Basics

R can be used at various levels. Of course, standard arithmetic is available,
and hence it can be used as a (rather sophisticated) calculator. It is also
provided with a graphical system that writes on a large variety of devices.
Furthermore, R is a full-featured programming language that can be employed
to tackle all typical tasks for which other programming languages are also
used. It connects to other languages, programs, and data bases, and also to
the operating system; users can control all these from within R.

In this chapter, we illustrate a few of the typical uses of R. Often solutions
are not unique, but in the following we avoid sophisticated shortcuts. However,
we encourage all readers to explore alternative solutions by reusing what they
have learned in other contexts.

2.1 R as a Calculator

The standard arithmetic operators +, -, *, /, and ~ are available, where
x"y yields Y. Hence

R>1 + 1
(1] 2
R> 273
(1] 8

In the output, [1] indicates the position of the first element of the vector
returned by R. This is not surprising here, where all vectors are of length 1,
but it will be useful later.

The common mathematical functions, such as log(), exp(), sin(),
asin(), cos(), acos(), tan(), atan(), sign(), sqrt(), abs(), min(), and
max (), are also available. Specifically, log(x, base = a) returns the loga-
rithm of x to base a, where a defaults to exp(1). Thus

C. Kleiber, A. Zeileis, Applied Econometrics with R,
DOI: 10.1007/978-0-387-77318-6_2, (C) Springer Science+Business Media, LLC 2008

18 2 Basics

R> log(exp(sin(pi/4)~2) * exp(cos(pi/4)°2))
(1] 1

which also shows that pi is a built-in constant. There are further conve-
nience functions, such as 1log10() and log2(), but here we shall mainly use
log(). A full list of all options and related functions is available upon typing
?log, ?sin, etc. Additional functions useful in statistics and econometrics are
gamma (), beta(), and their logarithms and derivatives. See ?7gamma for further
information.

Vector arithmetic

In R, the basic unit is a vector, and hence all these functions operate directly
on vectors. A vector is generated using the function c (), where ¢ stands for
“combine” or “concatenate”. Thus

R> x <- ¢(1.8, 3.14, 4, 88.169, 13)

generates an object x, a vector, containing the entries 1.8, 3.14, 4, 88. 169,
13. The length of a vector is available using length(); thus

R> length(x)
(1] 5

Note that names are case-sensitive; hence x and X are distinct.

The preceding statement uses the assignment operator <-, which should
be read as a single symbol (although it requires two keystrokes), an arrow
pointing to the variable to which the value is assigned. Alternatively, = may
be used at the user level, but since <- is preferred for programming, it is used
throughout this book. There is no immediately visible result, but from now
on x has as its value the vector defined above, and hence it can be used in
subsequent computations:

R>2 *xx + 3

[1] 6.60 9.28 11.00 179.34 29.00
R> 5:1 x x + 1:5

[1] 10.00 14.56 15.00 180.34 18.00

This requires an explanation. In the first statement, the scalars (i.e., vec-
tors of length 1) 2 and 3 are recycled to the length of x so that each element of
x is multiplied by 2 before 3 is added. In the second statement, x is multiplied
element-wise by the vector 1:5 (the sequence from 1 to 5; see below) and then
the vector 5:1 is added element-wise.

Mathematical functions can be applied as well; thus

R> log(x)

2.1 R as a Calculator 19

[1] 0.5878 1.1442 1.3863 4.4793 2.5649

returns a vector containing the logarithms of the original entries of x.

Subsetting vectors

It is often necessary to access subsets of vectors. This requires the operator
[, which can be used in several ways to extract elements of a vector. For
example, one can either specify which elements to include or which elements
to exclude: a vector of positive indices, such as

R> x[c(1, 4)]
[1] 1.80 88.17

specifies the elements to be extracted. Alternatively, a vector of negative in-
dices, as in

R> x[-c(2, 3, 5)]
[1] 1.80 88.17

selects all elements but those indicated, yielding the same result. In fact,
further methods are available for subsetting with [, which are explained below.

Patterned vectors

In statistics and econometrics, there are many instances where vectors with
special patterns are needed. R provides a number of functions for creating
such vectors, including

R> ones <- rep(1, 10)
R> even <- seq(from = 2, to = 20, by = 2)
R> trend <- 1981:2005

Here, ones is a vector of ones of length 10, even is a vector containing the
even numbers from 2 to 20, and trend is a vector containing the integers from
1981 to 2005.

Since the basic element is a vector, it is also possible to concatenate vectors.
Thus

R> c(ones, even)
(1] 12121 1 1 1 1 1 1 1 2 4 6 810 12 14 16 18 20

creates a vector of length 20 consisting of the previously defined vectors ones
and even laid end to end.

20 2 Basics

2.2 Matrix Operations

A 2 x 3 matrix containing the elements 1:6, by column, is generated via
R> A <- matrix(1:6, nrow = 2)

Alternatively, ncol could have been used, with matrix(1:6, ncol = 3)
yielding the same result.

Basic matrix algebra
The transpose A" of A is
R> t(4)

(,1] [,2]
[1,] 1 2
(2,1 3 4
(3,1 5 6

The dimensions of a matrix may be accessed using dim(), nrow(), and ncol ();
hence

R> dim(4)
[1] 2 3
R> nrow(4)
[1]1 2

R> ncol(4)
[1]1 3

Single elements of a matrix, row or column vectors, or indeed entire sub-
matrices may be extracted by specifying the rows and columns of the matrix
from which they are selected. This uses a simple extension of the rules for
subsetting vectors. (In fact, internally, matrices are vectors with an additional
dimension attribute enabling row/column-type indexing.) Element a;; of a
matrix A is extracted using A[1, j]. Entire rows or columns can be extracted
via A[i,] and A[,j], respectively, which return the corresponding row or
column vectors. This means that the dimension attribute is dropped (by de-
fault); hence subsetting will return a vector instead of a matrix if the resulting
matrix has only one column or row. Occasionally, it is necessary to extract
rows, columns, or even single elements of a matrix as a matrix. Dropping of
the dimension attribute can be switched off using A[i, j, drop = FALSE].
As an example,

R> A1 <- A[1:2, c(1, 3)]

2.2 Matrix Operations 21

selects a square matrix containing the first and third elements from each row
(note that A has only two rows in our example). Alternatively, and more
compactly, A1l could have been generated using A[, -2]. If no row number
is specified, all rows will be taken; the -2 specifies that all columns but the
second are required.

A1 is a square matrix, and if it is nonsingular it has an inverse. One way
to check for singularity is to compute the determinant using the R function
det (). Here, det (A1) equals —4; hence Al is nonsingular. Alternatively, its
eigenvalues (and eigenvectors) are available using eigen(). Here, eigen(A1)
yields the eigenvalues 7.531 and —0.531, again showing that A1 is nonsingular.

The inverse of a matrix, if it cannot be avoided, is computed using solve():

R> solve(A1)

[,11 [,2]
[1,] -1.5 1.25
[2,] 0.5 -0.25

We can check that this is indeed the inverse of A1 by multiplying Al with its
inverse. This requires the operator for matrix multiplication, %*%:

R> A1 7*} solve(Al)

[,11 [,2]
[1,] 1 0
[2,] 0 1

Similarly, conformable matrices are added and subtracted using the arith-
metical operators + and -. It is worth noting that for non-conformable matrices
recycling proceeds along columns. Incidentally, the operator * also works for
matrices; it returns the element-wise or Hadamard product of conformable
matrices. Further types of matrix products that are often required in econo-
metrics are the Kronecker product, available via kronecker (), and the cross
product AT B of two matrices, for which a computationally efficient algorithm
is implemented in crossprod().

