and incapable of result-
ing in useful or interesting results, diffusive phenomena abound in the biological and
physical world. In biology, diffusion is the process that controls both the exchange of
oxygen in the hemoglobin of our red blood cells and the elimination of wastes in our
kidneys. Whenever molecules move from one place to another without the expense of
energy specifically earmarked for that motion, it is by diffusion; for example, diffusion
controls the passive transport of molecules across a membrane and stored chemical
energy is required for the process known as active transport.

Often when there are concentration differences across macroscopic distances
diffusion will play a role in reducing those differences. In these cases, even though the
motion of each individual molecule may be random in direction, the collective motion
that affects the local concentration of molecules can be directed. For example, in the
case of one-dimensional diffusion, suppose there is a sharp spatial boundary in the
concentration of some molecules as shown in Figure 2.15. Then even though any
particular molecule is equally likely to move left or right, as time evolves, the varia-
tion tends to disappear because, on average, there are more molecules in the higher
concentration region moving into the lower concentration region. Examples of just this
type of diffusion are the oxygen and waste transport in the blood and kidneys
cited above. In general when there are initial concentration variations and no active,
energy-consuming processes occurring, diffusion tends to result in a uniform final
state. We show the connection of this randomization process to the science of
thermodynamics in Chapter 13.

The mathematics of diffusion in one dimension can be described by a related
problem known as the random walk. Suppose that one starts at the origin and takes
equal length steps in either the positive or negative x-direction with equal proba-
bility (this is also known as the drunkard’s walk problem). Without regard for the
details of the mathematics, it is clear that the average position of the person after
many steps is still at the origin since positive or negative steps are equally likely
and the average is simply computed by adding up the (plus and minus) displace-
ments. On the other hand, it should also be clear that as time goes on, it will
become more and more possible that the person will be found farther away from
the origin. We can characterize this motion by calculating the average of the
squares of the displacements, because these will all be positive quantities and can-
not average away to zero. A calculation shows that this mean square displacement,
<(A x)?>, is given by

<(A x)*> = Nd?,

where N is the number of steps, d is the step size, and the brackets < >
indicate taking the average value (Figure 2.16).

The one-dimensional diffusion of a “killed” E. coli can be solved
using mathematics similar to the random walk problem, but clearly the
step size and number of steps do not directly apply. The analogous equa-
tion for the mean square displacement of a diffusing bacterium is given by

<(A x)*> =2 D,
where 7 is the elapsed time and D is a constant known as the diffusion

coefficient, which is a property of the size and shape of the bacterium
as well as of the viscosity (a measure of “stickiness”) and temperature

>

step size=d
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x  of the liquid medium in which the bacterium is found. It turns out that
as this result is generalized to two (or three) spatial dimensions of
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motion, the mean square displacement has an additional 2 D¢ (or 4 Dt), so that in
three dimensions

<(A r)*> =6 Ds. (2.11)

The square root of the mean square displacement (known as the root mean square or
rms displacement) is thus proportional to V7, a result that is very different from the linear
t-dependence for a particle moving with constant velocity. Although diffusing particles
may move rapidly over short times, because of their constant random changes in direction,
the overall average displacements change much more slowly with time. The characteristic
\/t signature of displacements in diffusion appears often in our discussions of many phys-
ical as well as biophysical phenomena. For example, we show that electrical and thermal
conductivities are closely related to the diffusion of loosely bound electrons in a metal.

Example 2.9 The diffusion coefficient for sucrose in blood at 37°C is 9.6 X
10~" m?s. (a) Find the average (root mean square) distance that a typical
sucrose molecule moves (in three dimensions) in 1 h. (b) Now find how long it
takes for a typical sucrose molecule to diffuse from the center to the outer edge
of a blood capillary of diameter 8 pwm.

Solution:

(a) Simple substitution finds the rms distance to be equal to

V6Dt =V6+9.6 X 10~ m2/s-3600's = 1.4 X 103 m.

(b) This is a problem in two dimensions (in a cross-sectional plane of the capil-
lary), so that from the above discussion, the relationship between the mean
square distance and the time is <(Ar)>> = 4 Dt. Substituting Ar = 4 um =
4 X 107° m, we find that

<(Ar?> (4 X107%m)?
4D 4:9.6 X 10~ 1 m?/s

= 0.04 s.

