
Introduction

The theory of D-modules plays a key role in algebraic analysis. For the purposes of
this text, by “algebraic analysis,’’ we mean analysis using algebraic methods, such
as ring theory and homological algebra. In addition to the contributions by French
mathematicians, J. Bernstein, and others, this area of research has been extensively
developed since the 1960s by Japanese mathematicians, notably in the important
contributions of M. Sato, T. Kawai, and M. Kashiwara of the Kyoto school.

To this day, there continue to be outstanding results and significant theories com-
ing from the Kyoto school, including Sato’s hyperfunctions, microlocal analysis, D-
modules and their applications to representation theory and mathematical physics. In
particular, the theory of regular holonomic D-modules and their solution complexes
(e.g., the theory of the Riemann–Hilbert correspondence which gave a sophisticated
answer to Hilbert’s 21st problem) was a most important and influential result. Indeed,
it provided the germ for the theory of perverse sheaves, which was a natural develop-
ment from intersection cohomologies. Moreover, M. Saito used this result effectively
to construct his theory of Hodge modules, which largely extended the scope of Hodge
theory. In representation theory, this result opened totally new perspectives, such as
the resolution of the Kazhdan–Lusztig conjecture.

As stated above, in addition to the strong impact on analysis which was the initial
main motivation, the theory of algebraic analysis, especially that of D-modules,
continues to play a central role in various fields of contemporary mathematics. In fact,
D-module theory is a source for creating new research areas from which new theories
emerge. This striking feature of D-module theory has stimulated mathematicians in
various other fields to become interested in the subject.

Our aim is to give a comprehensive introduction to D-modules. Until recently,
in order to really learn it, we had to read and become familiar with many articles,
which took long time and considerable effort. However, as we mentioned in the
preface, thanks to some textbooks and monographs, the theory has become much
more accessible nowadays, especially for those who have some basic knowledge of
complex analysis or algebraic geometry. Still, to understand and appreciate the real
significance of the subject on a deep level, it would be better to learn both the theory
and its typical applications.
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In Part I of this book we introduce D-modules principally in the context of present-
ing the theory of the Riemann–Hilbert correspondence. Part II is devoted to explain-
ing applications to representation theory, especially to the solution to the Kazhdan–
Lusztig conjecture. Since we mainly treat the theory of algebraic D-modules on
smooth algebraic varieties rather than the (original) analytic theory on complex man-
ifolds, we shall follow the unpublished notes [Ber3] of Bernstein (the book [Bor3] is
also written along this line). The topics treated in Part II reveal how useful D-module
theory is in other branches of mathematics. Among other things, the essential useful-
ness of this theory contributed heavily to resolving the Kazhdan–Lusztig conjecture,
which was of course a great breakthrough in representation theory.

As we started Part II by giving a brief introduction to some basic notions of Lie
algebras and algebraic groups using concrete examples, we expect that researchers
in other fields can also read Part II without much difficulty.

Let us give a brief overview of the topics developed in this text. First, we explain
how D-modules are related to systems of linear partial differential equations. Let X

be an open subset of Cn and denote by O the commutative ring of complex analytic
functions globally defined on X. We denote by D the set of linear partial differential
operators with coefficients in O. Namely, the set D consists of the operators of
the form

∞∑
i1,i2,...,in

fi1,i2,...,in

(
∂

∂x1

)i1
(

∂

∂x2

)i2

· · ·
(

∂

∂xn

)in

(fi1,i2,...,in ∈ O)

(each sum is a finite sum), where (x1, x2, . . . , xn) is a coordinate system of Cn. Note
that D is a non-commutative ring by the composition of differential operators. Since
the ring D acts on O by differentiation, O is a left D-module. Now, for P ∈ D, let
us consider the differential equation

Pu = 0 (0.0.1)

for an unknown function u. According to Sato, we associate to this equation the left
D-module M = D/DP . In this setting, if we consider the set HomD(M, O) of
D-linear homomorphisms from M to O, we get the isomorphism

HomD(M, O) = HomD(D/DP, O)

� {ϕ ∈ HomD(D, O) | ϕ(P ) = 0}.
Hence we see by HomD(D, O) � O (ϕ �→ ϕ(1)) that

HomD(M, O) � {f ∈ O | Pf = 0}
(Pf = Pϕ(1) = ϕ(P 1) = ϕ(P ) = 0). In other words, the (additive) group
of the holomorphic solutions to the equation (0.0.1) is naturally isomorphic to
HomD(M, O). If we replace O with another function space F admitting a natu-
ral action of D (for example, the space of C∞-functions, Schwartz distributions,
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Sato’s hyperfunctions, etc.), then HomD(M, F) is the set of solutions to (0.0.1) in
that function space.

