Chapter 2
Monte Carlo Simulations

David J. Earl and Michael W. Deem

Summary A description of Monte Carlo methods for simulation of proteins is given.
Advantages and disadvantages of the Monte Carlo approach are presented. The the-
oretical basis for calculating equilibrium properties of biological molecules by the
Monte Carlo method is presented. Some of the standard and some of the more re-
cent ways of performing Monte Carlo on proteins are presented. A discussion of the
estimation of errors in properties calculated by Monte Carlo is given.
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1 Introduction

The term Monte Carlo generally applies to all simulations that use stochastic meth-
ods to generate new configurations of a system of interest. In the context of mole-
cular simulation, specifically, the simulation of proteins, Monte Carlo refers to
importance sampling, which we describe in Sect.2, of systems at equilibrium. In
general, a Monte Carlo simulation will proceed as follows: starting from an initial
configuration of particles in a system, a Monte Carlo move is attempted that changes
the configuration of the particles. This move is accepted or rejected based on an ac-
ceptance criterion that guarantees that configurations are sampled in the simulation
from a statistical mechanics ensemble distribution, and that the configurations are
sampled with the correct weight. After the acceptance or rejection of a move, one
calculates the value of a property of interest, and, after many such moves, an accu-
rate average value of this property can be obtained. With the application of statistical
mechanics, it is possible to calculate the equilibrium thermodynamic properties of
the system of interest in this way. One important necessary condition for Monte
Carlo simulations is that the scheme used must be ergodic, namely, every point that
is accessible in configuration space should be able to be reached from any other
point in configuration space in a finite number of Monte Carlo moves.
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1.1 Advantages of Monte Carlo

Unlike molecular dynamics simulations, Monte Carlo simulations are free from the
restrictions of solving Newton’s equations of motion. This freedom allows for clev-
erness in the proposal of moves that generate trial configurations within the sta-
tistical mechanics ensemble of choice. Although these moves may be nontrivial,
they can lead to huge speedups of up to 10'° or more in the sampling of equilib-
rium properties. Specific Monte Carlo moves can also be combined in a simulation
allowing the modeler great flexibility in the approach to a specific problem. In addi-
tion, Monte Carlo methods are generally easily parallelizable, with some techniques
being ideal for use with large CPU clusters.

1.2 Disadvantages of Monte Carlo

Because one does not solve Newton’s equations of motion, no dynamical informa-
tion can be gathered from a traditional Monte Carlo simulation. One of the main dif-
ficulties of Monte Carlo simulations of proteins in an explicit solvent is the difficulty
of conducting large-scale moves. Any move that significantly alters the internal co-
ordinates of the protein without also moving the solvent particles will likely result
in a large overlap of atoms and, thus, the rejection of the trial configuration. Simu-
lations using an implicit solvent do not suffer from these drawbacks, and, therefore,
coarse-grained protein models are the most popular systems where Monte Carlo
methods are used. There is also no general, good, freely available program for the
Monte Carlo simulation of proteins because the choice of which Monte Carlo moves
to use, and the rates at which they are attempted, vary for the specific problem one is
interested in, although we note that a Monte Carlo module has recently been added
to CHARMM [1].

2 Theoretical Basis for Monte Carlo

The aim of a Monte Carlo simulation is the accurate calculation of equilibrium ther-
modynamic and physical properties of a system of interest. Let us consider calculat-
ing the average value of some property, (A). This could be calculated by evaluating
the following:

(4} = [drNexp[-BU (x¥)] A (V)
~ [driVexp[-pU (V)]
where B = 1/kgT, U is the potential energy, and r" denotes the configuration of an

N particle system (i.e., the positions of all N particles). Now, the probability density
of finding the system in configuration r" is:
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p () = —+ )] @

~ Jdar¥exp[-pU (eM)]’
where the denominator in Eq. 2 is the configurational integral. If one can randomly

generate Njsc points in configuration space according to Eq.2, then Eq. 1 can be
expressed as:
1 Nmc N
(A) ~ —— A(r.). 3)
Nuc “ '

i=1

After equilibration of our system of interest, errors in (A) scale as 1//Nuyc,
as discussed in Sect.4. The Monte Carlo methods that we outline in Sect.3 are
responsible for generating the Nys¢ points in configuration space in a simulation.

