1

Introduction

This brief chapter, apart from providing two introductory examples on fitting
regression models, outlines some basic features of R, including its help facilities
and the development model. For the interested reader, the final section briefly
outlines the history of R.

1.1 An Introductory R Session

For a first impression of R’s “look and feel”, we provide an introductory R ses-
sion in which we briefly analyze two data sets. This should serve as an illustra-
tion of how basic tasks can be performed and how the operations employed are
generalized and modified for more advanced applications. We realize that not
every detail will be fully transparent at this stage, but these examples should
help to give a first impression of R’s functionality and syntax. Explanations
regarding all technical details are deferred to subsequent chapters, where more
complete analyses are provided.

Example 1: The demand for economics journals

We begin with a small data set taken from Stock and Watson (2007) that
provides information on the number of library subscriptions to economic jour-
nals in the United States of America in the year 2000. The data set, originally
collected by Bergstrom (2001), is available in package AER under the name
Journals. It can be loaded via

R> data("Journals", package = "AER")
The commands
R> dim(Journals)

[1] 180 10

R> names (Journals)

C. Kleiber, A. Zeileis, Applied Econometrics with R,
DOI: 10.1007/978-0-387-77318-6_1, (C) Springer Science+Business Media, LLC 2008

2 1 Introduction

[1] "title" "publisher" "society" "price"
[5] "pages" "charpp" "citations" "foundingyear"
[9] "subs" "field"

reveal that Journals is a data set with 180 observations (the journals) on
10 variables, including the number of library subscriptions (subs), the price,
the number of citations, and a qualitative variable indicating whether the
journal is published by a society or not.

Here, we are interested in the relation between the demand for economics
journals and their price. A suitable measure of the price for scientific journals
is the price per citation. A scatterplot (in logarithms), obtained via

R> plot(log(subs) ~ log(price/citations), data = Journals)

and given in Figure 1.1, clearly shows that the number of subscriptions is
decreasing with price.

The corresponding linear regression model can be easily fitted by ordinary
least squares (OLS) using the function 1m() (for linear model) and the same
syntax,

R> j_1m <- 1m(log(subs) ~ log(price/citations), data = Journals)
R> abline(j_1m)

The abline () command adds the least-squares line to the existing scatterplot;
see Figure 1.1.
A detailed summary of the fitted model j_1m can be obtained via

R> summary (j_1lm)

Call:
Im(formula = log(subs) ~ log(price/citations),
data = Journals)

Residuals:
Min 1Q Median 3Q Max
-2.7248 -0.5361 0.0372 0.4662 1.8481

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4.7662 0.0559 85.2 <2e-16
log(price/citations) -0.5331 0.0356 -15.0 <2e-16

Residual standard error: 0.75 on 178 degrees of freedom
Multiple R-squared: 0.557, Adjusted R-squared: 0.555
F-statistic: 224 on 1 and 178 DF, p-value: <2e-16

Specifically, this provides the usual summary of the coefficients (with esti-
mates, standard errors, test statistics, and p values) as well as the associated
R?, along with further information. For the journals regression, the estimated

1.1 An Introductory R Session 3

log(subs)

T T T T
-4 -2 0 2

log(price/citations)

Fig. 1.1. Scatterplot of library subscription by price per citation (both in logs)
with least-squares line.

elasticity of the demand with respect to the price per citation is —0.5331, which
is significantly different from 0 at all conventional levels. The R? = 0.557 of
the model is quite satisfactory for a cross-section regression.

A more detailed analysis with further information on the R commands
employed is provided in Chapter 3.

Example 2: Determinants of wages

In the preceding example, we showed how to fit a simple linear regression
model to get a flavor of R’s look and feel. The commands for carrying out
the analysis often read almost like talking plain English to the system. For
performing more complex tasks, the commands become more technical as
well—however, the basic ideas remain the same. Hence, all readers should
be able to follow the analysis and recognize many of the structures from the
previous example even if not every detail of the functions is explained here.
Again, the purpose is to provide a motivating example illustrating how easily
some more advanced tasks can be performed in R. More details, both on the
commands and the data, are provided in subsequent chapters.

