
Preface

This book deals with numerical methods for control and optimal control prob-
lems for nonlinear continuous-time stochastic systems with delays. It is an
extension to the model with delays of the Markov chain approximation meth-
ods of [58]. For the nondelay problem, these methods are a widely used and
powerful class of numerical approximations of optimal costs or other func-
tionals of controlled or uncontrolled stochastic processes in continuous time
and have significant applications to deterministic problems. A comprehensive
development is in [58].1

There are numerous sources of delays in the modeling of realistic physical
and biological systems. Many examples arise in communications and queueing,
due to the finite speed of signal transmission, the nonnegligible time required
to traverse long communications distances, or the time required to go through
a queue [90]. Other examples arise because of mechanical transportation delays
as, for example in hydraulic control systems, delays due to noninstantaneous
human responses or chemical reactions, or delays due to visco-elastic effects in
materials. The books [44, 45] contains many concrete examples in mechanics,
physics and control, as well as in biology and medecine. These examples are
for the most part uncontrolled and deterministic. But many of them would
be more realistic if noise were added. Many examples, together with a great
deal of information on deterministic delay systems are in [77]. The excellent
reference [46] contains a thorough development of the problems of optimal
control of deterministic and stochastic delay systems up to its original date
of publication (1992), with many examples from biology, mechanics, and else-
where, as well as a discussion of approximation in policy space algorithms for
approximating the optimal cost and control. Other examples can be found
in [17, 39, 68, 77, 78]. Examples arise in biological systems due to the time

1 This book is concerned with optimization and control problems, and with the
computation of the expected values of system functionals of interest. Methods for
the pathwise numerical solution of the delay equation itself for deterministic and
stochastic models are discussed in [2, 6, 32, 47, 48, 69, 81].
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delay in the body’s adaptive loops, the finite speed of blood flow, or the time
required for enzyme or other chemical reactions to occur (see, e.g., [4, Chapter
2]). Models of ecological interactions have been a main source of dynamical
models with delays, and applications to financial mathematics are beginning
to appear [11]. Very little information is available concerning solutions when
the models are nonlinear and stochastic, and numerical methods should be a
main source of such information. The reference [75] is concerned with discrete-
time approximations to determinstic control problems governed by differential
inclusions.

There is a huge literature on control problems for delay systems for the
linear model (deterministic or stochastic) with a quadratic cost criterion, and
many good computational methods have been developed. Some of the ap-
proximations have been done in the spectral domain, based on finite-order
rational approximations to the transfer function of the system. Others work
with the state-space formulation, where the key issue is the finite-dimensional
approximation of the Ricatti equation, which is often done via an approxima-
tion to the semigroup of the system. A selection of the available results can
be found in [3, 15, 22, 26, 28, 35, 36, 37, 38, 40, 63, 66, 72, 95] and in their
references. Although these techniques and algorithms have been very useful
for the linear problem, it is not clear (as for the problem without delays),
how to adapt them to the nonlinear models that are of concern to us. For
this reason, we confine attention to analogs of the approaches that have been
found to be very useful for the general no-delay problem, namely the Markov
chain approximation method.

The models of the systems of concern in the book are diffusion and reflected
diffusion processes, and the results can be extended to cover jump-diffusions.
The control might be “ordinary” in the sense that it is a bounded measurable
function, or it might be impulsive, or what is known as a “singular” control.
All of the usual cost functionals are covered; the discounted cost, stopping on
reaching a boundary, optimal stopping, ergodic, etc. Any or all of the path,
control, boundary reflection process, or driving Wiener process, might appear
in delayed from. Examples where the boundary reflection process might be
delayed occur in communications/queueing models, where there is a commu-
nications delay. (See Section 1.2 for an example.) If a buffer overflows (corre-
sponding to a lost packet), a signal is sent to the source, which receives it after
a delay, and then adjusts its rate of transmission accordingly. The buffer over-
flow is a component of the boundary reflection process. Models with delays of
such boundary reflection terms have not been treated previously.