More generally, a system of linear partial differential equations of l-unknown
functions u1, u2, . . . , ul can be written in the form

l∑
j=1

Pij uj = 0 (i = 1, 2, . . . , k) (0.0.2)

by using some Pij ∈ D (1 ≤ i ≤ k, 1 ≤ j ≤ l). In this situation we have also a
similar description of the space of solutions. Indeed if we define a left D-module M

by the exact sequence

Dk ϕ−→ Dl −→ M −→ 0 (0.0.3)

ϕ(Q1, Q2, . . . , Qk) =
(

k∑
i=1

QiPi1,

k∑
i=1

QiPi2, . . . ,

k∑
i=1

QiPil

)
,

then the space of the holomorphic solutions to (0.0.2) is isomorphic to HomD(M, O).
Therefore, systems of linear partial differential equations can be identified with the
D-modules having some finite presentations like (0.0.3), and the purpose of the the-
ory of linear PDEs is to study the solution space HomD(M, O). Since the space
HomD(M, O) does not depend on the concrete descriptions (0.0.2) and (0.0.3) of
M (it depends only on the D-linear isomorphism class of M), we can study these
analytical problems through left D-modules admitting finite presentations. In the
language of categories, the theory of linear PDEs is nothing but the investigation
of the contravariant functor HomD(•, O) from the category M(D) of D-modules
admitting finite presentations to the category M(C) of C-modules.

In order to develop this basic idea, we need to introduce sheaf theory and homo-
logical algebra. First, let us explain why sheaf theory is indispensable. It is sometimes
important to consider solutions locally, rather than globally on X. For example, in
the case of ordinary differential equations (or more generally, the case of integrable
systems), the space of local solutions is always finite dimensional; however, it may
happen that the analytic continuations (after turning around a closed path) of a so-
lution are different from the original one. This phenomenon is called monodromy.
Hence we also have to take into account how local solutions are connected to each
other globally.

Sheaf theory is the most appropriate language for treating such problems. There-
fore, sheafifying O, D, let us now consider the sheaf OX of holomorphic functions
and the sheaf DX (of rings) of differential operators with holomorphic coefficients.
We also consider sheaves of DX-modules (in what follows, we simply call them DX-
modules) instead of D-modules. In this setting, the main objects to be studied are
left DX-modules admitting locally finite presentations (i.e., coherent DX-modules).
Sheafifying also the solution space, we get the sheaf HomDX

(M, OX) of the holo-
morphic solutions to a DX-module M . It follows that what we should investigate is
the contravariant functor HomDX

(•, OX) from the category Modc(DX) of coherent
DX-modules to the category Mod(CX) of (sheaves of) CX-modules.
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Let us next explain the need for homological algebra. Although both Modc(DX)

and Mod(CX) are abelian categories, HomDX
(•, OX) is not an exact functor. Indeed,

for a short exact sequence

0 −→ M1 −→ M2 −→ M3 −→ 0 (0.0.4)

in the category Modc(DX) the sequence

0 → HomDX
(M3, OX) → HomDX

(M2, OX) → HomDX
(M1, OX) (0.0.5)

associated to it is also exact; however, the final arrow HomDX
(M2, OX) →

HomDX
(M1, OX) is not necessarily surjective. Hence we cannot recover informa-

tion about the solutions of M2 from those of M1, M3. A remedy for this is to consider
also the “higher solutions’’ Exti

DX
(M, OX) (i = 0, 1, 2, . . . ) by introducing tech-

niques in homological algebra. We have Ext0
DX

(M, OX) = HomDX
(M, OX) and

the exact sequence (0.0.5) is naturally extended to the long exact sequence

· · · → Exti
DX

(M3, OX) → Exti
DX

(M2, OX) → Exti
DX

(M1, OX)

→ Exti+1
DX

(M3, OX) → Exti+1
DX

(M2, OX) → Exti+1
DX

(M1, OX) → · · · .