The application considered here is the estimation of a wage equation in
semi-logarithmic form based on data taken from Berndt (1991). They repre-
sent a random subsample of cross-section data originating from the May 1985

4 1 Introduction

Current Population Survey, comprising 533 observations. After loading the
data set CPS1985 from the package AER, we first rename it for convenience:

R> data("CPS1985", package = "AER")
R> cps <- CPS1985

For cps, a wage equation is estimated with log(wage) as the dependent vari-
able and education and experience (both in number of years) as regressors.
For experience, a quadratic term is included as well. First, we estimate a
multiple linear regression model by OLS (again via Im()). Then, quantile re-
gressions are fitted using the function rq() from the package quantreg. In
a sense, quantile regression is a refinement of the standard linear regression
model in that it provides a more complete view of the entire conditional distri-
bution (by way of choosing selected quantiles), not just the conditional mean.
However, our main reason for selecting this technique is that it illustrates that
R’s fitting functions for regression models typically possess virtually identical
syntax. In fact, in the case of quantile regression models, all we need to specify
in addition to the already familiar formula and data arguments is tau, the set
of quantiles that are to be modeled; in our case, this argument will be set to
0.2,0.35,0.5,0.65,0.8.

After loading the quantreg package, both models can thus be fitted as
easily as

R> library("quantreg")

R> cps_1lm <- 1m(log(wage) ~ experience + I(experience”2) +
+ education, data = cps)

R> cps_rq <- rq(log(wage) ~ experience + I(experience”2) +
+ education, data = cps, tau = seq(0.2, 0.8, by = 0.15))

These fitted models could now be assessed numerically, typically with a
summary () as the starting point, and we will do so in a more detailed anal-
ysis in Chapter 4. Here, we focus on graphical assessment of both models, in
particular concerning the relationship between wages and years of experience.
Therefore, we compute predictions from both models for a new data set cps2,
where education is held constant at its mean and experience varies over the
range of the original variable:

R> cps2 <- data.frame(education = mean(cps$education),

+ experience = min(cps$experience) :max(cps$experience))
R> cps2 <- cbind(cps2, predict(cps_lm, newdata = cps2,

+ interval = "prediction"))

R> cps2 <- cbind(cps2,

+ predict(cps_rq, newdata = cps2, type = ""))

For both models, predictions are computed using the respective predict ()
methods and binding the results as new columns to cps2. First, we visualize
the results of the quantile regressions in a scatterplot of log(wage) against
experience, adding the regression lines for all quantiles (at the mean level of
education):

1.1 An Introductory R Session 5

o
o -
©
(=]
®© Al
2
()]
k)
o
o
o - o
T T T T T T
0 10 20 30 40 50

experience

Fig. 1.2. Scatterplot of log-wage versus experience, with quantile regression fits for
varying quantiles.

R> plot(log(wage) ~ experience, data = cps)
R> for(i in 6:10) lines(cps2[,i] ~ experience,
+ data = cps2, col = "red")

To keep the code compact, all regression lines are added in a for () loop. The
resulting plot is displayed in Figure 1.2, showing that wages are highest for
individuals with around 30 years of experience. The curvature of the regression
lines is more marked at lower quartiles, whereas the relationship is much flatter
for higher quantiles. This can also be seen in Figure 1.3, obtained via

R> plot(summary(cps_rq))

which depicts the changes in the regression coeflicients over varying quantiles
along with the least-squares estimates (both together with 90% confidence
intervals). This shows that both experience coeflicients are eventually de-
creasing in absolute size (note that the coefficient on the quadratic term is
negative) with increasing quantile and that consequently the curve is flat-
ter for higher quantiles. The intercept also increases, while the influence of
education does not vary as much with the quantile level.

