2
Data and Databases

2.1 Introduction

Multivariate data consist of multiple measurements, observations, or re-
sponses obtained on a collection of selected variables. The types of variables
usually encountered often depend upon those who collect the data (the do-
main experts), possibly together with some statistical colleagues; for it is
these people who actively decide which variables are of interest in study-
ing a particular phenomenon. In other circumstances, data are collected
automatically and routinely without a research direction in mind, using
software that records every observation or transaction made regardless of
whether it may be important or not.

Data are raw facts, which can be numerical values (e.g., age, height,
weight), text strings (e.g., a name), curves (e.g., a longitudinal record re-
garded as a single functional entity), or two-dimensional images (e.g., pho-
tograph, map). When data sets are “small” in size, we find it convenient
to store them in spreadsheets or as flat files (large rectangular arrays). We
can then use any statistical software package to import such data for sub-
sequent data analysis, graphics, and inference. As mentioned in Chapter 1,
massive data sets are now sprouting up everywhere. Data of such size need
to be stored and manipulated in special database systems.

A.J. Izenman, Modern Multivariate Statistical Techniques,
doi: 10.1007/978-0-387-78189-1_2, 17
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2.2 Examples

We first describe some examples of the data sets to be encountered in
this book.

2.2.1 Example: DNA Microarray Data

The DNA (deoxyribonucleic acid) microarray has been described as “one
of the great unintended consequences of the Human Genome Project”
(Baker, 2003). The main impact of this enormous scientific achievement
is to provide us with large and highly structured microarray data sets from
which we can extract valuable genetic information. In particular, we would
like to know whether “gene expression” (the process by which genetic in-
formation encoded in DNA is converted, first, into mRNA (messenger ri-
bonucleic acid), and then into protein or any of several types of RNA) is
any different for cancerous tissue as opposed to healthy tissue.

Microarray technology has enabled the expression levels of a huge num-
ber of genes within a specific cell culture or tissue to be monitored si-
multaneously and efficiently. This is important because differences in gene
expression determine differences in protein abundance, which, in turn, de-
termine different cell functions. Although protein abundance is difficult to
determine, molecular biologists have discovered that gene expression can
be measured indirectly through microarray experiments.

Popular types of microarray technologies include cDNA microarrays (de-
veloped at Stanford University) and high-density, synthetic, oligonucleotide
microarrays (developed by Affymetrix, Inc., under the GENECHIP®) trade-
mark). Both technologies use the idea of hybridizing a “target” (which is
usually either a single-stranded DNA or RNA sequence, extracted from bio-
logical tissue of interest) to a DNA “probe” (all or part of a single-stranded
DNA sequence printed as “spots” onto a two-way grid of dimples in a glass
or plastic microarray slide, where each spot corresponds to a specific gene).

The microarray slide is then exposed to a set of targets. Two biologi-
cal mRNA samples, one obtained from cancerous tissue (the experimental
sample), the other from healthy tissue (the reference sample), are reverse-
transcribed into cDNA (complementary DNA); then, the reference cDNA
is labeled with a green fluorescent dye (e.g., Cy3) and the experimental
c¢DNA is labeled with a red fluorescent dye (e.g., Cy5). Fluorescence mea-
surements are taken of each dye separately at each spot on the array. High
gene expression in the tissue sample yields large quantities of hybridized
cDNA, which means a high intensity value. Low intensity values derive
from low gene expression.

The primary goal is to compare the intensity values, R and G, of the
red and green channels, respectively, at each spot on the array. The most
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popular statistic is the intensity log-ratio, M = log(R/G) = log(R)—log(G).
Other such functions include the probe value, PV = log(R — G), and the
average log-intensity, A = %(logR + log G). The logarithm in each case is
taken to base 2 because intensity values are usually integers ranging from
0 to 216 — 1.

Microarray data is a matrix whose rows are genes and whose columns
are samples, although this row-column arrangement may be reversed. The
genes play the role of variables, and the samples are the observations stud-
ied under different conditions. Such “conditions” include different experi-
mental conditions (treatment vs. control samples), different tissue samples
(healthy vs. cancerous tumors), and different time points (which may in-
corporate environmental changes).

For example, Figure 2.1 displays the heatmap for the expression levels
of 92 genes obtained from a microarray study on 62 colon tissue samples,
where the entries range from negative values (green) to positive values
(red).! The tissue samples were derived from 40 different patients: 22 pa-
tients each provided both a normal tissue sample and a tumor tissue sample,
whereas 18 patients each provided only a colon tumor sample. As a result,
we have tumor samples from 40 patients (T'1,...,740) and normal samples
from 22 patients (Normall, ..., Normal21), and this is the way the samples
are labeled.

From the heatmap, we wish to identify expression patterns of interest in
microarray data, focusing in on which genes contribute to those patterns
across the various conditions. Multivariate statistical techniques applied to
microarray data include supervised learning methods for classification and
the unsupervised methods of cluster analysis.

2.2.2  Example: Mixtures of Polyaromatic Hydrocarbons

This example illustrates a very common problem in chemometrics. The
data (Brereton, 2003, Section 5.1.2) come from a study of polyaromatic
hydrocarbons (PAHs), which are described as follows:?2

Polyaromatic hydrocarbons (PAHs) are ubiquitous environmen-
tal contaminants, which have been linked with tumors and ef-
fects on reproduction. PAHs are formed during the burning
of coal, oil, gas, wood, tobacco, rubbish, and other organic

IThe data can be found in the file alontop.txt on the book’s website. The 92 genes
are a subset of a larger set of more than 6500 genes whose expression levels were measured
on these 62 tissue samples (Alon et al, 1999).

2This quote is taken from the August 1997 issue of the Update newsletter of the
World Wildlife Fund-UK at its website www.wwf-uk.org/filelibrary/pdf/mu_32.pdf.
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FIGURE 2.1. Gene expression heatmap of 92 genes (columns) and 62
tissue samples (rows) for the colon cancer data. The tissue samples are

divided into 40 colon cancer samples (T1-T40) and 22 normal samples
(Normall-Normal22).

substances. They are also present in coal tars, crude oil, and
petroleum products such as creosote and asphalt. There are
some natural sources, such as forest fires and volcanoes, but
PAHSs mainly arise from combustion-related or oil-related man-
made sources. A few PAHs are used by industry in medicines
and to make dyes, plastics, and pesticides.