In addition to the spectral decomposition computed by eigen() as men-
tioned above, R provides other frequently used matrix decompositions, includ-
ing the singular-value decomposition svd (), the QR decomposition qr (), and
the Cholesky decomposition chol().

Patterned matrices

In econometrics, there are many instances where matrices with special pat-
terns occur. R provides functions for generating matrices with such patterns.
For example, a diagonal matrix with ones on the diagonal may be created
using

R> diag(4)

22 2 Basics

(.11 [,21 [,3] [,4]
[1,] 1 0 0 0

[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

which yields the 4 x 4 identity matrix. Equivalently, it can be obtained by
diag(1l, 4, 4), where the 1 is recycled to the required length 4. Of course,
more general diagonal matrices are also easily obtained: diag(rep(c(1,2),
c(10, 10))) yields a diagonal matrix of size 20 x 20 whose first 10 diagonal
elements are equal to 1, while the remaining ones are equal to 2. (Readers
with a basic knowledge of linear regression will note that an application could
be a pattern of heteroskedasticity.)

Apart from setting up diagonal matrices, the function diag() can also be
used for extracting the diagonal from an existing matrix; e.g., diag(A1). Ad-
ditionally, upper.tri() and lower.tri() can be used to query the positions
of upper or lower triangular elements of a matrix, respectively.

Combining matrices

It is also possible to form new matrices from existing ones. This uses the
functions rbind() and cbind(), which are similar to the function c() for
concatenating vectors; as their names suggest, they combine matrices by rows
or columns. For example, to add a column of ones to our matrix A1,

R> cbind(1, A1)

[,11 [,21 [,3]
[1,] 1 1 5
[2,] 1 2 6

can be employed, while

R> rbind (A1, diag(4, 2))

[,11 [,2]
[1,] 1 5
[2,] 2 6
[3,] 4 0
4,] 0 4

combines Al and diag(4, 2) by rows.

2.3 R as a Programming Language

R is a full-featured, interpreted, object-oriented programming language. Hence,
it can be used for all the tasks other programming languages are also used

2.3 R as a Programming Language 23

for, not only for data analysis. What makes it particularly useful for statis-
tics and econometrics is that it was designed for “programming with data”
(Chambers 1998). This has several implications for the data types employed
and the object-orientation paradigm used (see Section 2.6 for more on object
orientation).

An in-depth treatment of programming in S/R is given in Venables and
Ripley (2000). If you read German, Ligges (2007) is an excellent introduction
to programming with R. On a more advanced level, R Development Core Team
(2008f,g) provides guidance about the language definition and how extensions
to the R system can be written. The latter documents can be downloaded
from CRAN and also ship with every distribution of R.

The mode of a vector

Probably the simplest data structure in R is a vector. All elements of a vector
must be of the same type; technically, they must be of the same “mode”. The
mode of a vector x can be queried using mode (x). Here, we need vectors of
modes “numeric”, “logical”, and “character” (but there are others).

We have already seen that

R> x <- ¢(1.8, 3.14, 4, 88.169, 13)

creates a numerical vector, and one typical application of vectors is to store
the values of some numerical variable in a data set.

Logical and character vectors

Logical vectors may contain the logical constants TRUE and FALSE. In a fresh
session, the aliases T and F are also available for compatibility with S (which
uses these as the logical constants). However, unlike TRUE and FALSE, the
values of T and F can be changed (e.g., by using the former for signifying the
sample size in a time series context or using the latter as the variable for an
F statistic), and hence it is recommended not to rely on them but to always
use TRUE and FALSE. Like numerical vectors, logical vectors can be created
from scratch. They may also arise as the result of a logical comparison:

R>x > 3.5
[1] FALSE FALSE TRUE TRUE TRUE

Further logical operations are explained below.

Character vectors can be employed to store strings. Especially in the early
chapters of this book, we will mainly use them to assign labels or names
to certain objects such as vectors and matrices. For example, we can assign
names to the elements of x via

R> na.meS(X) <_ C("a", Hblv’ HCII’ Hdll, Ilell)
R> x

24 2 Basics

a b c d e
1.80 3.14 4.00 88.17 13.00

Alternatively, we could have used names (x) <- letters[1:5] since letters
and LETTERS are built-in vectors containing the 26 lower- and uppercase letters
of the Latin alphabet, respectively. Although we do not make much use of them
in this book, we note here that the character-manipulation facilities of R go far
beyond these simple examples, allowing, among other things, computations on
text documents or command strings.

More on subsetting

Having introduced vectors of modes numeric, character, and logical, it is useful
to revisit subsetting of vectors. By now, we have seen how to extract parts
of a vector using numerical indices, but in fact this is also possible using
characters (if there is a names attribute) or logicals (in which case the elements
corresponding to TRUE are selected). Hence, the following commands yield the
same result:

R> x[3:5]

c d e
4.00 88.17 13.00

R> X[C(Hcll Hd’l IIeII)J

c d e
4.00 88.17 13.00

R> x[x > 3.5]

c d e
4.00 88.17 13.00

Subsetting of matrices (and also of data frames or multidimensional arrays)
works similarly.

Lists

So far, we have only used plain vectors. We now proceed to introduce some
related data structures that are similar but contain more information.

In R, lists are generic vectors where each element can be virtually any type
of object; e.g., a vector (of arbitrary mode), a matrix, a full data frame, a
function, or again a list. Note that the latter also allows us to create recursive
data structures. Due to this flexibility, lists are the basis for most complex
objects in R; e.g., for data frames or fitted regression models (to name two
examples that will be described later).

As a simple example, we create, using the function 1ist (), a list containing
a sample from a standard normal distribution (generated with rnorm(); see

2.3 R as a Programming Language 25

below) plus some markup in the form of a character string and a list containing
the population parameters.

R> mylist <- list(sample = rnorm(5),

+ family = "normal distribution",

+ parameters = list(mean = 0, sd = 1))
R> mylist

$sample

[1] 0.3771 -0.9346 2.4302 1.3195 0.4503

$family
[1] "normal distribution"

$parameters
$parameters$mean
(11 o

$parameters$sd
(11 1

To select certain elements from a list, the extraction operators $ or [[can
be used. The latter is similar to [, the main difference being that it can only
select a single element. Hence, the following statements are equivalent:

R> mylist[[1]]

[1] 0.3771 -0.9346 2.4302 1.3195 0.4503
R> mylist[["sample"]]

[1] 0.3771 -0.9346 2.4302 1.3195 0.4503
R> mylist$sample

[1] 0.3771 -0.9346 2.4302 1.3195 0.4503

The third element of mylist again being a list, the extractor functions can
also be combined as in

R> mylist[[3]]$sd
[1] 1

Logical comparisons

R has a set of functions implementing standard logical comparisons as well
as a few further functions that are convenient when working with logical
values. The logical operators are <, <=, > >= == (for exact equality) and
= (for inequality). Also, if exprl and expr2 are logical expressions, then
exprl & expr2 is their intersection (logical “and”), exprl | expr2 is their
union (logical “or”), and 'expr1l is the negation of exprl. Thus

26 2 Basics

R> x <- ¢(1.8, 3.14, 4, 88.169, 13)
R>x >3 & x<=4

[1] FALSE TRUE TRUE FALSE FALSE

To assess for which elements of a vector a certain expression is TRUE, the
function which() can be used:

R> which(x > 3 & x <= 4)
[1] 2 3

The specialized functions which.min() and which.max() are available for
computing the position of the minimum and the maximum. In addition to
& and |, the functions all() and any() check whether all or at least some
entries of a vector are TRUE:

R> all(x > 3)
[1] FALSE
R> any(x > 3)
(1] TRUE

Some caution is needed when assessing exact equality. When applied to nu-
merical input, == does not allow for finite representation of fractions or for
rounding error; hence situations like

R> (1.5 - 0.5) ==1
[1] TRUE
R> (1.9 - 0.9) == 1
[1] FALSE

can occur due to floating-point arithmetic (Goldberg 1991). For these pur-
poses, all.equal() is preferred:

R> all.equal(1.9 - 0.9, 1)
(1] TRUE

Furthermore, the function identical() checks whether two R objects are
exactly identical.