A Monte Carlo algorithm consists of a group of Monte Carlo moves that gen-
erate a Markov chain of states. This Markov process has no history dependence,
in the sense that new configurations are generated with a probability that depends
only on the current configuration and not on any previous configurations. If our
system is currently in state m, then the probability of moving to a state n is de-
fined as 7,,,, where T is the transition matrix. Let us introduce a probability vec-
tor, p, that defines the probability that the system is in a particular state; p; is the
probability of being in state i. The initial probability vector, for a randomly chosen
starting configuration, is p(?) and the probability vector for subsequent points in the
simulation is p/) = pU~Dx. The equilibrium, limiting distribution of the Markov
chain, p*, results from applying the transition matrix an infinite number of times,
p* = limpy,,e—o00 pOTVMC, We note:

p* =p'm. “)

If we are simulating in the canonical ensemble, then p* is reached when p; is
equal to the Boltzmann factor (Eq. 4) for all states. Thus, once a system has reached
equilibrium, any subsequent Monte Carlo moves leave the system in equilibrium.
The initial starting configuration of the system should not matter as long as the
system is simulated for a sufficient number of Monte Carlo steps, Nysc. For the
simulation to converge to the limiting distribution, the Monte Carlo moves used
must satisfy the balance condition and they must result in ergodic sampling [2]. If
the transition matrix satisfies Eq. 4, then the balance condition is met. For the stricter
condition of detailed balance to be satisfied, the net flux between two states must be
zero at equilibrium, i.e.:

PuTmn = PyTnm- (5)

For all of the Monte Carlo moves we present in Sect. 3, the balance or detailed
balance conditions hold.

Now, how is the transition matrix chosen, such that balance or detailed balance
is satisfied? In other words, how do we propose a Monte Carlo move and correctly
choose whether to accept or reject it? As an example, let us consider the Metropolis
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acceptance criterion. The transition matrix between states m and n can be written
as:

Tnn = Onn Pmn» (6)

where 0., is the probability of proposing a move between the two states and p,,,
is the probability of accepting the move. Assuming that o, = Oy;,, as is the
case for many but not all Monte Carlo moves, then Metropolis proposed the fol-
lowing scheme: if the new state (n) is lower in energy than the old state (m),
then accept the move (i.e., pun = 1 and W, = O, for p, > p,,), or, if
the new state is higher in energy than the old state, then accept the move with
Pmn = exp (=B [Un) —Um)]) < 1;ie, Tup = Oun (P,/P) for p, < P
where the energy of state i is U (7). If the old and new states are the same, then

the transition matrix is given by 7, = 1 — D @mn. The Metropolis acceptance
n#m
criterion [3,4] can be summarized as:

pmn = min {1, exp (= [U(n) — U(m)])}. N

In a computer simulation, for the case where U (n) is greater than U (m), one
generates a pseudorandom number with a value between 0 and 1, and if this number
is less than p,,,, then the trial move is accepted.

Monte Carlo simulations can be conducted in several different statistical mechan-
ics ensembles, and the distribution that we sample from depends on the ensemble.
These ensembles include, but are not limited to, the canonical ensemble (constant
number of particles N, volume V, and temperature T'), the isobaric—isothermal en-
semble (constant N, pressure P, and T'), the grand canonical ensemble (constant
chemical potential i, V, T'), and the semigrand canonical ensemble. For simulations
of proteins, the modeler is unlikely to stray too often from the canonical ensemble
where the partition function is:

Moo
ow. v, =[] i /drN exp [—ﬁU (rN)], ®)

i=1
where A; is the thermal de Broglie wavelength, A; = /h%/ 2rm;kpT) and m; is

the mass of particle i. A thorough description of Monte Carlo simulations in other
ensembles can be found elsewhere [5, 6].

3 Monte Carlo Methods for Protein Simulation and Analysis

3.1 Standard Monte Carlo Moves

For a molecular system, there are several standard Monte Carlo moves that one can
use to explore conformational degrees of freedom. The simplest trial move is to
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select at random an atom, i, in the system, and propose a change in its Cartesian
coordinates:

X1V = x4 4 A(y —0.5), (9a)
Y =y 4+ Ay - 0.5), (9b)
v = 204 1 Ay —0.5), (9¢c)

