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Abstract

Protein structure prediction has matured over the past few years to the point that even fully automated 
methods can provide reasonably accurate three-dimensional models of protein structures. However, until 
now it has not been possible to develop programs able to perform as well as human experts, who are still 
capable of systematically producing better models than automated servers. Although the precise details 
of protein structure prediction procedures are different for virtually every protein, this chapter describes 
a generic procedure to obtain a three-dimensional protein model starting from the amino acid sequence. 
This procedure takes advantage both of programs and servers that have been shown to perform best in 
blind tests and of the current knowledge about evolutionary relationships between proteins, gained from 
detailed analyses of protein sequence, structure, and functional data.

Key words: Protein structure prediction, homology modeling, fold recognition, fragment assembly, 
metaservers.

In spite of many years of intense research, unravelling the algo-
rithm by which Nature folds each amino acid (a.a.) sequence 
into a unique protein three-dimensional (3D) structure remains 
one of the great unsolved problems in molecular biology. How-
ever, analyses of the wealth of information contained in protein 
sequence and structural databases (DBs) have revealed the exist-
ence of a number of fundamental rules and relationships among 
protein sequence, structure, and function, based on which many 
of both the current theories about molecular evolution and pro-
tein structure prediction methods have been developed.

The first important question to ask when dealing with pro-
tein structure prediction concerns the purpose for which the 
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model is built. This is of fundamental importance since the accu-
racy required of the model, that is, its similarity to the real protein 
structure, can be substantially different for different biological 
applications (Fig. 2.1). At one end of the spectrum, a very accu-
rate prediction of the functional site in terms of both main- and 
side-chain conformation is indispensable for drug design pur-
poses, and a correct positioning of the side-chains involved in 
intermolecular interactions is required for protein–protein inter-
action (docking) studies. At the other extreme, an approximate 
description of the protein topology at the level of general arrange-
ment of secondary structure elements (SSE) or domains, or even 
an idea of which regions are likely to be globular, unfolded, or 
aggregation prone, can be valuable to those who want to cut 
insoluble proteins into smaller and soluble portions, which are 
likely to be more easily expressed and studied experimentally. 
In general, correct models of the overall protein fold, even with 
unrefined details, can be useful to rationalize experimental data at 
a structural level and guide the design of new experiments aimed 
at improving our understanding of protein function. In the era of 
structural genomics and fast solving of protein structures, looking 
for structural biologists interested in experimentally determining 
the structure of your protein(s) is also an option.

In choosing the procedure to follow for model building, other 
factors to consider are the time available and number of models 
to make. Production of 3D models on a large and even genomic 
scale is achievable with the use of automated or partially automated 
methods. A number of automated methods have been developed 

Fig. 2.1. Biological applications of protein structure prediction methods. SAR: structure–activity relationships.
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that can rapidly produce 3D models starting from the amino acid 
sequence of a target protein (see Section 3.5.1). However, the quality 
of these models can vary to a large extent. A detailed understanding of 
the underlying steps of the modeling procedure is required to evaluate, 
and often improve, the accuracy of automatically produced models.

The most reliable source of information about the accuracy of 
protein structure prediction methods is provided by the evaluation 
of their performance in blind tests. In such evaluations, 3D models 
of target proteins are compared with the experimentally determined 
structures of the same proteins using visual assessments performed 
by human experts and/or numerical evaluators of structural simi-
larity (Note 1). Two main types of evaluations are performed on 
a regular basis: fully automated evaluations (devoted to fully auto-
mated methods), and human-based evaluations (examining predic-
tions refined by human experts as well as those provided by fully 
automated methods). The human-based evaluation, named Criti-
cal Assessment of Structure Predictions (CASP), is performed every 
2 years since its debut in 1994 and contributes enormously to the 
improvement of protein structure prediction methods as well as to 
the diffusion of information about their performance. (The URLs 
of all the Web sites, programs, servers, and databases indicated in 
italic in the text are reported in Table 2.1, along with relevant refer-
ences, when available.) A full description of the experiment along 
with reports of the results of each of the six previous CASP experi-
ments are available (1–6). A seventh edition took place in 2006 and 
its results, published in 2007, provides up-to-date information on 
the most recent advances in the field of protein structure prediction 
(preliminary evaluation results are available from the CASP7 Web 
site). In parallel with the last four CASP editions, the Critical Assess-
ment of Fully Automated Structure Predictions (CAFASP) experi-
ments have also been run in which the ability of automated servers 
to predict CASP targets was evaluated by other servers, without 
human intervention (7–9). In both CASP and CAFASP the predic-
tions are guaranteed to be “blind” by the fact that they are submit-
ted to the evaluation before the experimental structures are released. 
The performance of automated servers on proteins recently released 
from the PDB (10) is also evaluated on a continuous basis by servers 
such as Livebench (11) and EVA (12). Every week these servers sub-
mit the sequences of proteins newly released from the PDB to the 
prediction servers participating in these experiments, collect their 
results, and evaluate them using automated programs. To take part 
in Livebench and EVA the prediction servers must agree to delay the 
updating of their structural template libraries by 1 week, as the pre-
dictions evaluated in these experiments refer to targets whose struc-
tures have already been made publicly available. These predictions 
cannot, therefore, be considered strictly “blind” (as those evaluated 
in CASP and CAFASP). Nevertheless, automated assessments can 
provide an ongoing picture of how automated prediction methods 
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Table 2.1 
URLs of web sites, programs, servers and DBs relevant to protein structure 
 prediction

Web site, program, 
server, DB URL References

@TOME bioserv.cbs.cnrs.fr/HTML_BIO/frame_meta.html (210)

3D-JIGSAW www.bmm.icnet.uk/servers/3djigsaw/ (164)

3D-Jury BioInfo.PL/Meta/ (196)

3D-PSSM www.sbg.bio.ic.ac.uk/∼3dpssm/ (94)

3D-Shotgun www.cs.bgu.ac.il/∼bioinbgu/ (197–200)

ANOLEA protein.bio.puc.cl/cardex/servers/anolea/index.html (173, 174)

Arby arby.bioinf.mpi-inf.mpg.de/arby/jsp/index.jsp (80, 81)

BCM Search Launcher searchlauncher.bcm.tmc.edu/ (34)

Belvu www.cgb.ki.se/cgb/groups/sonnhammer/Belvu.html (110)

BioEdit www.mbio.ncsu.edu/BioEdit/bioedit.html

Bioinbgu www.cs.bgu.ac.il/∼bioinbgu/ (197–200)

BLAST www.ncbi.nlm.nih.gov/BLAST/a (67)

CAFASP4 MQAPs cafasp4.cse.buffalo.edu/progs/mqaps/

CAFASP www.cs.bgu.ac.il/∼dfischer/CAFASP5/ (7–9)

CAPRI capri.ebi.ac.uk/ (36, 37)

CASP experiments 
(CASP1-CASP7)

predictioncenter.org/ (1–6)

CATH www.biochem.ucl.ac.uk/bsm/cath/cath.html (29)

CAZy afmb.cnrs-mrs.fr/CAZY/ (25)

CDD www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi (41)

CE cl.sdsc.edu/ (122)

CINEMA umber.sbs.man.ac.uk/dbbrowser/CINEMA2.1/ (112)

ClustalW www.ebi.ac.uk/clustalw/ (106)

ClustalX ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/ (108)

Cn3D www.ncbi.nlm.nih.gov/Structure/CN3D/cn3dinstall.shtml (147)

COACH www.drive5.com/lobster/ (86)

COLORADO3D asia.genesilico.pl/colorado3d/ (142)

COMPASS prodata.swmed.edu/compass/compass.php (82–84)

CONSURF consurf.tau.ac.il/ (143)

(continued)
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CPHmodels www.cbs.dtu.dk/services/CPHmodels/ (168)

DALI www.ebi.ac.uk/dali/ (31)

DaliLite www.ebi.ac.uk/DaliLite/ (119)

DISOPRED bioinf.cs.ucl.ac.uk/disopred/ (55)

DISpro www.ics.uci.edu/∼baldig/dispro.html (52)

Domain Parser compbio.ornl.gov/structure/domainparser/ (114, 115)

DomCut www.bork.embl.de/∼suyama/domcut/ (40)

DOMPLOT www.biochem.ucl.ac.uk/bsm/domplot/index.html (117)

DRIPPRED www.sbc.su.se/∼maccallr/disorder/

DSSP swift.cmbi.ru.nl/gv/dssp/ (92)

EBI www.ebi.ac.uk

Entrez Tutorial www.ncbi.nlm.nih.gov/Entrez/tutor.html

ESyPred3D www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/ (169)

EVA eva.compbio.ucsf.edu/∼eva/ (12)

Expasy www.expasy.org (33)

FAMSBASE daisy.nagahama-i-bio.ac.jp/Famsbase/index.html (214)

FastA www.ebi.ac.uk/fasta33/ (69)

Fasta format www.ebi.ac.uk/help/formats_frame.html

FFAS03 ffas.burnham.org (88)

FORTE www.cbrc.jp/forte (89)

FRankenstein3D genesilico.pl/frankenstein (207)

FSSP ekhidna.biocenter.helsinki.fi/dali/start (30, 31)

Fugue www-cryst.bioc.cam.ac.uk/fugue/ (99)

Genesilico www.genesilico.pl/meta/ (202)

GenThreader, mGen-
Threader

bioinf.cs.ucl.ac.uk/psipred/psiform.html (95, 96)

Ginzu robetta.bakerlab.org/ (39)

GROMACS www.gromacs.org/ (179)

HBPLUS www.biochem.ucl.ac.uk/bsm/hbplus/home.html (137)

HHpred toolkit.tuebingen.mpg.de/hhpred (91)

HMAP trantor.bioc.columbia.edu/hmap/ (101)

(continued)

Table 2.1 (continued)

Web site, program, 
server, DB URL References
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HMMER hmmer.wustl.edu/ (72, 73)

Homo sapiens genome www.ensembl.org/Homo_sapiens/index.html (26)

Homstrad www-cryst.bioc.cam.ac.uk/∼homstrad/ (32)

IMPALA blocks.fhcrc.org/blocks/impala.html (77)

InsightII / Biopolymer 
/ Discover

www.accelrys.com/products/insight/ (178)

InterPro www.ebi.ac.uk/interpro/ (45)

Inub inub.cse.buffalo.edu/ (199, 200)

IUPred iupred.enzim.hu/index.html (53)

Jackal trantor.bioc.columbia.edu/programs/jackal/index.html

Joy www-cryst.bioc.cam.ac.uk/joy/ (135)

Jpred www.compbio.dundee.ac.uk/∼www-jpred/ (65, 66)

LAMA blocks.fhcrc.org/blocks-bin/LAMA_search.sh (87)

LGA predictioncenter.org/local/lga/lga.html (118)

LIGPLOT www.biochem.ucl.ac.uk/bsm/ligplot/ligplot.html (140)

Livebench bioinfo.pl/meta/livebench.pl (11)

LOBO protein.cribi.unipd.it/lobo/ (156)

LOOPP cbsuapps.tc.cornell.edu/loopp.aspx (102)

Loopy wiki.c2b2.columbia.edu/honiglab_public/index.php/
Software:Loopy

(155)

Mammoth ub.cbm.uam.es/mammoth/pair/index3.php (120)

Mammoth-mult ub.cbm.uam.es/mammoth/mult/ (126)

Meta-BASIC BioInfo.PL/Meta/ (113)

ModBase modbase.compbio.ucsf.edu/modbase-cgi-new/search_form.cgi (213)

Modeller salilab.org/modeller/ (161)

ModLoop alto.compbio.ucsf.edu/modloop/ (157)

MolMol hugin.ethz.ch/wuthrich/software/molmol/index.html (149)

MQAP-Consensus cafasp4.cse.buffalo.edu/mqap/submit.php (177)

NACCESS wolf.bms.umist.ac.uk/naccess/ (136)

NAMD www.ks.uiuc.edu/Research/namd/ (180)

NCBI www.ncbi.nlm.nih.gov

NCBI NR sequence DB ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz (23)

Table 2.1 (continued)

Web site, program, 
server, DB URL References

(continued)
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Nest wiki.c2b2.columbia.edu/honiglab_public/index.php/
Software:nest

(165)

ORFeus bioinfo.pl/meta/ (90)

Pcons, Pmodeller www.bioinfo.se/pcons/, www.bioinfo.se/pmodeller/ (201)

Pcons5 www.sbc.su.se/∼bjornw/Pcons5/ (208, 209)

PDB www.pdb.org/ (10)

PDBsum www.ebi.ac.uk/thornton-srv/databases/pdbsum/ (141)