Due to coercion, it is also possible to compute directly on logical vectors
using ordinary arithmetic. When coerced to numeric, FALSE becomes 0 and
TRUE becomes 1, as in

R> 7 + TRUE

(1] 8

2.3 R as a Programming Language 27

Coercion

To convert an object from one type or class to a different one, R provides a
number of coercion functions, conventionally named as. foo(), where foo is
the desired type or class; e.g., numeric, character, matrix, and data.frame
(a concept introduced in Section 2.5), among many others. They are typically
accompanied by an is. foo () function that checks whether an object is of type
or class foo. Thus

R> is.numeric(x)

[1] TRUE

R> is.character (x)

[1] FALSE

R> as.character(x)

[1] "1.8" "3.14" "4 "88.169" "13"

In certain situations, coercion is also forced automatically by R; e.g., when
the user tries to put elements of different modes into a single vector (which
can only contain elements of the same mode). Thus

R> C(l, nan)

[1] lllll llall

Random number generation

For programming environments in statistics and econometrics, it is vital to
have good random number generators (RNGs) available, in particular to allow
the users to carry out Monte Carlo studies. The R RNG supports several
algorithms; see 7RNG for further details. Here, we outline a few important
commands.

The RNG relies on a “random seed”, which is the basis for the genera-
tion of pseudo-random numbers. By setting the seed to a specific value using
the function set.seed(), simulations can be made exactly reproducible. For
example, using the function rnorm() for generating normal random numbers,

R> set.seed(123)
R> rnorm(2)

[1] -0.5605 -0.2302
R> rnorm(2)
[1] 1.55871 0.07051

R> set.seed(123)
R> rnorm(2)

28 2 Basics

[1] -0.5605 -0.2302

Another basic function for drawing random samples, with or without replace-
ment from a finite set of values, is sample (). The default is to draw, without
replacement, a vector of the same size as its input argument; i.e., to compute
a permutation of the input as in

R> sample(1:5)
[1] 51234

R> sample(c("male", "female"), size = 5, replace = TRUE,
+ prob = ¢(0.2, 0.8))

[1] "female" "male" "female" "female" "female"

The second command draws a sample of size 5, with replacement, from the
values "male" and "female", which are drawn with probabilities 0.2 and 0.8,
respectively.

Above, we have already used the function rnorm() for drawing from a
normal distribution. It belongs to a broader family of functions that are all of
the form rdist (), where dist can be, for example, norm, unif, binom, pois, t,
f, chisq, corresponding to the obvious families of distributions. All of these
functions take the sample size n as their first argument along with further
arguments controlling parameters of the respective distribution. For exam-
ple, rnorm() takes mean and sd as further arguments, with 0 and 1 being
the corresponding defaults. However, these are not the only functions avail-
able for statistical distributions. Typically there also exist ddist (), pdist (),
and qdist (), which implement the density, cumulative probability distribution
function, and quantile function (inverse distribution function), respectively.

Flow control

Like most programming languages, R provides standard control structures
such as if /else statements, for loops, and while loops. All of these have in
common that an expression expr is evaluated, either conditional upon a cer-
tain condition cond (for if and while) or for a sequence of values (for for).
The expression expr itself can be either a simple expression or a compound ex-
pression; i.e., typically a set of simple expressions enclosed in braces { ... }.
Below we present a few brief examples illustrating its use; see ?Control for
further information.
An if /else statement is of the form

if(cond) {
exprl

} else {
expr2

}

2.3 R as a Programming Language 29

where exprl is evaluated if cond is TRUE and expr2 otherwise. The else
branch may be omitted if empty. A simple (if not very meaningful) example
is

R> x <- ¢(1.8, 3.14, 4, 88.169, 13)
R> if(rnorm(1) > 0) sum(x) else mean(x)

[1] 22.02

where conditional on the value of a standard normal random number either
the sum or the mean of the vector x is computed. Note that the condition cond
can only be of length 1. However, there is also a function ifelse() offering a
vectorized version; e.g.,

R> ifelse(x > 4, sqrt(x), x"2)
[1] 3.240 9.860 16.000 9.390 3.606

This computes the square root for those values in x that are greater than 4
and the square for the remaining ones.

A for loop looks similar, but the main argument to for() is of type
variable in sequence. To illustrate its use, we recursively compute first
differences in the vector x.

R> for(i in 2:5) {

+ x[i] <- x[i] - x[i-1]

+ }

R> x[-1]

[1] 1.34 2.66 85.51 -72.51

Finally, a while loop looks quite similar. The argument to while () is a con-
dition that may change in every run of the loop so that it finally can become
FALSE, as in

R> while(sum(x) < 100) {

+ X <- 2 %X
+ F
R> x

[1] 14.40 10.72 21.28 684.07 -580.07

Writing functions

One of the features of S and R is that users naturally become developers.
Creating variables or objects and applying functions to them interactively
(either to modify them or to create other objects of interest) is part of every
R session. In doing so, typical sequences of commands often emerge that are
carried out for different sets of input values. Instead of repeating the same
steps “by hand”, they can also be easily wrapped into a function. A simple
example is

30 2 Basics

R> cmeans <- function(X) {

rval <- rep(0, ncol(X))

for(j in 1:ncol(X)) {
mysum <- 0
for(i in 1:nrow(X)) mysum <- mysum + X[i,j]
rval[j] <- mysum/nrow(X)

}

return(rval)

+ + + + + + + +

}

This creates a (deliberately awkward!) function cmeans (), which takes a ma-
trix argument X and uses a double for loop to compute first the sum and then
the mean in each column. The result is stored in a vector rval (our return
value), which is returned after both loops are completed. This function can
then be easily applied to new data, as in

R> X <- matrix(1:20, ncol = 2)
R> cmeans (X)

[1] 5.5 15.5

and (not surprisingly) yields the same result as the built-in function
colMeans():

R> colMeans (X)
[1] 5.5 15.5

The function cmeans() takes only a single argument X that has no default
value. If the author of a function wants to set a default, this can be easily
achieved by defining a function with a list of name = expr pairs, where
name is the argument of the variable and expr is an expression with the
default value. If the latter is omitted, no default value is set.

In interpreted matrix-based languages such as R, loops are typically less
efficient than the corresponding vectorized computations offered by the sys-
tem. Therefore, avoiding loops by replacing them with vectorized operations
can save computation time, especially when the number of iterations in the
loop can become large. To illustrate, let us generate 2 - 10° random num-
bers from the standard normal distribution and compare the built-in function
colMeans () with our awkward function cmeans(). We employ the function
system.time (), which is useful for profiling code:

R> X <- matrix(rnorm(2*10°6), ncol = 2)
R> system.time(colMeans (X))

user system elapsed
0.004 0.000 0.005

R> system.time (cmeans (X))

2.3 R as a Programming Language 31

user system elapsed
5.572 0.004 5.617

Clearly, the performance of cmeans() is embarrassing, and using colMeans ()
is preferred.