Note that this answer for the time scales as the square of the capillary radius and
so increases by a factor of 4 for a capillary of twice the radius. This example
demonstrates why capillaries need to be so small in order to carry out efficient
exchange of food and wastes between the blood and surrounding tissue.

CHAPTER SUMMARY where the average values over a time interval
In one dimension, starting with the concept of At are equal to these expressions without taking the
displacement Ax, velocity and acceleration are defined as limit.

The gravitational force between any two masses is

FMonm:G 2 .

—im 2 g 2.2)
VT aoAr M ‘
Jim 2 (2.4)
= lim —, .
“ At-0 At

CHAPTER SUMMARY

given by Newton’s universal law of gravity,

Mm

(2.6)

(Continued)
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For a mass near the Earth’s surface, this force is equal
to its weight,

Wmass m FEarth onm . M8Earth> (25)

with gg .. = 9.8 m/s?.
Newton’s second law states that

and in the absence of a net force, the acceleration must
be equal to zero, a statement equivalent to Newton’s first
law. The third law is a statement that all forces arise from
interactions between pairs of objects; the two forces
(action and reaction) each act on one of the objects and
are equal in magnitude, but opposite in direction.

Unlike directed motion, diffusion is a random
thermal process in which the average displacement is
zero, however, the mean squared displacement is
given by

7 — Fnet on m
a= e 2.9)

QUESTIONS

1. As a car moves steadily down a road, we can deduce
the motion of the car by following the motion of only
one piece, for example, the corner of a fender or the
license plate. However, the motion of the piece only
conveys complete information about the rigid struc-
ture of the car. Describe the motion through space
of each of the following as a car moves forward:
atire air valve, the tip of a working windshield
wiper, the top of an engine piston, and the label on a
fan belt.

2. As a person runs, describe the motion through space
of a wrist, a kneecap, and an elbow.

3. In the figure the position of an object is shown as a
function of time. Indicate whether the velocity and
acceleration in each labeled interval are positive,
Zero, or negative.

X(m)
5L
0
5 10 15 20
L t(s)
c D
-5 B >

H A «—
e

4. In the figure the velocity of four different objects is
shown as functions of time. Indicate whether the
velocity and acceleration for each labeled object are
positive, zero, or negative.

36

<(Ar)>> = 6 Dt. (2.11)
A
velocity
{0,0}
B time
C
D

. Is the average velocity during an interval of time

always equal to the sum of the initial and final veloc-
ities of the time interval divided by two? If not, give
an example showing why not.

. When an object free falls, does it travel equal

distances in equal time intervals? Does its velocity
increase by equal amounts in equal time intervals?

. In each of the following situations, first identify all

the forces acting on the object and then, for each

force, identify the reaction force and its source:

(a) A bird flying through the air

(b) A horse pulling a cart

(c) A person riding in an elevator that is accelerating
upwards

(d) A hot air balloon hovering in place

(e) A ladder leaning against a wall.

. A VW bug has a terrible head-on -collision

with an 18-wheeler truck. Which vehicle experi-
ences the greatest force on impact? The greatest
acceleration?

. Tell whether the following pairs of forces are

action-reaction pairs, and include a statement about
your reasoning.
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10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

(a) The weight of a fish and the buoyant force hold-
ing it up
(b) The centripetal force on a protein molecule in a
centrifuge and the force the protein exerts on the
solvent surrounding it
(c) The weight of a free-fall skydiver and his fric-
tional drag after reaching a terminal velocity
(d) The thrust on a jellyfish and the force the jellyfish
exerts on the jet of water it expels
(e) The frictional force that allows you to walk and
the force you exert horizontally on the Earth
Describe some situations in which forces act on
an object but there is no motion. How can this
occur?
What is the difference between mass and weight?
Which of the following situations involve field forces
and which contact forces: a tug-of-war, moving
paper clips around with a horseshoe magnet, riding a
Ferris wheel, getting a shock when you reach for a
door knob, a ball falling through the air, a train
rolling on tracks, a levitated train traveling at over
340 min/h.
Two equal masses attract each other with a gravita-
tional force of 18 pN. If their separation is tripled
what will the gravitational force between them be?
A mass produces a gravitational field g at a point. If
the mass is doubled and moved twice as far
away from the point, what will the new gravitational
field be?
Discuss how you think scientists were able to deter-
mine the mass of the sun.
Explain why even though an astronaut in orbit around
the Earth is weightless, she must exert a force in order
to propel herself across the spaceship.
A person riding on the “whip” at an amusement park
watches an ice skater coast by. The ice skater
believes that she is coasting in a straight line at a
constant speed. How does the person on the “whip”
describe her motion? This same person believes that
Newton’s first law is violated for the ice skater. Why
is he wrong?
Muscle basically consists of interdigitating thick
and thin filaments that interact via cross-bridges (the
“heads” of myosin molecules). Because the force a
myosin head exerts on an actin thin filament is equal
and opposite to the force the actin exerts back on the
myosin head and thereby the thick filament, how can
the muscle generate any force?
The detailed structure of a muscle fiber includes a
series of Z-lines with actin thin filaments of opposite
polarity on either side and with thick filaments not
attached to the Z-lines as shown. The cross-bridge
interactions tend to shorten the distance between
neighboring Z-lines when a muscle contracts, but
should not a given Z-line feel symmetric forces from
the equivalent thin filament interaction on either side,
and hence not feel a net force?