Hence the theory will be developed more smoothly by considering all higher solutions
together.

Furthermore, in order to apply the methods of homological algebra in full general-
ity, it is even more effective to consider the object RHomDX

(M, OX) in the derived
category (it is a certain complex of sheaves of CX-modules whose i-th cohomology
sheaf is Exti

DX
(M, OX)) instead of treating the sheaves Exti

DX
(M, OX) separately

for various i’s. Among the many other advantages for introducing the methods of ho-
mological algebra, we point out here the fact that the sheaf of a hyperfunction solution
can be obtained by taking the local cohomology of the complex RHomDX

(M, OX)

of holomorphic solutions. This is quite natural since hyperfunctions are determined
by the boundary values (local cohomologies) of holomorphic functions.

Although we have assumed so far that X is an open subset of Cn, we may re-
place it with an arbitrary complex manifold. Moreover, also in the framework of
smooth algebraic varieties over algebraically closed fields k of characteristic zero,
almost all arguments remain valid except when considering the solution complex
RHomDX

(•, OX), in which case we need to assume again that k = C and return to
the classical topology (not the Zariski topology) as a complex manifold. In this book
we shall mainly treat D-modules on smooth algebraic varieties over C; however,
in this introduction, we will continue to explain everything on complex manifolds.
Hence X denotes a complex manifold in what follows.

There were some tentative approaches to D-modules by D. Quillen, Malgrange,
and others in the 1960s; however, the real intensive investigation leading to later
development was started by Kashiwara in his master thesis [Kas1] (we also note
that this important contribution to D-module theory was also made independently by
Bernstein [Ber1],[Ber2] around the same period). After this groundbreaking work,
in collaboration with Kawai, Kashiwara developed the theory of (regular) holonomic
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D-modules [KK3], which is a main theme in Part I of this book. Let us discuss this
subject.

It is well known that the space of the holomorphic solutions to every ordinary
differential equation is finite dimensional. However, when X is higher dimensional,
the dimensions of the spaces of holomorphic solutions can be infinite. This is because,
in such cases, the solution contains parameters given by arbitrary functions unless
the number of given equations is sufficiently large. Hence our task is to look for a
suitable class of DX-modules whose solution spaces are finite dimensional. That is,
we want to find a generalization of the notion of ordinary differential equations in
higher-dimensional cases.

For this purpose we consider the characteristic variety Ch(M) for a coherent
DX-module M , which is a closed analytic subset of the cotangent bundle T ∗X of
X (we sometimes call this the singular support of M and denote it by SS(M)). We
know by a fundamental theorem of algebraic analysis due to Sato–Kawai–Kashiwara
[SKK] that Ch(M) is an involutive subvariety in T ∗X with respect to the canonical
symplectic structure of T ∗X. In particular, we have dim Ch(M) ≥ dim X for any
coherent DX-module M 	= 0.

Now we say that a coherent DX-module M is holonomic (a maximally overde-
termined system) if it satisfies the equality dim Ch(M) = dim X. Let us give the
definition of characteristic varieties only in the simple case of DX-modules

M = DX/I, I = DXP1 + DXP2 + · · · + DXPk

associated to the systems

P1u = P2u = · · · = Pku = 0 (Pi ∈ DX) (0.0.6)

for a single unknown function u. In this case, the characteristic variety Ch(M) of
M is the common zero set of the principal symbols σ(Q) (Q ∈ I ) (recall that for
Q ∈ DX its principal symbol σ(Q) is a holomorphic function on T ∗X). In many
cases Ch(M) coincides with the common zero set of σ(P1), σ (P2), . . . , σ (Pk), but it
sometimes happens to be smaller (we also see from this observation that the abstract
DX-module M itself is more essential than its concrete expression (0.0.6)).