Although the size of the sample in this illustration is still quite modest by
current standards, with 533 observations many observations are hidden due to
overplotting in scatterplots such as Figure 1.2. To avoid this problem, and to
further illustrate some of R’s graphics facilities, kernel density estimates will

6 1 Introduction

(Intercept) experience

0.8
|
0.055
|

)
/
/

e}
8
g7 o
o w
(=] s, ****************************
T T T T T T T e T T T T T T T
02 03 04 05 06 07 08 02 03 04 05 06 07 08
I(experience”2) education
I @ | _
o
@] =
¥ S
,,,,,,,,,,,,,,, o—_ "
g ,
uIJ’
©
[

~16-03 -8e-04
|

‘

!

:

/

:

:

. 1

\ '

:

‘

:

:

;

|

‘
:
‘

\\
:
:
‘
‘
‘
|
‘
|
|
|
‘
|
|
|
|

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 1.3. Coefficients of quantile regression for varying quantiles, with confidence
bands (gray) and least-squares estimate (red).

be used: high- versus low-density regions in the bivariate distribution can be
identified by a bivariate kernel density estimate and brought out graphically
in a so-called heatmap. In R, the bivariate kernel density estimate is provided
by bkde2D () in the package KernSmooth:

R> library("KernSmooth")
R> cps_bkde <- bkde2D(cbind(cps$experience, log(cps$wage)),
+ bandwidth = c(3.5, 0.5), gridsize = c(200, 200))

As bkde2D () does not have a formula interface (in contrast to Im() or rq()),
we extract the relevant columns from the cps data set and select suitable
bandwidths and grid sizes. The resulting 200 x 200 matrix of density estimates

1.1 An Introductory R Session 7

< -
o -
—
(0]
g
o -
2
&
(2]
B}
-
o -

T T T T T T T
0 10 20 30 40 50 60

experience

Fig. 1.4. Bivariate kernel density heatmap of log-wage by experience, with least-
squares fit and prediction interval.

can be visualized in a heatmap using gray levels coding the density values.
R provides image() (or contour()) to produce such displays, which can be
applied to cps_bkde as follows.

R> image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat,

+ col = rev(gray.colors(10, gamma = 1)),

+ xlab = "experience", ylab = "log(wage)")
R> box()

R> lines(fit ~ experience, data = cps2)

R> lines(lwr ~ experience, data = cps2, 1ty = 2)
R> lines(upr ~ experience, data = cps2, 1ty = 2)

After drawing the heatmap itself, we add the regression line for the linear
model fit along with prediction intervals (see Figure 1.4). Compared with the
scatterplot in Figure 1.2, this brings out more clearly the empirical relationship
between log(wage) and experience.

This concludes our introductory R session. More details on the data sets,
models, and R functions are provided in the following chapters.

8 1 Introduction
1.2 Getting Started

The R system for statistical computing and graphics (R Development Core
Team 2008b, http://www.R-project.org/) is an open-source software
project, released under the terms of the GNU General Public License (GPL),
Version 2. (Readers unfamiliar with open-source software may want to visit
http://www.gnu.org/.) Its source code as well as several binary versions can
be obtained, at no cost, from the Comprehensive R Archive Network (CRAN;
see http://CRAN.R-project.org/mirrors.html to find its nearest mirror
site). Binary versions are provided for 32-bit versions of Microsoft Windows,
various flavors of Linux (including Debian, Red Hat, SUSE, and Ubuntu) and
Mac OS X.

Installation

Installation of binary versions is fairly straightforward: just go to CRAN, pick
the version corresponding to your operating system, and follow the instruc-
tions provided in the corresponding readme file. For Microsoft Windows, this
amounts to downloading and running the setup executable (.exe file), which
takes the user through a standard setup manager. For Mac OS X, separate
disk image .dmg files are available for the base system as well as for a GUI
developed for this platform. For various Linux flavors, there are prepackaged
binaries (as .rpm or .deb files) that can be installed with the usual pack-
aging tools on the respective platforms. Additionally, versions of R are also
distributed in many of the standard Linux repositories, although these are not
necessarily as quickly updated to new R versions as CRAN is.

