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Abstract: The triangular distribution, although simpler than the beta distribution
both for mathematical treatment and for natural interpretation, has not been widely
used in the literature as a modelling tool. Applications of this distribution as an alter-
native to the beta distribution appear to be limited in financial contexts and specifically
in the assessment of risk and uncertainty and in modelling prices associated with trad-
ing single securities. One of the basic reasons is that it can have only a few shapes.
In this paper, a new class of distributions stemming from finite mixtures of the tri-
angular distribution is introduced. Their polygonal shape makes them appealing for
modelling purposes since they can be used as simple approximations to several distri-
bution functions. Properties of these distributions are studied and parameter estimation
is discussed. Further, the distributions arising when using the triangular distribution
instead of the beta distribution as the mixing distribution in the case of two well-
known beta mixtures, the beta-binomial and the beta-negative binomial distribution,
are examined.

Keywords and phrases: Triangular distribution, binomial mixtures, negative bino-
mial mixtures, triangular-binomial distribution

2.1 Introduction

The probability density function (pdf) of the triangular distribution is given by

f(x | θ) =
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0 ≤ x ≤ θ

θ ≤ x ≤ 1

elsewhere

(2.1)

with “0/0” interpreted as 1. The above definition restricts the random variable X in
the interval [0, 1]. One can define in a similar manner triangular distributions in a finite
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interval [α, β] by considering the transformation Y = X−α
β−α . From (2.1), one can see

that the density is linearly increasing in the interval [0, θ) and linearly decreasing in
the interval [θ, 1] (θ is the mode of the distribution). The distribution is not symmet-
ric except for the case θ = 1/2. The parameter θ is allowed to take the values 0 and
1, using the appropriate part of the definition given in (2.1). More details about the
triangular distribution can be found in van Dorp and Kotz (2004) and the references
therein. Johnson (1997) and Johnson and Kotz (1999) refocused interest in the trian-
gular distribution, which appeared to have been ignored as a modeling tool over the
last decades, one of the most probable basic reasons being that it can have only a few
shapes.

In this paper, a new class of distributions is introduced stemming from finite mix-
tures of the triangular distribution. Contrary to the triangular distribution, the mem-
bers of this class have a shape flexibility that makes them appealing for modeling
purposes. Because of their shape, which is polygonal, these distributions are termed in
the sequel polygonal distributions.

The paper is organized as follows. Following a brief presentation of the triangular
distribution in Section 2.2, the polygonal distribution is defined as a finite mixture of
triangular component distributions in Section 2.3. Properties of it and estimation are
discussed. In Section 2.4, mixture distributions arising when using the triangular as
an approximation to a beta mixing distribution are examined. In particular, the cases
of beta mixtures of binomial and negative binomial distributions are considered. The
paper concludes with some remarks in Section 2.5.

2.2 The Triangular Distribution

We briefly review some properties of the triangular distribution that can have potential
use in the context of polygonal distributions.

The triangular distribution consists of two parts that are truncated forms of the
Beta(α, β) distribution with density

f(x) =
1

B(α, β)
xα−1(1 − x)β−1, 0 ≤ x ≤ 1, α, β > 0, B(α, β) =

Γ (α)Γ (β)
Γ (α + β)

. (2.2)

In particular, the first part is a tail truncated Beta(2, 1) distribution, while the second
part a head truncated Beta(1, 2) distribution, both truncated at θ. The triangular
distribution also arises as the distribution of the mean of two uniform random variables.

The s− th simple moment of the distribution is given by

μs =
2(1 − θs+1)

(s + 1)(s + 2)(1 − θ)
. (2.3)

The above expression holds for not necessarily integer values of s, which enables com-
putation of non-integral moments of a triangular variate.

