Chapter 2

Protein Structure Prediction

Bissan Al-Lazikani, Emma E. Hill, and Veronica Morea

Abstract

Protein structure prediction has matured over the past few years to the point that even fully automated
methods can provide reasonably accurate three-dimensional models of protein structures. However, until
now it has not been possible to develop programs able to perform as well as human experts, who are still
capable of systematically producing better models than automated servers. Although the precise details
of protein structure prediction procedures are different for virtually every protein, this chapter describes
a generic procedure to obtain a three-dimensional protein model starting from the amino acid sequence.
This procedure takes advantage both of programs and servers that have been shown to perform best in
blind tests and of the current knowledge about evolutionary relationships between proteins, gained from
detailed analyses of protein sequence, structure, and functional data.

Key words: Protein structure prediction, homology modeling, fold recognition, fragment assembly,
metaservers.

1. Introduction

In spite of many years of intense research, unravelling the algo-
rithm by which Nature folds each amino acid (a.a.) sequence
into a unique protein three-dimensional (3D) structure remains
one of the great unsolved problems in molecular biology. How-
ever, analyses of the wealth of information contained in protein
sequence and structural databases (DBs) have revealed the exist-
ence of a number of fundamental rules and relationships among
protein sequence, structure, and function, based on which many
of both the current theories about molecular evolution and pro-
tein structure prediction methods have been developed.

The first important question to ask when dealing with pro-
tein structure prediction concerns the purpose for which the
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Fig. 2.1. Biological applications of protein structure prediction methods. SAR: structure—activity relationships.

model is built. This is of fundamental importance since the accu-
racy required of the model, that is, its similarity to the real protein
structure, can be substantially different for different biological
applications (Fig. 2.1). At one end of the spectrum, a very accu-
rate prediction of the functional site in terms of both main- and
side-chain conformation is indispensable for drug design pur-
poses, and a correct positioning of the side-chains involved in
intermolecular interactions is required for protein—protein inter-
action (docking) studies. At the other extreme, an approximate
description of the protein topology at the level of general arrange-
ment of secondary structure elements (SSE) or domains, or even
an idea of which regions are likely to be globular, unfolded, or
aggregation prone, can be valuable to those who want to cut
insoluble proteins into smaller and soluble portions, which are
likely to be more easily expressed and studied experimentally.
In general, correct models of the overall protein fold, even with
unrefined details, can be useful to rationalize experimental data at
a structural level and guide the design of new experiments aimed
at improving our understanding of protein function. In the era of
structural genomics and fast solving of protein structures, looking
for structural biologists interested in experimentally determining
the structure of your protein(s) is also an option.

In choosing the procedure to follow for model building, other
factors to consider are the time available and number of models
to make. Production of 3D models on a large and even genomic
scale is achievable with the use of automated or partially automated
methods. A number of automated methods have been developed
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that can rapidly produce 3D models starting from the amino acid
sequence of a target protein (se¢ Section 3.5.1). However, the quality
of these models can vary to a large extent. A detailed understanding of
the underlying steps of the modeling procedure is required to evaluate,
and often improve, the accuracy of automatically produced models.
The most reliable source of information about the accuracy of
protein structure prediction methods is provided by the evaluation
of their performance in blind tests. In such evaluations, 3D models
of target proteins are compared with the experimentally determined
structures of the same proteins using visual assessments performed
by human experts and/or numerical evaluators of structural simi-
larity (Note 1). Two main types of evaluations are performed on
a regular basis: fully automated evaluations (devoted to fully auto-
mated methods), and human-based evaluations (examining predic-
tions refined by human experts as well as those provided by fully
automated methods). The human-based evaluation, named Criti-
cal Assessment of Structure Predictions (CASP), is performed every
2 years since its debut in 1994 and contributes enormously to the
improvement of protein structure prediction methods as well as to
the diffusion of information about their performance. (The URLs
of all the Web sites, programs, servers, and databases indicated in
italic in the text are reported in Table 2.1, along with relevant refer-
ences, when available.) A full description of the experiment along
with reports of the results of each of the six previous CASP experi-
ments are available (1-6). A seventh edition took place in 2006 and
its results, published in 2007, provides up-to-date information on
the most recent advances in the field of protein structure prediction
(preliminary evaluation results are available from the CASP7 Web
site). In parallel with the last four CASP editions, the Critical Assess-
ment of Fully Automated Structure Predictions (CAFASP) experi-
ments have also been run in which the ability of automated servers
to predict CASP targets was evaluated by other servers, without
human intervention (7=9). In both CASP and CAFASP the predic-
tions are guaranteed to be “blind” by the fact that they are submit-
ted to the evaluation before the experimental structures are released.
The performance of automated servers on proteins recently released
from the PDB (10) is also evaluated on a continuous basis by servers
such as Livebench (11) and EVA (12). Every week these servers sub-
mit the sequences of proteins newly released from the PDB to the
prediction servers participating in these experiments, collect their
results, and evaluate them using automated programs. To take part
in Livebench and EVA the prediction servers must agree to delay the
updating of their structural template libraries by 1 week, as the pre-
dictions evaluated in these experiments refer to targets whose struc-
tures have already been made publicly available. These predictions
cannot, therefore, be considered strictly “blind” (as those evaluated
in CASP and CAFASP). Nevertheless, automated assessments can
provide an ongoing picture of how automated prediction methods
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Table 2.1

URLs of web sites, programs, servers and DBs relevant to protein structure

prediction

Web site, program,

server, DB URL References
@TOME bioserv.cbs.cnrs.fr/HTMI,_BIO /frame_meta.html (210)
3D-JIGSAW www.bmm.icnet.uk /servers/3djigsaw,/ (164)
3D-Jury Biolnfo.PL/Meta/ (196)
3D-PSSM www.sbg.bio.ic.ac.uk /~3dpssm/ (94)
3D-Shotgun www.cs.bgu.ac.il/~bioinbgu/ (197-200)
ANOLEA protein.bio.puc.cl/cardex/servers /anolea/index.html (173, 174)
Arby arby.bioinf.mpi-inf.mpg.de /arby/jsp/index.jsp (80, 81)
BCM Search Launcher  searchlauncher.bcm.tmc.edu/ (34)
Belvu www.cgb.ki.se /cgb/groups/sonnhammer/Belvu.html (110)
BioEdit www.mbio.ncsu.edu/BioEdit/bioedit.html
Bioinbgu www.cs.bgu.ac.il /~bioinbgu / (197-200)
BLAST www.ncbi.nlm.nih.gov/BLAST /* (67)
CAFASP4 MQAPs cafasp4.cse.buffalo.edu/progs/mqaps/
CAFASP www.cs.bgu.ac.il /~dfischer /CAFASP5 / (7-9)
CAPRI capri.ebi.ac.uk/ (36, 37)
CASP experiments predictioncenter.org/ (1-6)
(CASP1-CASP7?)
CATH www.biochem.ucl.ac.uk/bsm/cath /cath.html (29)
CAZy afmb.cnrs-mrs.fr/CAZY / (25)
CDD www.ncbi.nlm.nih.gov,/Structure /cdd /wrpsb.cgi (41)
CE cl.sdsc.edu/ (122)
CINEMA umber.sbs.man.ac.uk/dbbrowser/CINEMA2.1 / (112)
ClustalW www.ebi.ac.uk/clustalw/ (106)
ClustalX ftp://ftp-igbmc.u-strasbg.fr /pub/ClustalX / (108)
Cn3D www.ncbi.nlm.nih.gov/Structure /CN3D /cn3dinstall.shtml  (147)
COACH www.drive5.com/lobster,/ (86)
COLORADO3D asia.genesilico.pl/colorado3d/ (142)
COMPASS prodata.swmed.edu,/compass/compass.php (82-84)
CONSURF consurf.tau.ac.il/ (143)

