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Weak Convergence and Martingales

2.0 Outline of the Chapter

This chapter contains a brief review of two of the main mathematical methods
for dealing with the convergence of a sequence of approximations to a stochas-
tic process or for showing that a sequence of stochastic processes has a limit
and for characterizing it. The first method is the theory of weak convergence
of a sequence of probability measures. The theory, which is an extension to
a sequence of random processes of the theory of convergence in probability
of a sequence of random variables, provides powerful tools for approximation
and limit theorems. Once one knows that the sequence of processes of concern
has a limit, that limit must be characterized. The methods of the so-called
martingale problem are a standard and powerful approach to doing such a
characterization, when the limit is a diffusion-type process.

The numerical approximations of concern will be representable as con-
trolled Markov chains with multistep memory. The convergence and approxi-
mation theorems of the later chapters, which are based on weak convergence
theory and the methods of the martingale problem, show that the expecta-
tions of a large set of functionals of these chains converge to the values for
the original process, as the approximation parameter goes to zero. In partic-
ular, the optimal cost values converge to the optimal value for the original
controlled process of interest. Also, suitable interpolations of the sequence of
approximating chains, under their optimal controls, converges to an optimal
limit process. In addition, for numerical purposes one often approximates the
original model and uses that for the numerical computations. Then one must
show that these approximations do indeed provide results that are close to
those for the original model. The same methods are employed for these pur-
poses. Only an outline of the results that are of main use to us will be given.
The comprehensive references [8, 23] contain full details and much additional
information. The references [55, 58, 61, 56] contain many applications of these
methods to control and communications systems or to numerical approxima-
tions.
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2.1 Weak Convergence

Let IRk denote Euclidean r-space with canonical value x = (x1, . . . , xk), and
let {Xn} be a sequence of IRk-valued random variables on a probability space
(Ω,F , P ). If there is an IRk-valued random variable X such that Ef(Xn) →
Ef(X) for each bounded and continuous real-valued function f(·) on IRk,
then Xn converges to X in distribution. The sequence {Xn} is said to be tight
or, equivalently said, bounded in probability if

lim
K→∞

sup
n

P {|Xn| ≥ K} = 0. (1.1)

An equivalent definition is that for each small µ > 0 there are finite Mµ and
Kµ such that P {|Xn| ≥ Kµ} ≤ µ for n ≥ Mµ. Convergence in distribution is
also called weak convergence. Tightness is a necessary and sufficient condition
that any subsequence of {Xn} have a further subsequence that converges in
distribution [10, 23].

Let {ξn} be a sequence of mutually independent and identically distributed
real-valued random variables, with mean zero and unit variance and w(·) a
real-valued Wiener process with unit variance parameter. For t > 0 define

wn(t) =
1√
n

[nt]∑
i=1

ξi, (1.2)

where [nt] denotes the integer part of nt. Then the central limit theorem says
that wn(t) converges in distribution to a normally distributed random variable
with mean zero and variance t.

For an integer k, and 0 = t0 < t1 < · · · < tk+1, the multivariate central
limit theorem [10] says that {wn(ti+1)−wn(ti), i ≤ k} converges in distribu-
tion to {w(ti+1) − w(ti), i ≤ k}. Now consider wn(·) to be a random process
with paths that are constant on the intervals [i/n, (i+1)/n). It is then natural
to ask whether the sequence of processes wn(·) converges to w(·) in a stronger
sense. For example, will the distribution of the maximum max{wn(t) : t ≤ 1}
converge in distribution to max{w(t) : t ≤ 1} ? Donsker’s theorem states that
F (wn(·)) converges in distribution to F (w(·)) for a large class of functionals
F (·) [7, 23], for example for measurable F (·) that depend on only a finite
segment of the path and are continuous almost everywhere with respect to
the measure of w(·). This is an example of the theory of weak convergence.

