Preface

This book is an evolution from my book A First Course in Information
Theory published in 2002 when network coding was still at its infancy. The
last few years have witnessed the rapid development of network coding into
a research field of its own in information science. With its root in informa-
tion theory, network coding has not only brought about a paradigm shift in
network communications at large, but also had significant influence on such
specific research fields as coding theory, networking, switching, wireless com-
munications, distributed data storage, cryptography, and optimization theory.
While new applications of network coding keep emerging, the fundamental re-
sults that lay the foundation of the subject are more or less mature. One of
the main goals of this book therefore is to present these results in a unifying
and coherent manner.

While the previous book focused only on information theory for discrete
random variables, the current book contains two new chapters on information
theory for continuous random variables, namely the chapter on differential
entropy and the chapter on continuous-valued channels. With these topics
included, the book becomes more comprehensive and is more suitable to be
used as a textbook for a course in an electrical engineering department.

‘What Is in This book

Out of the 21 chapters in this book, the first 16 chapters belong to Part I,
Components of Information Theory, and the last 5 chapters belong to Part II,
Fundamentals of Network Coding. Part I covers the basic topics in information
theory and prepares the reader for the discussions in Part II. A brief rundown
of the chapters will give a better idea of what is in this book.

Chapter 1 contains a high-level introduction to the contents of this book.
First, there is a discussion on the nature of information theory and the main
results in Shannon’s original paper in 1948 which founded the field. There are
also pointers to Shannon’s biographies and his works.

Chapter 2 introduces Shannon’s information measures for discrete ran-
dom variables and their basic properties. Useful identities and inequalities in
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information theory are derived and explained. Extra care is taken in handling
joint distributions with zero probability masses. There is a section devoted
to the discussion of maximum entropy distributions. The chapter ends with a
section on the entropy rate of a stationary information source.

Chapter 3 is an introduction to the theory of I-Measure which establishes
a one-to-one correspondence between Shannon’s information measures and
set theory. A number of examples are given to show how the use of informa-
tion diagrams can simplify the proofs of many results in information theory.
Such diagrams are becoming standard tools for solving information theory
problems.

Chapter 4 is a discussion of zero-error data compression by uniquely de-
codable codes, with prefix codes as a special case. A proof of the entropy
bound for prefix codes which involves neither the Kraft inequality nor the
fundamental inequality is given. This proof facilitates the discussion of the
redundancy of prefix codes.

Chapter 5 is a thorough treatment of weak typicality. The weak asymp-
totic equipartition property and the source coding theorem are discussed. An
explanation of the fact that a good data compression scheme produces almost
i.i.d. bits is given. There is also an introductory discussion of the Shannon—
McMillan—Breiman theorem. The concept of weak typicality will be further
developed in Chapter 10 for continuous random variables.

Chapter 6 contains a detailed discussion of strong typicality which applies
to random variables with finite alphabets. The results developed in this chap-
ter will be used for proving the channel coding theorem and the rate-distortion
theorem in the next two chapters.

The discussion in Chapter 7 of the discrete memoryless channel is an en-
hancement of the discussion in the previous book. In particular, the new
definition of the discrete memoryless channel enables rigorous formulation
and analysis of coding schemes for such channels with or without feed-
back. The proof of the channel coding theorem uses a graphical model
approach that helps explain the conditional independence of the random
variables.

Chapter 8 is an introduction to rate-distortion theory. The version of the
rate-distortion theorem here, proved by using strong typicality, is a stronger
version of the original theorem obtained by Shannon.

In Chapter 9, the Blahut—Arimoto algorithms for computing the channel
capacity and the rate-distortion function are discussed, and a simplified proof
for convergence is given. Great care is taken in handling distributions with
zero probability masses.

Chapters 10 and 11 are devoted to the discussion of information theory for
continuous random variables. Chapter 10 introduces differential entropy and
related information measures, and their basic properties are discussed. The
asymptotic equipartition property for continuous random variables is proved.
The last section on maximum differential entropy distributions echoes the
section in Chapter 2 on maximum entropy distributions.
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Chapter 11 discusses a variety of continuous-valued channels, with the
continuous memoryless channel being the basic building block. In proving the
capacity of the memoryless Gaussian channel, a careful justification is given for
the existence of the differential entropy of the output random variable. Based
on this result, the capacity of a system of parallel/correlated Gaussian chan-
nels is obtained. Heuristic arguments leading to the formula for the capacity of
the bandlimited white/colored Gaussian channel are given. The chapter ends
with a proof of the fact that zero-mean Gaussian noise is the worst additive
noise.