(continued)
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Web site, program,
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server, DB URL References
CPHmodels www.cbs.dtu.dk/services/CPHmodels / (168)
DALI www.ebi.ac.uk /dali/ (31)
DaliLite www.ebi.ac.uk /DaliLite / (119)
DISOPRED bioinf.cs.ucl.ac.uk /disopred / (55)
DISpro www.ics.uci.edu/~baldig/dispro.html (52)
Domain Parser compbio.ornl.gov/structure /domainparser/ (114, 115)
DomCut www.bork.embl.de /~suyama/domcut/ (40)
DOMPLOT www.biochem.ucl.ac.uk/bsm /domplot/index.html (117)
DRIPPRED www.sbe.su.se /~maccallr /disorder/
DSSP swift.cmbi.ru.nl/gv/dssp/ 92)
EBI www.ebi.ac.uk
Entrez Tutorial www.ncbi.nlm.nih.gov/Entrez/tutor.html
ESyPred3D www.fundp.ac.be/sciences/biologie /urbm/bioinfo/esypred/  (169)
EVA eva.compbio.ucsf.edu/~eva/ (12)
Expasy WWW.EXpasy.org (33)
FAMSBASE daisy.nagahama-i-bio.ac.jp/Famsbase /index.html (214)
FastA www.ebi.ac.uk /fasta33 / (69)
Fasta format www.ebi.ac.uk /help /formats_frame.html
FFAS03 ffas.burnham.org (88)
FORTE www.cbrc.jp /forte (89)
FRankenstein3D genesilico.pl /frankenstein (207)
FSSP ekhidna.biocenter.helsinki.fi /dali /start (30, 31)
Fugue www-cryst.bioc.cam.ac.uk /fugue / (99)
Genesilico www.genesilico.pl/meta/ (202)
GenThreader, mGen- bioinf.cs.ucl.ac.uk/psipred/psiform.html (95, 96)
Threader
Ginzu robetta.bakerlab.org/ (39)
GROMACS WWW.gromacs.org,// (179)
HBPLUS www.biochem.ucl.ac.uk/bsm/hbplus/home.html (137)
HHpred toolkit.tuebingen.mpg.de /hhpred (91)
HMAP trantor.bioc.columbia.edu/hmap / (101)

(continucd )
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Web site, program,
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server, DB URL References
HMMER hmmer.wustl.edu/ (72, 73)
Homo sapiens genome www.ensembl.org/Homo_sapiens/index.html (26)
Homstrad www-cryst.bioc.cam.ac.uk /~homstrad / 32)
IMPALA blocks.there.org/blocks,/impala.html (77)
InsightIl / Biopolymer —www.accelrys.com/products/insight/ (178)
/ Discover
InterPro www.ebi.ac.uk /interpro/ (45)
Inub inub.cse.buffalo.edu/ (199, 200)
IUPred iupred.enzim.hu/index.html (53)
Jackal trantor.bioc.columbia.edu/programs /jackal /index.html
Joy www-cryst.bioc.cam.ac.uk /joy/ (135)
Jpred www.compbio.dundee.ac.uk/~www-jpred/ (65, 66)
LAMA blocks.therc.org/blocks-bin /LAMA_search.sh (87)
LGA predictioncenter.org/local /1ga /1ga.html (118)
LIGPLOT www.biochem.ucl.ac.uk/bsm/ligplot/ligplot.html (140)
Livebench bioinfo.pl/meta/livebench.pl (11)
LOBO protein.cribi.unipd.it/lobo/ (156)
LOOPP cbsuapps.tc.cornell.edu/loopp.aspx (102)
Loopy wiki.c2b2.columbia.edu/honiglab_public/index.php/ (155)
Software:Loopy
Mammoth ub.cbm.uam.es/mammoth /pair/index3.php (120)
Mammoth-mult ub.cbm.uam.es/mammoth /mult/ (126)
Meta-BASIC Biolnfo.PL/Meta/ (113)
ModBase modbase.compbio.ucsf.edu/modbase-cgi-new/search_form.cgi  (213)
Modeller salilab.org/modeller / (161)
ModLoop alto.compbio.ucsf.edu/modloop/ (157)
MolMol hugin.ethz.ch /wuthrich /software /molmol /index.html (149)
MQAP-Consensus cafasp4.cse.buffalo.edu/mqap /submit.php (177)
NACCESS wolf.bms.umist.ac.uk /naccess/ (136)
NAMD www.ks.uiuc.edu/Research /namd / (180)
NCBI www.ncbi.nlm.nih.gov
NCBI NR sequence DB ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA /nr.gz (23)

(continucd )
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Table 2.1 (continued)

Web site, program,

server, DB URL References
Nest wiki.c2b2.columbia.edu/honiglab_public/index.php/ (165)
Software:nest
ORFeus bioinfo.pl/meta/ (90)
Pcons, Pmodeller www.bioinfo.se/pcons,/, www.bioinfo.se /pmodeller/ (201)
Pcons5 www.sbc.su.se /~bjornw,/Pcons5 / (208, 209)
PDB www.pdb.org/ (10)
PDBsum www.ebi.ac.uk /thornton-srv/databases /pdbsum/ (141)
PDP 123d.ncifcrf.gov/pdp.html (116)
Pfam www.sanger.ac.uk /Software /Pfam / (42)
Phyre www.sbg.bio.ic.ac.uk/~phyre/
Picasso www.embl-ebi.ac.uk/picasso/ (85)
PMDB a.caspur.it/PMDB/ (215)
Porter distill.ucd.ie /porter/ (64)
POSA fatcat.burnham.org/POSA/ (127)
PPRODO gene.kias.re.kr/~jlee /pprodo/ (40)
PRC supfam.mrc-lmb.cam.ac.uk/PRC/
PRED-TMBB Biophysics.biol.uoa.gr/PRED-TMBB / (60)
PredictProtein www.predictprotein.org,/ (59)
PrISM wiki.c2b2.columbia.edu/honiglab_public/index.php/ (125)
Software:PrISM
Procheck www.biochem.ucl.ac.uk/~roman/procheck /procheck.html (138, 139)
ProDom protein.toulouse.inra.fr/prodom /current/html/home.php  (44)
PROF cubic.bioc.columbia.edu/predictprotein/ (59)
ProQ, ProQres www.sbc.su.se /~bjornw,/ProQ/ (175, 176)
ProSa www.came.sbg.ac.at/typo3/ (171)
Prosite WWww.expasy.org,/prosite,/ (46)
Protein Explorer proteinexplorer.org (146)
Protinfo AB CM protinfo.compbio.washington.edu/protinfo_abecmfr/ (159)
PSI-BLAST www.ncbi.nlm.nih.gov/BLAST/ (67)
Psi-Pred bioinf.cs.ucl.ac.uk /psipred / (57, 62)
RAPTOR ttic.uchicago.edu/~jinbo /RAPTOR_form.htm (100)
RasMol www.umass.edu,/microbio/rasmol /getras.htm (145)