Vectorized calculations

As noted above, loops can be avoided using vectorized arithmetic. In the
case of cmeans(), our function calculating column-wise means of a matrix,
it would be helpful to directly compute means column by column using the
built-in function mean (). This is indeed the preferred solution. Using the tools
available to us thus far, we could proceed as follows:

R> cmeans2 <- function(X) {
+ rval <- rep(0, ncol(X))
+ for(j in 1:ncol(X)) rvallj] <- mean(X[,j])
+ return(rval)
+

}

This eliminates one of the for loops and only cycles over the columns. The
result is identical to the previous solutions, but the performance is clearly
better than that of cmeans():

R> system. time (cmeans2(X))

user system elapsed
0.072 0.008 0.080

However, the code of cmeans2() still looks a bit cumbersome with the re-
maining for loop—it can be written much more compactly using the function
apply). This applies functions over the margins of an array and takes three
arguments: the array, the index of the margin, and the function to be evalu-
ated. In our case, the function call is

R> apply (X, 2, mean)

because we require means (using mean()) over the columns (i.e., the second
dimension) of X. The performance of apply() can sometimes be better than
a for loop; however, in many cases both approaches perform rather similarly:

R> system.time(apply(X, 2, mean))

user system elapsed
0.084 0.028 0.114

To summarize, this means that (1) element-wise computations should be
avoided if vectorized computations are available, (2) optimized solutions (if
available) typically perform better than the generic for or apply () solution,
and (3) loops can be written more compactly using the apply () function. In

32 2 Basics

fact, this is so common in R that several variants of apply() are available,
namely 1lapply (), tapply (), and sapply (). The first returns a list, the second
a table, and the third tries to simplify the result to a vector or matrix where
possible. See the corresponding manual pages for more detailed information
and examples.

Reserved words

Like most programming languages, R has a number of reserved words that
provide the basic grammatical constructs of the language. Some of these have
already been introduced above, and some more follow below. An almost com-
plete list of reserved words in R is: if, else, for, in, while, repeat, break,
next, function, TRUE, FALSE, NA, NULL, Inf, NaN, ...). See ?Reserved for a
complete list. If it is attempted to use any of these as names, this results in
an error.

2.4 Formulas

Formulas are constructs used in various statistical programs for specifying
models. In R, formula objects can be used for storing symbolic descriptions
of relationships among variables, such as the ~ operator in the formation of a
formula:

R>f <-y " x
R> class(f)

[1] "formula"

So far, this is only a description without any concrete meaning. The result
entirely depends on the function evaluating this formula. In R, the expression
above commonly means “y is explained by x”. Such formula interfaces are
convenient for specifying, among other things, plots or regression relationships.
For example, with

R> x <- seq(from = 0, to = 10, by = 0.5)
R> y <- 2 + 3 * x + rnorm(21)
the code

R> plot(y ~ x)
R> Im(y ~ x)

Call:
Im(formula = y ~ x)

Coefficients:
(Intercept) X
2.00 3.01

2.5 Data Management in R 33

20 25

15

Fig. 2.1. Simple scatterplot of y vs. x.

first generates a scatterplot of y against x (see Figure 2.1) and then fits the
corresponding simple linear regression model with slope 3.01 and intercept
2.00.

For specifying regression models, the formula language is much richer than
outlined above and is based on a symbolic notation suggested by Wilkinson
and Rogers (1973) in the statistical literature. For example, when using 1m(),
log(y) ~ x1 + x2 specifies a linear regression of log(y) on two regressors
x1 and x2 and an implicitly defined constant. More details on the formula
specifications of linear regression models will be given in Chapter 3.

2.5 Data Management in R

In R, a data frame corresponds to what other statistical packages call a data
matrix or a data set. Typically, it is an array consisting of a list of vectors
and/or factors of identical length, thus yielding a rectangular format where
columns correspond to variables and rows to observations.

Creation from scratch

Let us generate a simple artificial data set, with three variables named "one",
"two", "three", by using

34 2 Basics

R> mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30)
Alternatively, mydata can be created using

R> mydata <- as.data.frame(matrix(1:30, ncol = 3))
R> names (mydata) <- c("one", "two", "three")

which first creates a matrix of size 10 x 3 that is subsequently coerced to a data
frame and whose variable names are finally changed to "one", "two", "three".
Note that the same syntax can be used both for querying and modifying the
names in a data frame. Furthermore, it is worth reiterating that although a
data frame can be coerced from a matrix as above, it is internally represented
as a list.

Subset selection

It is possible to access a subset of variables (i.e., columns) via [or $, where
the latter can only extract a single variable. Hence, the second variable two
can be selected via

R> mydata$two

[1] 11 12 13 14 15 16 17 18 19 20
R> mydata[, "two"]

[1] 11 12 13 14 15 16 17 18 19 20
R> mydatal, 2]

[1] 11 12 13 14 15 16 17 18 19 20

In all cases, the object returned is a simple vector; i.e., the data frame at-
tributes are dropped (by default).

To simplify access to variables in a certain data set, it can be attach()ed.
Technically, this means that the attached data set is added to the search()
path and thus variables contained in this data set can be found when their
name is used in a command. Compare the following:

R> mean (two)
Error in mean(two) : Object "two" not found

R> attach(mydata)
R> mean (two)

[1] 15.5

R> detach(mydata)

2.5 Data Management in R 35

Data frames should be attached with care; in particular, one should pay at-
tention not to attach several data frames with the same column names or to
have a variable with identical name in the global environment, as this is likely
to generate confusion. To avoid attaching and detaching a data set for a single
command only, the function with() can be handy, as in

R> with(mydata, mean(two))
[1] 15.5

It is often necessary to work with subsets of a data frame; i.e., to use only
selected observations (= rows) and/or variables (= columns). This can again
be done via [or, more conveniently, using the subset() command, whose
main arguments are a data frame from which the subset is to be taken and a
logical statement defining the elements to be selected. For example,

R> mydata.sub <- subset(mydata, two <= 16, select = -two)

takes all observations whose value of the second variable two does not exceed
16 (we know there are six observations with this property) and, in addition,
all variables apart from two are selected.

Import and export

To export data frames in plain text format, the function write.table() can
be employed:

R> write.table(mydata, file = "mydata.txt", col.names = TRUE)

It creates a text file mydata.txt in the current working directory. If this data
set is to be used again, in another session, it may be imported using

R> newdata <- read.table("mydata.txt", header = TRUE)

The function read.table() returns a “data.frame” object, which is then
assigned to a new object newdata. By setting col.names = TRUE, the column
names are written in the first line of mydata.txt and hence we set header =
TRUE when reading the file again. The function write.table() is quite flexible
and allows specification of the separation symbol and the decimal separator,
among other properties of the file to be written, so that various text-based
formats, including tab- or comma-separated values, can be produced. Since the
latter is a popular format for exchanging data (as it can be read and written
by many spreadsheet programs, including Microsoft Excel), the convenience
interfaces read.csv() and write.csv() are available. Similarly, read.csv2()
and write.csv2() provide export and import of semicolon-separated values,
a format that is typically used on systems employing the comma (and not the
period) as the decimal separator. In addition, there exists a more elementary
function, named scan(), for data not conforming to the matrix-like layout
required by read.table (). We refer to the respective manual pages and the “R

36 2 Basics

Data Import/Export” manual (R Development Core Team 2008c) for further
details.

It is also possible to save the data in the R internal binary format, by
convention with extension .RData or .rda. The command

R> save(mydata, file = "mydata.rda")
saves the data in R binary format. Binary files may be loaded using
R> load("mydata.rda")

In contrast to read.table(), this does not return a single object; instead it
makes all objects stored in mydata.rda directly available within the current
environment. The advantage of using .rda files is that several R objects, in
fact several arbitrary R objects, can be stored, including functions or fitted
models, without loss of information.