The two main steps in getting the limit theorems for random processes
are analogous to what is done for proving the central limit theorem: First
show that there are appropriately convergent subsequences and then identify
the limits. For vector-valued random variables, the necessary and sufficient
condition (1.1) for the first step says that, neglecting an n-dependent set of
small (uniformly in n) probability, the values of the random variables Xn

are confined to some compact set. When random processes replace random
variables, there will be an analogous condition ensuring that the paths are in
a compact set with a “high probability.”
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2.1.1 Basic Theorems of Weak Convergence

Definitions. Let S denote a metric space with metric ρ(·) and C(S) the
set of real-valued continuous functions on S, with Cb(S) being the subset of
bounded functions. Let B(S) denote the collection of Borel subsets of S. Let
P(S) denote the space of probability measures on (S,B(S)). Let Xn, n < ∞,
and X be S-valued random variables, with distributions Pn, n < ∞, and P ,
respectively. The sequence {Xn, n < ∞} is said to converge in distribution
to X if Ef(Xn) → Ef(X) for all f ∈ Cb(S) or, equivalently written, if∫

S
f(s)Pn(ds) →

∫
S

f(s)P (ds). This is called weak convergence and written
as Pn ⇒ P . We will often say that the sequence of random variables Xn

converges weakly to X, and denote this by Xn ⇒ X as well. The X will be
said to be the weak-sense limit.

For λ ∈ Λ, an arbitrary index set, let Pλ ∈ P(S). The set {Pλ, λ ∈ Λ} is
called tight if for each ε > 0 there is a compact set Kε ⊂ S such that

inf
λ∈Λ

Pλ(Kε) ≥ 1 − ε. (1.3)

If Pλ is the measure defined by an S-valued random variable Xλ, then we will
also say that {Xλ, λ ∈ Λ} is tight. If all of the Xλ are defined on the same
probability space, then (1.3) is equivalent to

inf
λ∈Λ

P {Xλ ∈ Kε} ≥ 1 − ε. (1.4)

The Prohorov metric. Let Pi ∈ P(S), i = 1, 2. For A ∈ B(S), define the
set Aε = {s′ : ρ(s′, s) < ε for some s ∈ A}. Then the Prohorov metric π(·) on
P(S) is defined by

π(P1, P2) = inf {ε > 0 : P1(A) ≤ P2(Aε) + ε for all closed A ∈ B(S)} ,

and is always used on the space P(S). The following two theorems are funda-
mental.

Theorem 1.1. [23, page 101.] If S is complete and separable, then P(S) is
complete and separable.

Theorem 1.2. [23, Theorem 3.2.2.] If S is complete and separable, then a set
{Pλ, λ ∈ Λ} ⊂ P(S) has compact closure if and only if {Pλ, λ ∈ Λ} is tight.

Suppose that S is complete and separable and that a given sequence of
probability measures has compact closure (Prohorov metric). Theorem 1.2
then implies the existence of a convergent subsequence [19, Theorem 13, page
21]. The theorem gives a practical method for verifying the compact closure
property, as tightness is also a property of the random variables (or processes)
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associated with the Pλ. These random variables typically have explicit rep-
resentations (for example, they might be solutions to a stochastic differential
equation) that can be used to verify the tightness property. A sequence of
vector-valued random variables is tight if the sequence of each of its compo-
nents is tight, as asserted in the next result.

Corollary 1.3. Let S1 and S2 be complete and separable metric spaces, and
define S = S1 × S2 with the usual product space topology. For {Pλ, λ ∈ Λ} ⊂
P(S), let Pλ,i be the marginal distribution of Pλ on Si. Then {Pλ, λ ∈ Λ} is
tight if and only if {Pλ,i, λ ∈ Λ}, i = 1, 2, are tight.

The next theorem contains some statements that are equivalent to weak
convergence. Let ∂B be the boundary of the set B ∈ B(S).

Theorem 1.4. [23, Theorem 3.3.1.] Let S be a metric space and let Pn, n < ∞,
and P be elements of P(S). Then statements (i)–(iv) below are equivalent and
are implied by (v). If S is separable, then (i)–(v) are equivalent:

(i) Pn ⇒ P,
(ii) lim supn Pn(F ) ≤ P (F ) for closed sets F,

(iii) lim infn Pn(O) ≥ P (O) for open sets O,
(iv) limn Pn(B) = P (B) if P (∂B) = 0,
(v) π(Pn, P ) → 0.

The theorem implies that, for separable S, convergence in the Prohorov
metric is equivalent to weak convergence. Part (iv) implies the following im-
portant extension of the class of functionals that converge in distribution.