Table 2.1 gives a list of the 10 PAHs that are used in this example.

The data were collected in the following way.® From the 10 PAHs listed
in Table 2.1, 50 complex mixtures of certain concentrations (in mg L) of
those PAHs were formed. From each such mixture, an electronic absorption

3The data, which can be found in the file PAH.txt on the book’s website, can also
be downloaded from the website statmaster.sdu.dk/courses/ST02/data/index.html.
The fifty sample observations were originally divided into two independent sets, each of
25 observations, but were combined here so that we would have more observations than
either set of data for the example.
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TABLE 2.1. Ten polyaromatic hydrocarbon (PAH) compounds.

pyrene (Py), acenaphthene (Ace), anthracene (Anth), acenaphthylene (Acy),
chrysene (Chry), benzanthracene (Benz), fluoranthene (Fluora), fluorene
(Fluore), naphthalene (Nap), phenanthracene (Phen)

spectrum (EAS) was computed. The spectra were then digitized at 5 nm
intervals into r = 27 wavelength channels from 220 nm to 350 nm. The 50
spectra are displayed in Figure 2.2. The scatterplot matrix of the 10 PAHs
is displayed in Figure 2.3. Notice that most of these scatterplots appear as
5 x b arrays of 50 points, where only half the points are visible because of
a replication feature in the experimental design.

Using the resulting digitized values of the spectra, we wish to predict the
individual concentrations of PAHs in the mixture. In chemometrics, this
type of regression problem is referred to as multivariate inverse calibra-
tion: although the concentrations are actually the input variables and the
spectrum values are the output variables in the chemical process, the real
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FIGURE 2.2. Electronic absorption spectroscopy (EAS) spectra of 50
samples of polyaromatic hydrocarbons (PAH), where the spectra are mea-
sured at 25 wavelengths within the range 220-350 nm.
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FIGURE 2.3. Scatterplot matriz of the mixture concentrations of the
10 chemicals in Table 2.1. In each scatterplot, there are 50 points; in
most scatterplots, 25 of the points appear in a 5 X 5 array, and the other
25 are replications. In the remaining four scatterplots, there are eight
distinguishable points with different numbers of replications.

goal is to predict the mixture concentrations (which are difficult to deter-
mine) from the spectra (easy to compute), and not vice versa.

2.2.3 FExample: Face Recognition

Until recently, human face recognition was primarily based upon identi-
fying individual facial features such as eyes, nose, mouth, ears, chin, head
outline, glasses, and facial hair, and then putting them together compu-
tationally to construct a face. The most used approach today (and the
one we describe here) is an innovative computerized system called eigen-
faces, which operates directly on an image-based representation of faces
(Turk and Pentland, 1991). Applications of such work include homeland
security, video surveillance, human-computer interaction for entertainment
purposes, robotics, and “smart” cards (e.g., passports, drivers’ licences,
voter registration).

Each face, as a picture image, might be represented by a (¢ x d)-matrix of
intensity values, which are usually quantized to 8-bit gray scale (0-255, with
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FIGURE 2.4. Face images of the same individual under nine different
conditions (1=centerlight, 2=glasses, 8=happy, 4=no glasses, 5=normal,
6=sad, T=sleepy, 8=surprised, 9=wink). From the Yale Face Database.

0 as black and 255 as white). These values are then scaled and converted to
double precision, with values in [0, 1]. The values of ¢ and d depend upon
the degree of resolution needed. The matrix is then “vec’ed” by stacking
the columns of the matrix under one another to form a cd-vector in image
space. For example, if an image is digitized into a (256 x 256)-array of
pixels, that face is now a point in a 65,536-dimensional space. We can view
all possible images of one particular face as a lower-dimensional manifold
(face space) embedded within the high-dimensional image space.

There are a number of repositories of face images. The data for this
example were taken from the Yale Face Database (Belhumeur, Hespanha,
and Kriegman, 1997).* which contains 165 frontal-face grayscale images
covering 15 individuals taken under 11 different conditions of different illu-
mination (centerlight, leftlight, rightlight, normal), expression (happy, sad,
sleepy, surprised, wink), and glasses (with and without). Each image has

4A list of the many face databases that can be accessed on the Internet, including
the Yale Face Database, can be found at the website www.face-rec.org/databases.
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size 320 x 243, which then gets stacked into an r-vector, where r = 77, 760.
Figure 2.4 shows the images of a single individual taken under 9 of those
11 conditions. The problem is one of dimensionality reduction: what is the
fewest number of variables necessary to identify these types of facial im-
ages?

2.3 Databases

A database is a collection of persistent data, where by “persistent” we
mean data that can be removed from the database only by an explicit
request and not through an application’s side effect. The most popular
format for organizing data in a database is in the form of tables (also called
data arrays or data matrices), each table having the form of a rectangular
array arranged into rows and columns, where a row represents the values of
all variables on a single multivariate observation (response, case, or record),
and a column represents the values of a single variable for each observation.

In this book, a typical database table having n multivariate observations
taken on r variables will be represented by an (r x n)-matrix,

i1 Z12 - Tin

XN €T21 T2 o T2

x=\ 7 R (2.1)
Tr1 Ty2 - Trn

say, having r rows and n columns. In (2.1), z;; represents the value in the
ith row (1 = 1,2,...,r) and jth column (5 = 1,2,...,n) of X. Although
database tables are set up to have the form of X7, with variables as columns
and observations as rows, we will find it convenient in this book to set X
to be the transpose of the database table.

Databases exist for storing information. They are used for any of a num-
ber of different reasons, including statistical analysis, retrieving information
from text-based documents (e.g., libraries, legislative records, case dockets
in litigation proceedings), or obtaining administrative information (e.g.,
personnel, sales, financial, and customer records) needed for managing an
organization. Databases can be of any size. Even small databases can be
very useful if accessed often. Setting up a large and complex database typi-
cally involves a major financial committment on the part of an organization,
and so the database has to remain useful over a long time period. Thus, we
should be able to extend a database as additional records become available
and to correct, delete, and update records as necessary.
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2.3.1 Data Types
Databases usually consist of mixtures of different types of variables:

Indexing: These are usually names, tags, case numbers, or serial numbers
that identify a respondent or group of respondents. Their values may
indicate the location where a particular measurement was taken, or
the month or day of the year that an observation was made.