All of the data sets in the package AER are supplied in this binary format
(go to the folder ~/AER/data in your R library to check). Since they are part
of a package, they are made accessible more easily using data() (which in
this case sets up the appropriate call for load()). Thus

R> data("Journals", package = "AER")

loads the Journals data frame from the AER package (stored in the file
~/AER/data/Journals.rda), the data set used in Example 1 of our introduc-
tory R session. If the package argument is omitted, all packages currently in
the search path are checked whether they provide a data set Journals.

Reading and writing foreign binary formats

R can also read and write a number of proprietary binary formats, notably
S-PLUS, SPSS, SAS, Stata, Minitab, Systat, and dBase files, using the functions
provided in the package foreign (part of a standard R installation). Most of the
commands are designed to be similar to read.table() and write.table().
For example, for Stata files, both read.dta() and write.dta() are available
and can be used to create a Stata file containing mydata

R> library("foreign")
R> write.dta(mydata, file = "mydata.dta')

and read it into R again via
R> mydata <- read.dta("mydata.dta")

See the documentation for the package foreign for further information.

Interaction with the file system and string manipulations

In the preceding paragraphs, some interaction with the file system was neces-
sary to read and write data files. R possesses a rich functionality for interacting
with external files and communicating with the operating system. This is far

2.5 Data Management in R 37

beyond the scope of this book, but we would like to provide the interested
reader with a few pointers that may serve as a basis for further reading.

Files available in a directory or folder can be queried via dir() and also
copied (using file.copy()) or deleted (using file.remove()) independent of
the operating system. For example, the Stata file created above can be deleted
again from within R via

R> file.remove("mydata.dta")

Other (potentially system-dependent) commands can be sent as strings to the
operating system using system(). See the respective manual pages for more
information and worked-out examples.

Above, we discussed how data objects (especially data frames) can be writ-
ten to files in various formats. Beyond that, one often wants to save commands
or their output to text files. One possibility to achieve this is to use sink(),
which can direct output to a file() connection to which the strings could be
written with cat (). In some situations, writeLines () is more convenient for
this. Furthermore, dump() can create text representations of R objects and
write them to a file() connection.

Sometimes, one needs to manipulate the strings before creating output. R
also provides rich and flexible functionality for this. Typical tasks include split-
ting strings (strsplit()) and/or pasting them together (paste()). For pat-
tern matching and replacing, grep () and gsub() are available, which also sup-
port regular expressions. For combining text and variable values, sprintf ()
is helpful.

Factors

Factors are an extension of vectors designed for storing categorical informa-
tion. Typical econometric examples of categorical variables include gender,
union membership, or ethnicity. In many software packages, these are created
using a numerical encoding (e.g., 0 for males and 1 for females); sometimes, es-
pecially in regression settings, a single categorical variable is stored in several
such dummy variables if there are more than two categories.

In R, categorical variables should be specified as factors. As an example,
we first create a dummy-coded vector with a certain pattern and subsequently
transform it into a factor using factor():

R> g <- rep(0:1, c(2, 4))
R> g <- factor(g, levels = 0:1, labels = c("male", "female"))
R> g

[1] male male female female female female
Levels: male female

The terminology is that a factor has a set of levels, say k levels. Internally, a
k-level factor consists of two items: a vector of integers between 1 and k and a
character vector, of length k, containing strings with the corresponding labels.

38 2 Basics

Above, we created the factor from an integer vector; alternatively, it could have
been constructed from other numerical, character, or logical vectors. Ordinal
information may also be stored in a factor by setting the argument ordered
= TRUE when calling factor().

The advantage of this approach is that R knows when a certain variable is
categorical and can choose appropriate methods automatically. For example,
the labels can be used in printed output, different summary and plotting
methods can be chosen, and contrast codings (e.g., dummy variables) can be
computed in linear regressions. Note that for these actions the ordering of the
levels can be important.

Missing values

Many data sets contain observations for which certain variables are unavail-
able. Econometric software needs ways to deal with this. In R, such missing
values are coded as NA (for “not available”). All standard computations on NA
become NA.

Special care is needed when reading data that use a different encoding. For
example, when preparing the package AER, we encountered several data sets
that employed -999 for missing values. If a file mydata.txt contains missing
values coded in this way, they may be converted to NA using the argument
na.strings when reading the file:

R> newdata <- read.table("mydata.txt", na.strings = "-999")

To query whether certain observations are NA or not, the function is.na() is
provided.

2.6 Object Orientation

Somewhat vaguely, object-oriented programming (OOP) refers to a paradigm
of programming where users/developers can create objects of a certain “class”
(that are required to have a certain structure) and then apply “methods” for
certain “generic functions” to these objects. A simple example in R is the
function summary (), which is a generic function choosing, depending on the
class of its argument, the summary method defined for this class. For example,
for the numerical vector x and the factor g used above,

R> x <- ¢(1.8, 3.14, 4, 88.169, 13)
R> g <- factor(rep(c(0, 1), c(2, 4)), levels = c(0, 1),
+ labels = c("male", "female"))

the summary () call yields different types of results:
R> summary (x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.80 3.14 4.00 22.00 13.00 88.20

2.6 Object Orientation 39

R> summary(g)

male female
2 4

For the numerical vector x, a five-number summary (i.e., the minimum and
maximum, the median, and the first and third quartiles) along with the mean
are reported, and for the factor g a simple frequency table is returned. This
shows that R has different summary () methods available for different types of
classes (in particular, it knows that a five-number summary is not sensible for
categorical variables). In R, every object has a class that can be queried using
the function class()

R> class(x)
[1] "numeric"
R> class(g)
[1] "factor"

which is used internally for calling the appropriate method for a generic func-
tion.

In fact, R offers several paradigms of object orientation. The base installa-
tion comes with two different OOP systems, usually called S3 (Chambers and
Hastie 1992) and S4 (Chambers 1998). The S3 system is much simpler, using
a dispatch mechanism based on a naming convention for methods. The 54 sys-
tem is more sophisticated and closer to other OOP concepts used in computer
science, but it also requires more discipline and experience. For most tasks, S3
is sufficient, and therefore it is the only OOP system (briefly) discussed here.

In S3, a generic function is defined as a function with a certain list of
arguments and then a UseMethod () call with the name of the generic function.
For example, printing the function summary() reveals its definition:

R> summary

function (object, ...)
UseMethod (" summary")
<environment: namespace:base>

It takes a first required argument object plus an arbitrary number of further
arguments passed through ... to its methods. What happens if this function
is applied to an object, say of class “foo”, is that R tries to apply the function
summary.foo() if it exists. If not, it will call summary.default() if such
a default method exists (which is the case for summary()). Furthermore, R
objects can have a vector of classes (e.g., c("foo", "bar"), which means
that such objects are of class “f00” inheriting from “bar”). In this case, R first
tries to apply summary.foo(), then (if this does not exist) summary.bar(),
and then (if both do not exist) summary.default(). All methods that are

40 2 Basics

currently defined for a generic function can be queried using methods () ; e.g.,
methods (summary) will return a (long) list of methods for all sorts of different
classes. Among them is a method summary.factor(), which is used when
summary (g) is called. However, there is no summary.numeric(), and hence
summary (x) is handled by summary.default(). As it is not recommended to
call methods directly, some methods are marked as being non-visible to the
user, and these cannot (easily) be called directly. However, even for visible
methods, we stress that in most situations it is clearly preferred to use, for
example, summary (g) instead of summary.factor(g).