To make the solution space as small (finite dimensional) as possible we should
consider as many equations as possible. That is, we should take the ideal I ⊂ DX

as large as possible. This corresponds to making the ideal generated by the principal
symbols σ(P ) (P ∈ I ) (in the ring of functions on T ∗X) as large as possible, for
which we have to take the characteristic variety Ch(M), i.e., the zero set of the
σ(P )’s, as small as possible. On the other hand, a non-zero coherent DX-module is
holonomic if the dimension of its characteristic variety takes the smallest possible
value dim X. This philosophical observation suggests a possible connection between
the holonomicity and the finite dimensionality of the solution spaces. Indeed such
connections were established by Kashiwara as we explain below.

Let us point out here that the introduction of the notion of characteristic varieties
is motivated by the ideas of microlocal analysis. In microlocal analysis, the sheaf
EX of microdifferential operators is employed instead of the sheaf DX of differential
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operators. This is a sheaf of rings on the cotangent bundle T ∗X containing π−1DX

(π : T ∗X → X) as a subring. Originally, the characteristic variety Ch(M) of a
coherent DX-module M was defined to be the support supp(EX ⊗π−1DX

π−1M) of
the corresponding coherent EX-module EX ⊗π−1DX

π−1M . A guiding principle of
Sato–Kawai–Kashiwara [SKK] was to develop the theory in the category of EX-
modules even if one wants results for DX-modules. In this process, they almost
completely classified coherent EX-modules and proved the involutivity of Ch(M).

Let us return to holonomic D-modules. In his Ph.D. thesis [Kas3], Kashiwara
proved for any holonomic DX-module M that all of its higher solution sheaves
Exti

DX
(M, OX) are constructible sheaves (i.e., all its stalks are finite-dimensional

vector spaces and for a stratification X = ⊔
Xi of X its restriction to each Xi is

a locally constant sheaf on Xi). From this result we can conclude that the notion
of holonomic DX-module is a natural generalization of that of linear ordinary dif-
ferential equations to the case of higher-dimensional complex manifolds. We note
that it is also proved in [Kas3] that the solution complex RHomDX

(M, OX) satisfies
the conditions of perversity (in language introduced later). The theory of perverse
sheaves [BBD] must have been motivated (at least partially) by this result.

In the theory of linear ordinary differential equations, we have a good class of
equations called equations with regular singularities, that is, equations admitting
only mild singularities. We also have a successful generalization of this class to
higher dimensions, that is, to regular holonomic DX-modules. There are roughly two
methods to define this class; the first (traditional) one will be to use higher-dimensional
analogues of the properties characterizing ordinary differential equations with regular
singularities, and the second (rather tactical) will be to define a holonomic DX-module
to be regular if its restriction to any algebraic curve is an ordinary differential equation
with regular singularities. The two methods are known to be equivalent. We adopt
here the latter as the definition. Moreover, we note that there is a conceptual difference
between the complex analytic case and the algebraic case for the global meaning of
regularity.

Next, let us explain the Riemann–Hilbert correspondence. By the monodromy
of a linear differential equation we get a representation of the fundamental group
of the base space. The original 21st problem of Hilbert asks for its converse: that
is, for any representation of the fundamental group, is there an ordinary differential
equation (with regular singularities) whose monodromy representation coincides with
the given one? (there exist several points of view in formulating this problem more
precisely, but we do not discuss them here. For example, see [AB], and others).

Let us consider the generalization in higher dimensions of this problem. A satis-
factory answer in the case of integrable connections with regular singularities was
given by P. Deligne [De1]. In this book, we deal with the problem for regular
holonomic DX-modules. As we have already seen, for any holonomic DX-module
M , its solutions Exti

DX
(M, OX) are constructible sheaves. Hence, if we denote

by Db
c (CX) the derived category consisting of bounded complexes of CX-modules

whose cohomology sheaves are constructible, the holomorphic solution complex
RHomDX

(M, OX) is an object of Db
c (CX). Therefore, denoting by Db

rh(DX) the
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derived category consisting of bounded complexes of DX-modules whose cohomol-
ogy sheaves are regular holonomic DX-modules, we can define the contravariant
functor

RHomDX
(•, OX) : Db

rh(DX) −→ Db
c (CX). (0.0.7)