There are two special types of indexing variables:

1. A primary key is an indexing variable (or set of indexing vari-
ables) that uniquely identifies each observation in a database
(e.g., patient numbers, account numbers).

2. A foreign key is an indexing variable in a database where that
indexing variable is a primary key of a related database.

Binary: This is the simplest type of variable, having only two possible
responses, such as YES or NO, SUCCESS or FAILURE, MALE or
FEMALE, WHITE or NON-WHITE, FOR or AGAINST, SMOKER
or NON-SMOKER, and so on. It is usually coded 0 or 1 for the two
possible responses and is often referred to as a dummy or indicator
variable.

Boolean: A Boolean variable has the two responses TRUE or FALSE but
may also have the value UNKNOWN.

Nominal: This character-string data type is a more general version of a
binary variable and has a fixed number of possible responses that
cannot be usefully ordered. These responses are typically coded al-
phanumerically, and they usually represent disjoint classifications or
categories set up by the investigator. Examples include the geograph-
ical location where data on other variables are collected, brand prefer-
ence in a consumer survey, political party affiliation, and ethnic-racial
identification of respondent.

Ordinal: The possible responses for this character-string data type are
linearly ordered. An example is “excellent, good, fair, poor, bad, aw-
ful” (or “strongly disagree” to “strongly agree”). Another example
is bond ratings for debt issues, recorded as AA+, AA, AA-) A+, A,
A-, B+, B, and B-. Such responses may be assigned scores or rank-
ings. They are often coded on a “ranking scale” of 1-5 (or 1-10). The
main problem with these ranking scales is the implicit assumption of
equidistance of the assigned scores. Brand preferences can sometimes
be regarded as ordered.
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Integer: The response is usually a nonnegative whole number and is often
a count.

Continuous: This is a measured variable in which the continuity assump-
tion depends upon a sufficient number of digits (and decimal places)
being recorded. Continuous variables are specified as numeric or dec-
tmal in database systems, depending upon the precision required.

We note an important distinction between variables that are fixed and
those that are stochastic:

Fixed: The values of a fixed variable have deliberately been set in advance,
as in a designed experiment, or are considered “causal” to the phe-
nomenon in question; as a result, interest centers only on a specific
group of responses. This category usually refers to indexing variables
but can also include some of the above types.

Stochastic: The values of a stochastic variable can be considered as having
been chosen at random from a potential list (possibly, the real line or
a portion of it) in some stochastic manner. In this sense, the values
obtained are representative of the entire range of possible values of
the variable in question.

We also need to distinguish between input and output variables:

Input variable: Also called a predictor or independent variable, typically
denoted by X, and may be considered to be fixed (or preset or con-
trolled) through a statistically designed experiment, or stochastic if
it can take on values that are observed but not controlled.

Output variable: Also called a response or dependent variable, typically
denoted by Y, and which is stochastic and dependent upon the input
variables.

Most of the methods described in this book are designed to elicit informa-
tion concerning the extent to which the outputs depend upon the inputs.

2.3.2  Trends in Data Storage

As data collections become larger and larger, and areas of research that
were once “data-poor” now become “data-rich,” it is how we store those
data that is of great importance.

For the individual researcher working with a relatively simple database,
data are stored locally on hard disks. We know that hard-disk storage
capacity is doubling annually (Kryder’s Law), and the trend toward tiny,
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TABLE 2.2. Internet websites containing many different databases.

www.ics.uci.edu/pub/machine-learning-databases
lib.stat.cmu.edu/datasets
www.statsci.org/datasets.html
www.amstat.org/publications/jse/jse_data_archive.html
www.physionet.org/physiobank/database
biostat.mc.vanderbilt.edu/twiki/bin/view/Main/DataSets

high-capacity hard drives has outpaced even the rate of increase in number
of transistors that can be placed on an integrated circuit (Moore’s Law).
Gordon E. Moore, Intel co-founder, predicted in 1965 that the number of
transistors that can be placed on an integrated circuit would continue to
increase at a constant rate for at least 10 years. In 1975, Moore predicted
that the rate would double every two years. So far, this assessment has
proved to be accurate, although Moore stated in 2005 that his law, which
may hold for another two decades, cannot be sustained indefinitely.

Because chip speeds are doubling even faster than Moore had anticipated,
we are seeing rapid progress toward the manufacturing of very small, high-
performance storage devices. New types of data storage devices include
three-dimensional holographic storage, where huge quantities (e.g., a ter-
abyte) of data can be stored into a space the size of a sugar cube.

For large institutions, such as health maintenance organizations, educa-
tional establishments, national libraries, and industrial plants, data storage
is a more complicated issue, and the primary storage facility is usually a
remote “data warehouse.” We describe such storage facilities in Section
2.4.5.

2.8.8 Databases on the Internet

In Table 2.2, we list a few Internet websites from which databases of
various sizes can be downloaded. Many of the data sets used as examples
in this book were obtained through these websites.

There are also many databases available on the Internet that specialize
in bioinformatics information, such as biological databases and published
articles. These databases contain an amazingly rich variety of biological
data, including DNA, RNA, and protein sequences, gene expression profiles,
protein structures, transcription factors, and biochemical pathways. See
Table 2.3 for examples of such websites.

A recent development in data-mining applications is the processing and
categorization of natural-language text documents (e.g., news items, scien-
tific publications, spam detection). With the rapid growth of the Internet
and e-mail, academics, scientists, and librarians have shown enormous in-
terest in mining the structured or unstructured knowledge present in large
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collections of text documents. To help those whose research interests lie
in analyzing text information, large databases (having more than 10,000
features) of text documents are now available.

For example, Table 2.4 lists a number of text databases. Two of the most
popular collections of documents come from Reuters, Ltd., which is the
world’s largest text and television news agency; the English-language col-
lections REUTERS-21578 containing 21,578 news items and RCV1 (Reuters
Corpus Volume 1) (Lewis, Yang, Rose, and Li, 2004) containing 806,791
news items are drawn from online databases. The 20 Newsgroups database
(donated by Tom Mitchell) contains 20,000 messages taken from 20 Usenet
newsgroups. The OHSUMED text database (Hersh, Buckley, Leone, and
Hickam, 1994) from Ohio State University contains 348,566 references and
abstracts derived from Medline, an on-line medical information database,
for the period 1987-1991.

