Chapter 2
Plane Elasticity Theory

2.1 The Fundamental Equations

The state of stress in a plane elastic body is determined by three components of
Stress: o' xx, O xy, O yy-

Recall that o xy, 0 xy are the components, in the x- and y-directions, of the force
per unit area exerted, at (x, y), on the plane normal to the x-axis, applied from the
x+ side to the x— side, as shown in Figure 2.1.1.

v

a) b)

Fig. 2.1.1 (a) Stress 0,7 + 0, acts on a plane with normal 7. (b) Stress o7 + oy, jacts on a
plane with normal j.

Similarly, o yx = 0 xy, and o yy are the components of the force per unit area on
the plane normal to the y-axis, again applied from the side y+ to the side y—.
They satisfy the equilibrium equations

d d 0 0
Uxx+ ny:(): ny+ Uyy.

(2.1.1)
ax dy ax ay

The deformation of the elastic body can be expressed by the relative extensions
€xx, Eyy in the directions of the x- and y-axes, and by the angular rotation &y.
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The elastic strains exyx, €yy, £xy are related to the components u, v of the elastic
displacement vector (u, v) by the equations

. _au . _1 8u+8v . _av 2.12)
T ax Y T2\ \ey ax/)T T T oy’ o

Since the three strain components are expressed in terms of rwo displacement com-
ponents, there should be some relationship between them. This is called the strain
compatibility condition:
Pevy 026y 20%yy
5 y = " (2.1.3)
ay ox 0xdy

There are two variants of plane elastic problems: plane strain and plane stress.
Plane strain is an idealisation of the elastic state in an infinitely long cylinder with
its axis being the z-axis, and acted upon by forces in the x, y-plane that are inde-
pendent of z. In plane strain, u and v are functions of x, y only, while w, the elastic
displacement in the z-direction, is zero:

u=ulx,y), v=vx,y), w=0 2.1.4)

so that the strains

1 8u+8w 1 8v+8w ow 2.1.5)
Exz = , &y = , €= , 1.
T2 \9z 0 ax 72 \8z  dy T 9z

are all zero.

Plane stress is an idealisation of the state of stress in a thin plate acted on by
forces in its plane; in plane stress 0 y; = 0= 0y, = 0.

In plane strain, the components of strain are related to the components of stress
by the stress-strain equations

Oxx = A0 +21xy, Oyy =A0 +21Eyy, Oxy = 2UExy. (2.1.6)

Here 0 = &y, + ¢y, is the relative increase of volume, or dilatation, and A, |1 are
Lamé’s constants. The strains, in their turn, may be related to the stresses by the
equations

2uexy = 0xx —V(Oxx +0yy), 2UEyy =0yy —V(0xx +0yy), (2.1.7)
2LExy = Oxy
The Young’s modulus, E, and Poisson’s ratio, v, are related to A and u by

3042 A
E:u( +2u)

, = , 2.1.8
A+ b 20+ ) ( )

and the inverse equations
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Ev E

A dewa—2. P4 (2.1.9)

In plane stress we start with the full stress-strain equations for an isotropic elastic
body:

Oxx = Mexx + &yy + €27) +21exx,  Oyy = Aexx + Eyy + €77) + 21UEyy,

077 = )\-(8)()( + 8yy + 8zz) + 2M81z,

Oxz = 2/h€xz, Oyz = 2UEyz, Oxy = 2LExy. (2.1.10)

Ifo,;, =0, then AM(exx+&yy+87.) 218 = 0. Thus e,; = —A(exx+8yy)/(A4+21)
and exx + &yy + &z = [1 = A/ (A + 2)[(exx + €yy). Thus

Oxx = A0 +2uexy, 0y =A%0 +2ueyy,  Oxy = 2UEyy, (2.1.11)

where
A=A = A/ (A +2u)] = 2ur/ (0 +20). (2.1.12)

The effective Poisson’s ratio for plane stress is therefore

. A* v
Ve = = . (2.1.13)
200 +u) 1+
We conclude that the equations for plane stress may be derived from those of plane
strain by replacing i, ). by w, A*; or equivalently, i, v by j, v*.
If the expressions (2.1.7) are substituted in the compatibility equation (2.1.3), we
find