To illustrate how easy it is to define a class and some methods for it, let
us consider a simple example. We create an object of class “normsample” that
contains a sample from a normal distribution and then define a summary()
method that reports the empirical mean and standard deviation for this sam-
ple. First, we write a simple class creator. In principle, it could have any name,
but it is often called like the class itself:

R> normsample <- function(m, ...) {
+ rval <- rnorm(n, ...)
class(rval) <- "normsample"
return(rval)

+ + +

}

This function takes a required argument n (the sample size) and further argu-
ments . . ., which are passed on to rnorm(), the function for generating normal
random numbers. In addition to the sample size, it takes further arguments—
the mean and the standard deviation; see ?rnorm. After generation of the
vector of normal random numbers, it is assigned the class “normsample” and
then returned.

R> set.seed(123)
R> x <- normsample(10, mean = 5)
R> class(x)

[1] "normsample"

To define a summary () method, we create a function summary.normsample ()
that conforms with the argument list of the generic (although ... is not used
here) and computes the sample size, the empirical mean, and the standard
deviation.

R> summary.normsample <- function(object, ...) {

+ rval <- c(length(object), mean(object), sd(object))

+ names (rval) <- c("sample size","mean", "standard deviation")
+ return(rval)
+

}
Hence, calling

R> summary (x)

2.7 R Graphics 41

sample size mean standard deviation
10.0000 5.0746 0.9538

automatically finds our new summary () method and yields the desired output.

Other generic functions with methods for most standard R classes are
print (), plot (), and str(), which print, plot, and summarize the structure
of an object, respectively.

2.7 R Graphics

It is no coincidence that early publications on S and R, such as Becker and
Chambers (1984) and Thaka and Gentleman (1996), are entitled “S: An Inter-
active Environment for Data Analysis and Graphics” and “R: A Language for
Data Analysis and Graphics”, respectively. R indeed has powerful graphics.

Here, we briefly introduce the “conventional” graphics as implemented in
base R. R also comes with a new and even more flexible graphics engine, called
grid (see Murrell 2005), that provides the basis for an R implementation of
“trellis™type graphics (Cleveland 1993) in the package lattice (Sarkar 2002),
but these are beyond the scope of this book. An excellent overview of R
graphics is given in Murrell (2005).

The function plot ()

The basic function is the default plot() method. It is a generic function
and has methods for many objects, including data frames, time series, and
fitted linear models. Below, we describe the default plot() method, which
can create various types of scatterplots, but many of the explanations extend
to other methods as well as to other high-level plotting functions.

The scatterplot is probably the most common graphical display in statis-
tics. A scatterplot of y vs. x is available using plot(x, y). For illustration,
we again use the Journals data from our package AER, taken from Stock and
Watson (2007). As noted in Section 1.1, the data provide some information
on subscriptions to economics journals at US libraries for the year 2000. The
file contains 180 observations (the journals) on 10 variables, among them the
number of library subscriptions (subs), the library subscription price (price),
and the total number of citations for the journal (citations). These data will
reappear in Chapter 3.

Here, we are interested in the relationship between the number of subscrip-
tions and the price per citation. The following code chunk derives the required
variable citeprice and plots the number of library subscriptions against it
in logarithms:

R> data("Journals")
R> Journals$citeprice <- Journals$price/Journals$citations
R> attach(Journals)

42 2 Basics

OO °
[e] [e]
@ o o
N &
o 80 O@ @O o OO o

©
o
L2 o %o
S o ° RRo
[}
= o] OO@%
&) O,
8’ | 0, CQ)
- (e}
°)
8° o

4
(e}
[

| T T | L1 IHHHHHHH\ [[/ HH\T

1 2 3 4 5 6 7

log(subs)

Fig. 2.2. Scatterplot of the journals data with ticks added.

R> plot(log(subs), log(citeprice))
R> rug(log(subs))

R> rug(log(citeprice), side = 2)
R> detach(Journals)

The function rug() adds ticks, thus visualizing the marginal distributions of
the variables, along one or both axes of an existing plot. Figure 2.2 has ticks
on both of the horizontal and vertical axes. An alternative way of specifying
plot(x, y) is to use the formula method of plot();i.e., plot(y ~ x). This
leads to the same scatterplot but has the advantage that a data argument
can be specified. Hence we can avoid attaching and detaching the data frame:

R> plot(log(subs) ~ log(citeprice), data = Journals)

Graphical parameters

All this looks deceptively simple, but the result can be modified in numer-
ous ways. For example, plot () takes a type argument that controls whether
points (type = "p", the default), lines (type = "1"), both (type = "b"),
stair steps (type = "s"), or further types of plots are generated. The anno-
tation can be modified by changing the main title or the x1ab and ylab axis
labels. See ?plot for more details.

Additionally, there are several dozen graphical parameters (see ?par for
the full list) that can be modified either by setting them with par() or by

2.7 R Graphics

Table 2.1. A selective list of arguments to par().

Argument Description

axes should axes be drawn?
bg background color

cex size of a point or symbol
col color

las orientation of axis labels
lty, lwd line type and line width
main, sub title and subtitle

mar size of margins

mfcol, mfrow array defining layout for several graphs on a plot
pch plotting symbol

type types (see text)

xlab, ylab axis labels

xlim, ylim

axis ranges

43

xlog, ylog, log logarithmic scales

supplying them to the plot() function. We cannot explain all of these here,
but we will highlight a few important parameters: col sets the color(s) and
x1im and ylim adjust the plotting ranges. If points are plotted, pch can modify
the plotting character and cex its character extension. If lines are plotted, 1ty
and 1wd specify the line type and width, respectively. The size of labels, axis
ticks, etc., can be changed by further cex-type arguments such as cex.lab
and cex.axis. A brief list of arguments to par() is provided in Table 2.1.
This is just the tip of the iceberg, and further graphical parameters will be
introduced as we proceed.
As a simple example, readers may want to try

R> plot(log(subs) ~ log(citeprice), data = Journals, pch = 20,
+ col = "blue", ylim = c(0, 8), xlim = c(-7, 4),
+ main = "Library subscriptions")

This yields solid circles (pch = 20) instead of the default open ones, drawn
in blue, and there are wider ranges in the x and y directions; there is also a
main title.

It is also possible to add further layers to a plot. Thus, 1ines (), points(),
text (), and legend() add what their names suggest to an existing plot. For
example, text (-3.798, 5.846, "Econometrica", pos = 2) puts a charac-
ter string at the indicated location (i.e., to the left of the point). In regression
analyses, one often wants to add a regression line to a scatterplot. As seen in
Chapter 1, this is achieved using abline(a, b), where a is the intercept and
b is the slope.

At this point, there does not seem to be a great need for all this; however,
most users require fine control of visual displays at some point, especially when
publication-quality plots are needed. We refrain from presenting artificial

44 2 Basics

examples toying with graphics options; instead we shall introduce variations
of the standard displays as we proceed.

Of course, there are many further plotting functions besides the default
plot) method. For example, standard statistical displays such as barplots,
pie charts, boxplots, QQ plots, or histograms are available in the functions
barplot (), pie(), boxplot (), qgplot (), and hist (). It is instructive to run
demo ("graphics") to obtain an overview of R’s impressive graphics facilities.

Exporting graphics

In interactive use, graphics are typically written to a graphics window so
that they can be inspected directly. However, after completing an analysis, we
typically want to save the resulting graphics (e.g., for publication in a report,
journal article, or thesis). For users of Microsoft Windows and Microsoft Word,
a simple option is to “copy and paste” them into the Microsoft Word document.
For other programs, such as IATEX, it is preferable to export the graphic into
an external file. For this, there exist various graphics devices to which plots
can be written. Devices that are available on all platforms include the vector
formats PostScript and PDF; other devices, such as the bitmap formats PNG
and JPEG and the vector format WMF, are only available if supported by
the system (see ?Devices for further details). They all work in the same way:
first the device is opened—e.g., the PDF device is opened by the function
pdf O—then the commands creating the plot are executed, and finally the
device is closed by dev.off (). A simple example creating a plot on a PDF
device is:

R> pdf("myfile.pdf", height = 5, width = 6)
R> plot(1:20, pch = 1:20, col = 1:20, cex = 2)
R> dev.off()

This creates the PDF file myfile.pdf in the current working directory,
which contains the graphic generated by the plot() call (see Figure 2.3).
Incidentally, the plot illustrates a few of the parameters discussed above: it
shows the first 20 plotting symbols (all shown in double size) and that in R a
set of colors is also numbered. The first eight colors are black, red, green, blue,
turquoise, violet, yellow, and gray. From color nine on, this vector is simply
recycled.