Computerized databases of scientific articles (e.g., ARX1V, see Table 2.4)
are assembled to (Shiffrin and Borner, 2004):

[]dentify and organize research areas according to experts, insti-
tutions, grants, publications, journals, citations, text, and figures;
discover interconnections among these; establish the import of
research; reveal the export of research among fields; examine
dynamic changes such as speed of growth and diversification;
highlight economic factors in information production and dis-
semination; find and map scientific and social networks; and
identify the impact of strategic and applied research funding by
government and other agencies.

A common element of text databases is the dimensionality of the data,
which can run well into the thousands. This makes visualization especially
difficult. Furthermore, because text documents are typically noisy, possibly
even having differing formats, some automated preprocessing may be nec-
essary in order to arrive at high-quality, clean data. The availability of text
databases in which preprocessing has already been undertaken is proving
to be an important development in database research.

TABLE 2.3. Internet websites containing microarray databases.

www.broad.mit.edu/tools/data.html
sdmc.lit.org.sg/GEDatasets/Datasets.html
genome-www5.stanford.edu
www.bioconductor.org/packages/1.8/AnnotationData.html
www.ncbi.nlm.nih.gov/geo




2.4 Database Management 29

TABLE 2.4. Internet websites containing natural-language text
databases.

arXiv.org

medir.ohsu.edu/pub/ohsumed
kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

2.4 Database Management

After data have been recorded and physically stored in a database, they
need to be accessed by an authorized user who wishes to use the infor-
mation. To access the database, the user has to interact with a database
management system, which provides centralized control of all basic storage,
access, and retrieval activities related to the database, while also minimiz-
ing duplications, redundancies, and inconsistencies in the database.

2.4.1 Elements of Database Systems

A database management system (DBMS) is a software system that man-
ages data and provides controlled access to the database through a personal
computer, an on-line workstation, or a terminal to a mainframe computer or
network of computers. Database systems (consisting of databases, DBMS,
and application programs) are typically used for managing large quantities
of data. If we are working with a small data set with a simple structure,
if the particular application is not complicated, and if multiple concurrent
users (those who wish to access the same data at the same time) are not
an issue, then there is no need to employ a DBMS.

A database system can be regarded as two entities: a server (or backend),
which holds the DBMS, and a set of clients (or frontend), each of which
consists of a hardware and a software component, including application pro-
grams that operate on the DBMS. Application programs typically include
a query language processor, report writers, spreadsheets, natural language
processors, and statistical software packages. If the server and clients com-
municate with each other from different machines through a distributed
processing network (such as the Internet), we refer to the system as having
a “client/server” architecture.

The major breakthrough in database systems was the introduction by
1970 of the relational model. We call a DBMS relational if the data are
perceived by users only as tables, and if users can generate new tables
from old ones. Tables in a relational DBMS (RDBMS) are rectangular ar-
rays defined by their rows of observations (usually called records or tuples)
and columns of variables (usually called attributes or fields); the number
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of tuples is called the cardinality, and the number of attributes is called
the degree of the table. A RDBMS contains operators that enable users to
extract specified rows (restrict) or specified columns (project) from a
table and match up (join) information stored in different tables by check-
ing for common entries in common columns. Also part of a DBMS is a data
dictionary, which is a system database that stores information (metadata)
about the database itself.

2.4.2  Structured Query Language (SQL)

Users communicate with a RDBMS through a declarative query language
(or general interactive enquiry facility), which is typically one of the many
versions of SQL (Structured Query Language), usually pronounced “sequel”
or “ess-cue-ell.” Created by IBM in the early 1970s and adopted as the
industry standard in 1986, there are now many different implementations
of SQL; no two are exactly the same, and each one is regarded as a dialect.
In SQL, we can make a declarative statement that says, “From a given
database, extract data that satisfy certain conditions,” and the DBMS has
to determine how to do it.

SQL has two main sublanguages:

e a data definition language (DDL) is used primarily by database ad-
ministrators to define data structures by creating a database object
(such as a table) and altering or destroying a database object. It does
not operate on data.

e a data manipulation language (DML) is an interactive system that
allows users to retrieve, delete, and update existing data from and
add new data to the database.

There is also a data control language (DCL), a security system used by the
database administrator, which controls the privileges granted to database
users.

Before creating a database consisting of multiple tables, it is advisable to
do the following: give a unique name to each table; specify which columns
each table should contain and identify their data types; to each table, assign
a primary key that uniquely identifies each row of the table; and have at
least one common column in each table in the database.

We can then build a working data set through the DDL by using SQL
create table statements of the following form:

create table <table name> (<table elements>);

where <table name> specifies a name for the table and <table elements>
is a list separated by commas that specifies column names, their data
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types, and any column constraints. The set of data types depends upon the
SQL dialect; they include: char(¢) (a column of characters where ¢ gives
the maximum number of characters permitted in the column), integer,
decimal(a,b) (where a is the total number of digits and b is the number
of decimal places), date (in DBMS-approved format), and logical (True
or False). The column constraints include null (that column may have
empty row values) or not null (empty row values are not permitted in
that column), primary keys, and any foreign keys. A semicolon ends the
statement.

The DML includes such commands as select (allows users to retrieve
specific database information), insert (adds new rows into an existing
table), update (modifies information contained within a table), and delete
(removes rows from a table). DML commands can be quite complicated and
may include multiple expressions, clauses, predicates, or subqueries.

For example, the select statement (which supports restrict, project,
and join operations, and is the most commonly used, but also most com-
plicated SQL command) has the basic form

select <columns> from <table name> where <condition>;

where <columns> is a list of columns separated by commas. The select
command is used to gather certain attributes from a particular RDBMS
table, but where the tuples (rows) that are to be retrieved from those
columns are limited to those that satisfy a given conditional Boolean search
expression (i.e., True or False). One or more conditions may be joined
by and or or operators as in set theory (the and always precedes the or
operation). An asterisk may be used in place of the list of columns if all
columns in the database are to be selected.