For every system, in particular those for which a binary package does not
exist, there is of course also the option to compile R from the source. On
some platforms, notably Microsoft Windows, this can be a bit cumbersome
because the required compilers are typically not part of a standard installation.
On other platforms, such as Unix or Linux, this often just amounts to the
usual configure/make/install steps. See R Development Core Team (2008d)
for detailed information on installation and administration of R.

Packages

As will be discussed in greater detail below, base R is extended by means
of packages, some of which are part of the default installation. Packages are
stored in one or more libraries (i.e., collections of packages) on the system and
can be loaded using the command library (). Typing library () without any
arguments returns a list of all currently installed packages in all libraries. In
the R world, some of these are referred to as “base” packages (contained in
the R sources); others are “recommended” packages (included in every binary
distribution). A large number of further packages, known as “contributed”
packages (currently more than 1,400), are available from the CRAN servers
(see http://CRAN.R-project.org/web/packages/), and some of these will

1.3 Working with R 9

be required as we proceed. Notably, the package accompanying this book,
named AER, is needed. On a computer connected to the Internet, its instal-
lation is as simple as typing

R> install.packages("AER")

at the prompt. This installation process works on all operating systems; in
addition, Windows users may install packages by using the “Install packages
from CRAN” and Mac users by using the “Package installer” menu option and
then choosing the packages to be installed from a list. Depending on the instal-
lation, in particular on the settings of the library paths, install.packages ()
by default might try to install a package in a directory where the user has
no writing permission. In such a case, one needs to specify the 1ib argument
or set the library paths appropriately (see R Development Core Team 2008d,
and ?library for more information). Incidentally, installing AER will down-
load several further packages on which AER depends. It is not uncommon for
packages to depend on other packages; if this is the case, the package “knows”
about it and ensures that all the functions it depends upon will become avail-
able during the installation process.

To use functions or data sets from a package, the package must be loaded.
The command is, for our package AER,

R> library("AER")

From now on, we assume that AER is always loaded. It will be necessary
to install and load further packages in later chapters, and it will always be
indicated what they are.

In view of the rapidly increasing number of contributed packages, it
has proven to be helpful to maintain a number of “CRAN task views”
that provide an overview of packages for certain tasks. Current task views
include econometrics, finance, social sciences, and Bayesian statistics. See
http://CRAN.R-project.org/web/views/ for further details.

1.3 Working with R

There is an important difference in philosophy between R and most other
econometrics packages. With many packages, an analysis will lead to a large
amount of output containing information on estimation, model diagnostics,
specification tests, etc. In R, an analysis is normally broken down into a series
of steps. Intermediate results are stored in objects, with minimal output at
each step (often none). Instead, the objects are further manipulated to obtain
the information required.

In fact, the fundamental design principle underlying R (and S) is “every-
thing is an object”. Hence, not only vectors and matrices are objects that
can be passed to and returned by functions, but also functions themselves,
and even function calls. This enables computations on the language and can
considerably facilitate programming tasks, as we will illustrate in Chapter 7.

10 1 Introduction

Handling objects

To see what objects are currently defined, the function objects() (or equiv-
alently 1s()) can be used. By default, it lists all objects in the global envi-
ronment (i.e., the user’s workspace):

R> objects()

[1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde"
[6] n Cps_lm" "cps_rq" nin llj—lmll

which returns a character vector of length 9 telling us that there are currently
nine objects, resulting from the introductory session.