QUESTIONS/PROBLEMS

20.

21.

22,

00

_%D

In each of the following cases, identify the interaction
pairs of forces and draw a free-body diagram of the
object in italics: (a) a book resting on a table; (b) a
book resting on a table with a paperweight on top of
the book; (c) a cart being pulled by a horse along a
level road; (d) a heavy picture being pushed horizon-
tally against the wall to hold it in place.

What causes diffusion? If a container is kept perfectly
still, without any vibrations on it whatever (e.g., covered,
in a draft-free room, atop a granite block mounted on
shock absorbers) will diffusion occur within it?

Why doesn’t a drop of dye, when added to water, sim-
ply grow outward uniformly from the position at
which it is first placed? (Or does it?) If you carefully
put one drop of cream atop a mug of coffee, what
happens to it? Is there any way to keep the added drop
from diffusing?

MULTIPLE CHOICE QUESTIONS

1.

2.

The x-position of a particle is sampled every 0.5 s, as
in the following table.

Time (s) x-Position (m)
0.0 +3.0
0.5 +2.2
1.0 +3.0
1.5 +1.0
2.0 -0.5

Which one of the following must be true? (a) The
x-component of the average velocity in the interval
0.0 s to 1.0 s is 0.0 m/s. (b) The average speed in the
interval 0.0 s to 1.0 s is 0.0 m/s. (c) The x-component of
the instantaneous velocity at 1.0 s is +3.0 m/s. (d) The
x-component of the instantaneous velocity throughout
the interval 1.0 s to 2.0 s is always negative.

best fit line

L/

time

x-component of velocity

The x-component of a particle’s velocity is sampled
every 0.5s. The data are fit with a straight line as
shown in the figure to the right. Assuming the fit is a
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good approximation to the motion, which of the fol-
lowing best represents the x-component of the net
force on the particle as a function of time?

(@) (b)
0 o——»
time time
(©) (d
zero force
0 / 0
time

A 9.8 N force causes a 1 kg mass to have an acceler-
ation of 9.8 m/s2. This situation is most closely
related to Newton’s (a) first law of motion, (b) second
law of motion, (c) third law of motion, (d) law of uni-
versal gravitation.

A woman weighing 500 N stands in an elevator that
is traveling upward. At a given instant the speed of
the elevator, as well as that of the woman, is 10 m/s
and both are decreasing at the rate of 2 m/s2. At that
instant, the floor of the elevator exerts a force on the
woman that is (a) about 400 N, pointing up, (b) 500
N, pointing up, (c) 500 N, pointing down, (d) about
600 N, pointing up.

A soccer ball approaches a soccer player with a speed
of 10 m/s. The player heads the ball with the net
result that the ball travels off in the opposite direction
with a speed of 15 m/s. The player stays more or less
in place. During the time the player’s head is contact
with the ball the head exerts an average force of mag-
nitude 100 N. Which one of the following is true con-
cerning the magnitude of the average force the ball
exerts on the player’s head during that time? (a) It
must be about zero because the head doesn’t move
much. (b) It’s hard to say from the information given,
but it certainly must be less than 100 N or else the ball
wouldn’t reverse direction. (c¢) Nothing can be said
about the magnitude of the force because neither
the mass of the ball nor the time of contact is given.
(d) It’s 100 N.

