
Chapter 2
Plane Elasticity Theory

2.1 The Fundamental Equations

The state of stress in a plane elastic body is determined by three components of
stress: σxx, σ xy, σ yy .
Recall that σxx, σ xy are the components, in the x- and y-directions, of the force

per unit area exerted, at (x, y), on the plane normal to the x-axis, applied from the
x+ side to the x− side, as shown in Figure 2.1.1.

Fig. 2.1.1 (a) Stress σxx ı̂ + σxy ĵ acts on a plane with normal ı̂. (b) Stress σxy ı̂ + σyy ĵacts on a
plane with normal ĵ .

Similarly, σyx ≡ σxy , and σyy are the components of the force per unit area on
the plane normal to the y-axis, again applied from the side y+ to the side y−.

They satisfy the equilibrium equations

∂σxx

∂x
+ ∂σxy

∂y
= 0 = ∂σxy

∂x
+ ∂σyy

∂y
. (2.1.1)

The deformation of the elastic body can be expressed by the relative extensions
εxx, εyy in the directions of the x- and y-axes, and by the angular rotation εxy .
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The elastic strains εxx, εyy, εxy are related to the components u, v of the elastic
displacement vector (u, v) by the equations

εxx = ∂u

∂x
, εxy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
, εyy = ∂v

∂y
. (2.1.2)

Since the three strain components are expressed in terms of two displacement com-
ponents, there should be some relationship between them. This is called the strain
compatibility condition:

∂2εxx

∂y2
+ ∂2εyy

∂x2
= 2∂2εxy

∂x∂y
. (2.1.3)

There are two variants of plane elastic problems: plane strain and plane stress.
Plane strain is an idealisation of the elastic state in an infinitely long cylinder with
its axis being the z-axis, and acted upon by forces in the x, y-plane that are inde-
pendent of z. In plane strain, u and v are functions of x, y only, while w, the elastic
displacement in the z-direction, is zero:

u = u(x, y), v = v(x, y), w = 0 (2.1.4)

so that the strains

εxz = 1

2

(
∂u

∂z
+ ∂w

∂x

)
, εyz = 1

2

(
∂v

∂z
+ ∂w

∂y

)
, εzz = ∂w

∂z
, (2.1.5)

are all zero.
Plane stress is an idealisation of the state of stress in a thin plate acted on by

forces in its plane; in plane stress σ xz = 0 = σyz = σzz.
In plane strain, the components of strain are related to the components of stress

by the stress-strain equations

σ xx = λθ + 2μεxx, σ yy = λθ + 2μεyy, σ xy = 2μεxy. (2.1.6)

Here θ = εxx + εyy is the relative increase of volume, or dilatation, and λ,μ are
Lamé’s constants. The strains, in their turn, may be related to the stresses by the
equations

2μεxx = σxx − ν(σxx + σyy), 2μεyy = σ yy − ν(σxx + σyy), (2.1.7)

2μεxy = σxy

The Young’s modulus, E, and Poisson’s ratio, ν, are related to λ and μ by

E = μ(3λ+ 2μ)

λ+ μ , ν = λ

2(λ+ μ), (2.1.8)

and the inverse equations
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λ = Eν

(1 + ν)(1 − 2ν),
μ = E

2(1 + ν) . (2.1.9)

In plane stress we start with the full stress-strain equations for an isotropic elastic
body:

σxx = λ(εxx + εyy + εzz)+ 2μεxx, σ yy = λ(εxx + εyy + εzz)+ 2μεyy,

σ zz = λ(εxx + εyy + εzz)+ 2μεzz,

σ xz = 2μεxz, σ yz = 2μεyz, σ xy = 2μεxy. (2.1.10)

If σzz = 0, then λ(εxx+εyy+εzz)+2μεzz = 0. Thus εzz = −λ(εxx+εyy)/(λ+2μ)
and εxx + εyy + εzz = [1 − λ/(λ+ 2μ)](εxx + εyy). Thus

σxx = λ∗θ + 2μεxx, σ yy = λ∗θ + 2μεyy, σ xy = 2μεxy, (2.1.11)

where
λ∗ = λ[1 − λ/(λ+ 2μ)] = 2μλ/(λ+ 2μ). (2.1.12)

The effective Poisson’s ratio for plane stress is therefore

ν∗ = λ∗

2(λ∗ + μ) = ν

1 + ν . (2.1.13)

We conclude that the equations for plane stress may be derived from those of plane
strain by replacing μ, λ by μ, λ∗; or equivalently, μ, ν by μ, ν∗.

If the expressions (2.1.7) are substituted in the compatibility equation (2.1.3), we
find

∂2σxx

∂y2
− ν∂2

∂y2
(σ xx + σyy)+ ∂2σyy

∂x2
− ν∂2

∂x2
(σ xx + σyy) = 2∂2σxy

∂x∂y
.