Theorem 1.5. [7, Theorem 5.1.] Let S be a metric space, and let Pn, n < ∞,
and P be probability measures on P(S) satisfying Pn ⇒ P . Let f(·) be a real-
valued measurable function on S and define Df to be the measurable set of
points at which f(·) is not continuous. Let Xn and X be random variables
that induce the measures Pn and P on S, respectively. Then f(Xn) ⇒ f(X)
whenever P{X ∈ Df} = 0.

The Skorokhod representation. Suppose that Xn ⇒ X, where the Xn and
X might be defined on different probability spaces. The probability spaces
are unimportant, as weak convergence is a statement on the measures of the
random variables. But for the purpose of characterizing the weak-sense limit
X, it can be very useful to have all processes defined on the same space and
weak convergence replaced by probability one convergence. This can be done
without changing the distributions of the Xn or X. The result is known as
the Skorokhod representation [23].
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Theorem 1.6. [23, Theorem 3.1.8.] Let S be a separable metric space, and
assume that Pn ∈ P(S) converges weakly to P ∈ P(S) as n → ∞. Then
there exists a probability space (Ω̃, F̃ , P̃ ) on which there are defined random
variables X̃n, n < ∞, and X̃ such that for all Borel sets B and all n < ∞,

P̃
{

X̃n ∈ B
}

= Pn (B) , P̃
{

X̃ ∈ B
}

= P (B) , (1.5)

and such that
X̃n → X̃ with probability one. (1.6)

2.1.2 The Function Spaces D(S; I)

For a complete and separable metric space S, let D(S; I) denote the set of S-
valued functions on the interval I that are right continuous and have left-hand
limits. Let C(S; I) denote the subset of continuous functions. The interval
I will be either [0,∞), [t1,∞) or [t1, t2] for some t1 < t2. Even when the
weak-sense limit processes have continuous paths, it is usually easier to prove
tightness and weak convergence using the path spaces D(S; [0,∞)). If there
are Poisson jumps in the system dynamics or if the control is of an impulsive
or singular nature, then D(S; [0,∞)) must be used. We next define the metric.

The Skorokhod metric [23, Chapter 3.5], [7, Chapter 3]. For T > 0, let ΛT

denote the space of continuous and strictly increasing functions from [0, T ]
onto [0, T ]. The functions in this set will be “allowable timescale distortions.”
For λ(·) ∈ ΛT define

|λ| = sup
s<t

∣∣∣∣log
{

λ(t) − λ(s)
t − s

}∣∣∣∣ .
The Skorokhod metric d′T (·) on D(IRk; [0, T ]) is defined by, for λ(·) ∈ ΛT ,

d′T (f(·), g(·)) = inf{ε : |λ| ≤ ε, sup
0≤s≤T

|f(s) − g(λ(s))| ≤ ε, for some λ(·)}.

(1.7)
On the space D(IRk; [0,∞)), the metric is defined by

d′(f(·), g(·)) =
∫ ∞

0

e−t min [1, d′t(f(·), g(·))] dt. (1.8)

Now let S be a complete and separable metric space with metric ρ(·). Then
the Skorokhod metric on the spaces D(S; [0, T ]) is defined by the d′T (·) above,
but with ρ(f(s), g(λ(s))) used in place of |f(s)−g(λ(s))|, where both f(·) and
g(·) are now points in D(S; [0, T ]). Define the space D(S; [0,∞)) analogously.
If S is complete and separable, then so are D(S; [0, T ]) and D(S; [0,∞)) [23].

If fn(·) → f(·) in dT (·) where f(·) is continuous, then the convergence
must be uniform on [0, T ]. If there are ηn → 0 such that the discontinuities
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of fn(·) are less than ηn in magnitude and if fn(·) → f(·) in dT (·), then the
convergence is uniform on [0, T ] and f(·) must be continuous. Because of the
“timescale distortion” that is involved in the definition of the metric dT (·),
we can have (loosely speaking) convergence of a sequence of discontinuous
functions where there are only a finite number of discontinuities, where both
the locations and the values of the discontinuities converge, and a type of
“equicontinuity” condition holds between the discontinuities. See [7, 23] for
full detail.

A criterion for tightness in D(S; [0, T ]) and D(S; [0,∞)). The following
criterion for tightness will be used. Recall that for a filtration {Ft, t ≥ 0}, the
random time τ is an Ft-stopping time if {τ ≤ t} ∈ Ft for all t ∈ [0,∞).