where y is a pseudorandom number between 0 and 1 that is different for each axis
at each attempted move, and A sets the maximum displacement. After moving the
atom, one calculates the energy of the new trial structure, and the new structure is
accepted or rejected based on the Metropolis criterion, Eq. 7. For molecules such as
proteins, these moves are often not very efficient, because a change in the coordi-
nates of one atom changes the bond lengths between the selected atom and all the
atoms to which it is connected. This move will also change any bond angles and
torsional angles that the atom is involved in, and, therefore, acceptance of the move
is unlikely for all but the very smallest of moves, especially because proteins often
have a number of stiff or rigid bonds (or bond angles or torsional angles). As an
alternative scheme, one can select individual bond lengths, bond angles, or torsional
angles in the molecule to change at random, while keeping all other bond lengths,
bond angles, and torsional angles fixed. For bond lengths, bond angles, and torsional
angles that are effectively rigid, one can impose constraints on their movement. Tor-
sional angle (or pivot) moves can result in significant changes in the structure of the
molecule, and, thus, can be problematic when the protein is surrounded by a solvent.
This is because any significant change in the conformation of the protein will result
in an overlap with the solvent with a high energetic penalty, and, thus, the rejec-
tion of the move. Pivot moves can be very effective in implicit solvent simulations,
however.

When considering multiple molecules, one can also use Monte Carlo moves that
translate or rotate entire molecules. For flexible, nonlinear molecules such as pro-
teins, the method of quarternions should be used for rotation moves. For translation
moves, the center of mass of the molecule in question is simply changed, in the
same way as for a single atom move (Eqgs. 9a-9c).

3.2 Configurational-Bias Monte Carlo

Configurational-bias Monte Carlo moves fall under the more general category of
biased Monte Carlo moves. In these moves, the Monte Carlo trial move is biased
toward the proposal of reasonable configurations and, to satisfy detailed balance, the
acceptance rules used must be altered because «, in Eq. 6, will no longer be symmet-
ric. Configurational-bias Monte Carlo was originally proposed for the simulation of
chain molecules [7] and was later adapted for the simulation of biomolecules [8].
The idea behind the approach is to delete a section of a molecule and to then “re-
grow” the section. The regrowth of the molecule is biased such that energetically
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reasonable conformations are likely to be produced by the method used. Biasing
during the regrowth can occur by, for example, restricting torsional angles to rea-
sonable bounds and, if one is regrowing a central section of a molecule, biasing
the regrowth toward an area of the simulation box. A configurational-bias Monte
Carlo algorithm is composed of the following main steps. First, a section of a mole-
cule is deleted. Second, a trial conformation for the regrowth is generated using a
Rosenbluth scheme, and the Rosenbluth weight for the new configuration, W (n),
is calculated. Third, the Rosenbluth weight for the old configuration, W (m), is cal-
culated by “retracing” the original conformation. Finally, the trial configuration is
accepted with the probability:

UAD) ] . (10)

— min {1,
Pmn l‘nll‘l[ W (m)

We do not provide details here for determining the Rosenbluth weight, or the gen-
eration of trial orientations for the regrowth, of peptide and protein molecules within
configurational-bias Monte Carlo methods, because they are lengthy and nontrivial.
We instead refer the reader to the following excellent references in which the theory
is fully described [6, 7].

3.3 Rebridging and Fixed End Moves

Rebridging, concerted rotation, or end-bridging Monte Carlo moves have been de-
veloped to explore the conformational degrees of freedom of internal, backbone por-
tions of polymers, peptides, and proteins [9-12]. An example of a rebridging move
for a peptide molecule that causes a local change in conformation but leaves the po-
sitions of the rest of the molecule fixed, is shown in Fig. 1. Torsional angles ¢, and

Fig. 1 Driver angles ¢, and ¢, are changed, breaking the connectivity of the molecule in the
enclosed region, in an analytic rebridging move. The backbone segment is rebridged in the enclosed
region, and the solid lines represent pi bonds or rigid molecular fragments within which no rotation
is possible. Reprinted from [12] with permission. Copyright American Institute of Physics (1999)
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Fig. 2 Fixed end move for biomolecules. The atoms between i and j are rotated about r by an
angle 7

05 are rotated by Ad, and A, causing a change in the units between 0 and 6, and
breaking the connectivity of the molecule. In this move, rigid units only, where bond
lengths and angles are fixed at a prescribed or equilibrium value, are considered to
reduce the situation to a geometric problem, and it is possible to determine all of the
solutions that reinsert the backbone in a valid, connected way. Where there are side
chains attached to the backbone, they are considered to be rigidly rotated. To satisfy
detailed balance, solutions for new and old configurations are determined, and the
maximum number of solutions can be shown to be limited to 16. One of these solu-
tions is randomly selected, and the new conformation is accepted or rejected based
on a modified acceptance criterion.