The equilibrium equations (2.1.1) yield

2∂2σxy

∂x∂y
= −∂

2σxx

∂x2
− ∂2σyy

∂y2

so that (
∂2

∂x2 + ∂2

∂y2

)
(σ xx + σyy) = 0. (2.1.14)

We write this as
�(σ xx + σyy) = 0. (2.1.15)

The equilibrium equations (2.1.1) are satisfied if

σxx = ∂2U

∂y2
, σ xy = − ∂2U

∂x∂y
, σyy = ∂2U

∂x2
(2.1.16)
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where U(x, y) is called the Airy stress function. Substituting (2.1.16) into (2.1.15)
we find that

∂4U

∂x4
+ 2∂4U

∂x2∂y2
+ ∂4U

∂y4
= 0. (2.1.17)

(Galin uses � for the Airy stress function, and then later uses � for one of the
complex potentials. We use U here to avoid confusion.) This equation, called the
biharmonic equation, is written

�2U = 0; (2.1.18)

We say that U is biharmonic.
In solving plane contact problems we shall make use of complex variable meth-

ods.
We now give a brief account of a method of formulating the basic equations for

plane problems in the theory of elasticity. The detailed exposition of these matters
may be found in Muskhelishvili (1953) or Gladwell (1980).

If we substitute the expressions (2.1.6) for σxx, σ xy, σ yy into the equations
(2.1.16), and express εxx, εxy, εyy in terms of u, v we find

λ

(
∂u

∂x
+ ∂v

∂y

)
+ 2μ

∂u

∂x
= ∂2U

∂y2 , (2.1.19)

λ

(
∂u

∂x
+ ∂v

∂y

)
+ 2μ

∂v

∂y
= ∂2U

∂x2 , (2.1.20)

μ

(
∂u

∂y
+ ∂v

∂x

)
= − ∂2U

∂x∂y
. (2.1.21)

We may determine ∂u
∂x

and ∂v
∂y

from the first two equations. Introducing the notation

∂2U

∂x2
+ ∂2U

∂y2
= �U = P (2.1.22)

we find

2μ
∂u

∂x
= −∂

2U

∂x2
+ λ+ 2μ

2(λ+ μ)P, (2.1.23)

2μ
∂v

∂y
= −∂

2U

∂y2
+ λ+ 2μ

2(λ+ μ)P, (2.1.24)

since U is biharmonic, P = �U is harmonic.
P(x, y) andQ(x, y) are said to be conjugate if they satisfy theCauchy–Riemann

equations
∂P

∂x
= ∂Q

∂y
,

∂P

∂y
= −∂Q

∂x
. (2.1.25)

If P is harmonic, so isQ, because
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∂2Q

∂x2
+ ∂2Q

∂y2
= − ∂2P

∂x∂y
+ ∂2P

∂y∂x
= 0.

Moreover, P + iQ is a function of the complex variable z = x + iy. Put z̄ = x − iy
and f (x, y) = P(x, y)+ iQ(x, y), then x = (z+ z̄)/2, y = (z− z̄)/2i and we can
write f as a function of z and z̄; ∂x/∂z̄ = 1/2, ∂y/∂z̄ = −1/2i = i/2. Thus

∂f

∂z̄
= ∂f

∂x

∂x

∂z̄
+ ∂f

∂y

∂y

∂z̄
= 1

2

(
∂f

∂x
+ i∂f

∂y

)

= 1

2

(
∂P

∂x
+ i∂Q

∂x
+ i∂P

∂y
− ∂Q

∂y

)
= 0.

We conclude that f is a function of z only.
Thus, if Q is conjugate to P then

P(x, y)+ iQ(x, y) = f (z). (2.1.26)

Let us now find the expressions for the displacements u, v. Introduce two more
conjugate harmonic functions p, q , where

φ(z) = p + iq = 1

4

∫
f (z)dz, (2.1.27)

then since
∂x

∂z
= 1

2
,

∂y

∂z
= − i

2
,

we have

φ′(z) = ∂

∂z
(p + iq) = 1

2

∂

∂x
(p + iq)− i

2

∂

∂y
(p + iq),

= 1

2

∂p

∂x
+ i

2

∂q

∂x
− i∂p

2∂y
+ 1

2

∂q

∂y
.

The Cauchy–Riemann, equations are

∂p

∂x
= ∂q

∂y
,

∂p

∂y
= −∂q

∂x

so that

φ′(z) = ∂p

∂x
+ i∂q

∂x
= 1

4
(P + iQ),

and
∂p

∂x
= ∂q

∂y
= 1

4
P,

∂q

∂x
= −∂p

∂y
= 1

4
Q. (2.1.28)

This means that equations (2.1.23), (2.1.24) may be written
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2μ
∂u

∂x
= −∂

2U

∂x2
+ 2(λ+ 2μ)

λ+ μ
∂p

∂x
,

2μ
∂v

∂y
= −∂

2U

∂y2
+ 2(λ+ 2μ)

λ+ μ
∂q

∂y
.

After integration, we get

2μu = −∂U
∂x

+ 2(λ+ 2μ)

λ+ μ p + f1(y), (2.1.29)

2μv = −∂U
∂y

+ 2(λ+ 2μ)

λ+ μ q + f2(x), (2.1.30)

and after substitution into (2.1.21) we find

f ′
1(y)+ f ′

2(x) = 0.