920, 00?2 820yy 1932 282axy
ay? B ay? ©@xx +0p) + ax2  ax2? (O 0yy) = xdy

The equilibrium equations (2.1.1) yield

20%0,y  FPox 00y,
dxdy  x2 ay?
so that
% 3
<8x2 + 8y2> (0xx +0yy) =0. (2.1.14)
We write this as
A(oxx +0yy) =0. (2.1.15)

The equilibrium equations (2.1.1) are satisfied if

92U 92U 92U

8y2 ) ny = _axayv ayy = ax2 (2.1.16)

Oxx =
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where U (x, y) is called the Airy stress function. Substituting (2.1.16) into (2.1.15)
we find that
‘U 20'U  9*U
x4 + 9x29y? + ay4
(Galin uses @ for the Airy stress function, and then later uses ® for one of the
complex potentials. We use U here to avoid confusion.) This equation, called the
biharmonic equation, is written

=0. (2.1.17)

AU = 0; (2.1.18)

We say that U is biharmonic.

In solving plane contact problems we shall make use of complex variable meth-
ods.

We now give a brief account of a method of formulating the basic equations for
plane problems in the theory of elasticity. The detailed exposition of these matters
may be found in Muskhelishvili (1953) or Gladwell (1980).

If we substitute the expressions (2.1.6) for oy, 0xy, 0y, into the equations
(2.1.16), and express &xx, &xy, £yy in terms of u, v we find

WA LAY du _ 0*U 2.1.19)
Ix  dy Fox = 9y2’ o
du v v U
A 2 = , 2.1.20
<8x+8y>+ May 0x2 ( )
du 3*U
(Y =20 2.121)
ay  0x dx0dy
We may determine g; and g; from the first two equations. Introducing the notation
U 0°U
=AU=P 2.1.22
dx2 + dy?2 ( )

we find 5
a U A+2
YL ™) (2.1.23)
ox ax2  2(A+p)
v U A+2u
dy  ay2 2 4w
since U is biharmonic, P = AU is harmonic.
P(x,y) and Q(x, y) are said to be conjugate if they satisfy the Cauchy—Riemann
equations

P, (2.1.24)

P 90 9P _ 90

(2.1.25)
ax ay ay ax

If P is harmonic, so is Q, because
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20 3%Q Zp 93P

ax2 | 9y2  9xdy  dydx

Moreover, P +1i Q is a function of the complex variable z = x +iy. Putz = x — iy
and f(x,y) = P(x,y)+iQ(x,y), thenx = (z+2)/2, y = (z—7)/2i and we can
write f as a function of z and z; 0x/0z = 1/2, dy/0z = —1/2i =i /2. Thus
8f_8f8x+8f8y_1 8f+i8f
7  dx 9z dyodz 2\dx Ay
L /opP i0Q idP 0Q —0
2 \ox  ax ay ay/)

We conclude that f is a function of z only.
Thus, if Q is conjugate to P then

Px,y)+iQ(x,y) = f(2). (2.1.26)

Let us now find the expressions for the displacements u, v. Introduce two more
conjugate harmonic functions p, g, where

1
$p(@)=p+iqg= 4 / f(2)dz, (2.1.27)
then since
ax 1 dy i
9z 20 a8z 2
we have

10
2 0x
_lap idq idp  1dq
T 29x  209x 20y 209y’

, D o SN ,
¢>(z)—az(p+lq)— (p+iq) 2ay(p+“1)’

The Cauchy—Riemann, equations are

op dq dp dq

ax 3y 3y ox

so that ]
idg

1 ,
ox 4(P+1Q),

3
¢ ="+
dx
and ap  og 1 9 ap 1
P_%_"p °9__%_" ¢ (2.1.28)
0x ay 4 0x ay 4

This means that equations (2.1.23), (2.1.24) may be written
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du 02U  2(n+2u) dp

2 = ,
Hox 9x2 Adp Ox
v U 2 +2u) dg
2u, =—,,+ .
ay ay A+p 0y

After integration, we get

AU 2L +2
+ ( )

2 = — , 2.1.29

i o At p+ fi(y) ( )
oUu 20+ 2

o=V 2O, (2.1.30)
ay At u

and after substitution into (2.1.21) we find

i)+ f2(x) =0.

Since each term in this equation must be constant, we find

A =2uy, fx)=-"2uy
so that
1) =2uyy+a), fo(x)=2u(-yx+B).