An alternative to the rebridging move is a fixed end move, shown in Fig.2, in
which a rigid rotation, 7, along the Cy ends of an arbitrary length of the backbone
is attempted. This move changes two torsional angles, ¢ and v, as well as the bond
angle at each end of the segment, but keeps the other internal angles and torsional
angles in the molecule fixed. The rigid rotation, T, is chosen such that the bond an-
gles at the end of the segment do not vary by more than 10° from their natural range.
The relations between the torsional angles, the bond angles, and T are nonlinear, but
it has been shown that trial moves can be proposed that satisfy detailed balance and
are effective in equilibrating peptide molecules [13].

3.4 Hybrid Monte Carlo

A hybrid Monte Carlo move involves running a molecular dynamics simulation for
a fixed length of time [14]. The configuration at the end of this molecular dynamics
run is accepted or rejected based on the Metropolis criterion (Eq. 7), where U (m) is
the potential energy before the molecular dynamics run, and U (n) is the potential
energy at the end of the run [15]. Thus, molecular dynamics can be used to pro-
pose a Monte Carlo move that involves the collective motion of many particles. An
advantage that this method has over conventional molecular dynamics simulations is
that large time steps may be used in the hybrid Monte Carlo move, because there is
no need to conserve energy during the molecular dynamics run. As long as the mole-
cular dynamics algorithm that is used is time reversible and area preserving, then it
is acceptable for use in a hybrid Monte Carlo move. Indeed, several very suitable



32 D.J. Earl, M.W. Deem

multiple-time-step molecular dynamics algorithms now exist that are ideal for use
in hybrid Monte Carlo moves, including those proposed by Martyna, Tuckerman,
and coworkers [16].

At the start of each new hybrid MC move, particle velocities can be assigned at
random from a Maxwell distribution, or alternatively they can be biased toward par-
ticle velocities from previous, successful hybrid Monte Carlo steps, with, of course,
a modified acceptance criterion. The total length of time one uses for the molecu-
lar dynamics run is at the discretion of the simulator. However, the general rule of
not using too long or short a run applies, because long runs that are not accepted
are wasteful of CPU time, and short runs do not advance the configuration through
phase space quickly.

3.5 Parallel Tempering

In the parallel tempering method [17], one simulates M replicas of an original sys-
tem of interest. These replicas are typically each at a different temperature. The
general idea of the method is that the higher-temperature replicas are able to ac-
cess large volumes of phase space, whereas lower-temperature systems may be-
come trapped in local energy minima during the timescales of a typical computer
simulation. By allowing configuration swaps between different (typically adjacent
in temperature) replicas, the lower-temperature systems can access a representative
set of low-energy regions of phase space. The partition function for the M replica
system in the canonical ensemble is:

Qzli_/[[l%/drfvexp [—ﬂiU(rlN)], (11

3/2 . .
where g; = ]_[.1;]:1 (27rm ikBT;/ hz) 2 comes from integrating out the momenta,

and B; = 1/kpT; is the reciprocal temperature of the replica. If the probability of
performing a swap move is equal for all conditions, then exchanges of configura-
tions between replicas i and j are accepted with the probability:

e 8 O 70 e ) | N

A rather complex issue when using parallel tempering is how many replicas one
should use and what temperatures each replica should be set at. As with most Monte
Carlo moves, there are no hard and set rules. The highest temperature must be high
enough for the simulation to pass over all of the energy barriers in phase space in
a manageable computational time, and there must be a sufficient number of repli-
cas to allow a reasonable probability of acceptance for parallel tempering moves,
allowing each system to sample both high and low temperatures. To maximize the
efficiency of parallel tempering simulations, recent theoretical [18] and numerical
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studies [19] have recommended “tuning” the temperature intervals such that moves
between replicas are accepted with a probability of 20 to 25%. An adaptive approach
based on the total “round-trip” time between high and low temperature replicas
seems to be well founded for tuning the temperature intervals [20].

With appropriate scheduling, parallel tempering is an ideal approach to use with
large CPU clusters [21], and its effectiveness in the simulation of biomolecules, as
well as in solid state and material modeling, is well proven [22].

3.6 Density of States Methods

The canonical partition function can also be written as:

Q(N,V,T)= > g(N,V, E)exp[—BEi], (13)
Ei

where g is the density of states. Wang and Landau [23] proposed a Monte Carlo
scheme whereby one performs a random walk in energy space, while keeping a run-
ning estimate of the inverse of the density of states as a function of the energy, or,
alternatively, collecting the configurational temperature as a function of the energy
and determining the density of states by integrating the inverse temperature. Al-
though density of states methods do not satisfy detailed balance, it has been proven
that they asymptotically satisfy balance [24]. During the simulation, the density of
states is continuously modified to produce a flat histogram in energy space, pre-
venting the simulation from becoming stuck in low-energy minima. de Pablo and
coworkers have used the density of states method, combined with hybrid Monte
Carlo and pivot moves, to fold small protein molecules successfully [25].