For the nondelay problem, the approach of the Markov chain approxi-
mation method starts by approximating the original controlled process by a
controlled Markov chain on a finite state space. The approximation parameter
is denoted by h and it might be vector-valued. The original cost functional
is also approximated so that it is suitable for the chain. The approximating
chain must satisfy a simple condition called “local consistency.” This is quite
unrestrictive and means simply that from a local point of view and for small
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h, the conditional mean and covariance of the changes in state of the chain
are proportional to the local mean drift and covariance of the original process,
modulo small errors. Many straightforward ways of getting the approximating
chains are discussed in [58], where it is seen that the approach is very flexible.
The approximation yields a control problem that is close to the original, which
gives the method intuitive content that can be exploited for the construction
of effective algorithms. After getting the approximating chain, one solves the
Bellman equation for the optimal cost (or simply the equation for the value
function of interest if there is no control), and proves that the solution con-
verges to the desired optimal cost or value function as h goes to zero. One
tries to choose the approximation so that the associated control or optimal
control problem can be solved with a reasonable amount of computation and
that the approximation errors are acceptable.

The proofs of convergence of the Markov chain approximation method as
h → 0 are purely probabilistic. We always work with the processes. No tools
from PDE theory or classical numerical analysis are used. The idea behind the
proof can be described as follows. For the optimal control problem, starting
with the approximating chain with its optimal control, one gets a suitable
continuous-time interpolation, and shows that in the sense of weak or dis-
tributional convergence, there is a convergent subsequence whose limit is an
optimally controlled process of the original diffusion type, and with the origi-
nal cost function and boundary data. The mathematical basis is the theory of
weak convergence of probability measures, and this powerful theory provides
a unifying approach for all of the problems of interest. The development in
this book depends heavily on the results and methods in [58]. We try to be
as self-contained as possible, and do review all of the essential ideas, but it
would be beneficial to be familiar with the basic ideas in that source before
reading this book.

The probabilistic nature of the methods of process approximation and of
the mathematical proofs of convergence allows us to use our physical intuition
concerning the original problem in all phases of the development. This gives
us great flexibility in the details of the approximation and in the construction
of algorithms. These advantages will carry over to the problem with delays.
In fact, the probabilistic approach to the approximation and convergence is
particularly important when there are delays, since virtually nothing is known
about the analytical properties of the associated (infinite-dimensional) Bell-
man equations for nonlinear problems.

When doing numerical work on general nonlinear systems, it is most con-
venient if the system is bounded. Many types of systems are a priori bounded,
owing to the physical constraints on the state variables. For example, systems
arising in communications or in approximations to queueing models might
be bounded due to the boundedness of the buffers and the possible rates of
transmission. Other systems are intrinsically bounded due to saturation ef-
fects. Models of many communications and queueing systems involve bound-
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aries on the state space that are reflecting, where the reflection directions are
determined by the internal routing of the data in the system [56].

There are two standard ways of bounding a state space if it is not already
bounded due to the physical constraints imposed on the model. One might
stop the process, with an associated stopping cost, if it attempts to leave a
prespecified region. Or one might confine it to a given region via a reflect-
ing boundary (the latter method is common in ergodic cost problems). Both
approaches are dealt with. If the boundary is added for numerical purposes,
then one might have to experiment with it to assure that it is large enough so
that it does not materially affect the quantities of main interest. For simplic-
ity, we confine attention to the diffusion model, with the noise variance not
being controlled. The methods can be extended to cover jump diffusions and
controlled variance and jumps; One adapts the methods that are used in [58]
for such problems analogously to the way that the methods for the covered
problems are adapted.

For models without delays, the system state takes values in a subset of
some finite-dimensional Euclidean space, and the control is a functional of the
current state. For models with delays, the state space must take the path of
the delayed quantities (over the delay intervals) into account, and this makes
the problem infinite-dimensional. So a major issue in adapting the Markov
chain approximation method to models with delays concerns suitable “finite”
approximations to the “memory segments” so that a reasonable numerical
method can be devised, and much attention is given to this problem.