They correspond to a rigid body displacement and rotation:
u=yyt+a, v=-yx+§p

and we can omit them.
Let us now form the function U — px — gy. It is harmonic because equation

(2.1.28) gives

20 20
AU — px —qy) =P — P q:O.
ax ay

Since U — px — qy is harmonic, it is the real part of a function x (z), i.e.,

20U — px —qy) = x(2) + x (2).

But
2px+qy) = (x —iy)(p+ig) + (x +iy)(p —iq)
=2¢(2) + z¢(2)
so that
2U =2¢9(2) + 2¢(2) + x(2) + x(2) (2.1.31)
and

ou . oU 20U

ox Tlay T 5z TPOFH@HTVE (2.1.32)
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v

Fig. 2.1.2 The directions 7 and §.

where
V() = x'(2). (2.1.33)

Now, using (2.1.29), (2.1.30) we find

U  aU A+2
. ) (+M)(p+l.q);

2 V) = —
e+ iv) <8x+18y )

we have neglected f1(y) and f>(x). Substituting from (2.1.27), (2.1.32) we find

2u(u +iv) = kp(2) — 2¢'(2) — ¥ (2), (2.1.34)

where 43
= TR 3 gy, (2.1.35)

)

Note that for plane stress,
K*=3—-4*=03-v)/(+v). (2.1.36)

If v =0-3, thenk =1-8, k* =2-08.

We now express oy, 0xy, 0 yy, and also certain complex combinations of these
quantities, in terms of ¢ (z) and ¥ (z).

Consider the arc AB situated in the region occupied by the elastic body (Fig-
ure 2.1.2) and denote the length of the arc measured in the positive direction from
A to B by ds.

We denote the normal to the arc A B by #i; we take as positive the direction along
the normal lying to the right of an observer moving along the arc from A to B.
We denote the components of force acting on ds from the direction of the outside
normal, i.e., in Figure 2.1.2, from the upper right to the lower left, by X, ds and
Y,ds. In terms of the stress components we have

O =Xe, Oxy=X,=Y, oy =Y, (2.1.37)
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The components X,,, Y, are
Xp =0xxCosa +0yysina, Y, =0y,cosa+0yysina,

so that on introducing the Airy stress function U and noting that

A .9 0
=((-V)=—sina_ +cosa_ ,
s 0 0

d by y
we find
2 U d au)
X, =cosa sin o = ,
ay? 9xdy ds \ dy
Y, cos ’ + sin 92U d (U
= — o in o = ,
" dxd ax2 ds \ dx
so that
d [oU oU d [oU iU
X 1Y,)ds = —i ds = —i j ds.
(X + i¥n)ds ds<8y 18x> s lds(3x+lay> s
Substituting from (2.1.32) we have
. .d S
(X +i¥)ds = =i | (¢(z) +2¢'(2) + 1/f(z)) ds. (2.1.38)

Take 71 in the direction j, then @ = ’5, and X, = 0xy, Yy =0y,

d 9 _ a3 9
ds  dx 3z 37
and =/ =/ </
Oxy +ioy =i(@'@+¢ @) +z20 @)+ Y (2),
or

Oy —iony =¢'@)+¢' @ +20" (D) + V'@

Similarly, taking 7 on the 7 direction, so that « = 0,
Our +iowy =@+ 6@ — 28" @) - V' @)
Introduce the notation
P =21, V¥'(@)=¥@) (2.1.39)
then these equations may be written

Oxx +i0gy = 0(2) +DF) —29'(2) — ¥(3), (2.1.40)
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> X
Fig. 2.1.3 The axes ¥/, .
Oy — 04y = P(2) + P(E) + 29’ () + Y (2). (2.1.41)
These may be combined to give
Oxx + 04y =2[0(2) + ()], (2.1.42)
Oyy — Oxx +2i0,y = 2[Z0'(2) + ¥ (2)]. (2.1.43)

The three stress components o xx, 0 yy, 0 xy are (the only three non-zero) compo-
nents of the stress tensor; they are the components 11,022,012 of the rank-two
symmetric tensor with components o j, i, j = 1,2,3 Under a change of axes, the
components change according to the usual tensor law. In particular, if x', y’ are
axes as shown in Figure 2.1.3, then