A bicyclist rides for 20 s along a straight line that cor-
responds to the +x-axis covering a distance of 400 m.
She then turns her bike around; that takes another
20 s. Finally, she rides back to where she started (400
m in the —x-direction) for 40 s. The average velocity
for this trip is (a) 0, (b) +3, (c) +10, (d) +15 m/s.
A ball is thrown directly upward. After leaving the
hand the ball is observed to be at a height A and ris-
ing. A little while later, the ball is at height B and is
instantaneously at rest. Later still the ball is observed
to be height C and falling. All during the flight

time

10.

11.

12.

13.

14.

15.

the ball is in free-fall. The acceleration of the ball
(a) points up at A, is 0 at B, and points down at C;
(b) points up during each portion of the flight; (c) is
zero during each portion of the flight; (d) points down
during each portion of the flight.

An object is thrown straight up. At the top of its path
(a) the velocity is zero and the acceleration is zero,
(b) the velocity is zero and the acceleration is equal to
the weight, (c) the velocity is down and the accelera-
tion is equal to g, (d) the velocity is zero and the
acceleration is equal to g.

Newton’s law of gravitation says that the magnitude of
the gravitational force of a body of mass M on a body of
mass m is GMm/r>. The fundamental dimensions
of Newton’s Gravitational Force are (a) [M][L][T] 2,
(b) [MIP[L]"% (¢) [MIL]T]™!, (d) [MI[LJAT] 2
(Here [M] represents mass, [L] length, and [T] time.)
Given that the Earth is about 1.5 X 10'! m from the sun
and takes a year (about 3.1 X 107 s) to make one revolu-
tion around the sun, the Earth’s orbital speed around the
sun is (a) 4.8 X 10° m/s, (b) 2.3 X 1015 my/s, (¢) 3.0 X
10* m/s, (d) 7.3 X 10" my/s.

Agnes is in an elevator. Andy, sitting on the ground,
observes Agnes to be traveling upward with a con-
stant speed of 5 m/s. At one instant Agnes drops a pen
from rest. Immediately after, the acceleration of the
pen according to Agnes is (a) 10 m/s%, down, (b) 0,
(c) 15 m/s%, down, (d) 5 m/s?, up.

As in the previous question, Agnes is in an elevator that
Andy (attached to the ground) sees traveling upward.
This time Andy sees the elevator’s speed increasing
by 5 m/s every second. Agnes stands on a scale in the
elevator and sees the reading to be 750 N. After the
elevator comes to a complete stop, Agnes is still on
the scale. The reading now is (a) 250 N, (b) 500 N,
(c) 750 N, (d) 1000 N.

As I apply the brakes in my car, books on the passen-
ger seat suddenly fly forward. That is most likely
because (a) the car is not an inertial reference frame,
(b) the seat supplies a forward push to make the
books accelerate, (c) there is a strong gravitational
field generated by the brakes, (d) there is a strong
magnetic field generated by the brakes.

A particle of mass m collides with a particle of mass
m,. All other interactions are negligible. The ratio of
the acceleration of mass m, to the acceleration of mass
m, at any instant during the collision (a) is small at
first, then reaches a maximum value, then goes back to
a small value, (b) depends on whether m, and m, stick
together in the collision, (c) depends on how fast each
of the particles is initially moving, (d) is always the
constant value my/m,.

A 10 kg and a 4 kg mass are acted on by the same mag-
nitude net force (which remains constant) for the same
period of time. Both masses are at rest before the force
is applied. After this time, the 10 kg mass moves with
a speed v, and the 4 kg mass moves with a speed v,.
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16.

17.

Which of the following is true? (a) v, is equal to v,,
(b) the ratio v/v, is equal to 5/2, (c) the ratio v /v, is
equal to 2/5, (d) the ratio v /v, is equal to (2/5)2.

Can an object’s velocity change direction when its
acceleration is constant? (a) No, this is not possible
because it is always speeding up. (b) No, this is not
possible because it is always speeding up or always
slowing down, but it can never turn around. (c) Yes,
this is possible, and a rock thrown straight up is an
example. (d) Yes, this is possible, and a car that starts
from rest, speeds up, slows to a stop, and then backs
up is an example.