(continued)
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Table 2.1 (continued)

Web site, program,

server, DB URL References

ReadSeq bioweb.pasteur.fr/seqanal /interfaces /readseq-simple.html

Robetta robetta.bakerlab.org/ (187-189)

ROKKY www.proteinsilico.org,/rokky / (194)

Rosetta depts.washington.edu/ventures/UW_Technology,/ (19,
Express_Licenses/Rosetta/ 182-186)

Rosettadom robetta.bakerlab.org/ (39)

SAM (download) www.soe.ucsc.edu/research /compbio/sam2src/

SAM-TO02 www.cse.ucsc.edu/research /compbio/HMM-apps/ (75, 76)
T02-query.html

SAM-T99 www.cse.ucsc.edu/research /compbio/HMM-apps/ (63)
T99-query.html

Sanger Centre www.sanger.ac.uk

Scap wiki.c2b2.columbia.edu/honiglab_public/index.php/ (160)
Software:Scap

Schistosoma mansoni www.tigr.org/tdb/e2kl /smal / 27)

genome

SCOP scop.mrc-lmb.cam.ac.uk /scop/ (28)

SCRWL wwwl.jcsg.org/scripts/prod/scwrl/serve.cgi (158)

Seaview pbil.univ-lyonl.fr/software /seaview.html (111)

SegMod/ENCAD csb.stanford.edu/levitt/segmod / (162)

Sequence Manipulation  bioinformatics.org/sms2 / (35)

Suite

SMART smart.embl-heidelberg.de / (43)

SP3 sparks.informatics.iupui.edu,/hzhou/anonymous-fold-sp3. (104, 105)
html

SPARKS2 sparks.informatics.iupui.edu/hzhou/anonymous- (103, 104)
fold-sparks2.html

SPRITZ protein.cribi.unipd.it/spritz,/ (54)

SSAP www.cathdb.info /cgi-bin /cath /GetSsapRasmol.pl (123)

SSEARCH pir.georgetown.edu,/pirwww /search /pairwise.shtml (70)

SSM www.ebi.ac.uk /msd-srv/ssm/ssmstart.html (124)

STRUCTFAST www.eidogen-sertanty.com/products_tip_structfast.html (195)

SUPERFAMILY supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY / (47, 48)

Swiss-PDBViewer www.expasy.org,/spdbv,/? (144)

(continued)
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Table 2.1 (continued)

Web site, program,

server, DB URL References
SwissModel swissmodel.expasy.org,/ (163)
SwissModel Repository — swissmodel.expasy.org/repository,/ (212)

SwissProt, TrTEMBL

T-Coffee

TASSER-Lite

TBBpred
Threader
Three to One

www.expasy.uniprot.org,/database /download.shtml

igs-server.cnrs-mrs.fr/~cnotred /Projects_home_page/ (107)
t_coffee_home_page.html

cssb.biology.gatech.edu/skolnick /webservice /tasserlite / 97)
index.html

www.imtech.res.in/raghava /tbbpred / (61)
bioinf.cs.ucl.ac.uk /threader/ (16)

bioinformatics.org,/sms2 /three_to_one.html

TIGR WWW.tigr.org

TINKER dasher.wustl.edu/tinker/

TMHMM www.cbs.dtu.dk/services/TMHMM / (58)
Translate www.expasy.org,/tools/dna.html

UniProt WWW.expasy.uniprot.org,/ (24)
VAST www.ncbi.nlm.nih.gov/Structure /VAST /vastsearch.html (121)
Verity-3D nihserver.mbi.ucla.edu/Verity_3D/ (15, 172)
VMD www.ks.uiuc.edu/Research /vmd / (150)
VSL2 www.ist.temple.edu/disprot/predictorVSL2.php (50)
WebLogo weblogo.berkeley.edu/logo.cgi (109)
Whatcheck www.cmbi.kun.nl/gv/whatcheck / (170)
WHAT IF swift.cmbi.kun.nl /whatif/ (148)

Wikipedia on Structural
Alignment Software

en.wikipedia.org/wiki/Structural_alignment_software
#Structural_alignment

“For more details, see the BLAST tutorial (www.ncbi.nlm.nih.gov/BLAST /tutorial/) and frequently
asked questions (FAQ) (www.ncbi.nlm.nih.gov/blast/blast_FAQs.shtml).

“"Also download: Swiss-Pdb Viewer Loop Database, User Guide, and Tutorial, containing detailed infor-
mation on the program commands and explanations on how to build a homology model of the target

protein using this program.

perform based on a larger number of targets than those evaluated by
CASP/CAFASP experiments.

In CASP and related experiments protein structure prediction
methods have been traditionally grouped into three broad categories
depending on the level of similarity of the target protein sequence
to other proteins of known structure, which necessarily impacts the
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procedure that must be used to build the models: comparative or
homology modeling (CM), fold recognition (FR), and new fold (NF)
predictions. The separation between these categories, in particular
between CM and FR and between FR and NE, has been challenged
by the development of more sophisticated methods (e.g., profile-
based methods and fragment-based methods, see Sections 3.3.1.1
and 3.4) able to cross the boundaries between them. The accuracy
of the structures predicted in blind tests is generally highest for CM
and lowest for NF methods, but there is a large overlap between the
accuracy reached by neighboring categories of methods (Fig. 2.2).

Template-based Fragment-based
Category cM FR NF
Easy Hard FR/H FR/A Easy Hard
pair-wise
SC methods profile-based
Blast, Fast N
(Blas asta) SC methods

(PSI-Blast, HMMs)
Programs FR methods
(3D-PSSM, Threader)

Fragment-based methods
(Rosetta)

Metaservers
(Meta-BASIC, 3D_Jury, Genesilico, Pcons, Bioinbgu, Robetta)

Target Nb 27 20 22 16 3 6

o 6 L e & 16 62 % 81 50 3 14

Best GDT_TS

% _1D best
template

Best GDT_TS
vs.%_ID best
template

T277

GDT_TS

Fig. 2.2. Protein structure prediction methods used in CASP6 and accuracy of the predictions, expressed by GDT_TS
(Note 1). For a description of prediction methods and CASP6 prediction categories see text. Target Nb, Best GDT_TS,
and %_ID best template are the number of targets evaluated in each prediction category, the GDT_TS between the real
structure of each target and the best model submitted for it, and the %_ID between the target sequence and the best template
structure present in the PDB, i.e., the structure most similar to the target. The bottom panel shows the structural super-
position between the experimental structure of CASP6 target T277 (PDB ID: 1wty) and five models with varying degrees
of accuracy submitted by predictors taking part in the experiment. Only Co. atoms of structure (black) and models (gray)
are shown. As shown by the figure, GDT_TS values near 80 indicate that the Cow atoms of the model are well superim-
posed to those of the structure, except in some loop regions. For a GDT_TS value of 65 the core regions are still predicted
quite accurately, although structural differences in the loop regions and protein termini are more pronounced. GDT_TS
values around 50 correspond to an overall structural similarity, but structural variations occur even in the conserved
core regions. GDT_TS values around 35 indicate lack of an overall accurate topology prediction, with similarity between
only about half of the core regions of structure and model, whereas other regions differ significantly. For GDT_TS values
around 20, only a small fraction of the model shows some resemblance to the target structure.
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The rational basis of Comparative Modeling (CM) are
the following observations: (1) proteins having highly simi-
lar a.a. sequences fold into similar 3D structures, and (2) the higher
the sequence similarity in the conserved protein “core” region,
the higher the similarity between their 3D structures (13). Given the
sequence of a protein of unknown structure (target), it another
protein (template) whose 3D structure has been experimentally
determined can be detected, via a.a. sequence similarity to the
target, in available DBs, then the 3D structure of the target can
be modeled on the basis of the template structure. Since CM 1is
the method that results in the most detailed and accurate protein
structure predictions in blind tests (14), it is the elective protein
structure prediction method, whenever applicable.