Alternatively to opening, printing and closing a device, it is also possible
to print an existing plot in the graphics window to a device using dev.copy ()
and dev.print (); see the corresponding manual page for more information.

Mathematical annotation of plots

A feature that particularly adds to R’s strengths when it comes to publication-
quality graphics is its ability to add mathematical annotation to plots (Murrell
and Thaka 2000). An S expression containing a mathematical expression can

2.7 R Graphics 45

15
|

1:20

T T T I
5 10 15 20

Index

Fig. 2.3. Scatterplot written on a PDF device.

be passed to plotting functions without being evaluated; instead it is pro-
cessed for annotation of the graph created. Readers familiar with BTEX will
have no difficulties in adapting to the syntax; for details, see ?plotmath and
demo ("plotmath"). As an example, Figure 2.4 provides a plot of the density
of the standard normal distribution (provided by dnorm() in R), including its
mathematical definition

1 _ (z—p)?

fo) = — = ¢

It is obtained via

R> curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3,
+ main = "Density of the standard normal distribution")

R> text(-5, 0.3, expression(f(x) == frac(1, sigma ~~

+ sqrt (2*pi)) =~ e“{-frac((x - mu) "2, 2*sigma”2)}), adj = 0)

The function curve () plots the density function dnorm(), and then text ()
is used to add the expression() containing the formula to the plot. This
example concludes our brief introduction to R graphics.

46 2 Basics

Density of the standard normal distribution

<
o
o |
o

_

x

=

g o |

€

OO

C

©
- 4
o
o |
o

Fig. 2.4. Plot of the density of the standard normal distribution, including its

mathematical expression.

2.8 Exploratory Data Analysis with R

In this section, we shall briefly illustrate some standard exploratory data anal-
ysis techniques. Readers seeking a more detailed introduction to basic statis-
tics using R are referred to Dalgaard (2002).

We reconsider the CPS1985 data taken from Berndt (1991), which were
encountered in our introductory R session when illustrating several regression
methods. After making the data available via data(), some basic information
can be queried by str():

R> data("CPS1985")
R> str(CPS1985)

'data.frame':

533 obs. of 11 variables:

$ wage :num 4.95 6.67 4.00 7.50 13.07 ...

$ education : int 9 12 12 12 13 10 12 16 12 12 ...

$ experience: int 42 1 4 17 9 27 9 11 9 17 ...

$ age : int 57 19 22 35 28 43 27 33 27 35 ...

$ ethnicity : Factor w/ 3 levels "cauc","hispanic",..: 1 1 1..
$ region : Factor w/ 2 levels "south","other": 2 2 2 2 2 ..
$ gender : Factor w/ 2 levels "male","female": 2 1 1 1 1 ..
$ occupation: Factor w/ 6 levels "worker","technical",..: 1 ..
$ sector : Factor w/ 3 levels "manufacturing",..: 1 1 3 3..

2.8 Exploratory Data Analysis with R 47

$ union : Factor w/ 2 levels "no","yes":

11112111..
$ married : Factor w/ 2 levels "no","yes": 2112111 2..
This reveals that this “data.frame” object comprises 533 observations on
11 wvariables, including the numerical variable wage, the integer variables
education, experience, and age, and seven factors, each comprising two
to six levels.
Instead of using the list-type view that str() provides, it is often useful
to inspect the top (or the bottom) of a data frame in its rectangular repre-
sentation. For this purpose, there exist the convenience functions head () and

tail(), returning (by default) the first and last six rows, respectively. Thus
R> head(CPS1985)

wage education experience age ethnicity region gender

1 4.95 9 42 57 cauc other female

2 6.67 12 1 19 cauc other male

3 4.00 12 4 22 cauc other male

4 T7.50 12 17 35 cauc other male

5 13.07 13 9 28 cauc other male

6 4.45 10 27 43 cauc south male
occupation sector union married

1 worker manufacturing no yes

2 worker manufacturing no no

3 worker other no no

4 worker other no yes

5 worker other yes no

6 worker other no no

Another useful way of gaining a quick overview of a data set is to use the
summary () method for data frames, which provides a summary for each of the
variables. As the type of the summary depends on the class of the respective
variable, we inspect the summary() methods separately for various variables
from CPS1985 below. Hence, the output of summary (CPS1985) is omitted here.

As the CPS1985 data are employed repeatedly in the following, we avoid
lengthy commands such as CPS1985%education by attaching the data set.
Also, to compactify subsequent output, we abbreviate two levels of occupation
from "technical" to "techn" and from "management" to "mgmt".

R> levels(CPS1985%occupation) [c(2, 6)] <- c("techn", "mgmt")
R> attach(CPS1985)

Now variables are accessible by their names.

We proceed by illustrating exploratory analysis of single as well as pairs of
variables, distinguishing among numerical variables, factors, and combinations
thereof. We begin with the simplest kind, a single numerical variable.

48 2 Basics

One numerical variable
We will first look at the distribution of wages in the sample:
R> summary (wage)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 5.25 7.78 9.03 11.20 44 .50

This provides Tukey’s five-number summary plus the mean wage. The mean
and median could also have been obtained using

R> mean (wage)
[1] 9.031

R> median (wage)
[1] 7.78

and fivenum() computes the five-number summary. Similarly, min() and
max () would have yielded the minimum and the maximum. Arbitrary quan-
tiles can be computed by quantile().

For measures of spread, there exist the functions

R> var (wage)
[1] 26.43
R> sd(wage)
[1] 5.141

returning the variance and the standard deviation, respectively.

Graphical summaries are also helpful. For numerical variables such as wage,
density visualizations (via histograms or kernel smoothing) and boxplots are
suitable. Boxplots will be considered below in connection with two-variable
displays. Figure 2.5, obtained via

R> hist(wage, freq = FALSE)
R> hist(log(wage), freq = FALSE)
R> lines(density(log(wage)), col = 4)

shows the densities of wage and its logarithm (that is, areas under curves
equal 1, resulting from freq = FALSE; otherwise absolute frequencies would
have been depicted). Further arguments allow for fine tuning of the selection
of the breaks in the histogram. Added to the histogram in the right panel is a
kernel density estimate obtained using density (). Clearly, the distribution of
the logarithms is less skewed than that of the raw data. Note that density ()
only computes the density coordinates and does not provide a plot; hence the
estimate is added via lines().

2.8 Exploratory Data Analysis with R 49

Histogram of wage Histogram of log(wage)
B] ©
o - .|
3 g af
z B z I
G @ ©
5 3 g
[a)] o o
(9}
8 o
S T T T 1 ° T T T 1
0 10 20 30 40 0 1 2 3 4
wage log(wage)

Fig. 2.5. Histograms of wages (left panel) and their logarithms with superimposed
density (right panel).