Can an object have increasing speed while its accel-
eration is decreasing? (a) No, this is impossible
because of the way in which acceleration is defined.
(b) No, because if acceleration is decreasing the
object will be slowing down. (c) Yes, and an example
would be an object falling in the absence of air fric-
tion. (d) Yes, and an example would be an object
released from rest in the presence of air friction.

Questions 18-21 concern interpreting the two graphs
below.

18

19.

20.

21.

. In which interval of the x versus ¢ graph (A, B, or C)

is the acceleration negative?

In which interval of the x versus ¢ graph (A, B, or C)
is the velocity constant?

In which interval of the v versus ¢ graph (A, B, C,
or D) is the acceleration constant but nonzero?

In which interval of the v versus ¢ graph (A, B, C,
or D) is the acceleration only positive?

e

Questions 22 and 23 refer to the following diagram.

22

v (m/s)

4 —

3 —

2 —

1

A B C |
0
0 2 4 6 t(s)

. If the above graph is for a 4 kg object, the forces acting

during each of these three intervals (A, B, C) are given

QUESTIONS/PROBLEMS

23.

24,

25.

26.

27.

28.

29.

30.

(in Newtons) by (a) (6, 0, 16), (b) (—6, 0, 16), (c) (3/2,
0, —4), (d) (6, 0, —16), (e) (3/2, 0, —16).

If the object described by the above graph starts
at the origin at + = 0, where will it be at t = 4 s?
(@x=11m,(b)x =13m,(c)x =8m,(d)x =4m,
(e)x =22 m.

A person is holding up a picture by pushing it hori-
zontally against a vertical wall. The reaction force to
the weight of the picture is (a) the normal force on the
picture, (b) the pull upwards on the Earth equal to
the weight, (c¢) the frictional force on the picture at the
wall equal to the weight, (d) the frictional force on
the wall by the picture, (e) the normal force on the
wall by the picture.

Which of the following represents the correct free-
body diagram for a helium (floats in air) balloon held
by a string that is tied to a seat inside the passenger
compartment of a train traveling to the right at a
constant 60 mph?

N

A cart is being pulled along a horizontal road at
constant velocity by a horse. What is the reaction
force to the horse pulling on the cart? (a) the normal
force of the ground on the cart, (b) the weight of the
cart, (c) the friction force on the cart equal to the
pull of the horse, (d) the equal backwards pull on
the horse.

An object is thrown straight up. At the top of its path the
net force acting on it is (a) greater than its weight,
(b) greater than zero but less than the weight, (c) instan-
taneously equal to zero, (d) equal to its weight.

A trained seal at the circus sits on a chair and balances
a physics book on its nose. On top of the book sits a
basketball. Which of the objects exerts a force on the
basketball? (a) the book only; (b) both the seal and the
book; (c¢) the seal, the book, and the chair; (d) none of
the above.

A large truck runs into a small car and pushes it 20 m
before stopping. During the collision (a) the truck
exerts a larger force on the car than the car exerts on
the truck; (b) the truck exerts a smaller force on the
car than the car exerts on the truck; (c) the truck and
car exert equal forces on each other; (d) the car does-
n’t actually exert a force on the truck; the truck just
keeps going.

A car weighing 10,000 N initially traveling at 30 m/s
crashes into a 100 N garbage can, initially at rest,
sending it flying. During the time the car is in con-
tact with the can it exerts a force of 3000 N on the
can. During the time of contact the can exerts (a) a
force of 3000 N on the car, (b) a force considerably
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31.

32.

less than 3000 N on the car, (¢) a force consider-
ably greater than 3000 N on the car, (d) no force on
the car.

As a protein diffuses in a thin long tube (effectively
1-dimensional motion) starting from x = 0, its aver-
age position <x> and its mean square position
<x?> change with time ¢ according to (a) <x> =
<x?> =0, (b) <x>=0; <xI>x12, (c) <x>=f;
<x?>of?) (d) <x>or <x2>or, (e) <x> = 0;
<x%>oct,

At a turning point in the motion of an object: (a) the
velocity can be positive or negative but the accelera-
tion must be instantaneously zero, (b) the velocity
must be instantaneously zero, but the acceleration
can be positive or negative, (c) both the velocity and
acceleration must be instantaneously zero, (d) the
velocity and acceleration must have opposite signs
(i.e., one positive and the other negative), (e) none of
the above is true.

PROBLEMS

1.

\"
(m/s) 3T

2.