Chapter 12 explores the structure of the I-Measure for Markov structures.
Set-theoretic characterizations of full conditional independence and Markov
random field are discussed. The treatment of Markov random field here maybe
too specialized for the average reader, but the structure of the I-Measure
and the simplicity of the information diagram for a Markov chain are best
explained as a special case of a Markov random field.

Information inequalities are sometimes called the laws of information
theory because they govern the impossibilities in information theory. In
Chapter 13, the geometrical meaning of information inequalities and the re-
lation between information inequalities and conditional independence are ex-
plained in depth. The framework for information inequalities discussed here
is the basis of the next two chapters.

Chapter 14 explains how the problem of proving information inequalities
can be formulated as a linear programming problem. This leads to a complete
characterization of all information inequalities provable by conventional tech-
niques. These inequalities, called Shannon-type inequalities, can be proved by
the World Wide Web available software package ITIP. It is also shown how
Shannon-type inequalities can be used to tackle the implication problem of
conditional independence in probability theory.

Shannon-type inequalities are all the information inequalities known dur-
ing the first half century of information theory. In the late 1990s, a few new
inequalities, called non-Shannon-type inequalities, were discovered. These in-
equalities imply the existence of laws in information theory beyond those laid
down by Shannon. In Chapter 15, we discuss these inequalities and their ap-
plications.

Chapter 16 explains an intriguing relation between information theory
and group theory. Specifically, for every information inequality satisfied by
any joint probability distribution, there is a corresponding group inequality
satisfied by any finite group and its subgroups and vice versa. Inequalities
of the latter type govern the orders of any finite group and their subgroups.
Group-theoretic proofs of Shannon-type information inequalities are given. At
the end of the chapter, a group inequality is obtained from a non-Shannon-
type inequality discussed in Chapter 15. The meaning and the implication of
this inequality are yet to be understood.

Chapter 17 starts Part II of the book with a discussion of the butterfly
network, the primary example in network coding. Variations of the butterfly
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network are analyzed in detail. The advantage of network coding over store-
and-forward in wireless and satellite communications is explained through a
simple example. We also explain why network coding with multiple infor-
mation sources is substantially different from network coding with a single
information source.

In Chapter 18, the fundamental bound for single-source network coding,
called the max-flow bound, is explained in detail. The bound is established
for a general class of network codes.

In Chapter 19, we discuss various classes of linear network codes on acyclic
networks that achieve the max-flow bound to different extents. Static network
codes, a special class of linear network codes that achieves the max-flow bound
in the presence of channel failure, are also discussed. Polynomial-time algo-
rithms for constructing these codes are presented.

In Chapter 20, we formulate and analyze convolutional network codes on
cyclic networks. The existence of such codes that achieve the max-flow bound
is proved.

Network coding theory is further developed in Chapter 21. The scenario
when more than one information source are multicast in a point-to-point
acyclic network is discussed. An implicit characterization of the achievable
information rate region which involves the framework for information inequal-
ities developed in Part I is proved.
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Part I of this book by itself may be regarded as a comprehensive textbook
in information theory. The main reason why the book is in the present form
is because in my opinion, the discussion of network coding in Part II is in-
complete without Part I. Nevertheless, except for Chapter 21 on multi-source
network coding, Part II by itself may be used satisfactorily as a textbook on
single-source network coding.

An elementary course on probability theory and an elementary course
on linear algebra are prerequisites to Part I and Part II, respectively. For
Chapter 11, some background knowledge on digital communication systems
would be helpful, and for Chapter 20, some prior exposure to discrete-time
linear systems is necessary. The reader is recommended to read the chapters
according to the above chart. However, one will not have too much difficulty
jumping around in the book because there should be sufficient references to
the previous relevant sections.

This book inherits the writing style from the previous book, namely that all
the derivations are from the first principle. The book contains a large number
of examples, where important points are very often made. To facilitate the
use of the book, there is a summary at the end of each chapter.

This book can be used as a textbook or a reference book. As a textbook,
it is ideal for a two-semester course, with the first and second semesters cov-
ering selected topics from Part I and Part II, respectively. A comprehensive
instructor’s manual is available upon request. Please contact the author at
whyeung@ie.cuhk.edu.hk for information and access.

Just like any other lengthy document, this book for sure contains errors
and omissions. To alleviate the problem, an errata will be maintained at the
book homepage http://www.ie.cuhk.edu.hk/IT_book2/.

Hong Kong, China Raymond W. Yeung
December, 2007
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