In the next category, FR methods exploit the observation
that during evolution protein structures are more conserved than
sequences; although proteins with similar sequences have simi-
lar 3D structures, similar 3D structures can also be assumed by
proteins with relatively different a.a. sequences. Therefore, even
if a target protein does not show recognizable sequence similari-
ties with proteins of known 3D structure, its fold might still be
similar to one of them. To identify the compatibility of the target
sequence with known 3D structures, FR methods take advan-
tage of structural information derived from statistical analyses of
protein structure DBs, such as frequency of pairwise a.a. interac-
tions and residue propensity to assume a certain type of secondary
structure and/or to be solvent accessible or buried (15-17).
Although they have been remarkably successful at identifying
suitable structural templates for target sequences without detect-
able sequence similarities to proteins of known structure, FR
methods have two major drawbacks: (1) they are not always able
to discriminate between structures truly similar to the target and
those unrelated to it, the correct ranking of which remains a chal-
lenge; and (2) they are somewhat less successful in recognizing
conserved regions between target and template, often producing
poor-quality sequence alignments from which to produce the 3D
model. As a consequence, these methods should only be used
when CM methods are unable to provide an answer.

Both CM and FR methods involve the identification of a
suitable structural template in the PDB and differ only in the way
they detect it (i.e., based on target-template sequence similar-
ity vs. target sequence-template structure compatibility). Once a
suitable template has been identified, the procedure used to build
the model is essentially the same for both categories. CM and FR
are often grouped together in the broader category of template-
based protein structure prediction methods and were evaluated
in this new category in the most recent CASP7.

Conversely, the remaining category of NF prediction meth-
ods does not use whole structural template proteins from the
PDB. However, the most successful of these methods do exploit
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information contained in PDB structures at a local level. Protein
structures contain smaller sub-structures, or structural motifs,
which assume the same conformation in the context of different
3D structures. Therefore, it is possible that a “new” fold, i.e., a
protein whose 3D structure differs from already known structures
at a global level, is formed by a combination of sub-structures that
are similar to those present in known structures. Most current NF
methods (called fragment-assembly or fragment-based methods)
try to reconstruct the global structure of the target by combining
structural fragments having a.a. sequence similar to an equiva-
lent short segment of the target sequence, and applying a scoring
function to evaluate the resulting models (18, 19). Although at
a global level each target sequence generally assumes only one
3D structure, short peptide sequences can assume different con-
formations depending on their structural context. Therefore, for
cach target, fragment-based prediction methods have to explore
the structure-space that can be occupied by both different frag-
ment conformations and the possible combinations of these frag-
ments. This results in the generation of many models, frequently
notably different from one another. As was a previously discussed
challenge for FR methods, perhaps the biggest drawback of NF
methods lies in their limited ability to discriminate between cor-
rect and incorrect models. Nevertheless, these methods represent
one of the biggest innovations that have taken place in the field of
protein structure prediction for at least a decade, and are the only
currently available tool to obtain, however non-systematically, 3D
models of small protein structures with new folds. Even when the
correct or most-accurate model cannot be identified based on the
score provided by the method, having a few potential models can
help in experimental structure determination by x-ray crystallog-
raphy using the Molecular Replacement technique (se¢ Volume I,
Chapter 3), especially in cases of proteins or protein complexes
that are proving particularly tricky to solve (20). Additionally, in
CASP experiments, fragment-based methods have proved to be
particularly successful in the prediction of difficult FR targets (see
Sections 3.3.1.2 and 3.4).

The NF category also comprises a4 initio methods. Contrary
to CM, FR, and NF fragment-based methods, a4 initio algorithms
do not exploit information contained in the PDB either at a glo-
bal or local level. Instead, they try to reproduce the physical laws
governing protein folding starting only from the a.a. sequence
of the target protein and empirical energy functions based on
physicochemical principles. Although addressing an intellectually
challenging and ever-stimulating problem, until now ab initio
methods have not produced protein structure predictions com-
petitive with those provided by the methods discussed in the pre-
ceding. The practical applications of & initio methods in protein
structure prediction are currently limited to short protein segments
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(e.g., loops), which cannot be predicted by other methods, and
energy refinement of 3D models or parts of them.

One of the remarkable features of protein structure predic-
tion, which has contributed greatly to its diffusion and progress,
is that the whole process can be performed using tools that have
been made freely available by their foresighted developers. The
large majority of the programs and servers described in this chap-
ter can be freely downloaded from, or used through, the Internet
(see Table 2.1).

2. Systems,
Software, and
Databases

The variety of programs and databases used in protein structure
prediction is large and ever-increasing, and a comprehensive list-
ing goes beyond the scope of this chapter. For a full and up-date
listing, the reader can refer to:

o The special database and Web server issues of Nucleic Acids
Research, each published once a year (21, 22), which are ded-
icated to the most established and popular, as well as recently
developed, databases for the collection of biological data and
software for their analysis, respectively.

e The special issue of PROTEINS: Structure, Function, and
Bioinformatics (1-6), published every 2 years and dedicated
to the results of the previous year’s CASP experiment, com-
prising both articles describing the evaluation of the per-
tormance of protein structure prediction methods in blind
tests and articles about the most successful and /or innova-
tive prediction methods.

o The Livebench and EVA Web sites, in which the performance
of automated servers for protein structure prediction on newly
released PDB targets is assessed on a continuous basis.

Many different types of sequence DBs are available from the
NCBI, EBI, Sanger Centre, and TIGR Web sites. The most
commonly used sequence DBs are central repositories in which
sequences from many different DBs are collected, such as the
comprehensive non-redundant (NR) protein sequence database
at the NCBI (23) or UniProt, containing accurate annotations
about protein function, subcellular localization, and/or other
protein features (24). For particular purposes, specialized DBs
can be searched, dedicated to specific protein groups or families
(e.g., carbohydrate-active enzymes (CAZy) (25)), or individual
genomes (e.g., Homo sapiens (26) and Schistosoma mansoni (27)),
some of which might not be sufficiently complete or refined to be
included in the central repositories.
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The central repository for macromolecular structures is the
PDB. DBs derived from the PDB and containing classifications
of proteins according to their 3D structures and, in some cases,
evolutionary relationships (e.g., SCOP (28), CATH (29), FSSP
(30, 31)), and structural alignment DBs (e.g., Homstrad (32))
are also of central importance in protein structure prediction.