One categorical variable

For categorical data, it makes no sense to compute means and variances; in-
stead one needs a table indicating the frequencies with which the categories oc-
cur. If R is told that a certain variable is categorical (by making it a “factor”),
it automatically chooses an appropriate summary:

R> summary (occupation)

worker techn services office sales mgmt
155 105 83 97 38 55

This could also have been computed by table(occupation). If relative in-
stead of absolute frequencies are desired, there exists the function
prop.table():

R> tab <- table(occupation)
R> prop.table(tab)

occupation
worker techn services office sales mgmt
0.2908 0.1970 0.1557 0.1820 0.0713 0.1032

Categorical variables are typically best visualized by barplots. If majorities
are to be brought out, pie charts might also be useful. Thus

R> barplot(tab)
R> pie(tab)

50 2 Basics

o N
3 4
worker
techn
o
S
o _|
o)
i mgmt
services
sales
o J L1

office

worker
techn
office
sales
mgmt

services

Fig. 2.6. Bar plot and pie chart of occupation.

provides Figure 2.6. Note that both functions expect the tabulated fre-
quencies as input. In addition, calling plot(occupation) is equivalent to
barplot(table(occupation)).

Two categorical variables

The relationship between two categorical variables is typically summarized by

a contingency table. This can be created either by xtabs(), a function with

a formula interface, or by table(), a function taking an arbitrary number of

variables for cross-tabulation (and not only a single one as shown above).
We consider the factors occupation and gender for illustration:

R> xtabs(~ gender + occupation, data = CPS1985)

occupation
gender worker techn services office sales mgmt
male 126 53 34 21 21 34
female 29 52 49 76 17 21

which can equivalently be created by table(gender, occupation). A simple
visualization is a mosaic plot (Hartigan and Kleiner 1981; Friendly 1994),
which can be seen as a generalization of stacked barplots. The plot given in
Figure 2.7 (also known as a “spine plot”, a certain variant of the standard
mosaic display), obtained via

R> plot(gender ~ occupation, data = CPS1985)

shows that the proportion of males and females changes considerably
over the levels of occupation. In addition to the shading that brings out the

2.8 Exploratory Data Analysis with R 51

1.0

female

0.8

0.6

gender

male
0.4

0.2

worker techn services office sales mgmt

0.0

occupation

Fig. 2.7. Mosaic plot (spine plot) of gender versus occupation.

conditional distribution of gender given occupation, the widths of the bars
visualize the marginal distribution of occupation, indicating that there are
comparatively many workers and few salespersons.

Two numerical variables

We exemplify the exploratory analysis of the relationship between two numer-
ical variables by using wage and education.

A summary measure for two numerical variables is the correlation coeffi-
cient, implemented in the function cor (). However, the standard (Pearson)
correlation coefficient is not necessarily meaningful for positive and heavily
skewed variables such as wage. We therefore also compute a nonparametric
variant, Spearman’s o, which is available in cor() as an option.

R> cor(log(wage), education)

[1] 0.379

R> cor(log(wage), education, method = "spearman")
[1] 0.3798

Both measures are virtually identical and indicate only a modest amount of
correlation here, see also the corresponding scatterplot in Figure 2.8:

R> plot(log(wage) ~ education)

52 2 Basics

o
8 8
o
» - o Bg O§
o o 08 é
0 C)088§ g EO
g a1 o 8egp 8 °
= o o ©O g) o Oé
8 oog ©° 8 o § o
°© o@oog g °
- o
o
o
o - o
T T T
5 10 15
education

Fig. 2.8. Scatterplot of wages (in logs) versus education.

One numerical and one categorical variable

It is common to have both numerical and categorical variables in a data frame.
For example, here we have wage and gender, and there might be some interest
in the distribution of wage by gender. A suitable function for numerical sum-
maries is tapply). It applies, for a numerical variable as its first argument
and a (list of) categorical variable(s) as its second argument, the function
specified as the third argument. Hence, mean wages conditional on gender are
available using

R> tapply(log(wage), gender, mean)

male female
2.165 1.935

Using similar commands, further descriptive measures or even entire sum-
maries (just replace mean by summary) may be computed.

Suitable graphical displays are parallel boxplots and quantile-quantile
(QQ) plots, as depicted in Figure 2.9. Recall that a boxplot (or “box-and-
whiskers plot”) is a coarse graphical summary of an empirical distribution.
The box indicates “hinges” (approximately the lower and upper quartiles) and
the median. The “whiskers” (lines) indicate the largest and smallest observa-
tions falling within a distance of 1.5 times the box size from the nearest hinge.
Any observations falling outside this range are shown separately and would

2.8 Exploratory Data Analysis with R 53

40

log(wage)
2
|
female
20 30
|

! ; 7 8
T - : o |
. -
o [¢]
\ \ | T T \
male female 10 20 30 40
gender male

Fig. 2.9. Boxplot and QQ plot of wages stratified by gender.

be considered extreme or outlying (in an approximately normal sample). Note
that there are several variants of boxplots in the literature.

The commands plot(y ~ x) and boxplot(y ~ x) both yield the same
parallel boxplot if x is a “factor”; thus

R> plot(log(wage) ~ gender)

gives the left panel of Figure 2.9. It shows that the overall shapes of both
distributions are quite similar and that males enjoy a substantial advantage,
especially in the medium range. The latter feature is also brought out by the
QQ plot (right panel) resulting from

R> mwage <- subset (CPS1985, gender == "male")$wage

R> fwage <- subset(CPS1985, gender == "female")$wage

R> qgplot (mwage, fwage, xlim = range(wage), ylim = range(wage),
+ xaxs = "i", yaxs = "i", xlab = "male", ylab = "female")

R> abline(0, 1)

where almost all points are below the diagonal (corresponding to identical
distributions in both samples). This indicates that, for most quantiles, male
wages are typically higher than female wages.

We end this section by detaching the data:

R> detach(CPS1985)

54

2 Basics

2.9 Exercises

1.

Create a square matrix, say A, with entries a;; = 2,7 = 2,...,n — 1,

a11 = Apn = 1, @541 = 64,1 = —1, and a;; = 0 elsewhere. (Where does

this matrix occur in econometrics?)

“PARADE?” is the Sunday newspaper magazine supplementing the Sunday

or weekend edition of some 500 daily newspapers in the United States of

America. An important yearly feature is an article providing information

on some 120-150 “randomly” selected US citizens, indicating their pro-

fession, hometown and state, and their yearly earnings. The Parade2005

data contain the 2005 version, amended by a variable indicating celebrity

status (motivated by substantial oversampling of celebrities in these data).

For the Parade2005 data:

(a) Determine the mean earnings in California. Explain the result.

(b) Determine the number of individuals residing in Idaho. (What does
this say about the data set?)

(¢) Determine the mean and the median earnings of celebrities. Comment.

(d) Obtain boxplots of log(earnings) stratified by celebrity. Com-
ment.

For the Parade2005 data of the preceding exercise, obtain a kernel den-

sity estimate of the earnings for the full data set. It will be necessary

to transform the data to logarithms (why?). Comment on the result. Be

sure to try out some arguments to density(), in particular the plug-in

bandwidth bw.

Consider the CPS1988 data, taken from Bierens and Ginther (2001).

(These data will be used for estimating an earnings equation in the next

chapter.)

(a) Obtain scatterplots of the logarithm of the real wage (wage) versus
experience and versus education.

(b) In fact, education corresponds to years of schooling and therefore
takes on only a limited number of values. Transform education into
a factor and obtain parallel boxplots of wage stratified by the levels
of education. Repeat for experience.

(¢c) The data set contains four additional factors, ethnicity, smsa,
region, and parttime. Obtain suitable graphical displays of log(wage)
versus each of these factors.

2 Springer
http://www.springer.com/978-0-387-77316-2

Applied Econometrics with R
Kleiber, C.; Zeileis, A,

2008, X, 222 p., Softcover
ISBN: @78-0-387-77316-2