The methods of approximation that are developed are natural and seem
to be quite promising. They deal with issues of approximation that are fun-
damental. However to date there has been little numerical experience, and
considerable further work is required. Yet, judging from the experience with
no-delay problems, the methods that are developed are very likely to be the
foundation of useful algorithms. There are many additional difficulties to be
overcome before effective numerical methods for nonlinear stochastic delay
equations become a reality. One is rarely interested in an optimal control.
Since the model of interest is often not known precisely, or the implementation
of an optimal control might be difficult, what is desired is an understanding of
the structure of the control, and how it can be approximated. For the no-delay
case in low dimensions this is facilitated by being able to visualize the control
via graphical methods. This would be a considerable challenge when there are
delays.

Numerical optimization methods are often used as a means of exploring
the possible tradeoffs among competing criteria. One solves the optimization
problem repeatedly, varying the weights of the various components of interest,
to see how a decrease in the value of one component affects the values of the
other components, under conditions of optimality, as in [59]. Such information
can be invaluable to the system designer, even if optimality is not sought for
its own sake.

Next the contents of the various chapters of the book will be described.
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Outline of the book. Suppose that the effect of the control action is delayed
by an amount θ̄. This can cause serious instabilities. To effectively control
in such a case, in determining the current control action one must take into
account the control actions that were made in the recent past but whose effects
have not yet been seen by the controller, those up to θ̄ units of time back from
the present time. Chapter 1 contains some simple examples that dramatically
illustrate this point. It also describes the class of examples for which there
is a state transformation that reduces the problem to one in finitely many
dimensions. The narrowness of this class makes numerical methods all the
more important.

Chapter 2 is a summary of the main results that will be needed from the
theory of weak convergence of a sequence of random processes, and of the so-
called martingale problem for characterizing the limit of a weakly convergent
sequence. The theory of weak convergence is an extension to a sequence of
random processes of the theory of convergence in probability of a sequence
of random variables, and is a fundamental tool for approximation and limit
theorems. The primary processes of concern in the proofs of convergence are
continuous-time interpolations of the approximating chains, and we will need
to show that they have limits that are (in fact, optimal) controlled diffusions.
Weak convergence theory, together with the methods of the so-called martin-
gale problem for characterizing the limit procesess as the the desired diffu-
sions, provides the essential tools. With their use, the proofs of convergence
are purely probabilistic. For the no-delay case this probabilistic approach to
the proofs of convergence of numerical algorithms is the most powerful and
flexible. For the delay case, there does not seem to be any alternative since,
as noted above, the Bellman equation is infinite-dimensional and virtually
nothing is known about it.

Chapter 3 describes the controlled dynamical system models that will be
of main interest. The subject of delay equations is vast, whether determin-
istic, stochastic, or controlled or not; for example, see [27, 39, 44, 45, 51,
57, 68, 73, 74, 77, 78]. The behavior can be quire bizarre, as seen in the ex-
amples in [6, 74]. The numerical approximations that are of interest require
that the path take values in some compact subset G of a Euclidean space,
and this motivates the models. The process can be either stopped on first (if
ever) reaching the boundary of G, or else be prevented from leaving G by a
boundary reflection process, both being standard models in applications. The
stochastic differential equations with path and control delays are reviewed
for the cases where the process is either reflected from a boundary or not.
Relaxed controls, which are very helpful when dealing with approximation
and convergence in control problems, and the Girsanov transformation, an
approach to constructing control systems from uncontrolled systems, are dis-
cussed. The Girsanov transformation method will be crucial in dealing with
the ergodic cost problem in Chapter 5. When the control and possibly the re-
flection process and/or the driving Wiener process appear in a delayed form,
the most direct approaches to the numerical approximation could require an
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impossibly large memory. One promising way of alleviating this is discussed in
Chapter 9 and a dynamical model that is particularly useful for that approach
is introduced in Chapter 3.

The existence of an optimal control is also shown. The proof of this fact is
important because it is a template for the proofs of convergence of the system
and numerical approximations in subsequent chapters. Proofs of the existence
of solutions to uncontrolled stochastic delay equations of the diffusion type
(without reflecting boundaries) and some of their properties can be found in
[39, 68, 73, 74]. For the singular control problem, the definition of the model
and the existence of an optimal control are dealt with via a very useful “time
transformation” method, which is necessary owing to the possibly wild nature
of the associated paths and controls.