Noting that 1 − θs+1 = (1 − θ)
s
∑

i=0

θi, for integer s ≥ 0, simple moments can be

rewritten as
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μs =
2

s
∑

i=0

θi

(s + 1)(s + 2)
, s = 1, 2, . . . (2.4)

and can be computed recursively using

μs+1 =
2θs+1

(s + 2)(s + 3)
+
(

s + 1
s + 3

)

μs (2.5)

for s = 0, 1, . . . with μ0 = 1. It can easily be verified that

E(X) =
(1 + θ)

3
and V ar(X) =

(1 − θ + θ2)
18

implying that the mean ranges from 1/3 to 2/3 and the variance becomes minimum at
θ = 0.5. It holds also that the first inverse moment has the form

μ−1 = E(X−1) =
−2 log(θ)
(1 − θ)

,

and that the second inverse moment does not exist since the corresponding integral
diverges.

Random variate generation from the triangular distribution is simple via the in-
version method. Finally, ML estimation is described in Johnson and Kotz (1999) and
van Dorp and Kotz (2004). Note that since the ML estimate is necessarily one of the
observations, it suffices to evaluate the likelihood at all the observations to locate the
maximum. Some references about the triangular distribution can be found in Johnson
and Kotz (1999) and van Dorp and Kotz (2004).

2.3 The Polygonal Distribution

Let fj(x | θj), j = 1, 2, . . . , k be the probability densities of k independent triangular
variables on [0, 1] with parameters θj, j = 1, . . . , k. A broad family of distributions
stemming from these densities with interesting properties arises from a mixture of
them defined by the probability density function

fk(x) =
k
∑

j=1

pjfj(x | θj) (2.6)

with mixing proportions {pj}k
j=1 satisfying pj > 0, 1 ≤ j ≤ k and

∑k
j=1 pj = 1.

This distribution has a polygonal form with at most k points of inflection. Some
members of the family of distributions are depicted in figure 2.1. Observe that the
densities are piecewise linear, a feature that offers great flexibility as far as shape is
concerned. The probability density function defined by (2.6) and (2.1) can take shapes
which are not common in other distributions. For example, a 2-polygonal distribution
with p = 0.5 and θ1 = 0.25, θ2 = 0.75 is flat over the interval (0.25, 0.75), having a
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Figure 2.1. Examples of polygonal distributions. The depicted densities correspond to the
following choices of parameter values: (a) p1 = p2 = p3 = 1/3 and θ1 = 0.1, θ2 = 0.5, θ3 = 0.9,
(b) p1 = 0.4, p2 = 0.4, p3 = 0.2 and θ1 = 0.1, θ2 = 0.2, θ3 = 0.9, (c) p1 = 0.8, p2 = 0.1, p3 = 0.1
and θ1 = 0.25, θ2 = 0.5, θ3 = 0.25, (d) p1 = p2 = 0.5 and θ1 = 0.25, θ2 = 0.75, (e) p1 = p2 =
p3 = p4 = 1/4 and θ1 = 0.1, θ2 = 0.5, p3 = p4 = 1/4 and θ1 = 0.7, θ2 = 0.8, θ3 = 0.9, θ4 = 0.95

modal interval, rather than a mode. When components are close together and their
number becomes larger and larger, the density approaches a smooth curve.

In the sequel, the distribution with k triangular components defined above is inter-
changeably referred to as the k-polygonal distribution or as the polygonal distribution.
We also assume for simplicity that its components are ordered with respect to the
values of their parameters θi.

The mean and variance of the polygonal distribution are given by

E(X) =
1
3

+
1
3

k
∑

j=1

pjθj and

V ar(X) =
1
6
− 1

18

k
∑

j=1

pjθj +
1
6

k
∑

j=1

pjθj
2 − 1

9

⎛

⎝

k
∑

j=1

pjθj

⎞

⎠

2

,

respectively. It can be seen that the mean lies in the interval (1/3, 2/3).
Monotonicity It can be easily verified that the polygonal distribution has always

a unique mode. This is supported by the fact that the segments of its density function
over the intervals (θj , θj+1) given by

fk(x) =
k
∑

i=j+1

pi
2x
θi

+
j
∑

i=1

pi
2(1 − x)
(1 − θi)

, j = 0, . . . , k, θ0 = 0; θk+1 = 1 (2.7)
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have derivatives given by

f ′k(x) = 2

⎛

⎝

k
∑

i=j+1

pi

θi
−

j
∑

i=1

pi

(1 − θi)

⎞

⎠ . (2.8)

Hence, the derivative of fk(x) is constant in each interval (θj , θj+1). It starts from a
positive value, implying that the density is increasing in the first interval and, since
in (2.8) at each interval a negative quantity replaces a positive one, continues to be
increasing, but with a smaller and smaller slope over the following subintervals. As
a result, the derivative corresponding to any of the sub-intervals is smaller than the
derivative of the preceding sub-interval. The mode of the distribution occurs at the
interval where the derivative becomes negative for the first time.