PDP 123d.ncifcrf.gov/pdp.html (116)

Pfam www.sanger.ac.uk/Software/Pfam/ (42)

Phyre www.sbg.bio.ic.ac.uk/∼phyre/

Picasso www.embl-ebi.ac.uk/picasso/ (85)

PMDB a.caspur.it/PMDB/ (215)

Porter distill.ucd.ie/porter/ (64)

POSA fatcat.burnham.org/POSA/ (127)

PPRODO gene.kias.re.kr/∼jlee/pprodo/ (40)

PRC supfam.mrc-lmb.cam.ac.uk/PRC/

PRED-TMBB Biophysics.biol.uoa.gr/PRED-TMBB/ (60)

PredictProtein www.predictprotein.org/ (59)

PrISM wiki.c2b2.columbia.edu/honiglab_public/index.php/
Software:PrISM

(125)

Procheck www.biochem.ucl.ac.uk/∼roman/procheck/procheck.html (138, 139)

ProDom protein.toulouse.inra.fr/prodom/current/html/home.php (44)

PROF cubic.bioc.columbia.edu/predictprotein/ (59)

ProQ, ProQres www.sbc.su.se/∼bjornw/ProQ/ (175, 176)

ProSa www.came.sbg.ac.at/typo3/ (171)

Prosite www.expasy.org/prosite/ (46)

Protein Explorer proteinexplorer.org (146)

Protinfo AB CM protinfo.compbio.washington.edu/protinfo_abcmfr/ (159)

PSI-BLAST www.ncbi.nlm.nih.gov/BLAST/ (67)

Psi-Pred bioinf.cs.ucl.ac.uk/psipred/ (57, 62)

RAPTOR ttic.uchicago.edu/∼jinbo/RAPTOR_form.htm (100)

RasMol www.umass.edu/microbio/rasmol/getras.htm (145)

(continued)
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ReadSeq bioweb.pasteur.fr/seqanal/interfaces/readseq-simple.html

Robetta robetta.bakerlab.org/ (187–189)

ROKKY www.proteinsilico.org/rokky/ (194)

Rosetta depts.washington.edu/ventures/UW_Technology/
Express_Licenses/Rosetta/

(19, 
182–186)

Rosettadom robetta.bakerlab.org/ (39)

SAM (download) www.soe.ucsc.edu/research/compbio/sam2src/

SAM-T02 www.cse.ucsc.edu/research/compbio/HMM-apps/
T02-query.html

(75, 76)

SAM-T99 www.cse.ucsc.edu/research/compbio/HMM-apps/
T99-query.html

(63)

Sanger Centre www.sanger.ac.uk

Scap wiki.c2b2.columbia.edu/honiglab_public/index.php/
Software:Scap

(160)

Schistosoma mansoni 
genome

www.tigr.org/tdb/e2k1/sma1/ (27)

SCOP scop.mrc-lmb.cam.ac.uk/scop/ (28)

SCRWL www1.jcsg.org/scripts/prod/scwrl/serve.cgi (158)

Seaview pbil.univ-lyon1.fr/software/seaview.html (111)

SegMod/ENCAD csb.stanford.edu/levitt/segmod/ (162)

Sequence Manipulation 
Suite

bioinformatics.org/sms2/ (35)

SMART smart.embl-heidelberg.de/ (43)

SP3 sparks.informatics.iupui.edu/hzhou/anonymous-fold-sp3.
html

(104, 105)

SPARKS2 sparks.informatics.iupui.edu/hzhou/anonymous-
fold-sparks2.html

(103, 104)

SPRITZ protein.cribi.unipd.it/spritz/ (54)

SSAP www.cathdb.info/cgi-bin/cath/GetSsapRasmol.pl (123)

SSEARCH pir.georgetown.edu/pirwww/search/pairwise.shtml (70)

SSM www.ebi.ac.uk/msd-srv/ssm/ssmstart.html (124)

STRUCTFAST www.eidogen-sertanty.com/products_tip_structfast.html (195)

SUPERFAMILY supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/ (47, 48)

Swiss-PDBViewer www.expasy.org/spdbv/b (144)

Table 2.1 (continued)

Web site, program, 
server, DB URL References
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SwissModel swissmodel.expasy.org/ (163)

SwissModel Repository swissmodel.expasy.org/repository/ (212)

SwissProt, TrEMBL www.expasy.uniprot.org/database/download.shtml

T-Coffee igs-server.cnrs-mrs.fr/∼cnotred/Projects_home_page/
t_coffee_home_page.html

(107)

TASSER-Lite cssb.biology.gatech.edu/skolnick/webservice/tasserlite/
index.html

(97)

TBBpred www.imtech.res.in/raghava/tbbpred/ (61)

Threader bioinf.cs.ucl.ac.uk/threader/ (16)

Three to One bioinformatics.org/sms2/three_to_one.html

TIGR www.tigr.org

TINKER dasher.wustl.edu/tinker/

TMHMM www.cbs.dtu.dk/services/TMHMM/ (58)

Translate www.expasy.org/tools/dna.html

UniProt www.expasy.uniprot.org/ (24)

VAST www.ncbi.nlm.nih.gov/Structure/VAST/vastsearch.html (121)

Verify-3D nihserver.mbi.ucla.edu/Verify_3D/ (15, 172)

VMD www.ks.uiuc.edu/Research/vmd/ (150)

VSL2 www.ist.temple.edu/disprot/predictorVSL2.php (50)

WebLogo weblogo.berkeley.edu/logo.cgi (109)

Whatcheck www.cmbi.kun.nl/gv/whatcheck/ (170)

WHAT IF swift.cmbi.kun.nl/whatif/ (148)

Wikipedia on Structural 
Alignment Software

en.wikipedia.org/wiki/Structural_alignment_software
#Structural_alignment

aFor more details, see the BLAST tutorial (www.ncbi.nlm.nih.gov/BLAST/tutorial/) and frequently 
asked questions (FAQ) (www.ncbi.nlm.nih.gov/blast/blast_FAQs.shtml).
bAlso download: Swiss-Pdb Viewer Loop Database, User Guide, and Tutorial, containing detailed infor-
mation on the program commands and explanations on how to build a homology model of the target 
protein using this program.

perform based on a larger number of targets than those evaluated by 
CASP/CAFASP experiments.

In CASP and related experiments protein structure prediction 
methods have been traditionally grouped into three broad categories 
depending on the level of similarity of the target protein sequence 
to other proteins of known structure, which necessarily impacts the 

Table 2.1 (continued)
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procedure that must be used to build the models: comparative or 
homology modeling (CM), fold recognition (FR), and new fold (NF) 
predictions. The separation between these categories, in particular 
between CM and FR and between FR and NF, has been challenged 
by the development of more sophisticated methods (e.g., profile-
based methods and fragment-based methods, see Sections 3.3.1.1 
and 3.4) able to cross the boundaries between them. The accuracy 
of the structures predicted in blind tests is generally highest for CM 
and lowest for NF methods, but there is a large overlap between the 
accuracy reached by neighboring categories of methods (Fig. 2.2).

Fig. 2.2. Protein structure prediction methods used in CASP6 and accuracy of the predictions, expressed by GDT_TS 
(Note 1). For a description of prediction methods and CASP6 prediction categories see text. Target Nb, Best GDT_TS, 
and %_ID best template are the number of targets evaluated in each prediction category, the GDT_TS between the real 
structure of each target and the best model submitted for it, and the %_ID between the target sequence and the best template 
structure present in the PDB, i.e., the structure most similar to the target. The bottom panel shows the structural super-
position between the experimental structure of CASP6 target T277 (PDB ID: 1wty) and five models with varying degrees 
of accuracy submitted by predictors taking part in the experiment. Only Cα atoms of structure (black) and models (gray) 
are shown. As shown by the figure, GDT_TS values near 80 indicate that the Cα atoms of the model are well superim-
posed to those of the structure, except in some loop regions. For a GDT_TS value of 65 the core regions are still predicted 
quite accurately, although structural differences in the loop regions and protein termini are more pronounced. GDT_TS 
values around 50 correspond to an overall structural similarity, but structural variations occur even in the conserved 
core regions. GDT_TS values around 35 indicate lack of an overall accurate topology prediction, with similarity between 
only about half of the core regions of structure and model, whereas other regions differ significantly. For GDT_TS values 
around 20, only a small fraction of the model shows some resemblance to the target structure.
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The rational basis of Comparative Modeling (CM) are 
the following observations: (1) proteins having highly simi-
lar a.a. sequences fold into similar 3D structures, and (2) the higher 
the sequence similarity in the conserved protein “core” region, 
the higher the similarity between their 3D structures (13). Given the 
sequence of a protein of unknown structure (target), if another 
protein (template) whose 3D structure has been experimentally 
determined can be detected, via a.a. sequence similarity to the 
target, in available DBs, then the 3D structure of the target can 
be modeled on the basis of the template structure. Since CM is 
the method that results in the most detailed and accurate protein 
structure predictions in blind tests (14), it is the elective protein 
structure prediction method, whenever applicable.

In the next category, FR methods exploit the observation 
that during evolution protein structures are more conserved than 
sequences; although proteins with similar sequences have simi-
lar 3D structures, similar 3D structures can also be assumed by 
proteins with relatively different a.a. sequences. Therefore, even 
if a target protein does not show recognizable sequence similari-
ties with proteins of known 3D structure, its fold might still be 
similar to one of them. To identify the compatibility of the target 
sequence with known 3D structures, FR methods take advan-
tage of structural information derived from statistical analyses of 
protein structure DBs, such as frequency of pairwise a.a. interac-
tions and residue propensity to assume a certain type of secondary 
structure and/or to be solvent accessible or buried (15–17). 
Although they have been remarkably successful at identifying 
suitable structural templates for target sequences without detect-
able sequence similarities to proteins of known structure, FR 
methods have two major drawbacks: (1) they are not always able 
to discriminate between structures truly similar to the target and 
those unrelated to it, the correct ranking of which remains a chal-
lenge; and (2) they are somewhat less successful in recognizing 
conserved regions between target and template, often producing 
poor-quality sequence alignments from which to produce the 3D 
model. As a consequence, these methods should only be used 
when CM methods are unable to provide an answer.

Both CM and FR methods involve the identification of a 
suitable structural template in the PDB and differ only in the way 
they detect it (i.e., based on target-template sequence similar-
ity vs. target sequence-template structure compatibility). Once a 
suitable template has been identified, the procedure used to build 
the model is essentially the same for both categories. CM and FR 
are often grouped together in the broader category of template-
based protein structure prediction methods and were evaluated 
in this new category in the most recent CASP7.

Conversely, the remaining category of NF prediction meth-
ods does not use whole structural template proteins from the 
PDB. However, the most successful of these methods do exploit 
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information contained in PDB structures at a local level. Protein 
structures contain smaller sub-structures, or structural motifs, 
which assume the same conformation in the context of different 
3D structures. Therefore, it is possible that a “new” fold, i.e., a 
protein whose 3D structure differs from already known structures 
at a global level, is formed by a combination of sub-structures that 
are similar to those present in known structures. Most current NF 
methods (called fragment-assembly or fragment-based methods) 
try to reconstruct the global structure of the target by combining 
structural fragments having a.a. sequence similar to an equiva-
lent short segment of the target sequence, and applying a scoring 
function to evaluate the resulting models (18, 19). Although at 
a global level each target sequence generally assumes only one 
3D structure, short peptide sequences can assume different con-
formations depending on their structural context. Therefore, for 
each target, fragment-based prediction methods have to explore 
the structure-space that can be occupied by both different frag-
ment conformations and the possible combinations of these frag-
ments. This results in the generation of many models, frequently 
notably different from one another. As was a previously discussed 
challenge for FR methods, perhaps the biggest drawback of NF 
methods lies in their limited ability to discriminate between cor-
rect and incorrect models. Nevertheless, these methods represent 
one of the biggest innovations that have taken place in the field of 
protein structure prediction for at least a decade, and are the only 
currently available tool to obtain, however non-systematically, 3D 
models of small protein structures with new folds. Even when the 
correct or most-accurate model cannot be identified based on the 
score provided by the method, having a few potential models can 
help in experimental structure determination by x-ray crystallog-
raphy using the Molecular Replacement technique (see Volume I, 
Chapter 3), especially in cases of proteins or protein complexes 
that are proving particularly tricky to solve (20). Additionally, in 
CASP experiments, fragment-based methods have proved to be 
particularly successful in the prediction of difficult FR targets (see 
Sections 3.3.1.2 and 3.4).