Since each term in this equation must be constant, we find

f ′
1(y) = 2μγ , f ′

2(x) = −2μγ

so that
f1(y) = 2μ(γ y + α), f2(x) = 2μ(−γ x + β).

They correspond to a rigid body displacement and rotation:

u = γ y + α, v = −γ x + β
and we can omit them.

Let us now form the function U − px − qy. It is harmonic because equation
(2.1.28) gives

�(U − px − qy) = P − 2∂p

∂x
− 2∂q

∂y
= 0.

Since U − px − qy is harmonic, it is the real part of a function χ(z), i.e.,

2(U − px − qy) = χ(z)+ χ (z).
But

2(px + qy) = (x − iy)(p + iq)+ (x + iy)(p − iq)
= z̄φ(z)+ zφ(z)

so that
2U = z̄φ(z)+ zφ(z)+ χ(z)+ χ(z) (2.1.31)

and
∂U

∂x
+ i ∂U

∂y
= 2∂U

∂z̄
= φ(z)+ zφ′(z)+ ψ(z) (2.1.32)
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Fig. 2.1.2 The directions n̂ and ŝ.

where
ψ(z) = χ ′(z). (2.1.33)

Now, using (2.1.29), (2.1.30) we find

2μ(u+ iv) = −
(
∂U

∂x
+ i ∂U

∂y

)
+ 2

(λ+ 2μ)

λ+ μ (p + iq);

we have neglected f1(y) and f2(x). Substituting from (2.1.27), (2.1.32) we find

2μ(u+ iv) = κφ(z)− zφ′(z)− ψ(z), (2.1.34)

where

κ = λ+ 3μ

λ+ μ = 3 − 4ν. (2.1.35)

Note that for plane stress,

κ∗ = 3 − 4ν∗ = (3 − ν)/(1 + ν). (2.1.36)

If ν = 0·3, then κ = 1·8, κ∗ = 2·08.
We now express σxx, σ xy, σ yy , and also certain complex combinations of these

quantities, in terms of φ (z) and ψ(z).
Consider the arc AB situated in the region occupied by the elastic body (Fig-

ure 2.1.2) and denote the length of the arc measured in the positive direction from
A to B by ds.

We denote the normal to the arc AB by n̂; we take as positive the direction along
the normal lying to the right of an observer moving along the arc from A to B.
We denote the components of force acting on ds from the direction of the outside
normal, i.e., in Figure 2.1.2, from the upper right to the lower left, by Xnds and
Ynds. In terms of the stress components we have

σxx = Xx, σ xy = Xy = Yx, σ yy = Yy. (2.1.37)
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The componentsXn, Yn are

Xn = σxx cosα + σxy sin α, Yn = σxy cosα + σyy sin α,

so that on introducing the Airy stress function U and noting that

d

ds
= (ŝ · ∇) = − sin α

∂

∂x
+ cosα

∂

∂y
,

we find

Xn = cosα
∂2U

∂y2 − sin α
∂2U

∂x∂y
= d

ds

(
∂U

∂y

)
,

Yn = − cosα
∂2U

∂x∂y
+ sin α

∂2U

∂x2 = − d

ds

(
∂U

∂x

)
,

so that

(Xn + iYn)ds = d

ds

(
∂U

∂y
− i ∂U

∂x

)
ds = −i d

ds

(
∂U

∂x
+ i ∂U

∂y

)
ds.

Substituting from (2.1.32) we have

(Xn + iYn)ds = −i d
ds

(
φ(z)+ zφ′(z̄)+ ψ(z)

)
ds. (2.1.38)

Take n̂ in the direction ĵ , then α = π
2 , and Xn = σxy, Yn = σyy ,

d

ds
= − ∂

∂x
= − ∂

∂z
− ∂

∂z̄
,

and
σxy + iσ yy = i(φ′(z)+ φ̄′

(z̄)+ zφ̄′′
(z̄)+ ψ̄ ′

(z̄)),

or
σyy − iσ xy = φ′(z)+ φ̄′

(z̄)+ zφ̄′′
(z̄)+ ψ̄ ′

(z̄).

Similarly, taking n̂ on the ı̂ direction, so that α = 0,

σxx + iσ xy = φ′(z)+ φ̄′
(z̄)− zφ̄′′

(z̄)− ψ̄ ′
(z̄).

Introduce the notation

φ′(z) = �(z), ψ ′(z) = �(z) (2.1.39)

then these equations may be written

σxx + iσ xy = �(z)+ �̄(z̄)− z�̄′(z̄)− �̄(z̄), (2.1.40)
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Fig. 2.1.3 The axes x′, y′.