The position of the mode depends on the mixing proportions and it is not easy to
be determined for general k. However, the mode is necessarily one of the θ′s or a modal
interval from θj to θj+1. For the mode of the 2-polygonal distribution, in particular,
the following result holds

Proposition 1. For a 2-polygonal distribution if p1 > 1−θ1
θ2−θ1+1 , the mode is located at

the point θ1, otherwise, the mode is located at the point θ2 . When p1 = 1−θ1
θ2−θ1+1 the

distribution has a modal interval (the interval (θ1, θ2)) instead of a mode.

For a proof, note that in accordance with the above, the density of the distribution
is increasing in the first interval and decreasing in the third interval. Hence, the mode
will be located at θ1 or at θ2 according as the derivative of the density over the second
interval (θ1, θ2) given by f ′k(x) = 2

(

p2
θ2

+ p1
(1−θ1)

)

is negative or positive; equivalently,

according as p1 exceeds or is exceeded by 1−θ1
θ2−θ1+1 . Note that if p1 = 1−θ1

1−θ1+θ2
, the

derivative f ′k(x) equals 0, and thus the distribution has a modal interval from θ1 to θ2,
where the density takes a constant value. Such a distribution will have a trapezoidal
shape. Note that letting θ1 → 0, while θ2 → 1, the distribution tends to a uniform
distribution.

2.3.1 Estimation

ML estimation can be carried out using the finite mixture representation via an EM
algorithm. This comprises the following steps.

Step 1 (E-step): Given the current values for the parameters, say θj
old and pj

old,
j = 1, . . . , k, calculate

wij =
pj

oldf(xi | θj
old)

fk(xi)
,

where f(x | θ) and fk(x) are given in (2.1) and (2.6) respectively.
Step 2 (M-step): For each component j, j = 1, . . . , k update pj by

pnew
j =

n
∑

i=1

wij/n,

then update θj by solving Lj(θ) =
n
∑

i=1

wij log f(xi | θ).
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The maximization can be easily carried out, since the solution is one of the obser-
vations and thus evaluating Lj at all the observations suffices to locate the maximum.
Note that wij ’s do not depend on the estimate and hence the monotonicity of the
likelihood holds as in Johnson and Kotz (1999).

2.4 The Polygonal Distribution as a Mixing Density

This section looks at the polygonal distribution as a mixing distribution in mixtures of
discrete distributions {pθ(x);x = 0, 1, . . . ,m},m ∈ Z+ ∪{0} with parameter θ ∈ (0, 1).
These can obviously be seen as finite mixtures of triangular mixtures on θ of pθ(·)
due to the associative property of finite mixtures. This is particularly appealing in the
context of applications since then one can focus on triangular mixtures that are of a
simpler structure. The application potential of the triangular and hence the polygonal
distribution, is particularly enhanced in the area of mixtures by Johnson’s (1997) re-
sult, which shows that any beta distribution can always be closely approximated by a
triangular distribution.

In the remainder of this section we discuss the distributions to which two well known
beta mixtures, the beta-binomial and the beta-negative binomial, are converted when
the beta form of their mixing density is transitioned to a triangular form.

2.4.1 The binomial–triangular distribution

The binomial distribution is a prominent member of the family of discrete distribu-
tions. Mixtures of the binomial distribution with respect to the parameter p have been
considered in the literature. Such mixtures have probability functions of the form

P (X = x) =
(

n
x

)
1
∫

0

px(1 − p)n−xdG(p), x = 0, 1, . . . , n. (2.9)

Note that G(p) denotes a generic mixing distribution that can be either a finite step
distribution giving positive probabilities at only a finite number of points or a con-
tinuous distribution. Some identifiability problems arise for small values of n (see, for
example, Follmann and Lambert (1991)). The distribution is identifiable only up to the
first n moments of the mixing distribution.