The NF category also comprises ab initio methods. Contrary 
to CM, FR, and NF fragment-based methods, ab initio algorithms 
do not exploit information contained in the PDB either at a glo-
bal or local level. Instead, they try to reproduce the physical laws 
governing protein folding starting only from the a.a. sequence 
of the target protein and empirical energy functions based on 
physicochemical principles. Although addressing an intellectually 
challenging and ever-stimulating problem, until now ab initio 
methods have not produced protein structure predictions com-
petitive with those provided by the methods discussed in the pre-
ceding. The practical applications of ab initio methods in protein 
structure prediction are currently limited to short protein segments 



 Protein Structure Prediction 45

(e.g., loops), which cannot be predicted by other methods, and 
energy refinement of 3D models or parts of them.

One of the remarkable features of protein structure predic-
tion, which has contributed greatly to its diffusion and progress, 
is that the whole process can be performed using tools that have 
been made freely available by their foresighted developers. The 
large majority of the programs and servers described in this chap-
ter can be freely downloaded from, or used through, the Internet 
(see Table 2.1).

The variety of programs and databases used in protein structure 
prediction is large and ever-increasing, and a comprehensive list-
ing goes beyond the scope of this chapter. For a full and up-date 
listing, the reader can refer to:

● The special database and Web server issues of Nucleic Acids 
Research, each published once a year (21, 22), which are ded-
icated to the most established and popular, as well as recently 
developed, databases for the collection of biological data and 
software for their analysis, respectively.

● The special issue of PROTEINS: Structure, Function, and 
Bioinformatics (1–6), published every 2 years and dedicated 
to the results of the previous year’s CASP experiment, com-
prising both articles describing the evaluation of the per-
formance of protein structure prediction methods in blind 
tests and articles about the most successful and/or innova-
tive prediction methods.

● The Livebench and EVA Web sites, in which the performance 
of automated servers for protein structure prediction on newly 
released PDB targets is assessed on a continuous basis.

Many different types of sequence DBs are available from the 
NCBI, EBI, Sanger Centre, and TIGR Web sites. The most 
commonly used sequence DBs are central repositories in which 
sequences from many different DBs are collected, such as the 
comprehensive non-redundant (NR) protein sequence database 
at the NCBI (23) or UniProt, containing accurate annotations 
about protein function, subcellular localization, and/or other 
protein features (24). For particular purposes, specialized DBs 
can be searched, dedicated to specific protein groups or families 
(e.g., carbohydrate-active enzymes (CAZy) (25)), or individual 
genomes (e.g., Homo sapiens (26) and Schistosoma mansoni (27)), 
some of which might not be sufficiently complete or refined to be 
included in the central repositories.

2. Systems, 
Software, and 
Databases
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The central repository for macromolecular structures is the 
PDB. DBs derived from the PDB and containing classifications 
of proteins according to their 3D structures and, in some cases, 
evolutionary relationships (e.g., SCOP (28), CATH (29), FSSP 
(30, 31)), and structural alignment DBs (e.g., Homstrad (32)) 
are also of central importance in protein structure prediction.

The majority of the programs required for protein struc-
ture prediction can be run on remote servers accessible through 
the World Wide Web; therefore, any system supporting a Web 
browser may be used. Many of these programs are also available 
to be downloaded and run on most common operating systems 
(i.e., Linux, Unix, Mac OS X, and Windows). Using programs 
through the Internet is the easiest option, and the best choice for 
most common applications. On the other hand, downloading the 
programs permits a greater flexibility in the choice of parameters 
and amount of computer power to devote to their use. In turn, 
this allows for greater automation and removes any reliance on 
the server availability (a number of protein structure prediction 
servers are not accessible during the “CASP prediction season”, 
which runs from June to September every even year).

The Methods section describes protein structure prediction 
procedures that take advantage of frequently used methods and 
programs, highlighting which of them have been performing best 
in blind protein structure prediction experiments.

Protein structure prediction methods are described in the order: 
CM, FR, and NF, in agreement with the accuracy of the predic-
tions that they provide in blind tests (from highest to lowest).

The starting point of any prediction procedure is the a.a. sequence 
of the target protein, preferably in Fasta format, which is accepted 
or required by most programs and servers. Servers that do not 
accept Fasta format usually require just a sequence of a.a. resi-
dues in one-letter code (equivalent to Fasta format without the 
first header line).

The sequence can be obtained from the NCBI Web site or 
other sequence DBs using similar procedures. (For a simple and 
comprehensive explanation on the use of the NCBI data retrieval 
system, see the Entrez tutorial.) Other programs, such as those 
available from Expasy (33), BCM Search Launcher (34), or 
Sequence Manipulation Suite (35) perform useful operations on 
biological sequences, such as the conversion of different sequence 
formats to Fasta format (ReadSeq) and of a.a. sequences from 
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three- to one-letter code (Three to One), or the translation of 
nucleotide gene sequences to the a.a. sequence of their protein 
products (Translate).

Most proteins, especially large ones, are comprised of two or more 
structural units called domains, joined to each other by linker 
peptides. In case of multi-domain proteins, homologous template 
domains of known structure may only be available for some of 
the target domains, they may belong to different proteins whose 
domain architecture (i.e., the type and linear order of domains 
comprised in a protein sequence) is different from the target, 
and/or have a different degree of evolutionary distance from the 
target domains, so that different techniques may be required to 
predict their structures. For these reasons, protein structure pre-
diction is generally performed (and assessed, in experiments such 
as CASP) at a domain level. Predicting the spatial arrangement 
of interacting domains relative to one another in multi-domain 
proteins (docking) is still a difficult problem, which is only pos-
sible to solve in particular cases (see, for example, the results of 
the Critical Assessment of PRediction of Interactions (CAPRI) 
experiment) (36, 37), and are not addressed in this chapter.

To perform structure prediction at a domain level it is nec-
essary to obtain an initial picture of the domain composition of 
the target protein and of regions typically found outside globular 
domains, such as signal, linker, low-complexity, disordered, and 
transmembrane regions, as well as of the SSE contained in each 
domain.
 1. Domain boundaries are predicted using a variety of 

approaches based on multiple sequence alignments (MSAs), 
frequency of amino acids found in domain and linker regions, 
domain size, predicted secondary structure, sequence com-
parison methods, neural networks, hidden Markov models, 
and, sometimes, even using FR and NF methods to build 
3D models from which domain definitions are derived (see 
(38) and references therein). Rosettadom and Ginzu (39) 
were the most successful automated servers at predicting 
domain boundaries in CASP6, whereas Phyre and DomCut 
(40) were the programs used by the best human predictors 
(38). Other successful groups used PPRODO (40) and CDD 
(41). In CASP6 the best methods were able to correctly 
assign domains to >80% of the residues of multi-domain tar-
gets. The prediction quality was shown to decrease with an 
increase of the number of domains in the target, from targets 
assigned to the CM category to those assigned to FR and 
NF and for domains made by segments that are not contigu-
ous in the sequence. However, since the number of targets 
available for domain prediction was relatively small (63 in 
total, of which about half contained one domain only), the 
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trends observed in this experiment might not be representa-
tive of more general scenarios (38). If the target domains are 
homologous to those already classified in specialized DBs, 
servers such as Pfam (42), SMART (43), ProDom (44), 
InterPro (45), Prosite (46), and SUPERFAMILY (47, 48) 
can provide reliable domain assignments, as well as predic-
tions about signal peptides, low complexity, and transmem-
brane regions.

 2. Natively disordered proteins or protein regions are those 
that do not assume a regular secondary or tertiary structure 
in absence of binding partners. Proteins containing relatively 
long (>30 a.a.s) disordered segments are relatively common, 
especially in higher eukaryotes, and often have important 
functional roles (49). The available methods to predict dis-
ordered protein regions are based on experimental data from 
x-ray crystallography and NMR spectroscopy and in general 
they use machine learning approaches such as neural net-
works and support vector machines (49). In CASP6 the best 
performing method was VSL2 (50, 51), which correctly pre-
dicted 75% of disordered residues (true-positives) with an 
error rate of 17% (false-positives, i.e., ordered residues incor-
rectly predicted as disordered). Among the other best per-
forming methods were DISpro (52), IUPred (53), SPRITZ 
(54), DISOPRED (55), and DRIPPRED, with about 50% 
of correctly predicted residues for an error rate <20% 
(49). A drawback of these methods is that the probabilities 
associated with the disorder predictions are not always good 
indicators of the prediction accuracy (48). Assessment of dis-
order predictions in CASP6 was confined to targets whose 
structures were determined mostly by x-ray crystallogra-
phy, which may impose some order to regions that would 
be disordered in solution, and whose disordered segments 
were often rather short (49). Therefore, although the results 
of this assessment are indicative of the performance of the 
methods on proteins similar to the CASP6 targets, they do 
not necessarily reflect their performance on different types 
of disorder, e.g., their ability to identify entirely disordered 
proteins or disordered regions as measured by other experi-
mental methods such as NMR spectroscopy (49).

 3. Transmembrane (TM) regions are predicted by Psi-Pred (57), 
which also provides secondary structure predictions (see the 
following); TMHMM (58) and a number of servers accessible 
through the PredictProtein metaserver (59) specialize in pre-
dicting transmembrane alpha-helices, and PRED-TMBB (60) 
and TBBpred (61) transmembrane beta-barrels.

 4. A number of programs have been developed to predict the 
SSE present in a target sequence at a residue level, and the 
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best of these have now reached a remarkable level of  accuracy. 
In the continuous benchmarking system EVA, several meth-
ods are tested for their ability to correctly predict the sec-
ondary structure of target proteins showing no significant 
sequence identity to any protein of known structure. Cur-
rently tested methods have been subjected to the evaluation 
for several months on sets of tens to hundreds of proteins, 
and were shown to have an accuracy, defined as their ability 
to correctly predict each of the target residues as being in 
alpha-helical, beta-strand, or other (coil) conformation, of at 
least 70% on their overall set of target proteins. This accuracy 
depends on the quality of the MSA (see Section 3.3.2.1) 
that is automatically built for the target, ranging from about 
64% for a single sequence with no homologs to nearly 90% 
for targets with high-quality MSAs. In addition to the high 
prediction accuracy they achieve, another important feature 
of these methods is that the confidence values associated 
with their residue-based predictions correlate well with the 
actual accuracy of the prediction. Several consistently well-
performing methods, such as PROF (59), Psi-Pred (57, 62) 
and SAM-T99 (63) predict correctly >76% of residues of the 
set of targets they have been tested on. Porter (64) achieves 
almost 80% correctly predicted residues and is currently the 
best among the methods evaluated by EVA, but as its evalu-
ation started more recently than that of the other methods it 
has been tested on a smaller set of target proteins. Another 
useful server is Jpred (65, 66), which provides consensus SSE 
predictions between several methods.

In general, searches with any of these servers are easy to run and 
do not take long to complete (from a few minutes to a few hours, 
depending on the server); therefore, it is advisable to run the 
target sequence through more than one server to get as accurate 
as possible a starting guess about the target domain boundaries 
and SSE composition. Ideally, since the confidence in a given 
prediction is higher when different methods are in agreement, it 
is advisable to use several methods and compare their predictions, 
especially when the methods performance in blind tests has not 
yet been assessed, the assessment has been performed on a small 
number of targets, or the target has significantly different features 
from those on which the assessment has been performed (e.g., it 
contains large disordered regions).

All the predictions from now on should be performed using 
as input single domain sequence regions as opposed to whole 
protein sequences. Given the uncertainty in domain boundary 
prediction, it is advisable to include in the target domain sequence 
some 10–20 a.a.s N-terminal and C-terminal to the boundaries 
predicted by domain prediction servers. A more precise predic-
tion of the domain boundaries can often be obtained at a later 
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stage, following the production of optimized target-template 
sequence alignments and 3D target models.

Template-based modeling consists of the following key steps: (1) 
identification of the template structure; (2) refinement of target-
template(s) sequence alignments; (3) model building; (4) model 
evaluation; and (5) model refinement.

Sequence comparison (SC) methods are used to retrieve proteins 
similar to the target from sequence DBs. Proteins that score bet-
ter than certain threshold values are considered to have statisti-
cally significant sequence similarity to the target, based on which 
an evolutionary relationship (i.e., homology) with the target is 
inferred. Since similar sequences fold into similar 3D structures, 
proteins of known structure scoring above the threshold can be 
used as template(s) from which a comparative model of the tar-
get is built. Homology models are usually built using as main 
template the structure of the protein having the highest global 
sequence conservation with the target. However, regions con-
taining insertions and deletions in the sequence alignment of the 
target with the best global template might be better conserved, 
at a local level, in other homologous proteins of known struc-
ture, which can therefore be used as templates for these regions. 
In principle, homologous proteins may be retrieved searching 
sequence DBs including only proteins of known structure (e.g., 
pdb at the NCBI). However, since protein homologs of unknown 
structure provide important information for model building, and 
the sequences of proteins of known structure are also contained 
in comprehensive sequence DBs such as NR, these are generally 
the DBs of choice.