The majority of the programs required for protein struc-
ture prediction can be run on remote servers accessible through
the World Wide Web; therefore, any system supporting a Web
browser may be used. Many of these programs are also available
to be downloaded and run on most common operating systems
(i.e., Linux, Unix, Mac OS X, and Windows). Using programs
through the Internet is the easiest option, and the best choice for
most common applications. On the other hand, downloading the
programs permits a greater flexibility in the choice of parameters
and amount of computer power to devote to their use. In turn,
this allows for greater automation and removes any reliance on
the server availability (a number of protein structure prediction
servers are not accessible during the “CASP prediction season”,
which runs from June to September every even year).

The Methods section describes protein structure prediction
procedures that take advantage of frequently used methods and
programs, highlighting which of them have been performing best
in blind protein structure prediction experiments.

3. Methods

3.1. Obtain the Protein
Sequence

Protein structure prediction methods are described in the order:
CM, FR, and NF, in agreement with the accuracy of the predic-
tions that they provide in blind tests (from highest to lowest).

The starting point of any prediction procedure is the a.a. sequence
of the target protein, preferably in Fasta format, which is accepted
or required by most programs and servers. Servers that do not
accept Fasta format usually require just a sequence of a.a. resi-
dues in one-letter code (equivalent to Fasta format without the
first header line).

The sequence can be obtained from the NCBI Web site or
other sequence DBs using similar procedures. (For a simple and
comprehensive explanation on the use of the NCBI data retrieval
system, see the Entrez tutorinl.) Other programs, such as those
available from Expasy (33), BCM Search Launcher (34), or
Sequence Manipulation Suite (35) perform useful operations on
biological sequences, such as the conversion of different sequence
formats to Fasta format (ReadSeq) and of a.a. sequences from
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three- to one-letter code (Three to One), or the translation of
nucleotide gene sequences to the a.a. sequence of their protein
products ( Transiate).

Most proteins, especially large ones, are comprised of two or more
structural units called domains, joined to each other by linker
peptides. In case of multi-domain proteins, homologous template
domains of known structure may only be available for some of
the target domains, they may belong to different proteins whose
domain architecture (i.e., the type and linear order of domains
comprised in a protein sequence) is different from the target,
and/or have a different degree of evolutionary distance from the
target domains, so that different techniques may be required to
predict their structures. For these reasons, protein structure pre-
diction is generally performed (and assessed, in experiments such
as CASP) at a domain level. Predicting the spatial arrangement
of interacting domains relative to one another in multi-domain
proteins (docking) is still a difficult problem, which is only pos-
sible to solve in particular cases (see, for example, the results of
the Critical Assessment of PRediction of Interactions (CAPRI)
experiment) (36, 37), and are not addressed in this chapter.

To perform structure prediction at a domain level it is nec-
essary to obtain an initial picture of the domain composition of
the target protein and of regions typically found outside globular
domains, such as signal, linker, low-complexity, disordered, and
transmembrane regions, as well as of the SSE contained in each
domain.

1. Domain boundaries are predicted using a variety of
approaches based on multiple sequence alignments (MSAs),
frequency of amino acids found in domain and linker regions,
domain size, predicted secondary structure, sequence com-
parison methods, neural networks, hidden Markov models,
and, sometimes, even using FR and NF methods to build
3D models from which domain definitions are derived (see
(38) and references therein). Rosettadom and Ginzu (39)
were the most successful automated servers at predicting
domain boundaries in CASP6, whereas Phyre and DomCut
(40) were the programs used by the best human predictors
(38). Other successful groups used PPRODO (40) and CDD
(41). In CASP6 the best methods were able to correctly
assign domains to >80% of the residues of multi-domain tar-
gets. The prediction quality was shown to decrease with an
increase of the number of domains in the target, from targets
assigned to the CM category to those assigned to FR and
NF and for domains made by segments that are not contigu-
ous in the sequence. However, since the number of targets
available for domain prediction was relatively small (63 in
total, of which about half contained one domain only), the
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trends observed in this experiment might not be representa-
tive of more general scenarios (38). If the target domains are
homologous to those already classified in specialized DBs,
servers such as Pfam (42), SMART (43), ProDom (44),
InterPro (45), Prosite (46), and SUPERFAMILY (47, 48)
can provide reliable domain assignments, as well as predic-
tions about signal peptides, low complexity, and transmem-
brane regions.

. Natively disordered proteins or protein regions are those

that do not assume a regular secondary or tertiary structure
in absence of binding partners. Proteins containing relatively
long (>30 a.a.s) disordered segments are relatively common,
especially in higher eukaryotes, and often have important
functional roles (49). The available methods to predict dis-
ordered protein regions are based on experimental data from
x-ray crystallography and NMR spectroscopy and in general
they use machine learning approaches such as neural net-
works and support vector machines (49). In CASP6 the best
performing method was VSL2 (50, 51), which correctly pre-
dicted 75% of disordered residues (true-positives) with an
error rate of 17% (false-positives, i.e., ordered residues incor-
rectly predicted as disordered). Among the other best per-
forming methods were DISpro (52), IUPred (53), SPRITZ
(54), DISOPRED (55), and DRIPPRED, with about 50%
of correctly predicted residues for an error rate <20%
(49). A drawback of these methods is that the probabilities
associated with the disorder predictions are not always good
indicators of the prediction accuracy (48). Assessment of dis-
order predictions in CASP6 was confined to targets whose
structures were determined mostly by x-ray crystallogra-
phy, which may impose some order to regions that would
be disordered in solution, and whose disordered segments
were often rather short (49). Therefore, although the results
of this assessment are indicative of the performance of the
methods on proteins similar to the CASP6 targets, they do
not necessarily reflect their performance on different types
of disorder, e.g., their ability to identify entirely disordered
proteins or disordered regions as measured by other experi-
mental methods such as NMR spectroscopy (49).

. Transmembrane (TM) regions are predicted by Psi-Pred (57),

which also provides secondary structure predictions (see the
following); TMHMM (58) and a number of servers accessible
through the PredictProtein metaserver (59) specialize in pre-
dicting transmembrane alpha-helices, and PRED-TMBB (60)
and TBBpred (61) transmembrane beta-barrels.

4. A number of programs have been developed to predict the

SSE present in a target sequence at a residue level, and the
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best of these have now reached a remarkable level of accuracy.
In the continuous benchmarking system EVA, several meth-
ods are tested for their ability to correctly predict the sec-
ondary structure of target proteins showing no significant
sequence identity to any protein of known structure. Cur-
rently tested methods have been subjected to the evaluation
for several months on sets of tens to hundreds of proteins,
and were shown to have an accuracy, defined as their ability
to correctly predict each of the target residues as being in
alpha-helical, beta-strand, or other (coil) conformation, of at
least 70% on their overall set of target proteins. This accuracy
depends on the quality of the MSA (see Section 3.3.2.1)
that is automatically built for the target, ranging from about
64% for a single sequence with no homologs to nearly 90%
for targets with high-quality MSAs. In addition to the high
prediction accuracy they achieve, another important feature
of these methods is that the confidence values associated
with their residue-based predictions correlate well with the
actual accuracy of the prediction. Several consistently well-
performing methods, such as PROF (59), Psi-Pred (57, 62)
and SAM-T99 (63) predict correctly >76% of residues of the
set of targets they have been tested on. Porter (64) achieves
almost 80% correctly predicted residues and is currently the
best among the methods evaluated by EVA, but as its evalu-
ation started more recently than that of the other methods it
has been tested on a smaller set of target proteins. Another
useful server is Jpred (65, 66), which provides consensus SSE
predictions between several methods.
In general, searches with any of these servers are easy to run and
do not take long to complete (from a few minutes to a few hours,
depending on the server); therefore, it is advisable to run the
target sequence through more than one server to get as accurate
as possible a starting guess about the target domain boundaries
and SSE composition. Ideally, since the confidence in a given
prediction is higher when different methods are in agreement, it
is advisable to use several methods and compare their predictions,
especially when the methods performance in blind tests has not
yet been assessed, the assessment has been performed on a small
number of targets, or the target has significantly different features
from those on which the assessment has been performed (e.g., it
contains large disordered regions).