σ yy − iσ xy = �(z)+ �̄(z̄)+ z�̄′(z̄)+ �̄(z̄). (2.1.41)

These may be combined to give

σxx + σyy = 2[�(z)+ �̄(z̄)], (2.1.42)

σyy − σxx + 2iσxy = 2[z̄�′(z)+�(z)]. (2.1.43)

The three stress components σxx, σ yy, σ xy are (the only three non-zero) compo-
nents of the stress tensor; they are the components σ 11, σ 22, σ 12 of the rank-two
symmetric tensor with components σ ij , i, j = 1, 2, 3 Under a change of axes, the
components change according to the usual tensor law. In particular, if x ′, y ′ are
axes as shown in Figure 2.1.3, then

σx ′x ′ = cos2 ασxx + sin2 ασyy + 2 cosα sin ασxy (2.1.44)

σy ′y ′ = sin2 ασxx + cos2 ασyy − 2 cosα sin ασxy (2.1.45)

σx ′y ′ = − cosα sin α(σxx − σ yy)+ (cos2 α − sin2 α)σxy. (2.1.46)

These may be rewritten as

σx ′x ′ = σxx + σyy
2

+ cos 2α

(
σxx − σyy

2

)
+ sin 2ασxy (2.1.47)

σy ′y ′ = σxx + σyy
2

− cos 2α

(
σxx − σyy

2

)
− sin 2ασxy (2.1.48)

σ x ′y ′ = − sin 2α

(
σxx − σ yy

2

)
+ cos 2ασxy. (2.1.49)

The combinations σ xx + σyy and σyy − σxx + 2iσ xy are convenient for the
investigation of the state of stress in an elastic body. The sum of the stresses, σxx +
σyy , is an invariant: equations (2.1.47), (2.1.48) show that

σxx + σyy = σ x ′x ′ + σy ′y ′ . (2.1.50)
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Fig. 2.1.4 The principal axes x∗, y∗ and the directions corresponding to maximum shearing stress.

The principal directions of stress at a given point, are those for which σx ′y ′ = 0.
Equation (2.1.49) shows that these are given by

sin 2α

(
σxx − σ yy

2

)
= cos 2ασxy. (2.1.51)

We may choose two roots of this equation: α and α+ π
2 . Denote these two directions

by x∗, y∗ as in Figure 2.1.4, then

cos 2α = σ xx − σyy
2τ

, sin 2α = σxy

τ
(2.1.52)

where

τ =
{(
σxx − σyy

2

)2

+ σ 2
xy

} 1
2

. (2.1.53)

When α satisfies (2.1.51), then

cos 2α

(
σxx − σyy

2

)
+ sin 2ασxy = τ

so that, from equations (2.1.47) and (2.1.48)

σx∗x∗ = σxx + σyy
2

+ τ

σy∗y∗ = σxx + σyy
2

− τ

The maximum shearing stress at the point occurs for the angles β given by

cos 2β = σxy

τ
, sin 2β = −

(
σxx − σ yy

2τ

)
. (2.1.54)

Clearly, combining (2.1.52), (2.1.54) we find
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cos 2α cos 2β + sin 2α sin 2β = 0

so that cos(2α − 2β) = 0, or α − β = ±π
4 . This means that the directions of maxi-

mum shearing stress bisect the angles between the principal directions, as shown in
Figure 2.1.4. The maximum shearing stress is

σx ′y ′ = − sin 2β

(
σxx − σ yy

2

)
+ cos 2βσxy = τ :

the maximum shearing stress is τ .
The magnitude of σyy − σxx + 2iσxy is twice the maximum shearing stress, τ ,

at the given point. The principal stresses at the point are (the values of σx∗x∗, σ y∗y∗
respectively)

σ 1 = σxx + σyy
2

+ τ , (2.1.55)

σ 2 = σxx + σyy
2

− τ . (2.1.56)

Now equations (2.1.42), (2.1.43) give

τ = |z̄�′(z)+�(z)| (2.1.57)

σ 1 = �(z)+ �̄(z̄)+ |z̄�′(z)+�(z)|, (2.1.58)

σ 2 = �(z)+ �̄(z̄)− |z̄�′(z)+�(z)|. (2.1.59)

2.2 Stresses and Displacements in a Semi-Infinite Elastic Plane

Usually, the linear dimensions of the area of contact are small compared with the
radii of curvature of the touching bodies. Therefore, we assume when considering
plane contact problems, that the elastic body which is subjected to the pressure of
the punch is semi-infinite. For plane problems, we assume that the elastic body
occupies a semi-infinite plane. This assumption somewhat distorts the picture of the
state of stress. However, this distortion is appreciable only fairly far away from the
contact region.

In this chapter we give the solutions for a number of plane contact problems.
Some results appear for the first time, others were given earlier, in particular, in the
third edition of Muskhelishvili (1953).

However, we employ a slightly different method for solving these problems. In
Muskhelishvili (1953), the problem is reduced to the determination of the functions
�(z) and �(z) in (2.1.39). In this section, we introduce the functions w1(z) and
w2(z) which are integrals of Cauchy type, whose densities are the normal pressure
and tangential load acting on the boundary.�(z) and �(z), from which the state of
stress in an elastic half-plane can be found, are easily determined from w1(z) and
w2(z).
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The functionsw1(z) and w2(z) have many advantages: anisotropic contact prob-
lems, problems for a moving punch, and also more complicated problems (those
with zones of various types on the contact region) can be reduced to mixed bound-
ary value problems for these functions.