SC methods can be assigned to two main categories: pair-
wise methods and profile-based methods. Pairwise sequence 
comparison methods (e.g., BLAST) (67) compare the sequence 
of the target with each sequence present in a sequence DB. They 
are able to detect proteins showing high sequence similarity to 
the target, based on which the target and the retrieved proteins are 
inferred to be close evolutionary relatives and expected to assume 
very similar 3D structures. Profile-based sequence comparison 
methods (e.g., PSI-BLAST) (67) compare each sequence in a DB 
with a profile created from an MSA of the target and its closest 
homologs, which have been previously detected using pairwise 
methods. Since the profile incorporates information about several 
family members and not just the target, these methods are able 
to detect proteins evolutionarily related to the target that cannot 
be detected by pairwise sequence comparison methods. Based on 
their lower sequence similarity with the target, these proteins are 
considered to be distant evolutionary relatives; therefore, their 
structural similarity with the target might be lower than that 
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of proteins matched by pairwise methods (however, this is not 
always the case, see Section 3.3.1.2 and Fig. 2.2). In CASP6, 
if a significant match with a correct template domain (as defined 
based on the structural similarity of the target with structures in 
the PDB measured by the LGA program, see Section 3.3.2.4) 
was found using BLAST, the target was assigned to the “easy” 
CM prediction sub-category; any targets for which structural 
homologs were detected by PSI-BLAST but not by BLAST were 
considered to be “hard” CM targets (14, 68).

The most popular pairwise sequence comparison methods 
are BLAST, FastA (69), and SSEARCH (70). BLAST is the most 
commonly used, it is implemented by almost every sequence DB 
available on the Internet and can either be used interactively or 
downloaded, together with a number of comprehensive or spe-
cific sequence DBs, from the NCBI Web site. Although installing 
BLAST on a local computer can be advantageous to run mul-
tiple searches automatically and allow for greater flexibility in 
parameter settings, the Web versions are easier to use and pro-
vide reasonable default parameters, which might be preferable 
for first-time users. BLAST returns pairwise alignments of the 
target with sequences retrieved from the DB, and several param-
eters to help decide about the significance of each alignment, 
i.e., whether the matched protein is likely to a be a real homolog 
of the target as opposed to showing sequence similarity with it 
purely by chance.
 1. The expectation value (E-value) of an alignment represents 

the number of different alignments with scores equivalent 
to or better than the score of that alignment (Note 2) that 
are expected to occur by chance in a database search. There-
fore, the lower the E-value, the higher the probability that a 
matched sequence is a real homologue of the target, and vice 
versa. Unfortunately, there is no universal threshold value 
that guarantees identification of all the true homologs and 
rejection of all non-homologous sequences. In general, for 
a given threshold value, there will be both proteins with 
E-values better (i.e., lower) than the threshold that are not 
real homologs of the target but show some sequence simi-
larity with it purely by chance (false-positives), and proteins 
with E-values worse (i.e., higher) than the threshold that 
are homologous to the target but have diverged from it to 
the point that the sequence similarity is not distinguishable 
from that occurring by chance (false-negatives). Lowering 
the E-value threshold results in a decrease in the number 
of false positives (i.e., incorrect hits) and an increase in the 
number of false-negatives (in that a higher number of real 
homologs have E-values above the threshold, and are dis-
carded). Conversely, increasing the E-value threshold results 
in a lower number of false-negatives (i.e., missed hits) and a 
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higher number of false-positives (e.g., for E-values of 10 or 
higher, a considerable number of hits found by chance have 
E-values below the threshold, and are selected). In general, a 
match is considered to be significant if the E-value is around 
10−2–10−3 or lower, whereas E-values of 102–103 or higher 
indicate that the match is almost certainly not to be trusted. 
Matches with E-values between or approaching these val-
ues should be evaluated carefully taking into account other 
parameters.

 2. The percentage of sequence identity (%_ID) represents the 
number of identical a.a.s found at corresponding positions in 
the aligned regions and it can provide indications about the 
homology between two proteins. For sequences aligning over 
about 100 a.a.s, a %_ID above 40% indicates certain homol-
ogy, whereas a %_ID of 20% or less might occur purely by 
chance; if the %_ID is between 20 and 40% the two proteins 
might be homologous, but additional information is required 
to support this hypothesis. These threshold values vary with 
the length of the aligned regions. Since short segments have 
a higher chance of showing sequence similarity by chance, for 
considerably shorter and longer alignments the %_ID required 
to infer homology is therefore higher and lower, respectively. 
Similar information to the %_ID is provided by the percent-
age of sequence similarity, which depends on the substitution 
matrix used by SC methods (Note 3). High values of per-
centage of sequence similarity qualitatively support the signifi-
cance of the match and the correctness of the alignment, but 
the relationship of this parameter with homology is even less 
precise than for %_ID.

 3. Between closely related proteins, insertions and deletions 
(gaps) are usually relatively few and generally cluster in sur-
face loop regions, rather than being spread all over the struc-
ture and interrupting regular SSE. Therefore, the lower the 
number of gaps and different positions in which they occur 
in the alignment, the higher the significance of the match 
and quality of the alignment.

In the absence of overall sequence similarity, i.e., in case of 
E-values higher and %_ID lower than the aforementioned values, 
the following additional sources of evidence can support the 
hypothesis of the existence of evolutionary relationships between 
sequences retrieved from the DBs and the target: the similarity of 
both the target and the retrieved sequence to a third “intermedi-
ate” sequence that is more closely related to each of them than 
they are to each other; the existence of structural relationships 
between the matched proteins of known structure (as shown, 
for example, by their classification within the same SCOP 
Family, Superfamily or Fold) (Note 4); a good overlap between 
the SSE of the templates and the SSE predicted for the target 
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(see Section 3.3.2.2); and finally the conservation of residues that 
are known to play important structural and/or functional roles for 
the target and/or the retrieved proteins (key residues, see Section 
3.3.2.5). Additionally, since DB searches are not symmetrical, con-
fidence in the target homology with a retrieved sequence can be 
increased if the target sequence is matched, in turn, when search-
ing the DB using the previously retrieved sequence as a query.

The availability of biological information about the target 
family and experience with alignments from many different pro-
tein families can also be of help in the evaluation of the biological 
significance of a match.

If proteins of known structure closely related to the target 
are not found by pairwise methods, it is possible to change the 
aforementioned parameters to tailor them to the specific problem 
at hand. As an example, to detect distantly related proteins it is 
possible to choose a lower number BLOSUM or higher number 
PAM matrix (see Note 3), and/or decrease the penalty associ-
ated with the insertion and elongation of gaps in the alignment 
(see Note 2). However, a more efficient way to detect distant 
homologs (71) consists in the use of profile-based methods such 
as PSI-BLAST (67) and HMM-based methods (63, 72, 73).

In PSI-BLAST (67) the first iteration, coinciding with a sim-
ple BLAST search, is used to collect sequences similar to the tar-
get based on a pre-defined E-value threshold (a default value is 
provided, but it can be changed by the user). The alignments of 
these sequences to the target are used to build a multiple align-
ment from which a Position-Specific Score Matrix (PSSM), or pro-
file, is derived that contains values related to the frequency with 
which each a.a. occurs at each alignment position. In the second 
PSI-BLAST iteration, the sequences in the DB are matched to 
this profile, rather than to the target sequence. If a third iteration 
is run, the profile is updated to incorporate in the alignment the 
new sequences found with E-values below the threshold; if no 
new sequences are found, the profile does not change, i.e., the 
program has reached convergence. PSI-BLAST iterations can be 
run until the program converges or a protein of known structure is 
matched below the threshold. PSI-BLAST results can be evalu-
ated using the same parameters described for BLAST. However, 
from the second iteration onward PSI-BLAST E-values are not 
directly comparable to those calculated by BLAST. Indeed, the 
E-value associated with a protein retrieved by BLAST is different 
from the E-value associated with the same protein, retrieved from 
the same DB, by any PSI-BLAST iteration following the first. The 
reason for this is that BLAST scores the target sequence against 
each DB sequence using a matrix (e.g., BLOSUM62) contain-
ing fixed values for each a.a. pair, independent of the position 
where they occur in the sequence alignment, whereas PSI-
BLAST scores the target sequence against a PSSM whose  values 
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(depending on the frequency of a.a.s observed at each position 
in the MSA from which the PSSM was generated) are updated 
after each iteration. Because it is derived from an alignment of 
multiple sequence homologs, the PSSM is more powerful than 
the fixed scoring matrices, and can give sequences homologous 
to the target a higher score and therefore a better E-value, thus 
promoting them over incorrect matches. However, while con-
vergence is rarely reached, if sequences non-homologous to the 
target are matched with E-values below the defined threshold 
(false-positives), they will be incorporated in the PSI-BLAST pro-
file leading to the matching of more non-homologous sequences 
in the following iteration, and ultimately to divergence from the 
original target. Indeed, the profile can drift away from the origi-
nating target sequence so far that eventually the target sequence 
itself, and not only its homologs, will score very poorly against 
the profile! To prevent this, the hits collected by each PSI-BLAST 
iteration should be carefully examined, adjusting the threshold 
for inclusion (to make it more restrictive in case of divergence 
and more permissive in case convergence is reached before a pro-
tein of known structure is matched) and/or selecting manually 
sequences to be included in or excluded from the profile.

If PSI-BLAST does not identify any sufficiently convincing 
hits, or converges before identifying any matches to proteins of 
known structure, hidden Markov model (HMM)-based programs 
can be used (74). HMMs can also be run to detect additional 
templates and/or compare their results with those obtained 
by PSI-BLAST. Starting from an MSA, these programs build a 
hidden Markov model (HMM) that, similarly to a PSI-BLAST 
profile, represents the properties of all the sequences in the align-
ment. This HMM is then used to search the DBs for homologous 
proteins. The two most popular HMM-based programs are SAM 
and HMMER (72, 73), both freely available for downloading. 
SAM is also accessible through a Web server interface (SAM-T02) 
(75, 76) that takes the target sequence as input and automatically 
builds both the MSA and the HMM. Although expert users might 
prefer to use the downloadable version to be able to modify pro-
gram parameters, the Web interface is straightforward to use and 
provides results relatively quickly. The SAM-T02 output provides 
E-values (i.e., estimates of approximately how many sequences 
would score equally well by chance in the database searched) and 
the SCOP classification of the matched structures to help evalu-
ate the matches. If the E-values are higher than the suggested 
significance threshold (e.g., E-values <10−5 and higher than 
0.1 indicate very reliable and speculative matches, respectively) 
and/or proteins matched by the HMM do not belong to the same 
SCOP superfamily (Note 4), additional information is required 
to infer homology between any of the matched proteins and the 
target (see the preceding). To speed-up the search for homologs, 
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several methods have been developed that allow comparison of 
the target sequence with pre-calculated profile libraries, such as 
PSSMs generated with PSI-BLAST (IMPALA) (77) and HMM 
libraries representing homologous sequences (Pfam and SMART ) 
or proteins of known structure that are evolutionarily related at a 
superfamily level as defined by SCOP (SUPERFAMILY).

More recently, a number of profile–profile comparison meth-
ods have been developed capable of detecting distant relationships 
that are not recognized by sequence-profile matching methods 
(78). These include: prof_sim (79), Arby (80, 81), COMPASS 
(82–84), Picasso (85), COACH (86), LAMA (87), PRC (the 
profile–profile implementation of SUPERFAMILY), FFAS03 
(88), FORTE (89), ORFeus (90), and HHpred (91).

The most successful prediction groups in the last CASP 
editions used SAM-T02, FORTE, ORFeus, and FFAS03, either 
as stand-alone programs or as part of metaservers (see Section 
3.5.2). The performance of all these methods, together with that 
of HHpred, SUPERFAMILY, and PRC is also subjected to con-
tinuous evaluation by the Livebench server.

Since several sequence–profile and profile–profile compari-
son methods (e.g., SAM-T02, ORFeus, and HHpred) exploit 
structural information (most often, secondary structure pre-
dictions and secondary structure assignments by DSSP (92)), 
sometimes they are classified together with FR methods or 
metaservers. Targets for which a correct template structure 
(i.e., a structure similar to the target according to the LGA 
program, see Section 3.3.2.4) was identified in the PDB by 
profile–profile sequence comparison methods were assigned 
to the FR/H (H: homologous) category in CASP6; conversely, 
targets for which the correct template structure could not be 
detected by any sequence-based methods was assigned to the 
FR/A (A: analogous) category (68).