All the predictions from now on should be performed using
as input single domain sequence regions as opposed to whole
protein sequences. Given the uncertainty in domain boundary
prediction, it is advisable to include in the target domain sequence
some 10-20 a.a.s N-terminal and C-terminal to the boundaries
predicted by domain prediction servers. A more precise predic-
tion of the domain boundaries can often be obtained at a later
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3.3. Template-Based
Modeling

3.3.1. Identification
of the Template Structure

3.3.1.1. Sequence
Comparison Methods

stage, following the production of optimized target-template
sequence alignments and 3D target models.

Template-based modeling consists of the following key steps: (1)
identification of the template structure; (2) refinement of target-
template(s) sequence alignments; (3) model building; (4) model
evaluation; and (5) model refinement.

Sequence comparison (SC) methods are used to retrieve proteins
similar to the target from sequence DBs. Proteins that score bet-
ter than certain threshold values are considered to have statisti-
cally significant sequence similarity to the target, based on which
an evolutionary relationship (i.e., homology) with the target is
inferred. Since similar sequences fold into similar 3D structures,
proteins of known structure scoring above the threshold can be
used as template(s) from which a comparative model of the tar-
get is built. Homology models are usually built using as main
template the structure of the protein having the highest global
sequence conservation with the target. However, regions con-
taining insertions and deletions in the sequence alignment of the
target with the best global template might be better conserved,
at a local level, in other homologous proteins of known struc-
ture, which can therefore be used as templates for these regions.
In principle, homologous proteins may be retrieved searching
sequence DBs including only proteins of known structure (e.g.,
pdb at the NCBI). However, since protein homologs of unknown
structure provide important information for model building, and
the sequences of proteins of known structure are also contained
in comprehensive sequence DBs such as NR, these are generally
the DBs of choice.

SC methods can be assigned to two main categories: pair-
wise methods and profile-based methods. Pairwise sequence
comparison methods (e.g., BLAST) (67) compare the sequence
of the target with each sequence present in a sequence DB. They
are able to detect proteins showing high sequence similarity to
the target, based on which the target and the retrieved proteins are
inferred to be close evolutionary relatives and expected to assume
very similar 3D structures. Profile-based sequence comparison
methods (e.g., PSI-BLAST) (67) compare each sequence in a DB
with a profile created from an MSA of the target and its closest
homologs, which have been previously detected using pairwise
methods. Since the profile incorporates information about several
family members and not just the target, these methods are able
to detect proteins evolutionarily related to the target that cannot
be detected by pairwise sequence comparison methods. Based on
their lower sequence similarity with the target, these proteins are
considered to be distant evolutionary relatives; therefore, their
structural similarity with the target might be lower than that
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of proteins matched by pairwise methods (however, this is not
always the case, see Section 3.3.1.2 and Fig. 2.2). In CASP6,
if a significant match with a correct template domain (as defined
based on the structural similarity of the target with structures in
the PDB measured by the LGA program, see Section 3.3.2.4)
was found using BLAST, the target was assigned to the “easy”
CM prediction sub-category; any targets for which structural
homologs were detected by PSI-BLAST but not by BLAST were
considered to be “hard” CM targets (14, 68).

The most popular pairwise sequence comparison methods
are BLAST, FastA (69), and SSEARCH (70). BLAST'is the most
commonly used, it is implemented by almost every sequence DB
available on the Internet and can either be used interactively or
downloaded, together with a number of comprehensive or spe-
cific sequence DBs, from the NCBI Web site. Although installing
BLAST on a local computer can be advantageous to run mul-
tiple searches automatically and allow for greater flexibility in
parameter settings, the Web versions are easier to use and pro-
vide reasonable default parameters, which might be preferable
for first-time users. BLAST returns pairwise alignments of the
target with sequences retrieved from the DB, and several param-
eters to help decide about the significance of each alignment,
i.e., whether the matched protein is likely to a be a real homolog
of the target as opposed to showing sequence similarity with it
purely by chance.

1. The expectation value (E-value) of an alignment represents
the number of different alignments with scores equivalent
to or better than the score of that alignment (Note 2) that
are expected to occur by chance in a database search. There-
fore, the lower the E-value, the higher the probability that a
matched sequence is a real homologue of the target, and vice
versa. Unfortunately, there is no universal threshold value
that guarantees identification of all the true homologs and
rejection of all non-homologous sequences. In general, for
a given threshold value, there will be both proteins with
E-values better (i.e., lower) than the threshold that are not
real homologs of the target but show some sequence simi-
larity with it purely by chance (false-positives), and proteins
with E-values worse (i.e., higher) than the threshold that
are homologous to the target but have diverged from it to
the point that the sequence similarity is not distinguishable
from that occurring by chance (false-negatives). Lowering
the E-value threshold results in a decrease in the number
of false positives (i.e., incorrect hits) and an increase in the
number of false-negatives (in that a higher number of real
homologs have E-values above the threshold, and are dis-
carded). Conversely, increasing the E-value threshold results
in a lower number of false-negatives (i.e., missed hits) and a
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higher number of false-positives (e.g., for E-values of 10 or
higher, a considerable number of hits found by chance have
E-values below the threshold, and are selected). In general, a
match is considered to be significant if the E-value is around
10-2-10-3 or lower, whereas E-values of 10>-103 or higher
indicate that the match is almost certainly not to be trusted.
Matches with E-values between or approaching these val-
ues should be evaluated carefully taking into account other
parameters.

2. The percentage of sequence identity (%_ID) represents the
number of identical a.a.s found at corresponding positions in
the aligned regions and it can provide indications about the
homology between two proteins. For sequences aligning over
about 100 a.a.s, a %_ID above 40% indicates certain homol-
ogy, whereas a %_ID of 20% or less might occur purely by
chance; if the %_ID is between 20 and 40% the two proteins
might be homologous, but additional information is required
to support this hypothesis. These threshold values vary with
the length of the aligned regions. Since short segments have
a higher chance of showing sequence similarity by chance, for
considerably shorter and longer alignments the %_ID required
to infer homology is therefore higher and lower, respectively.
Similar information to the %_ID is provided by the percent-
age of sequence similarity, which depends on the substitution
matrix used by SC methods (Note 3). High values of per-
centage of sequence similarity qualitatively support the signifi-
cance of the match and the correctness of the alignment, but
the relationship of this parameter with homology is even less
precise than for %_ID.