Thus, we shall proceed to determine the stresses and displacements in a half-
plane on whose boundary normal pressure is applied and tangential stress is distrib-
uted.

We shall make use of equation (2.1.41):

σ yy − iσ xy = �(z)+ �̄(z̄)+ z�̄′(z̄)+ �̄(z̄).
We consider this complex combination of stresses for the half-plane under the as-
sumption that the stresses tend to zero at infinity. This implies the following behav-
iour at infinity, i.e., for large values of |z|:

�(z) = γ 1

z
+ o

(
1

z

)
, �(z) = γ 2

z
+ o

(
1

z

)

�′(z) = −γ 1

z2 + o
(

1

z2

)
We recall the elements of the theory of Cauchy integrals, see Gladwell (1980) for

a fuller version.
We start with the definition of a holomorphic function of a complex variable z.

The function f (z) is said to be holomorphic (sometimes the term regular is used)
in a finite region Sof the complex plane if it is single-valued in S, and its complex
derivative f ′(z) exists at every point in S. The condition that f (z) have a complex
derivative is so strong that it may be proved that if f (z) is holomorphic in S, then
it will possess complex derivatives f (n)(z) of any finite order at every point in S,
so that each such derivative will also be holomorphic in S. (Note the contrast with
functions of a real variable, where the existence of f ′′(x) by no means follows from
the existence of f ′(x).) Further, it may be expanded in a series

f (x) =
∞∑
n=0

an(z− z0)
n

about any point z0 ∈ S. If the region S is infinite, then f (z) is said to be holomorphic
at infinity if f (1/z) is holomorphic at the origin. This means that, for large |z|, f (z)
may be expanded in the form

f (z) =
∞∑
n=0

bnz
−n.

If f (z) is holomorphic in the entire complex plane, except the point at infinity, then
it must be a polynomial in z. If, in addition it is holomorphic at infinity, then it must
be a constant.
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Fig. 2.2.1 The contour L divides S into D+ and D−.

Now we introduce

Theorem 1 (Cauchy’s Theorem). If L is a simple closed contour lying wholly in a
region S in which the function f (z) is holomorphic, then∫

L

f (t)dt = 0, (2.2.1)

where we shall use t to denote the generic point of the contour L.

The contour L divides S into two parts, D+ lying to the left, the inside of L, and
D− on the right, the outside, as shown in Figure 2.2.1.
Apply this theorem to the function f (z) = 1/(z − z0), which is holomorphic in

any region excluding z0. If z lies outside L, i.e., in D−, then Cauchy’s Theorem
gives ∫

L

dt

t − z0
= 0 for z0 ∈ D−.

If z0 lies inside L, i.e., z0 ∈ D+, then we construct the contour L+ C1 + Cε +C2,
as shown in Figure 2.2.2, so that again z0 lies outside the contour, and{∫

L

+
∫
C1

+
∫
Cε

+
∫
C2

}
dt

t − z0
= 0.

But the integrals along C1, C2 are equal and opposite, and the integral around
Cε may be evaluated by writing t = z0 + ε exp(iθ), dt = iε exp(iθ) so that, since
Cε is traversed clockwise,

−
∫
Cε

dt

t − z0
=
∫ 2π

0

iε exp(iθ)

ε exp(iθ)
dθ = 2πi,

and therefore
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Fig. 2.2.2 The point z0 lies outside the contour L+ C1 + C2 + Cε .

1

2πi

∫
L

dt

t − z0
= 1 for z0 ∈ D+.

Now write ∫
L

f (t)dt

t − z0
=
∫
L

f (t)− f (z0)

t − z0
dt + f (z0)

∫
L

dt

t − z0
.

If L is a closed contour lying in a region in which f (z) is holomorphic, then (f (z)−
f (z0))/(z−z0) will also be holomorphic, so that the first integral will be zero, giving

1

2πi

∫
L

f (t)dt

t − z0
=
{
f (z0), if z0 ∈ D+

0, if z0 ∈ D− . (2.2.2)

We emphasize that this equation holds provided that f (z) is holomorphic in S.
Now let L again be a simple closed contour, and let f (t) be a function given and

continuous on L; it need be defined only on L, not as a function in S. The equation

F(z) = 1

2πi

∫
L

f (t)dt

t − z (2.2.3)

defines a function which may easily be shown to be holomorphic everywhere ex-
cept on L. Such a function is called a Cauchy integral. If f (t) happens to be the
boundary value of a function f (z) holomorphic in S then, according to (2.2.2),

F(z) =
{
f (z), if z ∈ D+

0, if z ∈ D− . (2.2.4)

Note, however, that F(z) may be defined by (2.2.3) provided only that f (t) is
continuous on L. (Even this condition may be relaxed.)
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Fig. 2.2.3 A semi-circle in the upper half-plane.