Oyl = cos® A0 xx + sin’ Qo yy +2cosasinao y (2.1.44)
Oyryr = sin? A0 xx + cos? Qo yy —2cosasinao y (2.1.45)
Oy = —cosaSina(0xy — 0yy) + (cos® & — sin® @)oyy. (2.1.46)

These may be rewritten as

o = O ;“’W + cos 2a (G“ ;“W > + sin 20y (2.1.47)
Gy = O JZFGW — cos 2 (G“ ;“W> — sin 200y (2.1.48)
oy = —sin2a <"” 5 "yy) + 08 200 . (2.1.49)

The combinations o xx + oyy and oyy — oxx + 2ioy, are convenient for the
investigation of the state of stress in an elastic body. The sum of the stresses, o xx +
0'yy, is an invariant: equations (2.1.47), (2.1.48) show that

Oxx +0yy =0y + 0y (2.1.50)
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&N

> X

Fig. 2.1.4 The principal axes x*, y* and the directions corresponding to maximum shearing stress.

The principal directions of stress at a given point, are those for which o,y = 0.
Equation (2.1.49) shows that these are given by

sin 2« <0“ ; U”) = €08 200 y. (2.1.51)

We may choose two roots of this equation: o« and a + 7 . Denote these two directions
by x*, y* as in Figure 2.1.4, then

cos2a = 2 T gnog = (2.1.52)
2T T

2 2
o — O yy
f=[< - ,u) +a§y} . (2.1.53)

When o satisfies (2.1.51), then

where

Oxx — Oyy .
cos2a( ) ')> +sin2a0,y =1

so that, from equations (2.1.47) and (2.1.48)

Oxx +0
O xtxx = 2 yy+_L_
Oxx +0yy
O yxy* = — T
yuy 2

The maximum shearing stress at the point occurs for the angles B given by

cos28= """ sin2f = — <0“2_ U”) . (2.1.54)
T T

Clearly, combining (2.1.52), (2.1.54) we find
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cos 2w cos2f + sin2asin2f =0

so that cos(2a —28) =0, ora — B = :I:Z. This means that the directions of maxi-
mum shearing stress bisect the angles between the principal directions, as shown in
Figure 2.1.4. The maximum shearing stress is

Oxly = — sin2,3 (Uxx ;Oyy> + COSZIBUX)‘ =T

the maximum shearing stress is T.

The magnitude of oy — 0 xx + 2i0xy is twice the maximum shearing stress, 7,
at the given point. The principal stresses at the point are (the values of o y+y+, 0 yry
respectively)

oy ="M ;U” s (2.1.55)
oy =" ;LJ” — . (2.1.56)
Now equations (2.1.42), (2.1.43) give
T =120 (2) + VY (2)| (2.1.57)
o1 =)+ Q@) + 29 (2) + V(). (2.1.58)
02 =®(2) + P(3) — 1Z29'(2) + ¥(2)|. (2.1.59)

2.2 Stresses and Displacements in a Semi-Infinite Elastic Plane

Usually, the linear dimensions of the area of contact are small compared with the
radii of curvature of the touching bodies. Therefore, we assume when considering
plane contact problems, that the elastic body which is subjected to the pressure of
the punch is semi-infinite. For plane problems, we assume that the elastic body
occupies a semi-infinite plane. This assumption somewhat distorts the picture of the
state of stress. However, this distortion is appreciable only fairly far away from the
contact region.

In this chapter we give the solutions for a number of plane contact problems.
Some results appear for the first time, others were given earlier, in particular, in the
third edition of Muskhelishvili (1953).

However, we employ a slightly different method for solving these problems. In
Muskhelishvili (1953), the problem is reduced to the determination of the functions
®(z) and W (z) in (2.1.39). In this section, we introduce the functions w;(z) and
w2 (z) which are integrals of Cauchy type, whose densities are the normal pressure
and tangential load acting on the boundary. ®(z) and W (z), from which the state of
stress in an elastic half-plane can be found, are easily determined from wj(z) and
wa(2).
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The functions w (z) and w;(z) have many advantages: anisotropic contact prob-
lems, problems for a moving punch, and also more complicated problems (those
with zones of various types on the contact region) can be reduced to mixed bound-
ary value problems for these functions.