A primitive form of data analysis is included within the select statement
through the use of five aggregate operators, sum, avg, max, min, and count,
which provide the obvious column statistics over all rows that satisfy any
stated conditions. For example, we can apply the command

select max(<column>) as max, min(<column>) as min from <table
name> where <condition>;

to find the maximum (saved as “max”) and minimum (saved as “min”) of
specified columns. Column statistics that are not aggregates (e.g., medians)
are not available in SQL.

The smaller RDBMSs that are available include ACCESS (from Microsoft
Corp.), MYSQL (open source), and MSQL (Hughes Technologies). These
“lightweight” RDBMSs can support a few hundred simultaneous users and
up to a gigabyte of data. All of the major statistical software packages that
operate in a Windows environment can import data stored in certain of
these smaller RDBMSs, especially Microsoft ACCESS.



32 2. Data and Databases

We note that purists strongly object to SQL being thought of as a re-
lational query language because, they argue, it sacrifices many of the fun-
damental principles of the relational model in order to satisfy demands of
practicality and performance. RDBMSs are slow in general and, because
the dialects of SQL are different enough and are often incompatible with
each other, changing RDBMSs can be a nightmarish experience. Even so,
SQL remains the most popular RDBMS query language.

2.4.3 OLTP Databases

A large organization is likely to maintain a DBMS that manages a
domain-specific database for the automatic capture and storage of real-
time business transactions. This type of database is essential for handling
an organization’s day-to-day operations. An on-line transaction processing
(OLTP) system is a DBMS application that is specially designed for very
fast tracking of millions of small, simple transactions each day by a large
number of concurrent users (tellers, cashiers, and clerks, who add, update,
or delete a few records at a time in the database). Examples of OLTP data-
bases include Internet-based travel reservations and airline seat bookings,
automated teller machines (ATM) network transactions and point-of-sale
terminals, transfers of electronic funds, stock trading records, credit card
transactions and authorizations, and records of driving license holders.

These OLTP databases are dynamic in nature, changing almost contin-
uously as transactions are automatically recorded by the system minute-
by-minute. It is not unusual for an organization to employ several different
OLTP systems to carry out its various business functions (e.g., point-of-
sale, inventory control, customer invoicing). Although OLTP systems are
optimized for processing huge numbers of short transactions, they are not
configured for carrying out complex ad hoc and data analytic queries.

2.4.4 Integrating Distributed Databases

In certain situations, data may be distributed over many geographically
dispersed sites (nodes) connected by a communications network (usually
some sort of local-area network or wide-area network, depending upon dis-
tances involved). This is especially true for the healthcare industry. A huge
amount of information, for example, on hospital management practices may
be recorded from a number of different hospitals and consist of overlapping
sets of variables and cases, all of which have to be combined (or integrated)
into a single database for analysis.

Distributed databases also commonly occur in multicenter clinical trials
in the pharmaceutical industry, where centers include institutions, hospi-
tals, and clinics, sometimes located in several countries. The number of
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total patients participating in such clinical trials rarely exceeds a few thou-
sand, but there have been large-scale multicenter trials such as the Prostate
Cancer Prevention Trial (Baker, 2001), which is a chemoprevention trial in
which 18,000 men aged 55 years and older were randomized to either daily
finasteride or placebo tablets for 7 years and involved 222 sites in the United
States.

Data integration is the process of merging data that originate from mul-
tiple locations. When data are to be merged from different sources, several
problems may arise:

e The data may be physically resident in computer files each of which
was created using database software from different vendors.

e Different media formats may be used to store the information (e.g.,
audio or video tapes or DVDs, CDs or hard disks, hardcopy question-
naires, data downloaded over the Internet, medical images, scanned
documents).

e The network of computer platforms that contain the data may be
organized using different operating systems.

e The geographical locations of those platforms may be local or remote.

e Parts of the data may be duplicated when collected from different
sources.

e Permission may need to be obtained from each source when deal-
ing with sensitive data or security issues that will involve accessing
personal, medical, business, or government records.

Faced with such potential inconsistencies, the information has to be inte-
grated to become a consistent set of records for analysis.

2.4.5 Data Warehousing

An organization that needs to integrate multiple large OLTP databases
will normally establish a single data warehouse for just that purpose. The
term data warehouse was coined by W.H. Inmon to refer to a read-only,
RDBMS running on a high-performance computer. The warehouse stores
historical, detailed, and “scrubbed” data designed to be retrieved and
queried efficiently and interactively by users through a dialect of SQL.
Although data are not updated in realtime, fresh data can be added as
supplements at regular intervals.

The components of a data warehouse are
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DBMS: The publicly available RDBMSs that are almost mandatory for
data warehousing usage include ORACLE (from Oracle Corp.), SQL
SERVER (from Microsoft Corp.), SYBASE (from Sybase Inc.), POsT-
GRESQL (freeware), INFORMIX (from Informix Software, Inc.), and
DB2 (from IBM Corp.). These “heavyweight” DBMSs can handle
thousands of simultaneous users and can access up to several ter-
abytes of data.

Hardware: It is generally accepted that large-scale data warchouse
applications require either massively parallel-processing (MPP) or
symmetric multiprocessing (SMP) supercomputers. Which type of
hardware is installed depends upon many factors, including the com-
plexity of the data and queries and the number of users that need to
access the system.

e SMP architectures are often called “shared everything” because
they share memory and resources to service more than a single
CPU, they run a single copy of the operating system, and they
share a single copy of each application. SMP is reputed to be
better for those data warehouses whose capacity ranges between
50GB and 100GB.

e MPP architectures, on the other hand, are called “shared noth-
ing”; they may have hundreds of CPUs in a single computer,
each node of which is a self-contained computer with its own
CPU, disk, and memory, and nodes are connected by a high-
speed bus or switch. The larger the data warehouse (with ca-
pacity at least 200GB) and the more complex the queries, the
more likely the organization will install an MPP server.

Such centralized data depositories typically contain huge quantities of in-
formation taking up hundreds of gigabytes or terabytes of disk space. Small
data warehouses, which store subsets of the central warehouse for use by
specialized groups or departments, are referred to as data marts.