As mentioned in the Introduction, analysis of protein sequence 
and structure DBs led to the observation that, as proteins  diverge, 
overall structural similarity persists even when no signifi-
cant sequence similarity can be detected. In fact, two proteins 
with <25–30% overall identities can have either very similar or 
 completely different 3D structures. In order to detect an evo-
lutionary  relationship in the absence of sequence similarity, FR 
methods: (1) identify potential structural similarity signals within 
the sequence, and (2) apply confidence statistics to rank potential 
matches and provide confidence values for the prediction in order 
to distinguish “real” matches (true-positives) from spurious un-
related ones (false-positives). FR methods try to assess the likeli-
hood of the target proteins sharing a fold with one of the proteins 
of known structure by comparing structural features predicted 
for target sequences, on the basis of statistical analysis of known 
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 protein structures, with those actually observed in each structure. 
Structural features commonly taken into account include 3D 
 environmental preferences of each amino acid, such as propensity 
to form pairwise contacts with other residues, solvent accessible 
surface area, and local secondary structure. This compari-
son between one-dimensional (1D) sequences and 3D struc-
tures is usually done by either encoding 3D information into 1D 
 sequences (15) or by threading, i.e., inscribing the 1D sequence 
of the target into each fold contained in a library of representa-
tive 3D structures (93). The compatibility of the target sequence 
with each fold is evaluated using empirical or “knowledge-based” 
potentials that take into account the aforementioned structural 
properties.

The Three-Dimensional Position Specific Scoring Matrix 
(3D-PSSM) (94) server uses sequence and structure align-
ments, as well as secondary structure and solvent accessibil-
ity, to construct descriptive position-specific matrices for each 
domain in a non-redundant structural DB. These matrices can 
be compared with PSSMs or profiles of a query sequence and 
the results reported with underlying evidence to enable the user 
to understand the strength and confidence of the fold predic-
tion. 3D-PSSM and its eventual successor Phyre, both have sim-
ple and user-friendly Web-based interfaces. The calculations can 
take some time as the many-by-many profile comparisons can 
be intensive. Eventually the results will be displayed on a Web 
page which is e-mailed to the user. The page displays proteins of 
known structures that are predicted to fold in a similar way to 
the query sequence. These proteins are listed in a table in order 
of predicted similarity to the query, so that the proteins at the 
top of the table are predicted to be most similar. An E-value is 
provided to indicate the probability that the prediction is true, 
the lower the E-value the more likely the prediction is to be 
correct. The alignment to the target sequence and SCOP clas-
sification of the protein structures are provided. 3D-PSSM also 
provides an automatically generated homology model based on 
the alignment to each of the matched structures. If the steps 
for using the server are simple, most attention must be paid to 
interpreting the results returned. With all prediction methods, a 
sign of a prediction being correct is whether it is persistent. For 
example, the confidence in the prediction can be increased if the 
top reported 3D-PSSM structures matching the query belong 
to the same SCOP family or superfamily, or even fold (Note 4), 
and/or if running through the server sequences homologous to 
the target the same structures appear on top of the list. Conversely, 
if the top hits belong to different families or superfamilies, a fold 
similar to the target might still be present among them, even if 
the method cannot identify it clearly from the wrong ones. In 
such cases, to detect the correct fold from  incorrect ones, and to 
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further support FR predictions in general, it is possible to exploit 
additional information, such as those used to validate the output 
of SC methods (see Section 3.3.1.1). As an example, residues 
strongly conserved in the MSA of the target sequence can be 
mapped on the known structures to check whether they play 
key structural or functional roles (e.g., involvement in disulfide 
bridges, building of active sites, etc.).

There are a number of fold recognition methods available 
via the internet. 3D-PSSM, Threader (16), GenThreader (95), 
and mGenThreader (96), TASSER-Lite (97) (combining the 
PROSPECTOR 3.0 threading algorithm (98) with fragment-
based NF prediction methods), Fugue (99), RAPTOR (100), 
HMAP (101) (using structure-based profiles in the conserved 
regions and sequence-based profiles in the loops), LOOPP (102), 
SPARKS2 (103, 104), and SP3 (104, 105) have been used as stan-
dalone programs or as input for metaservers (see Section 3.5.2) 
by the best performing group in the CM and FR categories in 
the last CASP editions, and their performance, together with that 
of many other servers, is continuously assessed by Livebench. In 
general, metaservers that use a consensus of SC and FR-based 
methods are most successful at predicting FR targets that are 
clearly homologous to proteins of known structure, classified 
in the FR/H (H: homologous) sub-category in CASP6. Con-
versely, the best predictions of FR targets assigned to the CASP6 
FR/A (A: analogous) sub-category, for which no clear evolution-
ary relationship with already known folds can be detected, are 
provided by fragment-based methods (see Section 3.4).

Together with the extent of structural similarity between target and 
template, the generation of structurally correct target- template 
sequence alignments (i.e., sequence alignments corresponding to 
the optimal structural superposition between the target and tem-
plate structures) is one of the most important factors affecting 
the final quality of template-based models. Therefore, sequence 
alignment(s) provided by SC and/or FR methods should be 
critically evaluated and refined, with increasing care as the %_ID 
between target and template decreases. Because of the difficulty 
of obtaining a correct alignment, many of the best performing 
groups in CASP6 generate and evaluate both a number of target-
template sequence alignments obtained from different sources 
and/or using different alignment parameters, and a number of 
3D models produced by different servers. The evaluation is based 
on the results of model quality assessment programs (MQAPs) 
(see Section 3.3.4) and/or on the assumption that consensus 
predictions provided by independent methods are more reliable 
than any single prediction; accordingly, consensus regions are 
taken as such while variable regions are re-aligned and subse-
quently re-evaluated in a cyclic procedure.
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One way to refine pairwise target-template alignments is by com-
paring them to the alignments produced by MSA methods (see 
 Volume I, Chapter 7). MSA programs align all sequences in 
a given set to one another, producing MSAs that can be more 
accurate than those produced by SC or FR methods. ClustalW 
(106) and T-Coffee (107) are among the most widely used pro-
grams to build MSAs. Both are available for downloading (a win-
dows interface version of ClustalW called ClustalX (108) is also 
available), and can be used interactively through a Web interface. 
However, several newer and potentially more powerful methods 
are now available (see Volume I, Chapter 7). Together with the 
specific features of the MSA program used, the set of sequences 
given as input to the program is one of the most important fac-
tors affecting the quality of the final MSA.

MSAs for protein structure prediction are typically generated 
from sequences putatively homologous to the target identified 
by SC methods. Sequences matching the target with E-values 
significantly higher than that of the selected threshold or of the 
most distantly related of the selected templates might be elimi-
nated in that they should not contribute to improving the quality 
of the target-template(s) alignments, and might actually make 
it worse. However, since false-negatives might be among them, 
these sequences can also be kept and their relationships with the 
target evaluated at a later stage, on the basis of the resulting MSA 
itself. The pattern of conserved residues in an MSA can provide 
information about key structural or functional residues in a pro-
tein family and increase the confidence in the existence of evolu-
tionary relationships between target and template (see Section 
3.3.2.5). Potential templates detected by FR methods may be 
added to the set of target homologs retrieved by SC methods 
and given as input to MSA programs; however, they often have 
sequences too different from the target and its homologs to 
produce good alignments. In such cases, the sequences of the 
putative FR templates can be used as queries by SC methods to 
retrieve their homologs from sequence DBs and MSAs can be 
produced for the templates as well. Comparison of the MSAs 
produced for the target and template sequences, and in particular 
of the pattern of conserved and putatively essential residues, may 
support the hypothesis of the existence of evolutionary relation-
ships between them. An informative way to highlight sequence 
conservation in MSAs is provided by the WebLogo (109) pro-
gram, producing a picture in which residues occurring at each 
alignment position are shown by the one-letter code, the size 
of each letter being proportional to their frequency of occur-
rence. MSAs are most informative when they contain a relatively 
high number of sequences, similar enough to one another to be 
certain of their homology and to allow for the production of a 
correct alignment, and divergent enough to allow for conserved 
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positions to be distinguished from variable ones. For this reason, 
redundant and outlier sequences (e.g., those that have %_ID >80% 
with any other sequence in the alignment or <20% with all other 
sequences in the alignment, respectively) are usually eliminated. 
Other kinds of editing include the deletion of alignment regions 
other than those matching the target domain, which may be present, 
for example, if the sequences retrieved from the DBs comprise addi-
tional domains besides that homologous to the target. Additionally, 
shifts in the aligned sequences can be introduced manually based 
on structural information such as those described in the following 
 (Sections 3.3.2.2, 3.3.2.4, and 3.3.2.5). Although guidelines such 
as these can be useful to start with, production of a good-quality 
MSA is very much a process of trial and error. In general, choices 
on how to edit MSAs depend on specific features of the sequences 
contained therein, and on a balance between the computational and 
human time required to analyze a high number of sequences and the 
accuracy requested of the final result. This, in turn, depends largely 
on the difficulty of the prediction: in case of “easy” targets, for which 
reliable templates aligning well with the target can be identified, 
even the pairwise BLAST alignments might be sufficient; conversely, 
when the templates are distant homologs, detectable only by pro-
file-based or FR methods, with very low %_ID and difficult to align, 
all available information from sequence and structural homologs 
should be exploited. Often, several rounds of alignment editing and 
re-alignment are required to produce high-quality MSAs.

Several programs are available to visualize MSAs, allowing 
the user to color a.a.s according to residue type or conservation, 
edit the alignment to eliminate redundancies and outliers as well 
as alignment columns and blocks, and save them in different 
sequence formats. Such programs include Belvu (110), Seaview 
(111), BioEdit, CINEMA (112), and various other tools from 
the Expasy Web site.

SSE are usually among the best conserved parts of evolutionar-
ily related proteins; therefore, they should also be found in corre-
sponding positions in the sequence alignment. Additionally, inser-
tions and deletions of more than one or two residues are unlikely 
to occur within SSE, whereas they can easily take place within the 
conformationally more variable and solvent exposed loop regions.

The secondary structure assignment for the template structures 
can be calculated by programs such as DSSP or obtained from the 
PDB Web site. This contains both the DSSP automated assignment 
and the manual assignment provided by the experimentalists who 
have solved the structure, which may be more accurate than those 
calculated automatically. Secondary structure predictions for the 
target can be obtained as described above (Section 3.2). Mapping 
the SSE calculated for the template(s) and predicted for the target 
on the target-template(s) pairwise alignments or MSAs might help 
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refine the sequence alignments. If the SSE do not align and/or 
large insertions or deletions occur within these regions, the target-
template alignment may be modified to adjust for these features, 
which are likely to be incorrect. However, unless it is obvious how 
to correct errors in the sequence alignment, modifying it by hand 
is only advised once one has reached a certain degree of experi-
ence. Hybrid- or meta-profiles combining sequence and secondary 
structure information are now used by many of the methods that 
have been most successful in the CASP experiments (e.g., Meta-
BASIC (113), see Section 3.5.2); additionally, several FR methods 
(e.g., 3D-PSSM, Phyre, and mGenThreader) report the SSE of the 
templates and those predicted for the target in their output target-
template alignments.

The template region aligned to the target by SC methods does 
not necessarily correspond to a structural domain of the template, 
but it can be shorter, if only a fraction of the template  domain 
displays recognizable sequence similarity with the target, or 
longer, in case regions before or after the template domain have 
also similar sequence to the target. Indeed, the initial domain 
definition of the target, which has been preliminarily provided by 
 domain prediction servers (Section 3.2), may be refined during 
the prediction procedure based on accurate target-template(s) 
alignments. Until this step is performed, it is advisable to use a 
slightly larger segment of the target sequence than that predicted 
to correspond to the target domain.

The boundaries of the template domains matching the target 
can be identified based on SCOP, which is widely believed to be 
the “gold standard” of protein structure classification, and where 
protein domains are classified according to sequence, structural, 
functional, and evolutionary criteria. In case the template struc-
tures have been made available from the PDB more recently than 
the date of the latest SCOP release, a domain assignment for them 
may be found in other structural classification DBs, such as CATH 
or FSSP. If no DB contains a pre-calculated domain definition for 
the selected templates, this can be obtained by running the tem-
plate structures through one of the available programs for domain 
assignment, such as Domain Parser (114, 115), PDP (116), or 
DOMPLOT (117). Mapping the structural domain definition of 
the templates on the target-template sequence alignment(s) can 
help to refine the initial prediction of target domain boundaries.