Shown is a plot of velocity versus time for an object
originally at rest at the origin. Develop the corre-
sponding plot for acceleration.

N

(a) Using the data given, plot position versus time for
t =0, 4, and 8 s. Calculate the velocity for each
interval [0,4] and [4,8] and determine that the
average acceleration between these two time
intervals is zero.

T,seconds|0|1|2|3|4|5|6|7|8

X, meters | 1 |7.25| 9 |7.75| 5 |2.25| 1 |2.75| 9
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(b) Now plot all nine data points. Calculate velocity
again, this time for all eight time intervals from
[0,1] through [7,8]. Calculate the average acceler-
ations for the time intervals [0,2], [2,4], [4,6],
[6,8] starting with the velocities just previously
calculated.

(c) Note that the given data are from the functional
expression x(¢) = t3/4 — 31> + 9t + 1. Deduce
that the data describe the motion of an object that
moves forward, stops and backs up, stops again,
and moves forward with increasing speed.

(d) Do you see how use of 4 s time intervals misses
the details of motion that is more fully described
by the use of shorter time intervals? Where is the
slope of the x(#) curve positive? Where negative?
Where zero? What is the physical meaning of the
sign of the slope of the x(7) curve? If the slope of
the x(f) curve changes sign, what does that say
about the velocity and the acceleration of the
object?

. Shown is a plot of acceleration versus time for an

object. Assuming that its initial position and initial
velocity are both zero in magnitude, for how long
after + = 12 s, must the acceleration of —3 m/s2 per-
sist, in order that the object be brought to rest?

10

a(m/s?) 5

time (s)

4. Shown is a plot of velocity versus time for a particle

starting at the origin. Sketch a plot of the acceleration
corresponding to the time interval for which velocity
is shown.

10

velocity
(m/s) 5f

5 10 15 20
time (s)
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5.

A microbiologist observes the motion of a microor-
ganism within a slide sample. Photographic records are
snapped at 5 s intervals and the successive positions of
the organism are shown. Calculate the average veloci-
ties and accelerations corresponding to the appropriate
5 s intervals, assuming the grid line spacing is 25 wm,
for each of the three sets of records. Such quantitative

investigations of biological motion can reveal impor-
tant information about the organism. We show later
that the measurement of acceleration can indicate how
much force certain organs of locomotion are capable of
generating. If the organism moves by expelling fluid,
we may be able to determine the amount of fluid
ejected per unit time and its expulsion velocity.

10.

11.

a window 9.2 m above him. The keys are caught 3.0

s later by the friend’s outstretched hand.

(a) With what initial velocity were the keys
thrown?

(b) What was the velocity of the keys just before they
were caught?

Suppose that a 1 kg block attached to a light rope

free-falls (with acceleration g) from rest for 5 s before

someone grabs the rope.

(a) What velocity will the block have when the rope
is grabbed?

QUESTIONS/PROBLEMS

16.

17.

L] 5
4 10918 7 |6
° 3 % %5 | Q ©0 Q0 %
o3
°[2
o1

A 1400 kg car accelerates uniformly from rest to 60 (b) In order to stop the block after an additional 5 s,
mph in 6 s. Find the net force needed to produce this what must be the constant acceleration of the
motion. block?
A car accelerates from rest uniformly to 30 mph in 5 s, (c) With what force must the rope be pulled upward to
travels at a constant 30 mph for 0.3 mi, and then decel- stop the block in those 5 s?
erates to rest in 6 s. 12. What is the acceleration of a 5 kg package being low-
(a) What is the average velocity for each interval and ered to the ground by a light rope in which there is a

for the entire trip? tension of 25 N?
(b) What is the displacement for each interval and for 13. A truck moves through a school zone at a constant

the total trip? rate of 15 m/s. A police car sees the speeding truck
(c) What is the average acceleration for the entire and starts from rest just as the truck passes it. The

trip? police car accelerates at 2 m/s? until it reaches a max-
A 0.1 kg mass stretches a linear spring by 10 cm. If imum velocity of 20 m/s. Where do the police and the
three identical masses are hung together from two truck meet and how long does it take?
such identical springs (as in Figure 2.8), by how 14. A person of mass 60 kg stands on top of a table
much will each spring stretch? located 1/2 m above the floor and then walks off the

. A Boeing 737 jet plane lands with a speed of 60 m/s edge of the table.