However, this cannot be the complete list of available objects, given that
some objects must already exist prior to the execution of any commands,
among them the function objects() that we just called. The reason is that
the search list, which can be queried by

R> search()

[1] ".GlobalEnv" "package:KernSmooth"
[3] "package:quantreg" "package: SparseM"

[5] "package:AER" "package:survival"
[7] "package:splines" "package:strucchange"
[9] "package:sandwich" "package:1lmtest"

[11] "package:zoo" "package:car"

[13] "package:stats" "package:graphics"
[15] "package:grDevices" "package:utils"

[17] "package:datasets" "package :methods"
[19] "Autoloads" "package:base"

comprises not only the global environment ".GlobalEnv" (always at the first
position) but also several attached packages, including the base package at its
end. Calling objects("package:base") will show the names of more than a
thousand objects defined in base, including the function objects() itself.

Objects can easily be created by assigning a value to a name using the
assignment operator <-. For illustration, we create a vector x in which the
number 2 is stored:

R> x <= 2
R> objects()

[1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde"
[6] n Cps_lmll n CpS_I‘q" Ilill Ilj_lmll IIXII

x is now available in our global environment and can be removed using the
function remove () (or equivalently rm()):

R> remove(x)
R> objects()

1.3 Working with R 11

[1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde"
[6] "Cps_lm" "cps_rq" nin "j_lm"

Calling functions

If the name of an object is typed at the prompt, it will be printed. For a
function, say foo, this means that the corresponding R source code is printed
(try, for example, objects), whereas if it is called with parentheses, as in
foo(), it is a function call. If there are no arguments to the function, or all
arguments have defaults (as is the case with objects()), then foo() is a
valid function call. Therefore, a pair of parentheses following the object name
is employed throughout this book to signal that the object discussed is a
function.

Functions often have more than one argument (in fact, there is no limit
to the number of arguments to R functions). A function call may use the
arguments in any order, provided the name of the argument is given. If names
of arguments are not given, R assumes they appear in the order of the function
definition. If an argument has a default, it may be left out in a function call.
For example, the function log() has two arguments, x and base: the first, x,
can be a scalar (actually also a vector), the logarithm of which is to be taken;
the second, base, is the base with respect to which logarithms are computed.

Thus, the following four calls are all equivalent:

R> log(16, 2)

R> log(x = 16, 2)

R> log(16, base = 2)

R> log(base = 2, x = 16)

Classes and generic functions

Every object has a class that can be queried using class(). Classes include
“data.frame” (a list or array with a certain structure, the preferred format
in which data should be held), “1m” for linear-model objects (returned when
fitting a linear regression model by ordinary least squares; see Section 1.1
above), and “matrix” (which is what the name suggests). For each class, cer-
tain methods to so-called generic functions are available; typical examples
include summary () and plot (). The result of these functions depends on the
class of the object: when provided with a numerical vector, summary() re-
turns basic summaries of an empirical distribution, such as the mean and the
median; for a vector of categorical data, it returns a frequency table; and in
the case of a linear-model object, the result is the standard regression out-
put. Similarly, plot () returns pairs of scatterplots when provided with a data
frame and returns basic diagnostic plots for a linear-model object.

12 1 Introduction

Quitting R
One exits R by using the q() function:
R> q0O)

R will then ask whether to save the workspace image. Answering n (no) will
exit R without saving anything, whereas answering y (yes) will save all cur-
rently defined objects in a file .RData and the command history in a file
.Rhistory, both in the working directory.

File management

To query the working directory, use getwd(), and to change it, setwd (). If
an R session is started in a directory that has .RData and/or .Rhistory files,
these will automatically be loaded. Saved workspaces from other directories
can be loaded using the function load (). Analogously, R objects can be saved
(in binary format) by save (). To query the files in a directory, dir() can be
used.

1.4 Getting Help

R is well-documented software. Help on any function may be accessed using
either 7 or help(). Thus

R> 7options
R> help("options")

both open the help page for the command options(). At the bottom of
a help page, there are typically practical examples of how to use that
function. These can easily be executed with the example() function; e.g.,
example ("options") or example("1lm").