The structural alignment of the template domains shows which 
regions are structurally conserved among them, and are therefore 
likely to be conserved in a target protein of unknown structure 
evolutionarily related to them. This alignment might be  extended, 
by including other proteins of known structure whose evolution-
ary relationships with the template(s) have been ascertained on 
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the basis of structural criteria, to get a more precise definition 
of the conserved “core” and variable regions among proteins 
homologous to the target. Proteins of known structure evolu-
tionarily related to the template(s) can be obtained from SCOP, 
in which closely and distantly related homologs are classified within 
the same family or superfamily, respectively, (see Note 4), or from 
other structural classification DBs mentioned in Section 2.

Pre-compiled alignments of protein domain structures are 
available from specific DBs (e.g., Homstrad, FSSP, and CE) and 
may include the selected templates. Alternatively, structural align-
ments of the templates can be built by using one of the many 
available programs for protein structural alignment (a large, if 
incomplete, list is available from Wikipedia). Choosing which 
one(s) to use depends partially on how many proteins match the 
template and have to be aligned. Some programs perform only 
pairwise alignments (e.g., LGA (118), DaliLite (119), Mammoth 
(120) and VAST (121)) whereas others can perform multiple 
structure alignments (e.g., CE (122), SSAP (123), SSM (124), 
PrISM (125), Mammoth-mult (126), and POSA (127)), provid-
ing a global alignment of all the input structures and, in princi-
ple, better results. Although no automated program is capable of 
systematically producing accurate alignments of highly divergent 
structures, most structural alignment programs can produce rela-
tively good alignments of similar structures, as should be the case 
for templates identified based on sequence similarity to the same 
target. Depending on the time available and the level of accuracy 
required, the templates might be run through several servers to 
compare the results.

Many predictors successful at CASP exploit information deriv-
ing from the structural alignment of multiple templates to identify 
conserved regions, guide sequence alignments, and/or build chi-
meric models from fragments extracted from different templates, 
to be compared and evaluated in subsequent steps using consensus 
and/or quality assessment criteria (see Section 3.3.4).

Regions that are structurally conserved among the templates and 
their homologs and, therefore, are putatively conserved in the 
target structure as well, in general correspond to SSE and con-
served loops, and should not contain insertions or deletions in 
the target-template sequence alignments. Therefore, if “gaps” 
occur within these structurally conserved regions, they will have 
to be moved to regions where they might be more easily accom-
modated from a structural point of view.

As protein structures are more conserved than sequences 
during evolution, structurally conserved regions may have low 
sequence similarity; nevertheless, they should contain “key” 
structural features allowing them to assume similar conforma-
tions. Such features have been identified in the past for several 
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protein families and found to consist, most often, of residues 
belonging to one of the following categories: (1) residues, in 
general hydrophobic in nature, having low solvent accessibility, 
interacting with one another within the protein core (128); 
(2) residues conferring special structural properties to the pro-
tein region where they occur: Gly, Asn, and Asp, able to assume 
more frequently than other residues positive ϕ values; or Pro, 
whose main-chain nitrogen atom is involved in peptide bonds 
found more frequently than those of other residues in cis, rather 
than trans, conformation and that, lacking the main-chain hydro-
gen bond donor capability, cannot take part in the formation of 
structures maintained by regular hydrogen bond patterns, 
e.g., α-helices or internal β-strands; (3) Cys residues, that can 
be involved in the formation of covalent disulfide bonds; (4) any 
other residues that appear to play a specific structural role in a 
given family (e.g., negatively charged Asp and Glu and polar Asn 
residues binding calcium ions in the cadherin family (129, 130), 
and polar or charged residues able to form hydrogen bonds or 
salt-bridges maintaining the conformation of antibody hyper-
variable loops (131–134)). Comparison of evolutionarily related 
structures can allow identifying conserved residues having a key 
structural role, which are likely to be conserved in the target struc-
ture as well, and represent useful landmarks to help refine pair-
wise target-template sequence alignments and MSAs. Joy (135) is 
a program that reports different types of residue-based structural 
information (e.g., secondary structure, solvent accessibility, posi-
tive ϕ values, cis-peptides, involvement in disulfide and hydrogen 
bonds) on sequence alignments. Additionally, NACCESS (136), 
HBPLUS (137), and Procheck (138, 139) can be used to calculate 
solvent accessible surface area, involvement in hydrogen bond 
formation, and main-chain dihedral angles (Ramachandran plots), 
respectively.

Residues playing a key functional role are also likely to be 
conserved, in either type or physicochemical properties, between 
the target and template structures. These may be identified from 
the literature and/or from template structures in complex with 
their ligands, in case these are available. Protein–ligand contacts 
can be calculated by LIGPLOT (140) and pre-calculated contacts 
can be obtained from the PDBsum Web site (141).

In principle, residues highly conserved in MSAs might be 
involved in key structural and/or functional roles. However, 
in practice, the possibility to predict involvement in important 
structural or functional roles from sequence conservation is highly 
dependent on the MSA “quality”: if the sequences comprised 
in the MSA are too closely related, other positions besides the 
essential ones will be conserved; conversely, if the sequences are 
distantly related, essential structural or functional roles might 
be played by non-identical residues sharing specific physicochemical 
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 features that might not be easy to identify from an MSA. Never-
theless, once putative key structural and/or functional residues 
have been identified as described, the conservation of specific 
features (e.g., main-chain flexibility, hydrogen bond donor abil-
ity, presence of an aromatic residue at a position involved in a 
cation-π interaction, etc.) at given positions can be searched in 
an MSA in a targeted way. Programs like COLORADO3D (142) 
and CONSURF (143) color each residue in a protein structure 
according to its conservation in the MSA given as input and, 
therefore, allow visualization of the structural location of con-
served and variable residues.

This section describes the generation of a 3D protein model 
based on target-template(s) sequence alignment(s).

Choosing the best template is usually done based on both struc-
tural features of the template(s) and information collected for 
the production of optimal target-template(s) alignments as 
described in Section 3.3.1.1, such as: E-values, and other statis-
tical scores provided by different methods to evaluate the likeli-
hood of the existence of structural relationships between target 
and template(s); %_ID; number and distribution of gaps; length 
of the aligned regions (i.e., coverage of the target sequence); cor-
respondence between SSE of the templates and those predicted 
for the target; absence of insertions and deletions in the target-
template alignment within regions corresponding to those struc-
turally conserved among the templates; and conservation of key 
structural and functional residues between target and template.

If good alignments with different templates are available, struc-
tural considerations can help decide which template structure(s) 
is/are likely to produce most suitable models for their intended 
applications. In general, x-ray crystallography provides more precise 
pictures of protein structures than NMR spectroscopy. However, it 
should be kept in mind that x-ray structures and, therefore, mod-
els based on them, represent static images of proteins, which often 
assume multiple conformations in solution. In the case of structures 
determined by x-ray crystallography, the parameters to take into 
account are the following (see also Volume I, Chapter 3).
 1. Resolution and B-factor. The lower the values of these param-

eters, the better the quality of the structure. In general, for 
resolution values <2.0 Å the quality of the structure is very 
high, for values >3.0 Å it is low; B-factor values <30–35, in 
the range 40–80, and >80 indicate well-determined, mobile, 
and unreliable regions, respectively.

 2. Completeness. Regions corresponding to those relevant for 
our model in the target-template sequence alignment should 
not be missing from the template structure (e.g., N-terminal 
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regions are often cleaved out; exposed loops and N- and 
C-terminal regions might remain flexible in the crystal struc-
ture and not be determined; older, low-resolution structures 
may contain only Cα carbon atoms; etc.).

 3. Protein conformation. The same protein domain can have 
different conformations in different PDB files, depending 
on the functional state of the domain (e.g., free vs. ligand 
bound), crystal packing interactions (i.e., interactions with 
other copies of the same molecule in the crystal), experi-
mental conditions used (e.g., pH, ionic strength, etc.). All 
this information is contained in the coordinate files of the 
protein structures, which can be freely downloaded from the 
PDB and visualized using a number of freely available struc-
ture visualization programs such as Swiss-PDB Viewer (144), 
RasMol (145), Protein Explorer (146), Cn3D (147), WHAT 
IF (148), MolMol (149), and VMD (150). The choice of the 
template(s) is a trade-off between all these different factors, 
and the purpose of the model may also be a useful guide 
(e.g., when modeling receptor–ligand interactions, tem-
plates in the ligand-bound conformation should be chosen, 
if available).

In experiments like CASP, predictors often build chimeric mod-
els assembling together fragments taken from different templates 
and/or build several models, based on different main templates 
and different target-template alignments, which are evaluated 
at a later stage (see Section 3.5.2).

Template-based modeling involves taking advantage of as much as 
possible information from proteins of known structure putatively 
homologous to the target, i.e., from the selected template(s). 
Once refined target-template(s) sequence alignments have been 
obtained and one or more principal templates have been chosen, 
model building itself is a relatively straightforward procedure, 
which can be carried out interactively using structure manipulation 
programs such as Swiss-PDB Viewer, InsightII/Biopolymer, or 
WHAT IF.
 1. Modeling of the main-chain atoms of regions conserved in 

the template structure(s). If a single best-template has been 
detected, the main-chain atoms of conserved regions in the 
optimized target-template alignment are imported from this 
template. Conversely, if different regions of the target appear 
to be more closely related to different structures (e.g., they 
contain ‘gaps’ in the alignment with the best template but 
not with other templates), the conserved main-chain regions 
of the templates are optimally superimposed (using the struc-
tural alignment programs mentioned in Section 3.3.2.4), 
and the regions to serve as templates for different segments 
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of the target are joined together and imported in the target 
model.

 2. Modeling of the main-chain atoms of structurally variable 
regions. In case insertions and/or deletions are present in 
the sequence alignment of the target with all templates and 
cannot be modeled based on the coordinates of homolo-
gous structures, several techniques can be applied to model 
the regions containing them (usually loops). For a restricted 
number of loops, sequence–structure relationships have been 
described, based on which loop conformation can be pre-
dicted quite accurately (e.g., antibody loops (131–134, 151), 
and β-hairpins (152, 153)). However, with the exception of 
these particular cases, and although encouraging results have 
been achieved in CASP6 in the CM category, in which four 
groups were able to predict loops larger than five residues 
with RMSD <1.0 Å (14) (see Note 1), no method is cur-
rently available to accurately and consistently model regions 
of more than five residues that cannot be aligned to a tem-
plate; the larger the loops, the more difficult their prediction. 
Therefore, these regions may either be left out of the model, 
especially if they are far from the sites of interest of the protein 
(e.g., active sites) or, if included, it should be pointed out that 
their reliability is much lower than that of the regions con-
served in, and imported from, homologous templates.

  One common way to model loops is based on structural 
searches of the PDB database for protein regions having: 
(1) the same length as the loop to model; (2) a similar con-
formation of the main-chain atoms of the residues before and 
after the loop; and (3) a similar pattern of “special residues” 
that can confer special structural properties to the protein 
region in which they occur (e.g., Gly, Asn, Asp, or Pro, see 
Section 3.3.2.5) and are often important determinants of 
loop conformation. Conversely, “ab initio” methods do not 
use information contained in structural DBs but try to simu-
late the folding process or explore the conformational space 
of the loop region, for example, by molecular dynamics or 
Monte Carlo methods, followed by energy minimization 
and selection of low-energy conformations (154).

  The interactive graphics software Swiss-PDB Viewer provides 
options to evaluate the compatibility of loops derived from 
structural searches of the PDB with the rest of the target model 
based on the number of unfavorable van der Waals contacts 
that they establish and on the results of energy calculations. The 
groups using Swiss-PDB Viewer and the Loopy program (155) 
of the Jackal package were among the most successful predictors 
of loops in the CASP6 CM category. Other software for loop 
modeling includes LOBO (156) and ModLoop (157).
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 3. Side-chains are generally modeled by “copying” the con-
formations of conserved residues from their structural 
template(s) and selecting those of mutated residues from 
libraries containing the most common conformations that 
each residue assumes in protein structures (rotamers). After 
all non-conserved residues have been replaced, unfavorable 
van der Waals contacts might be present in the model and 
have to be eliminated, for example, by exploring side-chain 
conformations different from those involved in the clashes. 
Alternative side-chain conformations may be examined also 
to try and bring potentially interacting residues next to each 
other, for example, in case hydrogen-bond donor or accep-
tors or, more rarely, positively or negatively charged groups, 
found in a buried region of the model do not have an inter-
action partner nearby.