Thus, we shall proceed to determine the stresses and displacements in a half-
plane on whose boundary normal pressure is applied and tangential stress is distrib-
uted.

We shall make use of equation (2.1.41):

Oyy —iogy = P(2) +P(R) +29' () + ¥ Q).

We consider this complex combination of stresses for the half-plane under the as-
sumption that the stresses tend to zero at infinity. This implies the following behav-
iour at infinity, i.e., for large values of |z]:

o) ="" +o(1>, W) ="2 +0(1>
Z Z Z Z

y 1
'(z) = — z21 +o (Z2>

We recall the elements of the theory of Cauchy integrals, see Gladwell (1980) for
a fuller version.

We start with the definition of a holomorphic function of a complex variable z.
The function f(z) is said to be holomorphic (sometimes the term regular is used)
in a finite region Sof the complex plane if it is single-valued in S, and its complex
derivative f'(z) exists at every point in S. The condition that f(z) have a complex
derivative is so strong that it may be proved that if f(z) is holomorphic in S, then
it will possess complex derivatives ™ (z) of any finite order at every point in S,
so that each such derivative will also be holomorphic in S. (Note the contrast with
functions of a real variable, where the existence of " (x) by no means follows from
the existence of f'(x).) Further, it may be expanded in a series

f) =" an(z—z0)"
n=0

about any point 7 € S. If the region S is infinite, then f (z) is said to be holomorphic
atinfinity if f(1/z) is holomorphic at the origin. This means that, for large |z|, f(z)
may be expanded in the form

f@ =) buz ™"
n=0

If f(z) is holomorphic in the entire complex plane, except the point at infinity, then
it must be a polynomial in z. If, in addition it is holomorphic at infinity, then it must
be a constant.
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Fig. 2.2.1 The contour L divides S into D" and D~.

Now we introduce

Theorem 1 (Cauchy’s Theorem). If L is a simple closed contour lying wholly in a
region S in which the function f(z) is holomorphic, then

/ f)dt =0, 2.2.1)
L

where we shall use t to denote the generic point of the contour L.

The contour L divides S into two parts, DV lying to the left, the inside of L, and
D™ on the right, the outside, as shown in Figure 2.2.1.

Apply this theorem to the function f(z) = 1/(z — zo), which is holomorphic in
any region excluding zo. If z lies outside L, i.e., in D™, then Cauchy’s Theorem

gives
dt
/ =0forzope D™.
Lt—20

If zq lies inside L, i.e., zo € DY, then we construct the contour L + C| + C, + C»,
as shown in Figure 2.2.2, so that again z lies outside the contour, and

{/ﬁfcf/ffcz}tihzo 0.

But the integrals along C1, Ca are equal and opposite, and the integral around
C. may be evaluated by writing t = zo + € exp(if), dt = ie exp(i0) so that, since
C; is traversed clockwise,

dt 27—[ . .
_/ :/ zsexp(.zé)dg — 2,
c.t—z0 Jo eexp(if)

and therefore
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Fig. 2.2.2 The point zg lies outside the contour L 4+ Cy 4+ C3 + Cq.

1 dt
/ = 1forzge D™.
2mwi Jpt — 20

/f(t)dt :/ f(t)_f(ZO)dl-i-f(Zo)/ dt .
L L r—20 Lt—20

t—20

Now write

If L is a closed contour lying in a region in which f(z) is holomorphic, then (f(z) —
f(z0))/(z—z0) will also be holomorphic, so that the first integral will be zero, giving

(2.2.2)

2mi Jpt—z0 | 0, ifzge D™’

1 fdt [ f(zo), if zo € DT

We emphasize that this equation holds provided that f(z) is holomorphic in S.
Now let L again be a simple closed contour;, and let f(t) be a function given and
continuous on L; it need be defined only on L, not as a function in S. The equation

F) = 1 f@t)dt

= 223
2wi Jp t—2 ( )

defines a function which may easily be shown to be holomorphic everywhere ex-
cept on L. Such a function is called a Cauchy integral. If f(t) happens to be the
boundary value of a function f(z) holomorphic in S then, according to (2.2.2),

f(2),ifze DY

. 2.2.4
0, ifze D™ ( )

F(Z)={

Note, however, that F(z) may be defined by (2.2.3) provided only that f(t) is
continuous on L. (Even this condition may be relaxed.)
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Ay

-R 0 R

Fig. 2.2.3 A semi-circle in the upper half-plane.