More and more organizations that require a central data storage facility
are setting up their own data warehouses and data marts. For example,
according to Monk (2000), the Foreign Trade Division of the U.S. Census
Bureau processes 5 million records each month from the U.S. Customs
Service on 18,000 import commodities and 9,000 export commodities that
travel between 250 countries and 50 regions within the United States. The
raw import-export data are extracted, “scrubbed,” and loaded into a data
warehouse having one terabyte of storage. Subsets of the data that focus
on specific countries and commodities, together with two years of historical
data, are then sent to a number of data marts for faster and more specific

querying.
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It has been reported that 90 percent of all Fortune 500 companies are cur-
rently (or soon will be) engaged in some form of data warehousing activity.
Corporations such as Federal Express, UPS, JC Penney, Office Depot, 3M,
Ace Hardware, and Sears, Roebuck and Co. have installed data warehouses
that contain multi-terabytes of disk storage, and Wal-Mart and Kmart are
already at the 100 terabyte range. These retailers use their data warehouses
to access comprehensive sales records (extracted from the scanners of cash
registers) and inventory records from thousands of stores worldwide.

Institutions of higher education now have data warehouses for informa-
tion on their personnel, students, payroll, course enrollments and revenues,
libraries, finance and purchasing, financial aid, alumni development, and
campus data. Healthcare facilities have data warehouses for storing uni-
form billing data on hospital admissions and discharges, outpatient care,
long-term care, individual patient records, physician licensing, certification,
background, and specialties, operating and surgical profiles, financial data,
CMS (Centers for Medicare and Medicaid Services) regulations, and nurs-
ing homes, and that might soon include image data.

2.4.6  Decision Support Systems and OLAP

The failure of OLTP systems to deliver analytical support (e.g., statis-
tical querying and data analysis) of RDBMSs caused a major crisis in the
database market until the concept of data warehouses each with its own
decision support system (DSS) emerged. In a client/server computing envi-
ronment, decision support is carried out using on-line analytical processing
(OLAP) software tools.

There are two primary architectures for OLAP systems, ROLAP (re-
lational OLAP) and MOLAP (multidimensional OLAP); in both, multi-
variate data are set up using a multidimensional model rather than the
standard model, which emphasizes data-as-tables. The two systems store
data differently, which in turn affects their performance characteristics and
the amounts of data that can be handled.

ROLAP operates on data stored in a RDBMS. Complex multipass SQL
commands can create various ad hoc multidimensional views of a two-
dimensional data table (which slows down response times). ROLAP
users can access all types of transactional data, which are stored in
100GB to multiple-terabyte data warehouses.

MOLAP operates on data stored in a specialized multidimensional DBMS.
Variables are scaled categorically to allow transactional data to be
pre-aggregated by all category combinations (which speeds up re-
sponse times) and the results stored in the form of a “data cube”
(a large, but sparse, multidimensional contingency table). MOLAP
tools can handle up to 50GB of data stored in a data mart.
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OLAP users typically access multivariate databases without being aware
exactly which system has been implemented. There are other OLAP sys-
tems, including a hybrid version HOLAP.

The data analysis tools provided by a multidimensional OLAP system
include operators that can roll-up (aggregate further, producing marginals),
drill-down (de-aggregate to search for possible irregularities in the aggre-
gates), slice (condition on a single variable), and dice (condition on a par-
ticular category) aggregated data in a multidimensional contingency table.
Summary statistics that cannot be represented as aggregates (e.g., medi-
ans, modes) and graphics that need raw data for display (e.g., scatterplots,
time series plots) are generally omitted from MOLAP menus (Wilkinson,
2005).

2.4.7 Statistical Packages and DBMSs

Some statistical analysis packages (e.g., SAS, SPSS) and MATLAB can
run their complete libraries of statistical routines against their OLAP data-
base servers.

A major effort is currently under way to provide a common interface
for the S language (i.e., S-PLUS and particularly R) to access the really
big DBMSs so that sophisticated data analysis can be carried out in a
transparent manner (i.e., DBMS and platform independent). Although a
table in a RDBMS is very similar to the concept of data frame in R and
S-PLus, there are many difficulties in building such interfaces.

The R package RODBC (written by Michael Lapsley and Brian Ripley,
and available from CRAN) provides an R interface to DBMSs based upon
the Microsoft ODBC (Open Database Connectivity) standard. RODBC,
which runs on both MS Windows and Unix/Linux, is able to copy an R data
frame to a table in a database (command: sqlSave), read a table from a
DBMS into an R data frame (sqlFetch), submit an SQL query to an ODBC
database (sqlQuery), retrieve the results (sqlGetResults), and update
the table where the rows already exist (sqlUpdate). RODBC works with
ORACLE, MS ACCESS, SYBASE, DB2, MYSQL, POSTGRESQL, and SQL
SERVER on MS Windows platforms and with MyYSQL, POSTGRESQL, and
ORACLE under Unix/Linux.

2.5 Data Quality Problems

Errors exist in all kinds of databases. Those that are easy to detect will
most likely be found at the data “cleaning” stage, whereas those errors
that can be quite resistant to detection might only be discovered during
data analysis. Data cleaning usually takes place as the data are received
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and before they are stored in read-only format in a data warehouse. A
consistent and cleaned-up version of the data can then be made available.

2.5.1 Data Inconsistencies

Errors in compiling and editing the resulting database are common and
actually occur with alarming frequency, especially in cases where the data
set is very large. When data from different sources are being connected,
inconsistencies as to a person’s name (especially in cases where a name
can be spelled in several different ways) occur frequently, and matching (or
“disambiguation”) has to take place before such records can be merged.
One popular solution is to employ Soundex (sound-indexing) techniques
for name matching.

To get an idea of how poor data quality can become, consider the prob-
lem of estimating the extent of the undercount from census data collected
for the 1990 U.S. census. Breiman (1994) identified a number of sources
of error, including the following: Matching errors (incorrectly matching
records from two different files of people with differing names, ages, miss-
ing gender or race identifiers, and different addresses), fabrications (the
creation of fictitious people by dishonest interviewers), census day address
errors (incorrectly recording the location of a person’s residence on census
day), unreliable interviews (many of the interviews were rejected as being
unreliable), and incomplete data (a lack of specific information on certain
members in the household). Most of the problems involving data fabri-
cation, incomplete data, and unreliable interviews apparently occurred in
areas that also had the highest estimated undercounts, such as the central
cities and minority areas.