Several programs have been developed to automatically model 
side-chain conformations, which take into account the above 
 factors and explore combinatorially a number of rotamers for 
each residue of the model to try and find an optimal conforma-
tional ensemble. SCRWL (158) was used by several groups pro-
viding good rotamer predictions in the CM category in CASP6 
(14) where, as expected, prediction of rotamers was found to 
be more difficult for surface than for buried residues, which are 
subjected to stronger constraints. However, methods providing 
the best rotamer predictions were not the best at predicting side-
chain contacts, which are, in turn, best predicted at the expense 
of rotamer accuracy (14). The program Protinfo AB CM (159) 
and the Scap program (160) of the Jackal package were used 
by some of the best predictors of side-chain contacts in the CM 
 category in CASP6.

The ability of several programs (Modeller (161), SegMod/
ENCAD (162), SwissModel (163), 3D-JIGSAW (164), Nest (165) 
of the Jackal package, and Builder (166)) to build 3D models start-
ing from target-template sequence alignments has been assessed 
(167). In this test Modeller, Nest, and SegMod/ENCAD performed 
better than the others, although no program was better than all the 
others in all tests. Modeller is the program used by most of the suc-
cessful CASP groups to generate 3D models from target-template 
alignments produced using SC- or FR-based methods. The relative 
performance of SwissModel (163), CPHmodels (168), 3D-JIGSAW, 
and ESyPred3D (169) is continuously evaluated by EVA.

Programs like Procheck, Whatcheck (170), and Swiss-PDB Viewer 
evaluate the quality of 3D structures based on parameters such 
as the number of main-chain dihedral angles lying outside the 
allowed regions of the Ramachandran Plot, unfavorable van der 
Waals contacts, and buried polar residues not involved in hydro-
gen bond formation. Some of these programs also evaluate the 
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energy of bond lengths, angles, torsions, and electrostatic inter-
actions based on empirical force fields. These evaluations can be 
useful to highlight errors in the model resulting from the mod-
eling procedure, or more rarely, inherited from the template 
structures. However, it is worth stressing that the stereochemical 
correctness of the model is no guarantee of its biological accu-
racy, i.e., its actual similarity to the target structure.

Other model quality assessment programs (MQAPs), such 
as ProSa (171), Verify-3D (15, 172), and ANOLEA (173, 174) 
evaluate model quality based on the comparison between the 3D 
context of each target residue in the model and the 3D con-
text commonly associated with each residue in known structures. 
Environmental features taken into account by these programs 
include neighboring residues or atoms, solvent accessible surface 
area, and secondary structure of each residue. Similar structural 
features are incorporated in the neural-network based ProQ (175) 
and ProQres (176) programs, which assign quality measures to 
protein models or parts of them, respectively. Other tools, such 
as COLORADO3D, help evaluate model quality by visualizing 
information such as sequence conservation, solvent accessibility, 
and potential errors, including those detected by ProSa, Verify-
3D, and ANOLEA. MQAP-Consensus (177) uses a consensus of 
MQAP methods registered in CAFASP to evaluate and select 
models produced by different servers, all of which can be down-
loaded from the CAFASP4 MQAP Web server. One or more of 
these MQAPs were used by the most successful predictors in 
CASP6 to evaluate their models at various stages of the model 
building and refinement procedures. Successful prediction strate-
gies included collecting models from different servers or building 
a number of models based on different templates and/or dif-
ferent target-template alignments, and screening them based on 
quality assessments performed by MQAPs. The regions that are 
structurally conserved in the different models and/or are con-
sidered to be reliable by MQAPs are retained, whereas structur-
ally variable and/or less reliable regions according to MQAPs are 
realigned and remodeled until they either reach an acceptable 
quality, as measured by MQAP methods, or their quality cannot 
be improved anymore in subsequent refinement cycles.

Blind predictions of both the overall and residue-based quality 
of protein models were analyzed by human assessors for the first 
time in CASP7. The relative assessment paper in the 2007 issue of 
the Journal PROTEINS dedicated to CASP7 provides a reliable 
picture of the relative performance of MQAPs in blind tests.

Based on the results of quality assessment programs, 3D models can 
be refined to eliminate obvious structural mistakes (for example 
by selecting alternative side-chain rotamers to eliminate unfavo-
rable residue–residue interactions) using structure visualization 
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 programs such as Swiss-PDB Viewer and InsightII/Biopolymer 
(178). Swiss-PDB Viewer, GROMACS (179), NAMD (180), 
TINKER, and the Discover module of InsightII can also per-
form energy minimizations. Since no evidence has been collected 
over the various CASP experiments about model improvements 
achieved by energy minimization procedures, these should only 
be limited to the regions showing bad geometrical parameters 
(e.g., those in which fragments from different structures have 
been joined, for example, in loop modeling) and involved in 
clashes that cannot be relieved by changing side-chain confor-
mations (e.g., those involving main-chain atoms and/or proline 
side-chains). However, as discussed for loop modeling, since 
there is no evidence that such procedures will improve the model 
(i.e., make it more similar to the target structure, as opposed to 
improving its geometry) rather than make it worse, and depend-
ing on the proximity of any problematic regions to important 
structural/functional sections of the model, small structural 
errors may also be left unrefined and indicated as potentially less 
reliable regions in the model.

The increase in evolutionary distance between target and tem-
plate is associated with a reduction of the conserved core and an 
enlargement of the variable regions, which in turn makes it more 
and more difficult to align the target and template sequences cor-
rectly. For distantly related templates (e.g., those identified by 
FR methods) errors in the target-template(s) sequence alignment 
might result in serious mistakes that cannot be corrected by mod-
ifying the coordinates of the final model. When this occurs, it is 
necessary to re-evaluate the target-template alignment by making 
use of any 3D information contained in the model, and try to 
modify the alignment in such a way that the new model gener-
ated from it will not contain the aforementioned errors. Several 
cycles of model building and evaluation might be necessary to 
achieve this result.

As discussed in the preceding, evolutionarily related domains 
of known structure are used as templates for the whole target. 
When no template structure can be identified in the DBs by 
either sequence-based or FR methods, two scenarios are possible: 
either a structure similar to the target is present in the DBs, but 
none of the aforementioned SC- or FR-based methods is able to 
detect it, or no similar structure is available, i.e., the target struc-
ture is actually a NF. In both cases, different methods from those 
described before have to be used. The so-called ab initio meth-
ods, which use computationally intensive strategies attempting 
to recreate the physical and chemical forces involved in protein 
folding, have been, until now, less successful at predicting protein 
structures in absence of structural templates than the knowledge-
based approaches. These exploit information contained in the 
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structure databases, from which fragments potentially similar to 
the targets are extracted and assembled together to produce a full 
3D model of the target (18, 19).

Models built by fragment-assembly techniques are evaluated 
using knowledge-based statistical potentials and clustering pro-
cedures. Knowledge-based potentials contain terms derived from 
statistical analyses of protein structures as well as physicochemical 
terms (e.g., terms for pairwise interactions between residues or 
atoms, residue hydrophobicity, hydrogen bonds, and main-chain 
and side-chain dihedral angles). Since large numbers of confor-
mations are generated for each target, a clustering analysis is 
performed based on structure similarity and the cluster centroid 
model is usually chosen. Models representative of highly popu-
lated clusters are assumed to be more likely to be correct than 
models from less populated clusters. Several NF methods take 
advantage of homologous sequence information, either for sec-
ondary structure predictions or as input for model building, and 
some use 3D models produced by automated CM, FR, and/or 
NF prediction servers and consensus SSE predictions to derive 
structural restraints that are used to guide or constrain a subse-
quent fragment assembly procedure or folding simulation. Man-
ual intervention can occur at different stages, for example, 
to choose templates or fragments, or inspect models.

Although originally developed for NF predictions, fragment-
based methods have been used by several successful predictors 
in the FR category in both CASP6 and CASP5, and the group 
that developed the program Rosetta (19, 182–186) and the server 
Robetta (187–189) has been the most successful at predicting the 
structure of difficult FR targets, i.e., targets for which no evolu-
tionary relationship with known structures is apparent and are clas-
sified in the CASP FR/A (A: analogous) sub-category (190, 191).

Unfortunately, the performance of these methods on real 
NF targets is somewhat less successful. In CASP6, nine targets 
whose structures did not show overall similarities with already 
known folds based on the results of the LGA program (68) were 
evaluated in the NF category (190). Three of them, however, 
turned out to be variants of known folds, in that they contain 
sub-structures that match sub-structures in known proteins, and 
were therefore defined as NF “easy” (190). In the NF category, 
models bearing an overall structural similarity with the target 
structures were submitted only for these three “easy” targets. 
For the remaining six NF “hard” targets, which did not show 
any similarity to known folds (and were, therefore, the only truly 
“novel” folds), no globally correct prediction was submitted. It 
should be mentioned, however, that all of the NF “hard” targets 
were relatively large proteins (115–213 a.a.s vs. 73–90 a.a.s of NF 
“easy” targets), which are particularly difficult to predict by NF 
methods. The best structure predictions for these targets were 
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limited to partial regions, although often larger than standard 
supersecondary structures, which could not be assembled into 
correct global topologies. Since it is not obvious how to compare 
predictions for different target fragments in the context of globally 
incorrect models, it is particularly difficult to evaluate these pre-
dictions and decide which of the methods were the most success-
ful. Further, the difference between the best and average models 
submitted for these targets is not very large, and since most mod-
els are poor even large differences in ranking are unlikely to be 
significant. Another general drawback of methods used to predict 
NF targets is that predictors were not particularly good at recog-
nizing their best models, which highlights a problem with rank-
ing. Finally, even considering all the nine NF targets, the sample 
size is too small to draw statistically significant conclusions (190). 
Taking all these caveats into account, FRAGFOLD (192), CABS 
(193), and Rosetta were used by the best performing groups in 
the NF category, although several other groups submitted each at 
least one best model for different targets. Another freely available 
program that was used by a relatively well-performing group is 
ROKKY (194).

The Rosetta folding simulation program by the Baker group 
(19, 182–184) is not only one of the best available methods for 
NF and difficult FR targets predictions (the Baker group was the 
best or among the best performing at predictions without tem-
plate in the last CASP editions) but, being freely available, it is 
also one of the most popular and one that has been incorporated 
in a large number of metaservers (see Section 3.5.2). The output 
of Rosetta contains a number of 3D models of the target protein 
ordered according to an energy score. As for FR methods, this 
score cannot be solely relied upon, and all additional sequence, 
structural, functional, and evolutionary information that can be 
gathered about the target should be exploited. Since a sequence 
for which no prediction can be provided by either SC- or FR-
methods might be a difficult FR target (FR/A) rather than an 
NF, top scoring models and other models that might be cor-
rect based on all available information about the target should be 
used to search structural DBs with structural alignment programs 
(e.g., DALI (31), VAST, CE, SSM, Mammoth-mult). If proteins 
of known structure showing significant structural similarity with 
these models can be found (i.e., the sequence is likely to be a dif-
ficult FR target), these should be examined to identify sequence, 
structural, and/or functional evidence (e.g., key residues, see 
Section 3.3.2.5) that might support the hypothesis of the cor-
rectness of the model(s) produced for the target. Conversely, if 
no protein showing global structural similarity with the target is 
detected, the target might indeed have a novel fold. Neverthe-
less, searches of structural DBs might detect proteins containing 
sub-structures similar to those of the target, and the analysis of 
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these structurally similar regions might provide important clues 
supporting some models over others.

Given their independence from structural templates, NF 
techniques can be useful to try to predict not only complete 3D 
structures for targets that elude CM and FR methods, but also 
loops and other regions of models generated by template-based 
methods that are not conserved with respect to the available tem-
plates.

A number of automated CM, FR, and NF methods and metaserv-
ers for protein structure prediction are described in the relevant 
sections of this chapter (e.g., see Sections 3.3.1.1, 3.3.1.2, 
3.3.3.2, 3.4, and 3.5.2), together with their performance in the 
hands of expert users. As far as the performance of automated 
methods without user intervention is concerned, SPARKS2 and 
SP3 have been the first and third best performing servers in the 
CM category in CASP6, and the 14th and 22nd overall best 
predictors in ranking including human predictors (14). The sec-
ond best server was STRUCTFAST (195). In the FR category 
Robetta was the best server and the overall ninth best predictor in 
ranking including human predictors. In the NF category, Robetta 
was the best server. The best performing servers in Livebench and 
CAFASP are all metaservers (see Section 3.5.2), in particular 3D-
Jury (196), 3D-Shotgun (197–200), Pcons, and Pmodeller (201).

In spite of the good performance of the best automated 
methods in blind tests, intervention by expert users (often by the 
same authors of the automated procedures) consistently provides 
significantly improved results with respect to fully automated 
methods, indicating that, in spite of much effort, the prediction 
community has not yet managed to encode all expert knowledge 
on protein structure prediction into automated programs. There-
fore, depending on the number of models required, the purpose 
for which they are built, and the user’s level of expertise, auto-
mated programs might be best used as a support for, rather than 
a replacement of, human predictions.