The beta-binomial (B-B) is the best known member of the family of binomial mix-
ture distributions. It arises when the parameter p follows a beta distribution (see, for
example, Tripathi and Gurland (1994) and the references therein). Only a few other bi-
nomial mixtures have been developed, mainly due to numerical difficulties (see Alanko
and Duffy (1996), Horsnell (1957), Brooks et al. (1997)).

Assume that the parameter p has a triangular distribution given in (2.1). Then the
resulting probability function is given by

P (X = x) = 2
(

n
x

)

⎛

⎝

1
θ

θ
∫

0

px+1(1 − p)n−xdp +
1

1 − θ

1
∫

θ

px(1 − p)n−x+1dp

⎞

⎠ . (2.10)
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Both integrals are in fact incomplete beta integrals (see Abramowitz and Stegun (1974))
defined as Bx(α, β) =

∫ x

0
tα−1(1 − t)β−1dt. Using the representation

Ix(α, β) =
Bx(α, β)
B(α, β)

,

with Ix(α, β) = 1 − I1−x(β, α) and Ix(α, β) = xIx(α− 1, β) + (1 − x)Ix(α, β − 1), and
after tedious algebraical manipulations one can write the probability function of the
binomial-triangular (B-T) distribution as

P (X = x) = 2
(

n
x

)

(θ−1Bθ(x + 2, n− x + 1) +

+ (1 − θ)−1B(x + 1, n− x + 2) + (1 − θ)−1Bθ(x + 1, n− x + 2)).

This probability function is quite awkward for calculations as it involves incomplete
beta functions. One can improve by considering recurrence relationships for beta inte-
grals and incomplete beta integrals. A simpler method can be used for calculating the
probabilities, based on a finite series representation of the probability mass function.

Sivaganesan and Berger (1993) showed that for a general G(p) the resulting mixed
binomial distribution can be written as

P (X = k) =
n
∑

j=k

h(j, k)E(pj), k = 0, 1, . . . , n, (2.11)

where h(j, k) = (−1)j−k n!
k!(j−k)!(n−j)! for j ≥ k and 0 if j < k, E(pr) denotes the r− th

simple moment of the mixing distribution. For the case of the triangular distribution,
we obtain

P (X = k) =
n
∑

j=k

h(j, k)
2

j
∑

i=0

θi

(j + 1)(j + 2)
, k = 0, 1, . . . , n. (2.12)

Computationally, this form is particularly convenient,since the coefficients h(j, k) can
be easily computed recursively using

h(0, 0) = 1, h(j + 1, j + 1) =
n− j

j + 1
h(j, j), j = 0, 1, . . . , n and

h(j + 1, k) = − n− j

j − k + 1
h(j, k), j = k =, . . . , n− 1,

while the moments of the triangular distribution can be derived recursively. Evaluation
of the probability function using the above form is easy and inexpensive. Even for large
values of n near 200, no overflows were encountered for the entire range of values of θ.

A graphical comparison of the resulting distribution to the B-B distribution with
the same mean and variance indicates a close agreement (see figure 2.2).

The mean and the variance of the B-T distribution are given by

E(X) = nE(p) =
n(1 + θ)

3
and V ar(X) =

n(n + 3)
18

− n(n− 3)θ(1 − θ)
18

,
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Figure 2.2. Plots of the probability function of the B-T distribution for n = 15 and
θ = 0.5, 0.25, 0.75, 0.1 superimposed by plots of the B-B with the same mean and variance

respectively. Note that there is a symmetry analogous to that existing in the case of
the simple binomial distribution. So if X follows a B-T distribution with parameter θ,
then Y = 1 −X follows a B-T distribution with parameter 1 − θ.