3.7 Monte Carlo as an Optimization Tool

Monte Carlo methods that satisfy the balance condition are essential if one is inter-
ested in calculating properties at equilibrium. If one is, instead, only interested in
optimizing a property of interest, for example, determining a minimum energy struc-
ture, then there is no such restriction, and one has greater flexibility in the choice
of moves one can use. Simulated annealing, in which a simulation begins at a high
temperature and is sequentially reduced, is one such method that does not satisfy
balance but can be highly effective in overcoming energetic barriers.

In protein structure prediction, Monte Carlo methods can be particularly effec-
tive as an optimization tool. For example, Baker and coworkers have had great
success in the high-resolution de novo structure prediction of small proteins [26].
In their method, they use a combination of multiscale force fields, Monte Carlo
torsional angle moves, side-chain optimization using rotamer representations, and
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gradient-based minimization of their all-atom energy function. Similar methods can
be used in the refinement of structures from nuclear magnetic resonance (NMR)
and x-ray data [27]. Saven and coworkers have also shown that biased Monte Carlo
moves and parallel tempering-based simulations can be particularly useful in pro-
tein sequence design efforts, in which one attempts to define amino acid sequences
that fold to a particular tertiary structure [28].

4 Statistical Errors

Although we may wish that the results from our computer simulations could provide
exact values for a property that we are interested in, this is never the case, because we
are unable to simulate our system for an infinite length of time. One must, therefore,
estimate the error in the calculated value of the property. One way to do this is to
use the method of block averaging. Suppose that we have n samples of a fluctuating
property of interest, A, that were taken when our system was in equilibrium. The
average value of A is estimated as:

(A)~A=->"A; (14)

If all of our samples were uncorrelated, then our estimate of the variance would
be:

1 < -2
o2 (A) = <A2> — (A~ - >[4 - AT (15)
i=1
However, in a simulation, our samples are correlated. To account for this fact, one
may compute averages for blocks of data, and use these block averages to estimate
the variance. Where we have n’ blocks of data, the variance of our new set of data
is:
24y = (a2) (4P = LS A AP 16
o? (A) =A%)~ {A) = = > [A; - AT, (16)
i=1
where A] is the block average of set i, and the average for the whole set of data
remains the same. As the size of the block used increases, the correlation be-
tween the blocks will decrease. Thus, as the block size becomes sufficiently large,
6% (A’) / (" — 1) should be constant and provide an estimate of the error of our
ensemble average of A:
2 /
2 g (A )
eA)r ——=,
(A) 1
and an accurate measure of our statistical error €, is now available.
Another way of calculating errors in a quantity is through the bootstrap method.

From our original n samples, one produces N new sets of data, each containing n

a7)
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samples. The samples that comprise each new set of data are picked at random from
the original data set, and, therefore, it is probable that there will be repeat elements
in the new data sets. These new data sets provide an estimate of the probability
distribution of our property of interest, and, thus, provide another estimate of the
variance and error in the simulation results.

5 Conclusions

Having presented a large number of Monte Carlo moves in Sect. 3, we conclude by
discussing how one can combine these moves in an algorithm that satisfies balance.
Most Monte Carlo algorithms are comprised of several different Monte Carlo moves
that are effective at relaxing different degrees of freedom in a molecule or system.
How to choose which Monte Carlo moves to include in a combined algorithm, and
the probability of attempting each of them, is problem specific.

To satisfy detailed balance, the choice of what type of Monte Carlo move to at-
tempt at a particular time is chosen on a probabilistic basis, and each of the specific
Monte Carlo moves satisfies detailed balance individually. This scheme presents a
problem when using methods such as parallel tempering, in which it is convenient
to synchronize replicas in Monte Carlo move number and attempt swaps after a set
number of Monte Carlo steps. This latter approach satisfies the balance condition,
however, and therefore, it is perfectly acceptable. Also acceptable, because it satis-
fies balance, is sequential updating of a system, in which the moves are performed
in a defined sequence, rather than the moves chosen at random.

Most Monte Carlo simulations to date are performed by software custom written
by research groups. The most typical language for these Monte Carlo simulations is
C. Both the Allen and Tildesley book [6] and the Frenkel and Smit book [5] offer
web sites with useful routines [29, 30]. C language code for analytical rebridging
[12] is available [31]. A web site by Mihaly Mezei lists several useful links related
to Monte Carlo simulation of proteins [32].
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