Metaservers collect a variety of predictions and structural infor-
mation from different automated servers, evaluate their quality, 
and combine them to generate consensus predictions that might 
consist either in the result provided by a single structure predic-
tion server and reputed to be the best among those examined, or 
in the combination of results provided by different servers. Puta-
tive PDB templates, target-template sequence alignments, and 
3D structural models are collected from fully automated SC, FR, 
or NF method-based servers and in some cases other metaserv-
ers that perform regularly well in blind test experiments such as 
CASP, CAFASP, or Livebench. This information is often inte-
grated with domain, secondary structure, and function predictions, 
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as well as with information derived from analyses of protein struc-
tures, e.g., protein structure classification by SCOP and/or FSSP 
and secondary structure assignment by DSSP. Depending on the 
metaserver, different types of predictions are returned, consist-
ing of 3D model coordinates (202) or target-template sequence 
alignments from which 3D models can then be generated (113). 
Preliminary models may be fragmented and spliced to produce 
new hybrid models and/or subjected to refinements to eliminate 
errors such as overlapping regions or broken chains. Predictions 
of domain boundaries, secondary structure, transmembrane heli-
ces, and disordered regions are often provided as well.

Metaservers exploit a variety of criteria and methods to evalu-
ate the quality of alignments and models that they collect and 
produce, including: the scores associated with the predictions by 
contributing servers; the extent to which different alignments 
agree with one another; contact order, i.e., the average sequence 
separation between all pairs of contacting residues normalized by 
the total sequence length (203, 204); structural comparisons of 
independent models and detection of large clusters of structures 
with similar conformations (205); and model/structure evalua-
tion programs mentioned before, such as ProSa, Verify-3D, ProQ, 
ProQres, and COLORADO3D. Well-scoring model fragments 
(e.g., consensus predictions provided by unrelated methods) are 
considered to be reliable and are included in the model, whereas 
for poorly scoring regions models based on alternative alignments 
are generated and assessed using MQAPs until they reach accept-
able quality or their quality cannot be further improved.

Many of the available metaservers have implemented com-
pletely automated procedures to cover the full spectrum of struc-
ture predictions, from CM to NF, by combining template-based 
and de novo structure prediction methods. First, several well-
performing CM and FR servers are queried with the sequence of 
the target protein. If homologs with experimentally characterized 
3D structure are detected, the conserved regions of the target are 
predicted by template-based modeling and the variable regions 
(e.g., loops, N- and C-terminal extensions) by NF methods such 
as the Rosetta fragment-insertion protocol. If no reliable struc-
tural homolog is found, the target sequence is sent to NF predic-
tion servers (most often Robetta).

Predictors that used metaservers performed among the best 
in the more recent CASP editions, in both CM (14) and FR 
(191) categories. Although metaservers owe much of their pre-
dictive power to the quality of the results provided by remote 
servers, their ability to choose, evaluate, and combine different 
predictions has often resulted in better performances than those 
achieved by the remote prediction servers alone.

Meta-BASIC and 3D-Jury were used by the top ranking pre-
dictor in both CASP6 CM and FR/H categories (14, 191), and 
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3D-Jury was also used by another of the top four predictors in the 
CM category (206).

The group that developed the Robetta server ranked best in 
FR/A, among the best in FR and NF, and well in the CM cat-
egory in CASP6. The Robetta server itself performed well in both 
the CM and FR categories in CASP6.

The Genesilico metaserver (202) was used by one of the most 
successful groups in the CM and FR categories in CASP5 and 
was one of the best in all categories in CASP6, where Genesilico 
was used in combination with the FRankenstein3D program for 
splicing of FR models (207) and fragment assembly techniques 
for NF targets (193).

Pcons, Pmodeller and Pcons5 (208, 209), and Bioinbgu, 3D-
Shotgun and Inub (197–200) were among the best performing serv-
ers in CASP5 and groups using them performed well, although not 
among the best, in both the CM and FR categories in CASP6.

The groups using @TOME (210) and a combination of CHI-
MERA and FAMS (211) performed well, although they were not 
among the best groups, in CASP6.

Before embarking on the modeling procedure, however auto-
matically, it might be worth checking whether 3D models for 
the target of interest are available among protein model DBs. 
The SwissModel Repository (212) and ModBase (213) contain 3D 
models of all sequences in the SwissProt and TrEMBL databases 
that have detectable sequence similarity with proteins of known 
structure, generated by the SwissModel and Modeller programs, 
respectively. FAMSBASE (214), built using the fully automated 
modeling system FAMS, contains comparative models for all the 
proteins assigned to many sequenced genomes. Of course, mod-
els produced automatically, even those for “easy” CM targets, 
may contain significant errors; to detect them, models should 
be subjected to all the sequence, structure, function, and evolu-
tionary analyses described before. The Protein Model Database 
(PMDB) (215) stores manually built 3D models together with 
any supporting information provided. It contains, among others, 
the models submitted to the past CASP editions, and it allows 
users to submit, as well as to retrieve, 3D protein models.

A general indication of the accuracy of template-based models is 
provided by sequence–structure relationships derived from the 
analysis of homologous proteins (13). Based on these analyses, 
if the sequence identity between target and template in the con-
served core regions is about 50% or higher, we can expect the 
main-chain atoms of the core regions of the target structure to 
be superimposable to the best template and, consequently, to the 
model built on this template, with  an RMSD value (see Note 1) 
within 1.0 Å. However, for sequence identities as low as 20%, 
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the structural similarity between two proteins can vary to a large 
extent (13).

Similar results are provided by the structural comparison of the 
target domain structures and the best models produced for them 
in CASP6 (Fig. 2.2). For %_ID values between the sequences of 
target and best-template of 50% or higher, the GDT_TS (see Note 1) 
between the real target structure and the best model submitted 
for it was 90 or higher. For %_ID values between 20% and 30% 
the GDT_TS varied between about 100 and 50. For %_ID val-
ues <20%, the GDT_TS was between 90 and 40 for CM targets, 
between 90 and 30 for FR targets, and from 60 to <20 for NF 
targets. In other words, for sequence identities of 20% or lower, 
the model built can vary from either having a globally very similar 
structure to the target (GDT_TS >80) to only having a few small 
fragments showing some structural similarity to the target (GDT_
TS <20). A visual example of structural variations corresponding to 
representative GDT_TS values is shown in Fig. 2.2.

In CASP6, for “easy” CM targets template detection and 
production of accurate target-template sequence alignments were 
carried out successfully and the accuracy of the produced mod-
els was quite high, at least in the conserved regions. Conversely, 
model refinement and improvement over the best template were 
still open issues: In only a few cases were the best predictors able 
to produce 3D models more similar to their target structures 
than the structures of the best templates. In most cases, improve-
ments over the best templates were obtained only for the easiest 
targets, whereas for harder targets the best templates were gener-
ally much more similar to the target structures than any model. 
In CASP7, for the first time, models of such “easy” CM targets 
were assessed in a separate category to establish whether there 
has been any improvement in these areas. For “hard” CASP6 
CM targets choosing the right template and producing the cor-
rect target-template alignment proved to be challenging tasks 
(14), and both became more and more difficult with an increase 
in the evolutionary distance between targets and best templates. 
For most FR targets the top predictions contained all or most 
of the SSE in the right place or with small shifts with respect to 
the target structure. However, for many targets most predictions 
had little resemblance to the target structure (191). For “hard” 
NF targets, only fragments of the best models resembled the real 
target structures (190).

Structural comparisons of the templates selected for a spe-
cific target (see Section 3.3.2.4) permit identification of rela-
tionships between %_ID and structural similarity for the target 
family, based on which a more accurate prediction about the 
expected model accuracy for targets belonging to that family 
can be obtained. In any case, information about model accuracy 
provided by sequence–structure relationships is limited to the 
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conserved regions between target and template(s). Unless loop 
regions belong to one of the restricted number of categories for 
which sequence–structure relationships have been defined (see 
Section 3.3.3.2), or side-chain conformations are strongly con-
served for structural and/or functional reasons, in general it is 
not possible to know how accurate the predictions of loops or 
side-chain conformations are before comparing them with the 
real structures.

Automated programs can generally produce models of “easy” 
CM targets (e.g., sequence identity with the templates >40%) 
that are good enough for many practical applications. However, 
these models may contain serious mistakes even in regions close 
to the functional sites, the more so the higher the evolutionary 
distance between target and template; therefore, it is wise to care-
fully compare their output with the template structures, espe-
cially in the key structural and functional regions. This is a point 
of utmost importance: In principle, it is always possible to build 
homology-based 3D models automatically; all that is needed is a 
template structure and an alignment between the target and tem-
plate sequences. However, if the chosen template is not a real tar-
get homologue, or if the target-template sequence alignment is 
wrong, the model is bound to be incorrect (“garbage in, garbage 
out!”). In CASP, expert human predictors using semi-automated 
procedures consistently produce better predictions than fully 
automated methods. However, in choosing between the use of a 
fully automated method and manual intervention it is important 
to remember that in both CM and FR categories there was a big 
difference between the best predictors and many of the others, 
and that the best automated programs (see Section 3.5.1) per-
formed remarkably well compared with many human predictors.

 1. The two commonly used measures to evaluate similarity 
between protein structures used in this chapter are root-
mean-square deviation (RMSD) and global distance test 
total score (GDT_TS). The RMSD between two structures 
A and B is the average distance between a specific set of 
atoms in structure A (e.g., Cα or main-chain atoms belong-
ing to a given set of residues) and the corresponding atoms 
in structure B, after optimal superposition of their coordi-
nates. The formula to calculate the RMSD is:
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  where di is the distance between the pair of atoms i and N is 
the total number of superimposed atom pairs in the dataset. 
The GDT_TS between two structures A and B represents 
the percentage of residues of protein A whose Cα atoms are 
found within specific cut-off distances from the correspond-
ing Cα atoms in structure B after optimal superimposition 
of the two structures. In CASP the GDT_TS is calculated 
according to the formula:

 GDT_TS = (GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8)/4,

  where GDT_P1, GDT_P2, GDT_P4, and GDT_P8 repre-
sent the number of Cα atoms of a target model whose dis-
tance from the corresponding atoms of the real structure, 
after optimal model-to-structure superposition, is ≤1, 2, 4, 
and 8 Å, respectively, divided by the number of residues in 
the target structure.

 2. The score of the BLAST alignment is calculated as the sum 
of substitution and gap scores. Substitution scores are given 
by the chosen substitution matrix (e.g., PAM, BLOSUM, see 
Note 3), whereas gap scores are calculated as the sum of the 
gap opening and gap extension penalties used in the search. 
The choice of these penalties is empirical, but in general a 
high value is chosen for gap opening and a low value for 
gap extensions (e.g., BLAST default values for gap insertions 
and extensions are 7–12 and 1–2, respectively). The rational 
bases for these choices are that: (1) only a few regions of 
protein structures (e.g., loops) can accommodate insertions 
and deletions (hence, a high value for gap openings); and (2) 
most of these regions can usually accept insertions and dele-
tions of more than a single residue (hence, the lower value 
used for gap extension).

 3. Substitution matrices are 20 × 20 matrices containing a value 
for each a.a. residue pair that is proportional to the probabil-
ity that the two a.a.s substitute for each other in alignments 
of homologous proteins. The two most commonly used 
matrix series, PAM (percent accepted mutation) (216) and 
BLOSUM (blocks substitution matrix) (217), comprise sev-
eral matrices that have been designed to align proteins with 
varying extent of evolutionary distance. PAM matrices with 
high numbers (e.g., PAM 250) and BLOSUM matrices with 
low numbers (e.g., BLOSUM 45) are suitable for aligning 
distantly related sequences; conversely, low PAM (e.g., PAM 1) 
and high BLOSUM (e.g., BLOSUM 80) number matrices 
are appropriate to align closely related sequences. BLAST 
default matrix is BLOSUM 62.

 4. In SCOP, protein domains are assigned to the same family if 
they either have %_ID ≥ 30% or, in case their %_ID is lower, 
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if they have very similar structures and functions. Different 
families are assigned to the same superfamily if they com-
prise proteins presenting structural and, often, functional fea-
tures suggesting a common evolutionary origin. Families and 
superfamilies having the same major SSE in the same spatial 
arrangement and with the same topological connections are 
assigned to the same fold. Proteins assigned to the same fami-
lies and superfamilies are thought to be close and remote evo-
lutionary relatives, respectively, whereas proteins having the 
same fold might still have a common origin but no evidences 
strong enough to support this hypothesis are available yet.
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