We need to extend these results to the case in which L is the whole x-axis. Con-
sider the contour shown in Figure 2.2.3 consisting of a semi-circle of radius R and
the segment (—R, R). If f(2) is holomorphic in the upper half plane and

fo=" +0<1>
Z Z

at infinity, then equation (2.2.2) gives

! fode 1R fode_ If(z), if z € DF

27i Jop t—z  2mi)_g t—2z 0, ifze D™~

For large R, we write
1 1 z
t—z t t
and evaluate the integral around Cg. Heret = Rexp(if),dt = i Rexp(i0)d0, so
that the leading term in the expansion has the form

dt T iRexp(if) 1
crt o R°exp(2i0) R

Thus, letting R — oo, we find that the integral around Cg vanishes, and so

00 : +
1 fdr _ {f(z), ifzes 025

27 J_oo t— 2 0, ifzeS™
where, in the limit, ST and S~ are the upper and lower half-planes respectively.

If the point z = x +1iy is in the upper half-plane, i.e., y > 0, then{ =z = x —iy
is in the lower half-plane and f(¢) is holomorphic in the lower half-plane. Thus,
applying the second line of (2.2.5) to the lower half-plane, we deduce that

1 [ fydr

0, est 22.6
271 J_ o t— 2 ¢ ( )
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H"

Fig. 2.2.4 The points ¢, t"are on L, equidistant from fg.

where again ST denotes the upper half-plane.

Now return to (2.2.3), and assume that f (t) is defined and continuous on L. F(z)
is holomorphic everywhere except on L. We compute the limiting values F* (t) and
F~(t) as z approaches a point t of L from DT or D™ respectively.

To do this, we assume that, in addition to being continuous on L, f(t) satisfies a
so-called Hélder condition. The function f(t) is said to satisfy a H6lder condition
on L if there exist parameters A, ., where 0 < A < 1 such that, for every two points
t1, t» of L we have

|f () = f)] < Alta — 11|, (22.7)

The function f(t) is said to satisfy a Hoélder condition in the neighbourhood of a
point ty € L if (2.2.6) holds for all t1, t» sufficiently near ty. Under this condition,
we shall show that F(t) in (2.2.3) may be given a meaning when z € L , and F(z)
tends to definite limits F(t), F~(t) asz — t € L from D" or D™.

Let to € L, and suppose f(t) satisfies a Holder condition in the neighbourhood
of to. Let t', 1" be two points on L on either side of ty, such that

lto—t|=tg—1t'|=¢

as shown in Figure 2.2.4. The Cauchy Principal Value of the integral (2.2.3) at ty is
defined to be

1 f(t)dt ! 1 f(®dt
= lim
2ri J, t—tg e—02mi Ji_y t — 1o
where £ is the arc t't". The integral may be written

1 f(t)—f(to)dtJrf(to) dt

2wi Ji_y t—1 2mi L_gt—to'

Since ‘f('i?:lﬁft(’)l < Alt — to|*~", the limit of the first integral exists in the ordinary
sense, i.e., provided only that t', t" tend to t; it is not necessary for |to—t'|, |t —t”|
to be equal. The second integral is
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/ W lenie - 10)1L
L

e t—1
where we have taken a branch of £nz that is continuous on L — €. Now
' =ty +eexplilfe+m)], "=t +eexplia)
so that
(' —ty) —tn(t" —ty) =im

and the Cauchy Principal Value of the integral is
1 fde 1 f(t)—f(to)dt

1
+ - flto).
i J, t—19  2mi ), t—1 A

This is the meaning that will be attached to the integral (2.2.3) when z € L; thus

1 foy 1 1 f@ = fo)
L

F(ty) = = o)+
(0) =i Lt —t ST t—1o

(2.2.8)

Now return to equation (2.2.3) and write

1 S @) — fo) f(t0) dt
F(Z)_Zm' . t—z di+ 2mi /I:I—Z

where to € L. It may be proved that the first integral tends to

1 fO - fw)

27i Jp, t—1o

as z — to, from whichever side of L. The second integral has, by the argument used
before, the values

f(to) dt [f(to), ifze Dt

2mi Jpt—z 0, ifzeD '