If the exact name of a command is not known, as will often be the
case for beginners, the functions to use are help.search() and apropos().
help.search() returns help files with aliases or concepts or titles matching a
“pattern” using fuzzy matching. Thus, if help on options settings is desired but
the exact command name, here options(), is unknown, a search for objects
containing the pattern “option” might be useful. help.search("option") will
return a (long) list of commands, data frames, etc., containing this pattern,
including an entry

options(base) Options Settings

providing the desired result. It says that there exists a command options()
in the base package that provides options settings.

Alternatively, the function apropos() lists all functions whose names in-
clude the pattern entered. As an illustration,

1.4 Getting Help 13
R> apropos("help")
[1] "help" "help.search" "help.start"

provides a list with only three entries, including the desired command help().
Note that help.search() searches through all installed packages, whereas
apropos () just examines the objects currently in the search list.

Vignettes

On a more advanced level, there are so-called vignettes. They are PDF files
generated from integrated files containing both R code and documentation (in
BTEX format) and therefore typically contain commands that are directly ex-
ecutable, reproducing the analysis described. This book was written by using
the tools that vignettes are based on. vignette () provides a list of vignettes
in all attached packages. (The meaning of “attached” will be explained in
Section 2.5.) As an example, vignette("strucchange-intro", package =
"strucchange") opens the vignette accompanying the package strucchange.
It is co-authored by the authors of this book and deals with testing, monitor-
ing, and dating of structural changes in time series regressions. See Chapter 7
for further details on vignettes and related infrastructure.

Demos

There also exist “demos” for certain tasks. A demo is an interface to run some
demonstration R scripts. Type demo() for a list of available topics. These
include "graphics" and "1m.glm", the latter providing illustrations on linear
and generalized linear models. For beginners, running demo ("graphics") is
highly recommended.

Manuals, FAQs, and publications
R also comes with a number of manuals:

An Introduction to R

R Data Import/Export

R Language Definition

Writing R Extensions

R Installation and Administration
R Internals

Furthermore, there are several collections of frequently asked questions
(FAQs) at http://CRAN.R-project.org/fags.html that provide answers to
general questions about R and also about platform-specific issues on Microsoft
Windows and Mac OS X.

Moreover, there is an online newsletter named R News, launched in 2001.
It is currently published about three times per year and features, among other

14 1 Introduction

things, recent developments in R (such as changes in the language or new add-
on packages), a “programmer’s niche”, and examples analyzing data with R.
See http://CRAN.R-project.org/doc/Rnews/ for further information.

For a growing number of R packages, there exist corresponding publica-
tions in the Journal of Statistical Software; see http://wuw. jstatsoft.org/.
This is an open-access journal that publishes articles and code snippets (as
well as book and software reviews) on the subject of statistical software and
algorithms. A special volume on Econometrics in R is currently in preparation.

Finally, there is a rapidly growing list of books on R, or on statistics using
R, at all levels, the most comprehensive perhaps being Venables and Ripley
(2002). In addition, we refer the interested reader to Dalgaard (2002) for
introductory statistics, to Murrell (2005) for R graphics, and to Faraway (2005)
for linear regression.

1.5 The Development Model

One of R’s strengths and a key feature in its success is that it is highly ex-
tensible through packages that can provide extensions to everything available
in the base system. This includes not only R code but also code in compiled
languages (such as C, C++, or FORTRAN), data sets, demo files, test suites, vi-
gnettes, or further documentation. Therefore, every R user can easily become
an R developer by submitting his or her packages to CRAN to share them
with the R community. Hence packages can actively influence the direction in
which (parts of) R will go in the future.

Unlike the CRAN packages, the base R system is maintained and developed
only by the R core team, which releases major version updates (i.e., versions
x.y.0) biannually (currently around April 1 and October 1). However, as R
is an open-source system, all users are given read access to the master SVN
repository—SVN stands for Subversion and is a version control system; see
http://subversion.tigris.org/—and can thus check out the full source
code of the development version of R.