We need to extend these results to the case in which L is the whole x-axis. Con-
sider the contour shown in Figure 2.2.3 consisting of a semi-circle of radius R and
the segment (−R,R). If f (z) is holomorphic in the upper half plane and

f (z) = γ

z
+ o

(
1

z

)

at infinity, then equation (2.2.2) gives

1

2πi

∫
CR

f (t)dt

t − z + 1

2πi

∫ R

−R
f (t)dt

t − z =
{
f (z), if z ∈ D+

0, if z ∈ D− .

For large R, we write
1

t − z = 1

t
+ z

t2
+ · · ·

and evaluate the integral around CR . Here t = R exp(iθ), dt = iR exp(iθ)dθ , so
that the leading term in the expansion has the form

γ

∫
CR

dt

t2
= γ

∫ π

0

iR exp(iθ)

R2 exp(2iθ)
dθ = O

(
1

R

)
.

Thus, letting R → ∞, we find that the integral around CR vanishes, and so

1

2πi

∫ ∞

−∞
f (t)dt

t − z =
{
f (z), if z ∈ S+

0, if z ∈ S− (2.2.5)

where, in the limit, S+ and S− are the upper and lower half-planes respectively.
If the point z = x+ iy is in the upper half-plane, i.e., y > 0, then ζ = z̄ = x− iy

is in the lower half-plane and f̄ (ζ ) is holomorphic in the lower half-plane. Thus,
applying the second line of (2.2.5) to the lower half-plane, we deduce that

1

2πi

∫ ∞

−∞
f̄ (t)dt

t − z = 0, z ∈ S+ (2.2.6)
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Fig. 2.2.4 The points t ′, t ′′are on L, equidistant from t0.

where again S+ denotes the upper half-plane.
Now return to (2.2.3), and assume that f (t) is defined and continuous onL. F(z)

is holomorphic everywhere except on L. We compute the limiting values F+(t) and
F−(t) as z approaches a point t of L from D+ or D− respectively.
To do this, we assume that, in addition to being continuous on L, f (t) satisfies a

so-called Hőlder condition. The function f (t) is said to satisfy a Hőlder condition
on L if there exist parametersA, λ, where 0 < λ < 1 such that, for every two points
t1, t2 of L we have

|f (t2)− f (t1)| < A|t2 − t1|λ. (2.2.7)

The function f (t) is said to satisfy a Hőlder condition in the neighbourhood of a
point t0 ∈ L if (2.2.6) holds for all t1, t2 sufficiently near t0. Under this condition,
we shall show that F(t) in (2.2.3) may be given a meaning when z ∈ L , and F(z)
tends to definite limits F+(t), F−(t) as z → t ∈ L from D+ or D−.
Let t0 ∈ L, and suppose f (t) satisfies a Hőlder condition in the neighbourhood

of t0. Let t ′, t ′′ be two points on L on either side of t0, such that

|t0 − t ′| = t0 − t ′′| = ε
as shown in Figure 2.2.4. The Cauchy Principal Value of the integral (2.2.3) at t0 is
defined to be

1

2πi

∮
L

f (t)dt

t − t0 = lim
ε→0

1

2πi

∫
L−�

f (t)dt

t − t0
where � is the arc t ′t ′′. The integral may be written

1

2πi

∫
L−�

f (t)− f (t0)
t − t0 dt + f (t0)

2πi

∫
L−�

dt

t − t0 .

Since |f (t)−f (t0)||t−t0| < A|t − t0|λ−1, the limit of the first integral exists in the ordinary
sense, i.e., provided only that t ′, t ′′ tend to t0; it is not necessary for |t0 − t ′|, |t0 − t ′′|
to be equal. The second integral is
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L−�

dt

t − t0 = [�n(t − t0)]t ′t ′′

where we have taken a branch of �nz that is continuous on L− �. Now
t ′ = t0 + ε exp[i(α + π)], t ′′ = t0 + ε exp(iα)

so that
�n(t ′ − t0)− �n(t ′′ − t0) = iπ

and the Cauchy Principal Value of the integral is

1

2πi

∮
L

f (t)dt

t − t0 = 1

2πi

∫
L

f (t)− f (t0)
t − t0 dt + 1

2
· f (t0).

This is the meaning that will be attached to the integral (2.2.3) when z ∈ L; thus

F(t0) = 1

2πi

∮
L

f (t)

t − t0 =1

2
f (t0)+

1

2πi

∫
L

f (t)− f (t0)
t − t0 dt. (2.2.8)

Now return to equation (2.2.3) and write

F(z) = 1

2πi

∫
L

f (t)− f (t0)
t − z dt + f (t0)

2πi

∫
L

dt

t − z
where t0 ∈ L. It may be proved that the first integral tends to

1

2πi

∫
L

f (t)− f (t0)
t − t0 dt

as z → t0, from whichever side of L. The second integral has, by the argument used
before, the values

f (t0)

2πi

∫
L

dt

t − z =
{
f (t0), if z ∈ D+

0, if z ∈ D− .