3. Between closely related proteins, insertions and deletions
(gaps) are usually relatively few and generally cluster in sur-
face loop regions, rather than being spread all over the struc-
ture and interrupting regular SSE. Therefore, the lower the
number of gaps and different positions in which they occur
in the alignment, the higher the significance of the match
and quality of the alignment.

In the absence of overall sequence similarity, i.e., in case of
E-values higher and %_ID lower than the aforementioned values,
the following additional sources of evidence can support the
hypothesis of the existence of evolutionary relationships between
sequences retrieved from the DBs and the target: the similarity of
both the target and the retrieved sequence to a third “intermedi-
ate” sequence that is more closely related to each of them than
they are to each other; the existence of structural relationships
between the matched proteins of known structure (as shown,
for example, by their classification within the same SCOP
Family, Superfamily or Fold) (Note 4); a good overlap between
the SSE of the templates and the SSE predicted for the target
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(see Section 3.3.2.2); and finally the conservation of residues that
are known to play important structural and /or functional roles for
the target and /or the retrieved proteins (key residues, see Section
3.3.2.5). Additionally, since DB searches are not symmetrical, con-
fidence in the target homology with a retrieved sequence can be
increased if the target sequence is matched, in turn, when search-
ing the DB using the previously retrieved sequence as a query.

The availability of biological information about the target
family and experience with alignments from many different pro-
tein families can also be of help in the evaluation of the biological
significance of a match.

If proteins of known structure closely related to the target
are not found by pairwise methods, it is possible to change the
aforementioned parameters to tailor them to the specific problem
at hand. As an example, to detect distantly related proteins it is
possible to choose a lower number BLOSUM or higher number
PAM matrix (se¢e Note 3), and/or decrease the penalty associ-
ated with the insertion and elongation of gaps in the alignment
(see Note 2). However, a more efficient way to detect distant
homologs (71) consists in the use of profile-based methods such
as PSI-BLAST (67) and HMM-based methods (63, 72, 73).

In PSI-BLAST (67) the first iteration, coinciding with a sim-
ple BLAST search, is used to collect sequences similar to the tar-
get based on a pre-defined E-value threshold (a default value is
provided, but it can be changed by the user). The alignments of
these sequences to the target are used to build a multiple align-
ment from which a Position-Specific Score Matrix (PSSM), or pro-
file, is derived that contains values related to the frequency with
which each a.a. occurs at each alignment position. In the second
PSI-BLAST iteration, the sequences in the DB are matched to
this profile, rather than to the target sequence. If a third iteration
is run, the profile is updated to incorporate in the alignment the
new sequences found with E-values below the threshold; it no
new sequences are found, the profile does not change, i.e., the
program has reached convergence. PSI-BLAST iterations can be
run until the program converges or a protein of known structure is
matched below the threshold. PSI-BLAST results can be evalu-
ated using the same parameters described for BLAST. However,
from the second iteration onward PSI-BLAST E-values are not
directly comparable to those calculated by BLAST. Indeed, the
E-value associated with a protein retrieved by BLAST is different
from the E-value associated with the same protein, retrieved from
the same DB, by any PSI-BLAST iteration following the first. The
reason for this is that BLAST scores the target sequence against
each DB sequence using a matrix (e.g., BLOSUMS62) contain-
ing fixed values for each a.a. pair, independent of the position
where they occur in the sequence alignment, whereas PSI-
BLAST scores the target sequence against a PSSM whose values
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(depending on the frequency of a.a.s observed at each position
in the MSA from which the PSSM was generated) are updated
after each iteration. Because it is derived from an alignment of
multiple sequence homologs, the PSSM is more powerful than
the fixed scoring matrices, and can give sequences homologous
to the target a higher score and therefore a better E-value, thus
promoting them over incorrect matches. However, while con-
vergence is rarely reached, if sequences non-homologous to the
target are matched with E-values below the defined threshold
(false-positives), they will be incorporated in the PSI-BLAST pro-
file leading to the matching of more non-homologous sequences
in the following iteration, and ultimately to divergence from the
original target. Indeed, the profile can drift away from the origi-
nating target sequence so far that eventually the target sequence
itself, and not only its homologs, will score very poorly against
the profile! To prevent this, the hits collected by each PSI-BLAST
iteration should be carefully examined, adjusting the threshold
for inclusion (to make it more restrictive in case of divergence
and more permissive in case convergence is reached before a pro-
tein of known structure is matched) and/or selecting manually
sequences to be included in or excluded from the profile.

It PSI-BLAST does not identify any sufficiently convincing
hits, or converges before identifying any matches to proteins of
known structure, hidden Markov model (HMM)-based programs
can be used (74). HMMs can also be run to detect additional
templates and/or compare their results with those obtained
by PSI-BLAST. Starting from an MSA, these programs build a
hidden Markov model (HMM) that, similarly to a PSI-BLAST
profile, represents the properties of all the sequences in the align-
ment. This HMM is then used to search the DBs for homologous
proteins. The two most popular HMM-based programs are SAM
and HMMER (72, 73), both freely available for downloading.
SAM s also accessible through a Web server interface (SAM-102)
(75, 76) that takes the target sequence as input and automatically
builds both the MSA and the HMM. Although expert users might
prefer to use the downloadable version to be able to modify pro-
gram parameters, the Web interface is straightforward to use and
provides results relatively quickly. The SAM-T02 output provides
E-values (i.e., estimates of approximately how many sequences
would score equally well by chance in the database searched) and
the SCOP classification of the matched structures to help evalu-
ate the matches. If the E-values are higher than the suggested
significance threshold (e.g., E-values <107 and higher than
0.1 indicate very reliable and speculative matches, respectively)
and/or proteins matched by the HMM do not belong to the same
SCOP superfamily (Note 4), additional information is required
to infer homology between any of the matched proteins and the
target (see the preceding). To speed-up the search for homologs,
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several methods have been developed that allow comparison of
the target sequence with pre-calculated profile libraries, such as
PSSMs generated with PSI-BLAST (IMPALA) (77) and HMM
libraries representing homologous sequences (Pfam and SMART')
or proteins of known structure that are evolutionarily related at a
superfamily level as defined by SCOP (SUPERFAMILY).

More recently, a number of profile—profile comparison meth-
ods have been developed capable of detecting distant relationships
that are not recognized by sequence-profile matching methods
(78). These include: prof_sim (79), Arby (80, 81), COMPASS
(82-84), Picasso (85), COACH (86), LAMA (87), PRC (the
profile—profile implementation of SUPERFAMILY), FEAS0O3
(88), FORTE (89), ORFeus (90), and HHpred (91).

The most successful prediction groups in the last CASP
editions used SAM-T02, FORTE, ORFeus, and FFAS03, cither
as stand-alone programs or as part of metaservers (see Section
3.5.2). The performance of all these methods, together with that
of HHpred, SUPERFAMILY, and PRC is also subjected to con-
tinuous evaluation by the Livebench server.

Since several sequence—profile and profile-profile compari-
son methods (e.g., SAM-T02, ORFeus, and HHpred) exploit
structural information (most often, secondary structure pre-
dictions and secondary structure assignments by DSSP (92)),
sometimes they are classified together with FR methods or
metaservers. Targets for which a correct template structure
(i.e., a structure similar to the target according to the LGA
program, see Section 3.3.2.4) was identified in the PDB by
profile—profile sequence comparison methods were assigned
to the FR/H (H: homologous) category in CASP6; conversely,
targets for which the correct template structure could not be
detected by any sequence-based methods was assigned to the
FR/A (A: analogous) category (68).