Thus, the limits of F(z) as z — to, from DT and D™ are respectively

1 _
o=, ] - tfo " 4 4 fio)

1 S = fo

F~ (1) =
(fo) 27i J t—1to

Now, returning to the definition of the Cauchy Principal Value of the integral in

(2.2.3) we have
1 1
P = ) f0) + F® 4

2.2.9
i Jpt—1t ( )
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_ 1 1 f@)
F~(t)) = — If dt 2.2.10
==+, = (2.2.10)
These equations, called the Plemelj formulae, are often written in the form
F¥(to) = F~(to) = f(t0), to€eL (2.2.11)
1 dt
Fr(to) + F (o) = . f , telL. (2.2.12)
wL Jpt—1y

When L is the real axis, then these results still hold if f (t) is finite and integrable
along any finite part of the axis, and satisfies the condition

f@) = f)+0(t|™) >0

for large |t|. We then define the Cauchy integral (2.2.3) as

N
t
F(z) = lim ) F®
N—oo 2mi J_Nyt—2Z

and find
(1) — f(o0) dr

I 1oz
@)= 2f(°°)+2m/,oo t—z

where the sign is & according to whether z € ST or z € S™. Further details may be
found in Muskhelishvili (1953) or Gladwell (1980).

We now return to the text. Galin assumes that the elastic body occupies the lower
half-plane. While this is perhaps appealing to an engineer — a punch is pressed
down on a medium, it complicates the mathematics. Also, this section in the original
version is made complicated by the chosen notation; we have therefore changed the
notation and rearranged the analysis.

Suppose that the elastic body, occupying the upper half-plane, is subject to nor-
mal and shear stresses

Oyy(x,0) = —p(x), 0xy(x,0)=—g(x) (2.2.13)

as shown in Figure 2.2.5. Remember the convention regarding these stresses shown
in Figure 2.1.1.
Equation (2.1.41) gives

—p(x) +ig(x) = {®@) + PE) +29'(Z) + ¥ (@)}Hy=0. (2.2.14)

where in the third term on the right, we have replaced z by z (z = z on the x-axis).
Taking the complex conjugate of this equation, we find

—p(x) —ig(x) = {PE) + P(2) + 29’ (2) + V(2)}y=o. (2.2.15)

Multiply each of these equations by 1/(2mi(x — z)) and integrate over (—o0, 00),
using equations (2.2.5), (2.2.6) and making use of the fact that both ®(z) and ®(z)+
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/=
N\ ST

g(x)

Fig. 2.2.5 The upper half-plane is subjected to distributed forces on the boundary.

7®’(z) + W(z) are holomorphic in the upper half-plane. We find

1./“’ —p(x)+iq(X)dx — ®(2), (2.2.16)
271 J_ o X =2z
2wi J_ oo X =2z

Now turn to equation (2.1.34) for the displacements
2uu(x, 0) + iv(x, 0) = k$(2) — 2¢' @) — ¥ (@}ly=0

where again, in the second term, we have replaced z by z. Differentiating w.r.t. x
and using (2.1.39), we find

2@’ (x,0) +iv'(x,0) =k P(@)|y=0 — {PE) + 2’ (@) + ¥(D)}ly—0. (2.2.18)
Now ®(z) is given by (2.2.16) and ®(z) +z®’'(z) + ¥ (z) by (2.2.17). Thus, accord-
ing to (2.2.9), the value of ®*(x) is

@) = ) () — g — 7§°° PO —iq)
g

oo t—X

and similarly

O + X0 + W[ = = (p) +igay -, p PO

o I—X

where these integrals are interpreted as Cauchy principal values. Inserting these
into (2.2.18), we find
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-1 1 [ .
20 (x,0) + v/ (x,0)) = — (p(x)_iq(x))_’fz;fi y§ P(t)t_;q(t)dt.

2

Separating the real and imaginary parts, we find

-1 1 [ g(t)dt
2 (6, 0) = =X T py + ° F 7§ g0t (2.2.19)
2 27 J_ oo t—x
-1 1 [ p(t)dt
2,0y = T g+ < ?§ pndr. (2.2.20)
2 27 J_ oo t—x
Introducing the parameters
Kk—1 Kk+1
= , U= , 2.2.21
p k41 4u ( )
we may write
u'(x 1 [ q@)dt
“ _ gp) + % gt (2.2.22)
D T J o t—x
! 1 [ p@)dt
v _ yg PO g o). (2.2.23)
4 T J o t—x

Note that the integrals must be interpreted as Cauchy principal values. If the stresses
are applied over a finite interval (—a, b), then the integrals will have limits —a and
b.