Theorem 1.7. [49, Theorem 2.7b.] Let xn(·) be processes with paths in
D(S; [0,∞)), where S is a complete and separable metric space with metric
ρ(·). For each δ > 0 and rational t < ∞, let there be a compact set Sδ,t ⊂ S
such that

sup
n

P (xn(t) �∈ Sδ,t) ≤ δ. (1.9)

Let Fn
t be the σ-algebra determined by {xn(s), s ≤ t} and let Tn(T ) be the

set of Fn
t -stopping times that are no bigger than T . Suppose that

lim
δ→0

lim sup
n

sup
τ∈Tn(T )

E min {1, ρ(xn(τ + δ), xn(τ))} = 0 (1.10)

for each T < ∞. Then {xn(·), n < ∞} is tight in D(S; [0,∞)).

Let C(G; [a, b]) denote the space of S-valued continuous functions on the
interval [a, b] with the sup norm topology, where G is a compact subset of a
Euclidean space. If the interval [a, b] is unbounded, then the local sup norm
topology is used. The next theorem gives a necessary and sufficient condition
for tightness of sequence of G-value continuous processes.

Theorem 1.8. [8, Theorem 7.3.] The sequence of G-valued processes xn(·) is
tight in C(G; [0, 1]) if and only if: For each ε > 0 and η > 0, there is a δ > 0
and an n0 < ∞ such that, for n ≥ n0,

P

{
sup
iδ<1

sup
s≤δ

|xn(s) − xn(iδ)| ≥ ε

}
≤ η.

2.2 Martingales and the Martingale Method

2.2.1 Martingales

Definitions. Let (Ω,F , P ) denote a probability space. It will always be
assumed that F is complete; i.e., it contains all subsets of P -null sets.
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Let F × B([0,∞)) denote the completion of the product σ-algebra with re-
spect to the product measure, with Lebesgue measure used on B([0,∞)). A
function φ(·) on Ω × [0,∞) and with values φ(ω, t) in some metric space
S is said to be a measurable process if it is a measurable mapping from
(Ω × [0,∞),F × B([0,∞))) to (S,B(S)). All processes are assumed to be
measurable and separable. It is always assumed that S and C(S; [0,∞)) and
D(S; [0,∞)) are complete and separable metric spaces ([7, 23]).

A family of σ-algebras {Ft, t ≥ 0} is called a filtration on this probability
space if Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t. We will always assume that the
Ft are complete in that Ft contains all the subsets of null sets in F . If A is
a collection of random variables defined on (Ω,F , P ), then we use F(A) to
denote the σ-algebra generated by A. Let EFt

and PFt
denote the expectation

and probability, respectively, conditioned on the σ-algebra Ft.
Let M(·) be a stochastic process defined on (Ω,F , P ) with filtration

{Ft, t ≥ 0}. If M(t) is Ft-measurable for each t, then M(·) is said to be
Ft-adapted. Let M(·) be Ft-adapted and take values in the path space
D(IRk; [0,∞)). Then M(·) is said to be an Ft-martingale if E|M(t)| < ∞
for all t ≥ 0 and

EFtM(t + s) = M(t) w.p.1 for all s, t ≥ 0. (2.1)

If the filtration is unimportant or obvious, then we will simply say that M(·)
is a martingale. If M(·) is an Ft-martingale, then it is also an F(M(s), s ≤ t)-
martingale. We say that {F(M(s), s ≤ t), t ≥ 0} is the filtration generated by
M(·).

Martingales are a fundamental tool in stochastic analysis. Processes can
often be decomposed into a sum of a process of bounded variation and a
martingale. This decomposition can be used to facilitate the analysis, as the
bounded-variation term is often relatively easy to handle, and there are many
useful techniques for the analysis of martingales. The following inequalities
will be useful. Let M(·) be a real or vector-valued Ft-martingale with paths
in D(IRk; [0,∞)) for some k ≥ 1. Then [10, 16, 42, 76] for any c > 0 and
0 ≤ t ≤ T ,

PFt

{
sup

t≤s≤T
|M(s)| ≥ c

}
≤ EFt |M(T )|2/c2 w.p.1, (2.2)

EFt
sup

t≤s≤T
|M(s)|2 ≤ 4EFt

|M(T )|2 w.p.1. (2.3)

Stopping time. Let {Ft, t ≥ 0} be a filtration. If M(·) is an Ft-martingale
and τ is an Ft-stopping time, then the “stopped” process defined by M(t∧ τ)
is also an Ft-martingale [10, 76]. Let Fτ denote the “stopped” σ-algebra that
is composed of the sets A ∈ F such that A ∩ {τ ≤ t} ∈ Ft for all t.
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2.2.2 Verifying That a Process Is a Martingale

We now give a method that will be useful in showing that a process is a
martingale. It is only a rewording of the definition of a martingale in terms of
conditional expectations.