One of the most important results in the theory of D-modules is the (contravariant)
equivalence of categories Db

rh(DX) � Db
c (CX) via this functor. The crucial point of

this equivalence (the Riemann–Hilbert correspondence, which we noted is the most
sophisticated solution to Hilbert’s 21st problem) lies in the concept of regularity and
this problem was properly settled by Kashiwara–Kawai [KK3]. The correct formu-
lation of the above equivalence of categories was already conjectured by Kashiwara
in the middle 1970s and the proof was completed around 1980 (see [Kas6]). The
full proof was published in [Kas10]. For this purpose, Kashiwara constructed the
inverse functor of the correspondence (0.0.7). We should note that another proof of
this correspondence was also obtained by Mebkhout [Me4]. For the more detailed
historical comments, compare the foreword by Schapira in the English translation
[Kas16] of Kashiwara’s master thesis [Kas1]. As mentioned earlier we will mainly
deal with algebraic D-modules in this book, and hence what we really consider is a
version of the Riemann–Hilbert correspondence for algebraic D-modules. After the
appearance of the theory of regular holonomic D-modules and the Riemann–Hilbert
correspondence for analytic D-modules, A. Beilinson and J. Bernstein developed the
corresponding theory for algebraic D-modules based on much simpler arguments.
Some part of this book relies on their results.

The content of Part I is as follows. In Chapters 1–3 we develop the basic theory
of algebraic D-modules. In Chapter 4 we give a survey of the theory of analytic D-
modules and present some properties of the solution and the de Rham functors. Chap-
ter 5 is concerned with results on regular meromorphic connections due to Deligne
[De1]. As for the content of Chapter 5, we follow the notes of Malgrange in [Bor3],
which will be a basis of the general theory of regular holonomic D-modules described
in Chapters 6 and 7. In Chapter 6 we define the notion of regular holonomic algebraic
D-modules and show its stability under various functors. In Chapter 7 we present
a proof of an algebraic version the Riemann–Hilbert correspondence. The results in
Chapters 6 and 7 are totally due to the unpublished notes of Bernstein [Ber3] explain-
ing his work with Beilinson. In Chapter 8 we give a relatively self-contained account
of the theory of intersection cohomology groups and perverse sheaves (M. Goresky–
R. MacPherson [GM1], Beilinson–Bernstein–Deligne [BBD]) assuming basic facts
about constructible sheaves. This part is independent of other parts of the book. We
also include a brief survey of the theory of Hodge modules due to Morihiko Saito
[Sa1], [Sa2] without proofs.

We finally note that the readers of this book who are only interested in algebraic
D-module theory (and not in the analytic one) can skip Sections 4.4 and 4.6, and need
not become involved with symplectic geometry.

In the rest of the introduction we shall give a brief account of the content of Part II
which deals with applications of D-module theory to representation theory.
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The history of Lie groups and Lie algebras dates back to the 19th century, the
period of S. Lie and F. Klein. Fundamental results about semisimple Lie groups
such as those concerning structure theorems, classification, and finite-dimensional
representation theory were obtained by W. Killing, E. Cartan, H. Weyl, and others
until the 1930s. Afterwards, the theory of infinite-dimensional (unitary) representa-
tions was initiated during the period of World War II by E. P. Wigner, V. Bargmann,
I. M. Gelfand, M. A. Naimark, and others, and partly motivated by problems in
physics. Since then and until today the subject has been intensively investigated
from various points of view. Besides functional analysis, which was the main method
at the first stage, various theories from differential equations, differential geometry,
algebraic geometry, algebraic analysis, etc. were applied to the theory of infinite-
dimensional representations. The theory of automorphic forms also exerted a signifi-
cant influence. Nowadays infinite-dimensional representation theory is a place where
many branches of mathematics come together. As contributors representing the de-
velopment until the 1970s, we mention the names of Harish-Chandra, B. Kostant,
R. P. Langlands.

On the other hand, the theory of algebraic groups was started by the fundamental
works of C. Chevalley, A. Borel, and others [Ch] and became recognized widely
by the textbook of Borel [Bor1]. Algebraic groups are obtained by replacing the
underlying complex or real manifolds of Lie groups with algebraic varieties. Over
the fields of complex or real numbers algebraic groups form only a special class of Lie
groups; however, various new classes of groups are produced by taking other fields
as the base field. In this book we will only be concerned with semisimple groups over
the field of complex numbers, for which Lie groups and algebraic groups provide the
same class of groups. We regard them as algebraic groups since we basically employ
the language of algebraic geometry.