The simple moments can be derived easily from the simple moments of the binomial
distribution. It holds, in particular, that the simple moments of the B-T distribution
are given by

μr = 2
r
∑

j=0

S(r, j)n!
(n− r)!

j
∑

i=0

θi

(j + 1)(j + 2)
,

where S(r, j) denote the Stirling numbers of the second kind .
Moment estimates of the parameter θ can be obtained through equating the mean

with the sample mean. This yields the unbiased estimator θ̂ = 3n−1x̄− 1, which leads
to parameter estimates whenever x̄ is in the range (n/3, 2n/3). The variance of the
moment estimator is given by V ar(θ̂) = 9

n2
V ar(X)

N , where N denotes the sample size.
From (2.12), we can see that the probability function is a polynomial with respect

the parameter θ. The same is true for the likelihood. Direct maximization is not easy be-
cause of the sum involved in the probability function, but grid search is not prohibitive
since we have only one parameter distribution in a limited range of values.

2.4.2 An application

As an application of the B-T distribution illustrating a notable closeness to the B-B
distribution, consider the data in table 2.1. The data refer to the numbers of courses
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taken by a class of 65 students from the first year of the Department of Statistics
of Athens University of Economics. The students enrolled in this class attended 8
courses during the first year of their study. The total numbers of successful examinations
(including resits) were recorded. For this data set, n = 8 and x̄ = 5.2.

The binomial distribution with p̂ = 0.65 provided a very poor fit. This was expected
since it would not be reasonable to consider the probability of success p to be constant
for all the students. Considering the students as having different probability of success
according to their ability would be more natural.

Assuming that the probability of success varies according to a triangular distribu-
tion, the B-T distribution was fitted to the data. The moment estimate of θ was found
to be 0.95. The likelihood was maximized at θ̂ = 1. The maximized loglikelihood was
-134.85. Assuming a beta distribution for p and fitting the data by the B-B distribution
with parameter estimates α̂ = 1.825 and β̂ = 0.968, yielded a maximized loglikelihood
of -134.76. It is evident that the improvement of the loglikelihood from the B-T model
to the B-B model is very small, taking into account that one parameter is added. The
fits as judged by the χ2 goodness of fit test give some indication of the closeness of the
B-T distribution to the B-B distribution

Sivaganesan and Berger (1993) showed that for a general G(p) the resulting posterior
expectation of θ can be obtained as

E(θ | X = k) =

n
∑

j=k

h(j, k)E(pj+1)

P (X = k)
, k = 0, 1, . . . , n,

where P (X = k) is given in (2.11), and it can be useful for Bayesian approaches, beyond
the well known case of a conjugate Beta prior distribution. The values of E(θ | x) given
in table 2.1 are indicative of a linear behavior, which is not in general true, and it is
due to the value of θ estimated to be equal to 1.

Table 2.1. Data concerning the number of passed courses for a class of 65 students at the
Dept. of Statistics, Athens University of Economics (n = 8). (The asterisk indicates grouped
cells)

x observed expected E(θ | x)
BB BT Binomial

0 1 1.80 1.45 0.01* 0.1818
1 4 3.28 2.89 0.22* 0.2727
2 4 4.65 4.35 1.41* 0.3636
3 8 5.97 5.78 5.25 0.4545
4 9 7.25 7.23 12.18 0.5455
5 6 8.51 8.67 18.10 0.6364
6 8 9.78 10.12 16.82 0.7273
7 12 11.11 11.56 8.92 0.8182
8 13 12.65 12.97 2.08 0.9091

χ2 1.45 3.15 105.4
df 6 7 5

p-value 0.96 0.88 0.00
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2.4.3 The negative binomial–triangular distribution

The triangular distribution can be also used as the mixing distribution for some other
discrete distributions, having a parameter defined in the interval [0, 1]. Such exam-
ples are the geometric and the negative binomial distributions. The negative binomial
distribution has probability function given by

P (X = x) =
Γ (α + x)
Γ (α)x!

pα(1 − p)x, x = 0, 1, . . . , n, α > 0, 0 ≤ p ≤ 1. (2.13)

Mixtures of the negative binomial distribution with respect the parameter p can be
developed by allowing the parameter p to vary according to some distribution G(p).
Such a mixture has probability function of the form

P (X = x) =
Γ (α + x)
Γ (α)x!