Thus, the limits of F(z) as z → t0, from D+ and D− are respectively

F+(t0) = 1

2πi

∫
L

f (t)− f (t0)
t − t0 dt + f (t0)

F−(t0) = 1

2πi

∫
L

f (t)− f (t0)
t − t0 dt.

Now, returning to the definition of the Cauchy Principal Value of the integral in
(2.2.3) we have

F+(t0) = 1

2
f (t0)+ 1

2πi

∮
L

f (t)

t − t0 dt (2.2.9)
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F−(t0) = −1

2
f (t0)+ 1

2πi

∮
L

f (t)

t − t0 dt (2.2.10)

These equations, called the Plemelj formulae, are often written in the form

F+(t0)− F−(t0) = f (t0), t0 ∈ L (2.2.11)

F+(t0)+ F−(t0) = 1

πi

∮
L

dt

t − t0 , t0 ∈ L. (2.2.12)

WhenL is the real axis, then these results still hold if f (t) is finite and integrable
along any finite part of the axis, and satisfies the condition

f (t) = f (∞)+O(|t|−λ) λ > 0

for large |t|. We then define the Cauchy integral (2.2.3) as

F(z) = lim
N→∞

1

2πi

∫ N

−N
f (t)

t − z
and find

F(z) = ±1

2
f (∞)+ 1

2πi

∫ ∞

−∞
f (t)− f (∞)

t − z dt

where the sign is ± according to whether z ∈ S+ or z ∈ S−. Further details may be
found in Muskhelishvili (1953) or Gladwell (1980).
We now return to the text. Galin assumes that the elastic body occupies the lower

half-plane. While this is perhaps appealing to an engineer – a punch is pressed
down on a medium, it complicates the mathematics. Also, this section in the original
version is made complicated by the chosen notation; we have therefore changed the
notation and rearranged the analysis.

Suppose that the elastic body, occupying the upper half-plane, is subject to nor-
mal and shear stresses

σyy(x, 0) = −p(x), σ xy(x, 0) = −q(x) (2.2.13)

as shown in Figure 2.2.5. Remember the convention regarding these stresses shown
in Figure 2.1.1.

Equation (2.1.41) gives

−p(x)+ iq(x) = {�(z)+ �̄(z̄)+ z̄�̄′(z̄)+ �̄(z̄)}|y=0, (2.2.14)

where in the third term on the right, we have replaced z by z̄ (z = z̄ on the x-axis).
Taking the complex conjugate of this equation, we find

−p(x)− iq(x) = {�̄(z̄)+�(z)+ z�′(z)+�(z)}|y=0. (2.2.15)

Multiply each of these equations by 1/(2πi(x − z)) and integrate over (−∞,∞),
using equations (2.2.5), (2.2.6) and making use of the fact that both�(z) and�(z)+
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Fig. 2.2.5 The upper half-plane is subjected to distributed forces on the boundary.

z�′(z)+�(z) are holomorphic in the upper half-plane. We find

1

2πi

∫ ∞

−∞
−p(x)+ iq(x)

x − z dx = �(z), (2.2.16)

1

2πi

∫ ∞

−∞
−p(x)− iq(x)

x − z dx = �(z)+ z�′(z)+�(z). (2.2.17)

Now turn to equation (2.1.34) for the displacements

2μ(u(x, 0)+ iv(x, 0)) = κφ(z)− z̄φ̄′
(z̄)− ψ̄(z̄)}|y=0

where again, in the second term, we have replaced z by z̄. Differentiating w.r.t. x
and using (2.1.39), we find

2μ(u′(x, 0)+ iv′(x, 0)) = κ�(z)|y=0 − {�̄(z̄)+ z̄�̄′(z̄)+ �̄(z̄)}|y=0. (2.2.18)

Now�(z) is given by (2.2.16) and�(z)+z�′(z)+�(z) by (2.2.17). Thus, accord-
ing to (2.2.9), the value of �+(x) is

�+(x) = −1

2
(p(x)− iq(x))− 1

2πi

∮ ∞

−∞
p(t)− iq(t)
t − x dt

and similarly

�(x)+ x�′(x)+�(x)|+ = −1

2
(p(x)+ iq(x))− 1

2πi

∮ ∞

−∞
p(t) + iq(t)
t − x dt

where these integrals are interpreted as Cauchy principal values. Inserting these
into (2.2.18), we find
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2μ(u′(x, 0)+ iv′(x, 0)) = −κ − 1

2
(p(x)− iq(x))− κ + 1

2πi

∮ ∞

−∞
p(t) − iq(t)
t − x dt.