Numerical methods involve working with approximations of the original
problem whether there are delays or not. The design and success of a numer-
ical approximation is dependent upon the sensitivity of the original model to
perturbations in its structure since the numerical algorithm itself is an ap-
proximation to the original model. This issue of sensitivity is a particularly
acute problem when there are delays owing to the great sensitivity of many
such models to parameter variations. See, for example the examples in [74].
One must always be aware of this issue of sensitivity in constructing a nu-
merical approximation. Nevertheless it is important to simplify the original
dynamical model as much as possible without sacrificing the essential aspects
of the results. Fortunately, for many problems of interest, approximations that
are useful for numerical purposes can be obtained.

The key difference between the problem with and without delays is that
the state space for the problem with delays involves the “memory segments”
of the components whose delayed values appear in the dynamics. The first
step in the construction of a numerical approximation involves approximat-
ing the original dynamical system. In our case, this entails approximating the
delays and dynamics so that the resulting model is simpler, and ultimately
finite-dimensional. Chapter 4 is is devoted to a set of model simplifications
that have considerable promise when the path or path and/or control are de-
layed. A variety of approximations are presented, eventually leading to finite-
dimensional forms that will be used as the basis of numerical algorithms in
Chapters 7–9. To help validate the approximations, simulations that compare
the paths of the original and approximated system are presented, and it is
seen that the approximations can be quite good.

Delay equations might have rapidly time-varying terms, even rapidly vary-
ing delays. This complicates the numerical problem. But, under suitable con-
ditions, there are limit and approximation theorems that allow us to replace
the system by a simpler “averaged” one and some such results are presented
at the end of Chapter 4.

Chapter 5 is concerned with the average cost per unit time (ergodic cost)
problem for nondegenerate reflected diffusion models, where only the path is
delayed. The aim is to prepare ourselves for the needs of the numerical algo-
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rithms for this case. Hence the issues of model complexity and simplification
that were of concern in Chapter 4 are also of concern here. There are only a
few results on the ergodic theory for general delay equations. Some, dealing
with the problems of existence and convergence of the distributions to invari-
ant measures are [12, 18, 83, 86]. Since they are not quite adequate for the
needs of the numerical and approximation problems for the systems of inter-
est, the necessary results are developed, using methods based on the Girsanov
transformation and the Doeblin condition, and to the extent possible follow-
ing the procedures laid out in [56, Chapter 4]. Of particular interest is the
demonstration that the various model approximations developed in Chapter
4 can also be used for the ergodic cost problem.

The Markov chain approximation method for the model with no delays is
outlined in Chapter 6. We review of the key parts of [58] that will be needed in
the sequel. All of the usual process models and cost functions can be handled.
For efficiency, the development and analysis of the numerical algorithms in
the following chapters is organized to take advantage of the results in [58],
wherever possible, and it would be helpful if the reader has some familiar-
ity with that reference. The notation will be slightly different from that in
the references [31, 50, 58], since we wish to adapt or simplify it for the par-
ticular purposes of this book. The basic and unrestrictive local consistency
condition, methods of approximation, continuous time interpolations, and the
discounted, singular, impulsive control, and ergodic cost function are cov-
ered. The numerical algorithms are based on the finite-state Markov chain
approximation. But the convergence proofs are based on continuous-time in-
terpolations of the approximating chains. These interpolations are used for
the convergence proofs only and not for the numerical algorithms.

Owing to the local consistency condition, the dynamical system that is
represented by a continuous-time interpolation of the chain “resembles” the
original controlled diffusion process. Thus we would expect that the optimal
cost or the values of the functionals of interest would be close to those for
the diffusion. This is quantified by the convergence theorems. There are two
(asymptotically equivalent) methods of getting the approximating chains that
are of interest, called the “explicit” and “implicit” methods. They differ in
the way that the time variable is treated, and each can be obtained from the
other. The first method was the basic approach for the nondelay problem. The
second method will play a useful role in reducing the memory requirements
when there are delays.