In addition, there are several means of communication within the R user
and developer community and between the users and the core development
team. The two most important are various R mailing lists and, as described
above, CRAN packages. The R project hosts several mailing lists, including
R-help and R-devel. The former can be used to ask for help on using R, the
latter for discussing issues related to the development of R or R packages.
Furthermore, bugs can be reported and feature requests made. The posting
guide at http://www.R-project.org/posting-guide.html discusses some
good strategies for doing this effectively. In addition to these general mailing
lists, there are lists for special interest groups (SIGs), among them at least
one list that might be of interest to the reader: it is devoted to finance and
(financial) econometrics and is called R-SIG-Finance.

1.6 A Brief History of R 15

1.6 A Brief History of R

As noted above, the R system for statistical computing and graphics (R Devel-
opment Core Team 2008b, http://www.R-project.org/) is an open-source
software project. The story begins at Bell Laboratories (of AT&T and now
Alcatel-Lucent in New Jersey), with the S language, a system for data anal-
ysis developed by John Chambers, Rick Becker, and collaborators since the
late 1970s. Landmarks of the development of S are a series of books, referred
to by color in the S community, beginning with the “brown book” (Becker
and Chambers 1984), which features “Old S”. The basic reference for “New
S”, or S version 2, is Becker, Chambers, and Wilks (1988), the “blue book”.
For S version 3 (first-generation object-oriented programming and statistical
modeling), it is Chambers and Hastie (1992), the “white book”. The “green
book” (Chambers 1998) documents S version 4. Based on the various S ver-
sions, Insightful Corporation (formerly MathSoft and still earlier Statistical
Sciences) has provided a commercially enhanced and supported release of S,
named S-PLUS, since 1987. At its core, this includes the original S imple-
mentation, which was first exclusively licensed and finally purchased in 2004.
On March 23, 1999, the Association for Computing Machinery (ACM) named
John Chambers as the recipient of its 1998 Software System Award for de-
veloping the S system, noting that his work “will forever alter the way people
analyze, visualize, and manipulate data”.

R itself was initially developed by Robert Gentleman and Ross Thaka at the
University of Auckland, New Zealand. An early version is described in an arti-
cle by its inventors (Thaka and Gentleman 1996). They designed the language
to combine the strengths of two existing languages, S and Scheme (Steel and
Sussman 1975). In the words of Thaka and Gentleman (1996), “[t]he resulting
language is very similar in appearance to S, but the underlying implementa-
tion and semantics are derived from Scheme”. The result was baptized R “in
part to acknowledge the influence of S and in part to celebrate [their] own
efforts”.

The R source code was first released under the GNU General Public Li-
cense (GPL) in 1995. Since mid-1997, there has been the R Development Core
Team, currently comprising 19 members, and their names are available upon
typing contributors () in an R session. In 1998, the Comprehensive R Archive
Network (CRAN; http://CRAN.R-project.org/) was established, which is
a family of mirror sites around the world that store identical, up-to-date ver-
sions of code and documentation for R. The first official release, R version
1.0.0, dates to 2000-02-29. It implements the S3 standard as documented by
Chambers and Hastie (1992). R version 2.0.0 was released in 2004, and the
current version of the language, R 2.7.0, may be viewed as implementing S4
(Chambers 1998) plus numerous concepts that go beyond the various S stan-
dards.

The first publication on R in the econometrics literature appears to have
been by Cribari-Neto and Zarkos (1999), a software review in the Journal

16 1 Introduction

of Applied Econometrics entitled “R: Yet Another Econometric Programming
Environment”. It describes R version 0.63.1, still a beta version. Three years
later, in a further software review in the same journal, Racine and Hynd-
man (2002) focused on using R for teaching econometrics utilizing R 1.3.1.
To the best of our knowledge, this book is the first general introduction to
econometric computing with R.

2 Springer
http://www.springer.com/978-0-387-77316-2

Applied Econometrics with R
Kleiber, C.; Zeileis, A,

2008, X, 222 p., Softcover
ISBN: @78-0-387-77316-2