Separating the real and imaginary parts, we find

2μu′(x, 0) = −κ − 1

2
p(x)+ κ + 1

2π

∮ ∞

−∞
q(t)dt

t − x , (2.2.19)

2μv′(x, 0) = κ − 1

2
q(x)+ κ + 1

2π

∮ ∞

−∞
p(t)dt

t − x . (2.2.20)

Introducing the parameters

β = κ − 1

κ + 1
, ϑ = κ + 1

4μ
, (2.2.21)

we may write

u′(x)
ϑ

= −βp(x)+ 1

π

∮ ∞

−∞
q(t)dt

t − x , (2.2.22)

v′(x)
ϑ

= 1

π

∮ ∞

−∞
p(t)dt

t − x + βq(x). (2.2.23)

Note that the integrals must be interpreted as Cauchy principal values. If the stresses
are applied over a finite interval (−a, b), then the integrals will have limits −a and
b.

Suppose the stresses act over a finite interval (−a, b), then we may integrate
(2.2.22), (2.2.23) w.r.t. x and find

u(x, 0)

ϑ
= −β

∫ x

−a
p(t)dt − 1

π

∮ b

−a
q(t)�n|t − x|dt + C1 (2.2.24)

v(x, 0)

ϑ
= − 1

π

∮ b

−a
p(t)�n|t − x|dt + β

∫ x

−a
q(t)dt + C2 (2.2.25)

where C1, C2 are arbitrary constants. The equations are due to Muskhelishvili
(1953).

If we use Young’s modulus, E, and Poisson’s ratio ν, instead of μ, κ + 1 and β,
we have

κ = 3 − 4ν, 2μ = E/(1 + ν) (2.2.26)

so that

1

ϑ
= 4μ

κ + 1
= 2E

(1 + ν)(4 − 4ν)
= E

2(1 − ν2)
, β = 1 − 2ν

2(1 − ν) . (2.2.27)

We now introduce two functions holomorphic in the upper half-plane:
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w1(z) = 1

2πi

∮ ∞

−∞
p(t)dt

t − z = u1 + iv1, (2.2.28)

w2(z) = 1

2πi

∮ ∞

−∞
q(t)dt

t − z = u2 + iv2. (2.2.29)

(Note that Galin omits the factor 1/(2πi) in the definitions of w1 and w2. The
analysis is neater if it is included.) Using equation (2.2.9), we see that the upper
boundary values of these functions are

w+
1 (x) = 1

2
p(x)+ 1

2πi

∮ ∞

−∞
p(t)dt

t − x = u+
1 (x)+ iv+

1 (x), (2.2.30)

w+
2 (x) = 1

2
q(x)+ 1

2πi

∮ ∞

−∞
q(t)dt

t − x = u+
2 (x)+ iv+

2 (x), (2.2.31)

so that

u+
1 (x) = 1

2
p(x), v+

1 (x) = − 1

2π

∮ ∞

−∞
p(t)dt

t − x , (2.2.32)

u+
2 (x) = 1

2
q(x), v+

2 (x) = − 1

2π

∮ ∞

−∞
q(t)dt

t − x , (2.2.33)

and we may write equations (2.2.22), (2.2.23) as

u′(x, 0)
2ϑ

= −βu+
1 (x)− v+

2 (x), (2.2.34)

v′(x, 0)
2ϑ

= −v+
1 (x)+ βu+

2 (x). (2.2.35)

We now establish certain properties of the functionsw1(z) and w2(z). Equations
(2.2.32), (2.2.33) show that the real parts of these functions are related to the normal
pressure and shear stress acting on the surface y = 0. These quantities can become
infinite at certain points. We now investigate the character of the singularities that
w1(z) and w2(z) can have.

If a concentrated force is applied to the boundary of the half-plane, this can be
pictured as the transmission of pressure (and shear stress) by means of an extremely
narrow punch. In this case, the functions w1(z) and w2(z) possess poles of the first
order.

When, on the other hand, the pressure and shear stress is transmitted by means of
a punch of finite width, there can be no concentrated forces under the punch, even at
the ends. It follows that the real parts of w1(z) and w2(z) can have only integrable
singularities on the real axis. This condition is satisfied if the functions ofw1(z) and
w2(z), which are integrals of Cauchy type, have singularities of the form (z− c)−θ ,
where 0 < θ < 1.
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To obtain the limiting forms of w1(z),w2(z) as z → ∞, we return to equations
(2.2.28), (2.2.29):

w1(z) → iP

2πz
, w2(z) → iQ

2πz
(2.2.36)

where

P =
∫ b

−a
p(t)dt, Q =

∫ b

−a
q(t)dt (2.2.37)

are the resultants of the forces applied by the punch. If the normal pressure and shear
are distributed over a finite number of intervals of finite length, then w1(z),w2(z)

will still have the form (2.2.36) at infinity. In the contact problems discussed in this
book, w1(z) and w2(z) will always possess these properties.

We now express the functions φ′(z) ≡ �(z) and ψ ′(z) ≡ �(z), which serve
as the basis for determining the sresses, in terms of w1(z) and w2(z). Equations
(2.2.16), (2.2.17) give

�(z) = −w1(z)+ iw2(z), (2.2.38)

�(z) = −2iw2(z)+ zw′
1(z)− izw′

2(z), (2.2.39)

from which the stresses σ xx, σ xy, σ yy may be found by using (2.1.42), (2.1.43).
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