The application of algebraic analysis to representation theory was started by the
resolution of the Helgason conjecture [six] due to Kashiwara, A. Kowata, K. Mine-
mura, K. Okamoto, T. Oshima, and M. Tanaka. In this book, we focus however on
the resolution of the Kazhdan–Lusztig conjecture which was the first achievement in
representation theory obtained by applying D-module theory.

Let us explain the problem. It is well known that all finite-dimensional irreducible
representations of complex semisimple Lie algebras are highest weight modules with
dominant integral highest weights. For such representations the characters are de-
scribed by Weyl’s character formula. Inspired by the works of Harish-Chandra on
infinite-dimensional representations of semisimple Lie groups, D. N. Verma proposed
in the late 1960s the problem of determining the characters of (infinite-dimensional)
irreducible highest weight modules with not necessarily dominant integral highest
weights. Important contributions to this problem by a purely algebraic approach
were made in the 1970s by Bernstein, I. M. Gelfand, S. I. Gelfand, and J. C. Jantzen,
although the original problem was not solved.

A breakthrough using totally new methods was made around 1980. D. Kazhdan
and G. Lusztig introduced a family of special polynomials (the Kazhdan–Lusztig
polynomials) using Hecke algebras and proposed a conjecture giving the explicit form
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of the characters of irreducible highest weight modules in terms of these polynomials
[KL1]. They also gave a geometric meaning for Kazhdan–Lusztig polynomials using
the intersection cohomology groups of Schubert varieties. Promptly responding to
this, Beilinson–Bernstein [BB] and J.-L. Brylinski–Kashiwara independently solved
the conjecture by establishing a correspondence between highest weight modules and
the intersection cohomology complexes of Schubert varieties via D-modules on the
flag manifold. This successful achievement, i.e., employing theories and methods,
from other fields, was quite astonishing for the specialists who had been studying
the problem using purely algebraic means. Since then D-module theory has brought
numerous new developments in representation theory.

Let us explain more precisely the methods used to solve the Kazhdan–Lusztig
conjecture. Let G be an algebraic group (or a Lie group), g its Lie algebra and U(g)

the universal enveloping algebra of g. If X is a smooth G-variety and V is a G-
equivariant vector bundle on X, the set �(X, V) of global sections of V naturally has
a g-module structure. The construction of the representation of g (or of G) in this
manner is a fundamental technique in representation theory.

Let us now try to generalize this construction. Denote by DV
X ⊂ EndC(V)

the sheaf of rings of differential operators acting on the sections of V . Then DV
X is

isomorphic to V ⊗OX
DX ⊗OX

V∗ which coincides with the usual DX when V = OX.
In terms of DV

X the g-module structure on �(X, V) can be described as follows. Note
that we have a canonical ring homomorphism U(g) → �(X, DV

X) induced by the
G-action on V . Since V is a DV

X -module, �(X, V) is a �(X, DV
X)-module, and

hence a g-module through the ring homomorphism U(g) → �(X, DV
X). From this

observation, we see that we can replace V with other DV
X -modules. That is, for any

DV
X -module M the C-vector space �(X, M) is endowed with a g-module structure.

Let us give an example. Let G = SL2(C). Since G acts on X = P1 = C � {∞}
by the linear fractional transformations(

a b

c d

)
· (x) =

(
ax + b

cx + d

) ((
a b

c d

)
∈ G, (x) ∈ X

)
,

it follows from the above arguments that �(X, M) is a g-module for any DX-module
M . Let us consider the DX-module M = DXδ given by Dirac’s delta function δ at
the point x = ∞. In the coordinate z = 1

x
in a neighborhood of x = ∞, the equation

satisfied by Dirac’s delta function δ is

zδ = 0,

so we get
M = DX/DXz

in a neighborhood of x = ∞. Set δn = ( d
dz

)nδ. Then {δn}∞n=0 is the basis of �(X, M)

and we have d
dz

δn = δn+1, zδn = −nδn−1.
Let us describe the action of g = sl2(C) on �(X, M). For this purpose consider

the following elements in g:
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h =
(

1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
(these elements h, e, f form a basis of g). Then the ring homomorphism U(g) →
�(X, DX) is given by

h �−→ 2z
d

dz
, e �−→ z2 d

dz
, f �−→ − d

dz
.