(about 135 mi/h) and can decelerate at a maximum (a) Draw a free-body diagram of this situation.
rate of 5 m/s? as it comes to rest. (b) During the time the person is falling to the floor,
(a) What is the minimum time needed before the what is the upwards acceleration of the Earth as

plane will come to rest? seen by the person?
(b) Could this plane land on a runway that is 2800 (c) As seen by the person, through what distance does

feet long? the Earth move up towards her in this time?
A person throws a set of keys upward to his friend in 15. The planet Pluto travels once around the sun every

248 years at a mean distance from the sun of
5890 X 10° km. Find its orbital speed around the
sun (in m/s).

What is the gravitational field on the surface of the
moon? Take the mass of the moon as 7.4 X 10** kg
and its radius as 1.74 X 10° m and calculate g as a
fraction of that on the Earth’s surface.

What is the gravitational force of the sun on
Pluto with a mass of 1.5 X 10?2kg (less than
the moon) and a mean distance from the sun of
5890 X 10° km?
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18.

19.

20.

21.

22,

23.
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Suppose your normal weight is 1200 N standing on

a bathroom scale. If you stand on that same scale

in an elevator in a skyscraper that is accelerating

upwards at 1 m/s2, what will the scale read?

An eagle soaring overhead has a weight of 120 N. If

the area of each wing is 1.7 m2, find the force per

unit area required to support the eagle while it soars.

The electron in a hydrogen atom is attracted to the

proton in the nucleus with an electrical force of 8.2 X

1078 N. What is the acceleration (magnitude and

direction) of the electron? (According to classical

physics this acceleration keeps the electron orbiting
the nucleus.)

Two astronauts are out for a space walk near their

shuttle. They have masses of 120 kg and 140 kg suited

up in their space suits and are attached to the shuttle
by umbilical cords. With both initially at rest with
respect to the shuttle, if the 140 kg astronaut pushes

the other one with a 20 N force for 1 s,

(a) What is the acceleration of the 120 kg astronaut
during this 1 s?

(b) What is the acceleration of the 140 kg astronaut
during the same 1 s?

(c) What velocity will each have after the 1 s interval
with respect to the shuttle?

(d) If the umbilical is 10 m long, how long will it be
before they each feel another force from the tug of
the umbilical?

A heavy 40 kg crate sits on a shelf and is connected

by a taut rope to the ceiling. If it is pushed off the

shelf so that it is suspended freely find

(a) The net force on the crate.

(b) The tension force in the rope supporting the crate.

(c) If the rope is cut, what is now the net force on the
crate?

Two heavy crates (of 10 kg and 20 kg mass) sit touch-

ing on a smooth surface of ice as shown. If a 20 N

force pushes on the 10 kg crate as shown:

(a) What is the acceleration of both blocks?

(b) What is the net force on the 20 kg block?

24. A 0.01 g water strider, an insect that can

(c) What force does the 20 kg block exert on the
10 kg block?

(d) What is the origin of the force in part c?

(e) Repeat the problem if the two blocks are physically
interchanged (in parts (b) and (c) interchange the
two masses as well) and the same force pushes the
20 kg block.

13

walk on

water,” propels itself with its six legs to travel along at

0.5 m/s.

(a) What vertical force must the surface tension of
water provide to each foot?

(b) If the insect is able to travel at constant velocity by
overcoming a total resistive force from the water
of 107°N, find the horizontal force from the
water on each leg as the bug “walks.”

25. A single nonmotile cell is confined to a thin capillary

tube so that it essentially undergoes one-dimensional
diffusion with a diffusion coefficient of 10~° cm?/s.
Find (a) the time it takes for the cell to diffuse a dis-
tance of 1 cm (express your answer in hours), and (b)
the rms distance the cell will travel in 1 s (expressed in
wm). Why don’t your answers to (a) and (b) scale lin-
early so that 3600 s/h multiplied by the answer to (b)
would give a 1 cm distance?

26. As cells crawl along a surface in tissue culture their

cytoplasm is observed to undergo “retrograde” flow
in the direction opposite to the motion of the lead-
ing edge of the cell. When this motion is studied by
imaging the cell in a microscope and making a
movie of the motion, a feature in the cytoplasm is
observed to travel a distance of 1.1 pm in 25 s.
What is the speed of this retrograde flow?
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