Massive data sets are prone to mistakes, errors, distortions, and, in gen-
eral, poor data quality, just as is any data set, but such defects occur here
on a far grander scale because of the size of the data set itself. When invalid
product codes are entered for a product, they may easily be detected; when
valid product codes, however, are entered for the wrong product, detection
becomes more difficult. Customer codes may be entered inconsistently, es-
pecially those for gender identification (M and F', as opposed to 1 and 2).
Duplication of records entered into the database from multiple sources can
also be a problem. In these days of takeovers and buyouts, and mergers and
acquisitions, what was once a code for a customer may now be a problem if
the entity has since changed its description (e.g., Jenn-Air, Hoover, Norge,
Magic Chef, etc., are all now part of Maytag Corp.). Any inconsistencies
in historical data may also be difficult to correct if those who knew the
answer are no longer with the company.
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2.5.2 Owutliers

Outliers are values in the data that, for one reason or another, do not
appear to fit the pattern of the other data values; visually, they are located
far away from the rest of the data. It is not unusual for outliers to be
present in a data set.

Outliers can occur for many different reasons but should not be confused
with gross errors. Gross errors are cases where “something went wrong”
(Hampel, 2002); they include human errors (e.g., a numerical value recorded
incorrectly) and mechanical errors (e.g., malfunctioning of a measuring
instrument or a laboratory instrument during analysis). The density of
gross errors depends upon the context and the quality of the data. In
medical studies, gross error rates in excess of 10% have been quoted.

Univariate outliers are easy to detect when they indicate impossible (or
“out of bounds”) values. More often, an outlier will be a value that is ex-
treme, either too large or too small. For multivariate data, outlier detection
is more difficult. Low-dimensional visual displays of the data (such as his-
tograms, boxplots, scatterplots) can encourage insight into the data and
provide at the same time a method for manually detecting some of the
more obvious univariate or bivariate outliers.

When we have a large data set, outliers may not be all that rare. Unlike a
data set of 100 or so observations, where we may find two or three outliers,
in a data set of 100,000, we should not be surprised to discover a large
number (in some cases, hundreds, and maybe even thousands) of outliers.
For example, Figure 2.5 shows a scatterplot of the size (in bytes) of each
of 50,000 packets® containing roughly two minutes worth of TCP (transfer
control protocol) packet traffic between Digital Equipment Corporation
servers and the rest of the world on 8th March 1995 plotted against time.
We see clear structure within the scatterplot: the vast majority of points
occur within the 0-512 bytes range, and a number of dense horizontal bands
occur inside this range; these bands show that the vast majority of packets
sent consist of either 0 bytes (37% of the total packets), which are used
only to acknowledge data sent by the other side, or 512 bytes (29% of the
total packets). There are 952 packets each having more than 512 bytes,
of which 137 points are identified as outliers (with values greater than 1.5
times IQR), including 61 points equal to the largest value, 1460 bytes.

To detect true multidimensional outliers, however, becomes a test of
statistical ingenuity. A multivariate observation whose every component
value may appear indistinguishable from the rest may yet be regarded
as an outlier when all components are treated simultaneously. In large

5See www.amstat.org/publications/jse/datasets/packetdata.txt.
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FIGURE 2.5. Time-series plot of 50,000 packets containing roughly two
minutes worth of TCP (transfer control protocol) packets traffic between
Digital Equipment Corporation servers and the rest of the world on 8th
March 1995.

multivariate data sets, some combination of visual display of the data,
manual outlier detection scheme, and automatic outlier detection program
may be necessary: potential outliers could be “flagged” by an automatic
screening device, and then an analyst would manually decide on the fate
of that flagged outlier.

2.5.8 Missing Data

In the vast majority of data sets, there will be missing data values. For
example, human subjects may refuse to answer certain items in a battery
of questions because personal information is requested; some observations
may be accidentally lost; some responses may be regarded as implausible
and rejected; and in a study of financial records of a company, some records
may not be available because of changes in reporting requirements and data
from merged or reorganized organizations.

In R/S-PLUS, missing values are denoted by NA. In large databases, SQL
incorporates the null as a flag or mark to indicate the absence of a data
value, which might mean that the value is missing, unknown, nonexistent
(no observation could be made for that entry), or that no value has yet
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been assigned. A null is not equivalent to a zero value or to a text string
filled with spaces. Sometimes, missing values are replaced by zeroes, other
times by estimates of what they should be based on the rest of the data.

One popular method deletes those observations that contain missing data
and analyzes only those cases that are observed in their entirety (often
called complete-case analysis or listwise-deletion method). Such a complete-
case analysis may be satisfactory if the proportion of deleted observations
is small relative to the size of the entire data set and if the mechanism that
leads to the missing data is independent of the variables in question —
an assumption referred to by Donald Rubin as missing at random (MAR)
or missing completely at random (MCAR) depending upon the exact na-
ture of the missing-data mechanism (Little and Rubin, 1987). Any deleted
observations may be used to help justify the MCAR assumption.

If the missing data constitute a sizeable proportion of the entire data
set, then complete-case methods will not work. Single imputation has been
used to impute (or “fill in”) an estimated value for each missing obser-
vation and then analyze the amended data set as if there had been no
missing values in the first place. Such procedures include hot-deck impu-
tation, where a missing value is imputed by substituting a value from a
similar but complete record in the same data set; mean imputation, where
the singly imputed value is just the mean of all the completely recorded
values for that variable; and regression imputation, which uses the value
predicted by a regression on the completely recorded data. Because sam-
pling variability due to single imputation cannot be incorporated into the
analysis as an additional source of variation, the standard errors of model
estimates tend to be underestimated.

Since the late 1970s, Rubin and his colleagues have introduced a num-
ber of sophisticated algorithmic methods for dealing with incomplete data
situations. One approach, the EM algorithm (Dempster, Laird, and Rubin,
1977; Little and Rubin, 1987), which alternates between an expectation (E)
step and a maximization (M) step, is used to compute maximum-likelihood
estimates of model parameters, where missing data are modeled as unob-
served latent variables. We shall describe applications of the EM algorithm
in more detail in later chapters of this book. A different approach, multiple
imputation (Rubin, 1987), fills in the missing values m > 1 times, where
the imputed values are generated each time from a distribution that may
be different for each missing value; this creates m different data sets, which
are analyzed separately, and then the m results are combined to estimate
model parameters, standard errors, and confidence intervals.