Suppose the stresses act over a finite interval (—a, b), then we may integrate
(2.2.22),(2.2.23) w.r.t. x and find

u(x, 0) x 1 [P
= - p)dt — f q(t)n|t —x|dt + Cy (2.2.24)
¥ —a T J_,

.0 1 [t x
v, 0 _ 7§ pnlt —x|dt+ B | qydi+Cy (2225
4 T J_, —a

where Ci, C, are arbitrary constants. The equations are due to Muskhelishvili
(1953).
If we use Young’s modulus, E, and Poisson’s ratio v, instead of u, x + 1 and g,
we have
k=3—4v, 2u=E/(1+V) (2.2.26)

so that

1 4u 2FE E 1—2v

P Tkl T nd—dn 20—y PToaoyy @2

We now introduce two functions holomorphic in the upper half-plane:
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1 o0
wi(e) = % pndr _ L, (2.2.28)
271 J_oo t—2
o0
@ = f 90dt _ i, (2.2.29)
270 J_ oo t—2

(Note that Galin omits the factor 1/(2mi) in the definitions of w; and w,. The
analysis is neater if it is included.) Using equation (2.2.9), we see that the upper
boundary values of these functions are

1 1 [® d
ZP(X)+ % pndi

i Pk =ui(x)+iv(x), (2230

wi(x) =

1 | dt
wy (x) = LA+ 7§_oo qt(t_)x =u3(x)+ivy (x),  (2.2.31)

so that
1 1 ® p(t)dt
MT(X) = 2p(x), vf(x) =5 f;oo fl g (2.2.32)
1 1 © g(t)dt
M;(X) = 2q(x), v;(x) = f_oo fe (2.2.33)
and we may write equations (2.2.22), (2.2.23) as
u'(x,0
) ) = —ﬁMT(X) - U;(X), (2.2.34)
9
/
,0
Y (;9 ) —vf (x) + BuF (x). (2.2.35)

We now establish certain properties of the functions wi(z) and w2 (z). Equations
(2.2.32),(2.2.33) show that the real parts of these functions are related to the normal
pressure and shear stress acting on the surface y = 0. These quantities can become
infinite at certain points. We now investigate the character of the singularities that
w1(z) and w(z) can have.

If a concentrated force is applied to the boundary of the half-plane, this can be
pictured as the transmission of pressure (and shear stress) by means of an extremely
narrow punch. In this case, the functions w1 (z) and w2 (z) possess poles of the first
order.

When, on the other hand, the pressure and shear stress is transmitted by means of
a punch of finite width, there can be no concentrated forces under the punch, even at
the ends. It follows that the real parts of wi(z) and wa(z) can have only integrable
singularities on the real axis. This condition is satisfied if the functions of w;(z) and
wy(z), which are integrals of Cauchy type, have singularities of the form (z — ¢) ™7,
where 0 < 0 < 1.
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To obtain the limiting forms of w;(z), wa(z) as z — oo, we return to equations
(2.2.28),(2.2.29):

iP iQ
wi(z) — . wa(2) = (2.2.36)
21z 21z
where
b b
P = / pydt, Q= | q)dt (2.2.37)

are the resultants of the forces applied by the punch. If the normal pressure and shear
are distributed over a finite number of intervals of finite length, then wi(z), w2(z)
will still have the form (2.2.36) at infinity. In the contact problems discussed in this
book, wi(z) and wz(z) will always possess these properties.

We now express the functions ¢/(z) = ®(z) and ¥'(z) = W(z), which serve
as the basis for determining the sresses, in terms of wi(z) and w2 (z). Equations
(2.2.16), (2.2.17) give

®(z) = —wi(z) +iw(2), (2.2.38)
W (z) = =2iw(2) + zw}(2) — izw)(2), (2.2.39)

from which the stresses oy, 0 xy, 0y, may be found by using (2.1.42), (2.1.43).
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