Let Y be a vector-valued random variable with E|Y | < ∞, and let V (·)
be a process with paths in D(S; [0,∞)), where S is a complete and separable
metric space. Suppose that for some given t > 0, each integer p and each set of
real numbers 0 ≤ si ≤ t, i = 1, . . . , p, and each bounded and continuous real-
valued function h(·), Eh(V (si), i ≤ p)Y = 0. This fact and the arbitrariness
of p, si, t, and of the function h(·) imply that

E[Y |V (s), s ≤ t] = 0

with probability one [10].
Next, let U(·) be a random process with E|U(t)| < ∞ for each t, with

values in D(S; [0,∞)), and such that for all p, h(·), si ≤ t, i ≤ p, as given
above, and a given real τ > 0,

Eh(U(si), i ≤ p) [U(t + τ) − U(t)] = 0. (2.4)

Then E[U(t + τ) − U(t)|U(s), s ≤ t] = 0. If this holds for all t and τ > 0,
then by the definition (2.1) of a martingale, U(·) is a martingale with respect
to the filtration generated by U(·). It is often more convenient to work with
the following more general setup.

Theorem 2.1. Let U(·) be a random process with paths in D(IRk; [0,∞)) and
with E|U(t)| < ∞ for each t. Let V (·) be a process with paths in D(S; [0,∞)),
where S is a complete and separable metric space. Let U(t) be measurable on
the σ-algebra FV

t determined by {V (s), s ≤ t}. Suppose that for each real t ≥ 0
and τ ≥ 0, each integer p, and each set of real numbers si ≤ t, i = 1, . . . , p,
and each bounded and continuous real-valued function h(·),

Eh(V (si), i ≤ p) [U(t + τ) − U(t)] = 0. (2.5)

Then U(·) is an FV
t -martingale.

An application. A sufficient condition for a Wiener process. The
numerical approximations can be represented as processes that have the drift
of the original diffusion and are driven by martingales. For the convergence
proofs one needs to prove that these martingales converge to a Wiener process.
The following result is useful for this purpose.

A process v(·) is said to be nonanticipative with respect to a Wiener
process w(·) if w(·) is a martingale with respect to the filtration gener-
ated by (v(·), w(·)). Equivalently, for all t, w(t + ·) − w(t) is independent
of {v(s), w(s), s ≤ t}. Let x(·) and z(·) be IRr-valued continuous processes
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with z(·) having bounded variation (w.p.1) on any bounded time interval.
Let b(·), σ(·), x(·) be measurable processes and define a(t) = σ(t)σ′(t) =
{ai,j(t); i, j}. For f(·) a real-valued function with compact support that is
continuous and bounded together with its first and second derivatives, define

Lf(x(t)) = f ′
x(x(t))b(t) +

1
2

∑
i,j

ai,j(t)fxixj (x(t)).

Let h(·) be a bounded and continuous function of its arguments, and for
an integer k, and nonnegative t, T , let 0 ≤ t1 ≤ · · · ≤ tk < t < t + T , and let
f(·) be as above. Suppose that for all such h(·), f(·), k, t, T, ti, we have

Eh (x(ti), b(ti), σ(ti), z(ti), i ≤ k)

×
[
f(x(t + T )) − f(x(t)) −

∫ T

t

(Lf(x(s))ds + f ′
x(x(s))dz(s))

]
= 0.

(2.6)
Then there is a standard IRr-valued Wiener process on the same probability
space (perhaps augmenting the space by adding an “independent” Wiener pro-
cess) such that [42, Chapter 5, Proposition 4.6] x(·), z(·), b(·), σ(·) are nonan-
ticipative with respect to w(·), and

x(t) = x(0) +
∫ t

0

b(s)ds +
∫ t

0

σ(s)dw(s) + z(t).
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