The adaptation of the methods of the Markov chain approximation method
to the models with delays begins in Chapter 7 and is continued in Chapter 8.
It is shown in Chapter 7 that any method of constructing the approximating
chain for the no-delay problem can be readily adapted to the delay problem,
with the transition probabilities taking the delays into account. The only
change in the local consistency condition is the use of the “memory segment”
arguments in the drift and diffusion functions.
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The algorithms in Chapters 7–9 are well motivated and seem to be quite
reasonable. But since the subject is in its infancy, what is presented should
be taken as a first step, and will hopefully motivate further work. When
constructing a numerical approximation algorithm, there are two main issues
that must be kept in mind. The algorithm must be numerically feasible and
it must be such that there is a proof of convergence as the approximating
parameter goes to zero. These issues inform the structure of the development.

We start the development in Chapter 7 by working with numerical ap-
proximations to the original model. Then we turn our attention to the various
approximations to the original model that were developed in Chapter 4, with
an eye to the feasibility of their numerical approximations, taking the two
main issues cited above into consideration. It will be seen that variations of
the implicit approximation method of Chapter 6 can be advantageous in deal-
ing with the memory problem. The continuous-time interpolations that are
used for the convergence proofs are somewhat more complicated that those
for the no-delay case, owing to the need to represent the “memory segment”
argument in a way that is convenient for use in the proofs of convergence.

The development is continued in Chapter 8, where classes of numerical
approximations that we call the periodic and periodic-Erlang are given. The
chapter also contains the proofs of convergence for the algorithms in both
chapters. Where possible, the proofs follow the general lines that were used
for the no-delay case in [58]. As noted above, one interpolates the chain to a
continuous-time process in a suitable manner, shows that the Bellman equa-
tion for the interpolation is the same as for the chain, and then that the
interpolated processes converge to an optimal diffusion as the approximating
parameter goes to zero.

The methods of Chapters 7 and 8 are promising if only the path is delayed
or if the control is delayed but the control-value space has only a few points.
The memory requirements can become onerous if the reflection process and/or
the Wiener process also appear in delayed form, or if the control-value space
has more than a few points. Chapter 9 takes an alternative approach that
reduces the memory requirements for general nonlinear stochastic problems
where the control and reflection terms, as well as the path variables, are de-
layed. The approach was suggested by the work in [94] for linear deterministic
system with a quadratic cost function. Effectively, the delay equation is re-
placed by a type of stochastic wave equation with no delays, and its numerical
solution yields the optimal costs and controls for the original model. The rep-
resentation is equivalent to the original problem in that any solution to one
yields a solution to the other. The details of the appropriate Markov chain
approximation are given and the convergence theorem is proved. Theoreti-
cally, with the use of appropriate numerical approximations, the dimension of
the required memory vector is much reduced, although there is little practical
numerical experience as yet.

Because of the large sizes of the state spaces that arise in the numerical
approximations, it would seem that the topic is well suited for one of the
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various approaches that are known as approximate dynamic programming,
or even linear programming with suitably sampled constraints. See., e.g., the
references in [30, 87, 82]. The success of such approaches usually depends on
detailed insight into the “physics” of the problem, so that the approximation
can be tailored apprpriately. At this time, it is not at all clear how to use
such approaches for our problem, but one must always seek approaches that
simplify the problem while yielding meaningful results.

Numbering and cross referencing. Cross reference numbering within a
chapter does not include the chapter number. For example, within Chapter 5,
Equation 4 of Section 3 of Chapter 5 is called Equation (3.4), and Subsection
6 of Section 3 of Chapter 5 is called Subsection 3.6, with the analogous usage
for Theorem, Figure, and Assumption. Cross references between chapters do
include the chapter number. For example, in Chapter 5, a reference to Equa-
tion 4 of Section 3 of Chapter 2 is called Equation (2.3.4), and Subsection 6
of Section 3 of Chapter 2 is called Subsection 2.3.6, with the analogous usage
for Theorem, Figure, and Assumption.

A glossary of the more frequently used symbols appears at the end of the
book.

The author gratefully acknowledges the long-term support of the Army
Research Office and the National Science Foundation on numerical methods
in stochastic control.

Providence, Rhode Island, USA Harold J. Kushner
February 2008



http://www.springer.com/978-0-8176-4534-2