1
∫

0

pα(1 − p)xdG(p), x = 0, 1, . . . , n. (2.14)

The literature on mixtures of the negative binomial is rather sparse. Note that one
can define mixtures with respect to either of the parameters α and p. Allowing G(p)
to have a beta(α, β) form, the generalized Waring distribution arises (see for example,
Xekalaki (1983)).

Expanding (1 − p)x in (2.14), one obtains that

1
∫

0

pα(1 − p)xdG(p) =

1
∫

0

pα
x
∑

k=0

(

x
k

)

(−1)x−kpx−kdG(p) =

=

1
∫

0

x
∑

k=0

(

x
k

)

(−1)x−kpα+x−kdG(p)

=
x
∑

k=0

(

x
k

)

(−1)x−k

1
∫

0

pα+x−kdG(p) =
x
∑

k=0

(

x
k

)

(−1)x−kE(pα+x−k),

thus leading to

P (X = x) =
Γ (α + x)
Γ (α)x!

x
∑

k=0

(

x
k

)

(−1)x−kE(pα+x−k).

In other words, the probability density function can be written as a finite series of
non-integral moments of the mixing distribution.

Assuming a triangular distribution as a mixing distribution, one obtains the nega-
tive binomial-triangular distribution with probability function given by

P (X = x) =
Γ (α + x)
Γ (α)x!

x
∑

k=0

(

x
k

)

(−1)x−k2(1 − θα+x−k+1)
(α + x− k + 1)(α + x− k + 2)(1 − θ)

.

The above formula can be used for calculating the probability function. A similar
scheme as the one proposed for the binomial-triangular distribution is applicable. How-
ever, since now the values of x are not restricted in a finite range, minor anomalies may
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Figure 2.3. Plots of the probability function in log scale of the NB-T distribution for
α = 1 and θ = 0.5, 0.25, 0.75, 0.1 superimposed by plots of the Generalized Waring (NB-B)
distribution with the same mean

be found at the tail. Alternatively, the probability function can be written via incom-
plete beta functions in a similar manner as for the simple binomial case.

From figure 2.3, there appears a close agreement between the NB-T distribution
and the NB-B (Generalized Waring) distribution with the same mean for α = 1 and
different values of θ.

Setting α = 1, a geometric-triangular mixture is obtained. Now the moments used
are of integral order and thus the recursive relationships for the moments of the tri-
angular distribution can be used. Similar is the case when the Pascal distribution is
considered.

The mean of the negative binomial-triangular distribution is

E(X) =
∫ 1

0

α(1 − p)
p

g(p)dp = αE(p−1) − α = α

(−2 log(θ)
1 − θ

− 1
)

.

Since 0 ≤ θ ≤ 1, it holds that E(X) > α for every value of θ. The variance does not
exist, since it involves the second inverse moment of the triangular distribution which
does not exist. The distribution exhibits a very long tail.

Note that mixtures of the negative binomial distribution with respect to the pa-
rameter p are in fact mixtures of the Poisson distribution, with mixing distribution
a gamma mixture. For example, the negative binomial-triangular distribution defined
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above is a Poisson mixture with mixing distribution the mixture of a Gamma density
with a triangular mixing density.

2.5 Discussion

A new class of distributions has been introduced stemming from the triangular dis-
tribution. Their polygonal shape offers them an appealing application potential and
enhances their plausibility as modelling tools in areas ranging from risk analysis as-
sessment, where its simplest member, the triangular distribution has been used, to
developing envelope functions for rejection algorithms in simulation studies and as
approximations to the beta distributions.

A notable feature is that the members of this family have always one mode (or modal
interval), and the number of angles of the polygon depicting their density depends on
the number of triangular components used in their finite mixture representation. In
this sense, the polygonal distribution generalizes the trapezoidal distribution studied
by van Dorp and Kotz (2003)

Finally, one may expand the definition of polygonal distributions beyond the in-
terval [0, 1] over a more general interval [α, β] using the transformation y = x−α

β−α .
Alternatively, one may expand the polygonal distribution to the positive real line by
the transformation y = x

1−x .
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