For example, since

exp(−te) ·
(

1

z

)
=
(

1

z/(1 − tz)

)
,

for ϕ(z) ∈ OX we get

(e · ϕ)(z) = d

dt
ϕ

(
z

1 − tz

)∣∣∣∣
t=0

=
(

z2 d

dz
ϕ

)
(z)

and e �→ z2 d
dz

. Therefore we obtain

h · δn = −2(n + 1)δn, e · δn = n(n + 1)δn−1, f · δn = −δn+1,

from which we see that �(X, M) is the infinite-dimensional irreducible highest weight
module with highest weight −2.

For the proof of the Kazhdan–Lusztig conjecture, we need to consider the case
when G is a semisimple algebraic group over the field of complex numbers and the
G-variety X is the flag variety of G. For each Schubert variety Y in X we consider
a DX-module M satisfied by the delta function supported on Y . In our previous
example, i.e., in the case of G = SL2(C), the flag variety is X = P1 and Y = {∞} is
a Schubert variety. Since Schubert varieties Y ⊂ X may have singularities for general
algebraic groups G, we take the regular holonomic DX-module M characterized by
the condition of having no subquotient whose support is contained in the boundary
of Y . For this choice of M , �(X, M) is an irreducible highest weight g-module and
RHomDX

(M, OX) is the intersection cohomology complex of Y . A link between
highest weight g-modules and the intersection cohomology complexes of Schubert
varieties Y ⊂ X (perverse sheaves on the flag manifold X) is given in this manner.
Diagrammatically the strategy of the proof of the Kazhdan–Lusztig conjecture can
be explained as follows:

g-modules�	
D-modules on the flag manifold X�	
perverse sheaves on the flag manifold X
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Here the first arrow is what we have briefly explained above, and the second
one is the Riemann–Hilbert correspondence, a general theory of D-modules. The
first arrow is called the Beilinson–Bernstein correspondence, which asserts that the
category of U(g)-modules with the trivial central character and that of DX-modules
are equivalent. By this correspondence, for a DX-module M on the flag manifold X,
we associate to it the U(g)-module �(X, M). As a result, we can translate various
problems for g-modules into those for regular holonomic D-modules (or through the
Riemann–Hilbert correspondence, those for constructible sheaves).

The content of Part II is as follows. We review some preliminary results on
algebraic groups in Chapters 9 and 10. In Chapters 11 and 12 we will explain how
the Kazhdan–Lusztig conjecture was solved. Finally, in Chapter 13, a realization
of Hecke algebras will be given by the theory of Hodge modules, and the relation
between the intersection cohomology groups of Schubert varieties and Hecke algebras
will be explained.

Let us briefly mention some developments of the theory, which could not be treated
in this book. We can also formulate conjectures, similar to the Kazhdan–Lusztig
conjecture, for Kac–Moody Lie algebras, i.e., natural generalizations of semisimple
Lie algebras. In this case, we have to study two cases separately: (a) the case when
the highest weight is conjugate to a dominant weight by the Weyl group, (b) the
case when the highest weight is conjugate to an anti-dominant weight by the Weyl
group. Moreover, Lusztig proposed certain Kazhdan–Lusztig type conjectures also
for the following objects: (c) the representations of reductive algebraic groups in
positive characteristics, (d) the representations of quantum groups in the case when
the parameter q is a root of unity. The conjecture of the case (a) was solved by
Kashiwara (and Tanisaki) [Kas15], [KT2] and L. Casian [Ca1]. Following the so-
called Lusztig program, the other conjectures were also solved:

(A) the equivalence of (c) and (d): H. H. Andersen, J. C. Jantzen, W. Soergel [AJS].
(B) the equivalence of (b) and (d) for affine Lie algebras: Kazhdan–Lusztig [KL3].
(C) the proof of (b) for affine Lie algebras: Kashiwara–Tanisaki [KT3] and Casian

[Ca2].
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