2.5.4  More Variables than Observations

Many statistical computer packages do not allow the number of input
variables, r, to exceed the number of observations, n, because, then, certain
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matrices, such as the (r x r) covariance matrix, would have less than full
rank, would be singular, and, hence, uninvertible. Yet, we should not be
surprised when r > n. In fact, this situation occurs quite routinely in
certain applications, and in such instances, r can be much greater than n.
Typical examples include:

Satellite images When producing maps, remotely sensed image data are
gathered from many sources, including satellite and aircraft scanners,
where a few observations (usually fewer than 10 spectral bands) are
measured at more than 100,000 wavelengths over a grid of pixels.

Chemometrics For determining concentrations in certain chemical com-
pounds, calibration studies often need to analyze intensity measure-
ments on a very large number (500—-1,000 or more) of different spectral
wavelengths using a small number of standard chemical samples.

Gene expression data Current microarray methods for studying human
malignancies, such as tumors, simultaneously monitor expression lev-
els of very large numbers of genes (5,000-10,000 or more) on relatively
small numbers (fewer than 100) of tumor samples.

When r > n, one way of dealing with this problem is to analyze the data
on each variable separately. However, this suggestion does not take account
of correlations between the variables. Researchers have recently provided
new statistical techniques that are not sensitive to the r > n issue. We will
address this situation in various sections of this book.

2.6 The Curse of Dimensionality

The term “curse of dimensionality” (Bellman, 1961) originally described
how difficult it was to perform high-dimensional numerical integration. This
led to the more general use of the term to describe the difficulty of dealing
with statistical problems in high dimensions. Some implications include:

1. We can never have enough data to cover every part of high-dimensional
input space to learn which part of the space is important to a relationship
and which is not.

To see this, divide the axis of each of r input variables into K uniform in-
tervals (or “bins”), so that the value of an input variable is approximated by
the bin into which it falls. Such a partition divides the entire r-dimensional
input space into K" “hypercubes,” where K is chosen so that each hy-
percube contains at least one point in the input space. Given a specific
hypercube in input space, an output value ¥y, corresponding to a new input
point in the hypercube can be approximated by computing some function
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(e.g., the average value) of the y values that correspond to all the input
points falling in that hypercube. Increasing K reduces the sizes of the hy-
percubes while increasing the precision of the approximation. However, at
the same time, the number of hypercubes increases exponentially. If there
has to be at least one input point in each hypercube, then the number of
such points needed to cover all of r-space must also increase exponentially
as r increases. In practice, we have a limited number of observations, with
the result that the data are very sparsely spread around high-dimensional
space.

2. As the number of dimensions grows larger, almost all the volume
inside a hypercubic region of input space lies closer to the boundary or
surface of the hypercube rather than near the center.

An r-dimensional hypercube [—A, A]" with each edge of length 2A has
volume (2A)". Consider a slightly smaller hypercube with each edge of
length 2(A — €), where € > 0 is small. The difference in volume between
these two hypercubes is (24)" — 2"(A — €)", and, hence, the proportion of
the volume that is contained between the two hypercubes is

(2A4)" — 27 (A —€)"
(24)

:17<17%> — 1 asr — oo.

In Figure 2.6, we see a graphical display of this result for A = 1 and number
of dimensions r = 1,2, 10, 20, 50. The same phenomenon also occurs with
spherical regions in high-dimensional input space (see Exercise 2.4).
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FIGURE 2.6. Graphs of the proportion of the total volume contained be-
tween two hypercubes, one of edge length 2 and the other of edge length
2 — e for different numbers of dimensions r. As the number of dimensions
increases, almost all the volume becomes closer to the surface of the hyper-
cube.
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Exercises

2.1 In a statistical application of your choice, what does a missing value
mean? What are the traditional methods of imputing missing values in
such an application?

2.2 In sample surveys, such as opinion polls, telephone surveys, and ques-
tionnaire surveys, nonresponse is a common occurrence. How would you
design such a survey so as to minimize nonresponse?

2.3 Discuss the differences between single and multiple imputation for
imputing missing data.
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2.4 The volume of an r-dimensional sphere with radius A is given by
vol.(A) = S,A"/r, where S, = 277/2/T'(r/2) is the surface area of the
unit sphere in r dimensions, I'(z) = [[7t" le~'dt = (z — 1)1z > 0,
is the gamma function, I'(z + 1) = #'(x), and I'(1/2) = 7'/2. Find the
appropriate spherical volumes for two and three dimensions. Using a similar
limiting argument as in (2) of Section 2.6, show that as the dimensionality
increases, almost all the volume inside the sphere tends to be concentrated
along a “thin shell” closer to the surface of the sphere than to the center.

2.5 Consider a hypercube of dimension r and sides of length 2A and
inscribe in it an r-dimensional sphere of radius A. Find the proportion of
the volume of the hypercube that is inside the hypersphere, and show that
the proportion tends to 0 as the dimensionality r increases. In other words,
show that all the density sits in the corners of the hypercube.

2.6 What are the advantages and disadvantages of database systems, and
when would you find such a system useful for data analysis?

2.7 Find a commercial SQL product and discuss the various options that
are available for the create table statement of that product.

2.8 Find a DBMS and investigate whether that system keeps track of
database statistics. Which statistics does it maintain, how does it do that,
and how does it update those statistics?

2.9 What are the advantages and disadvantages of distributed database
systems?

2.10 (Fairley, Izenman, and Crunk, 2001) You are hired to carry out a
survey of damage to the bricks of the walls of a residential complex con-
sisting of five buildings, each having 5, 6, or 7 stories. The type of damage
of interest is called spalling and refers to deterioration of the surface of the
brick, usually caused by freeze-thaw weather conditions. Spalling appears
to be high at the top stories and low at the ground. The walls consist of
three-quarter million bricks. You take a photographic survey of all the walls
of the complex and count the number of bricks in the photographs that are
spalled. However, the photographs show that some portions of the walls
are obscured by bushes, trees, pipes, vehicles, etc. So, the photographs are
not a complete record of brick damage in the complex. Discuss how would
you estimate the spall rate (spalls per 1,000 bricks) for the entire complex.
What would you do about the missing data in your estimation procedure?

2.11 Read about MAR (missing at random) and MCAR (missing com-
pletely at random) and discuss their differences and implications for im-
puting missing data.
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