As mentioned in the Introduction, analysis of protein sequence
and structure DBs led to the observation that, as proteins diverge,
overall structural similarity persists even when no signifi-
cant sequence similarity can be detected. In fact, two proteins
with <25-30% overall identities can have either very similar or
completely different 3D structures. In order to detect an evo-
lutionary relationship in the absence of sequence similarity, FR
methods: (1) identify potential structural similarity signals within
the sequence, and (2) apply confidence statistics to rank potential
matches and provide confidence values for the prediction in order
to distinguish “real” matches (true-positives) from spurious un-
related ones (false-positives). FR methods try to assess the likeli-
hood of the target proteins sharing a fold with one of the proteins
of known structure by comparing structural features predicted
for target sequences, on the basis of statistical analysis of known
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protein structures, with those actually observed in each structure.
Structural features commonly taken into account include 3D
environmental preferences of each amino acid, such as propensity
to form pairwise contacts with other residues, solvent accessible
surface area, and local secondary structure. This compari-
son between one-dimensional (1D) sequences and 3D struc-
tures is usually done by either encoding 3D information into 1D
sequences (15) or by threading, i.e., inscribing the 1D sequence
of the target into each fold contained in a library of representa-
tive 3D structures (93). The compatibility of the target sequence
with each fold is evaluated using empirical or “knowledge-based”
potentials that take into account the aforementioned structural
properties.

The Three-Dimensional Position Specific Scoring Matrix
(3D-PSSM) (94) server uses sequence and structure align-
ments, as well as secondary structure and solvent accessibil-
ity, to construct descriptive position-specific matrices for each
domain in a non-redundant structural DB. These matrices can
be compared with PSSMs or profiles of a query sequence and
the results reported with underlying evidence to enable the user
to understand the strength and confidence of the fold predic-
tion. 3D-PSSM and its eventual successor Phyre, both have sim-
ple and user-friendly Web-based interfaces. The calculations can
take some time as the many-by-many profile comparisons can
be intensive. Eventually the results will be displayed on a Web
page which is e-mailed to the user. The page displays proteins of
known structures that are predicted to fold in a similar way to
the query sequence. These proteins are listed in a table in order
of predicted similarity to the query, so that the proteins at the
top of the table are predicted to be most similar. An E-value is
provided to indicate the probability that the prediction is true,
the lower the E-value the more likely the prediction is to be
correct. The alignment to the target sequence and SCOP clas-
sification of the protein structures are provided. 3D-PSSM also
provides an automatically generated homology model based on
the alignment to each of the matched structures. If the steps
for using the server are simple, most attention must be paid to
interpreting the results returned. With all prediction methods, a
sign of a prediction being correct is whether it is persistent. For
example, the confidence in the prediction can be increased if the
top reported 3D-PSSM structures matching the query belong
to the same SCOP family or superfamily, or even fold (Note 4),
and/or if running through the server sequences homologous to
the target the same structures appear on top of the list. Conversely,
if the top hits belong to different families or superfamilies, a fold
similar to the target might still be present among them, even if
the method cannot identity it clearly from the wrong ones. In
such cases, to detect the correct fold from incorrect ones, and to
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further support FR predictions in general, it is possible to exploit
additional information, such as those used to validate the output
of SC methods (see Section 3.3.1.1). As an example, residues
strongly conserved in the MSA of the target sequence can be
mapped on the known structures to check whether they play
key structural or functional roles (e.g., involvement in disulfide
bridges, building of active sites, etc.).

There are a number of fold recognition methods available
via the internet. 3D-PSSM, Threader (16), GenThreader (95),
and mGenThreader (96), TASSER-Lite (97) (combining the
PROSPECTOR 3.0 threading algorithm (98) with fragment-
based NF prediction methods), Fugue (99), RAPTOR (100),
HMAP (101) (using structure-based profiles in the conserved
regions and sequence-based profiles in the loops), LOOPP (102),
SPARKS?2 (103, 104), and SP3 (104, 105) have been used as stan-
dalone programs or as input for metaservers (se¢ Section 3.5.2)
by the best performing group in the CM and FR categories in
the last CASP editions, and their performance, together with that
of many other servers, is continuously assessed by Livebench. In
general, metaservers that use a consensus of SC and FR-based
methods are most successful at predicting FR targets that are
clearly homologous to proteins of known structure, classified
in the FR/H (H: homologous) sub-category in CASP6. Con-
versely, the best predictions of FR targets assigned to the CASP6
FR/A (A: analogous) sub-category, for which no clear evolution-
ary relationship with already known folds can be detected, are
provided by fragment-based methods (see Section 3.4).

Together with the extent of structural similarity between targetand
template, the generation of structurally correct target-template
sequence alignments (i.e., sequence alignments corresponding to
the optimal structural superposition between the target and tem-
plate structures) is one of the most important factors affecting
the final quality of template-based models. Therefore, sequence
alignment(s) provided by SC and/or FR methods should be
critically evaluated and refined, with increasing care as the %_ID
between target and template decreases. Because of the difficulty
of obtaining a correct alignment, many of the best performing
groups in CASP6 generate and evaluate both a number of target-
template sequence alignments obtained from different sources
and/or using different alignment parameters, and a number of
3D models produced by different servers. The evaluation is based
on the results of model quality assessment programs (MQAPs)
(see Section 3.3.4) and/or on the assumption that consensus
predictions provided by independent methods are more reliable
than any single prediction; accordingly, consensus regions are
taken as such while variable regions are re-aligned and subse-
quently re-evaluated in a cyclic procedure.
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One way to refine pairwise target-template alignments is by com-
paring them to the alignments produced by MSA methods (see
Volume I, Chapter 7). MSA programs align all sequences in
a given set to one another, producing MSAs that can be more
accurate than those produced by SC or FR methods. ClustalW
(106) and T-Coffee (107) are among the most widely used pro-
grams to build MSAs. Both are available for downloading (a win-
dows interface version of ClustalW called ClustalX (108) is also
available), and can be used interactively through a Web interface.
However, several newer and potentially more powerful methods
are now available (see Volume I, Chapter 7). Together with the
specific features of the MSA program used, the set of sequences
given as input to the program is one of the most important fac-
tors affecting the quality of the final MSA.

MSAs for protein structure prediction are typically generated
from sequences putatively homologous to the target identified
by SC methods. Sequences matching the target with E-values
significantly higher than that of the selected threshold or of the
most distantly related of the selected templates might be elimi-
nated in that they should not contribute to improving the quality
of the target-template(s) alignments, and might actually make
it worse. However, since false-negatives might be among them,
these sequences can also be kept and their relationships with the
target evaluated at a later stage, on the basis of the resulting MSA
itself. The pattern of conserved residues in an MSA can provide
information about key structural or functional residues in a pro-
tein family and increase the confidence in the existence of evolu-
tionary relationships between target and template (see Section
3.3.2.5). Potential templates detected by FR methods may be
added to the set of target homologs retrieved by SC methods
and given as input to MSA programs; however, they often have
sequences too different from the target and its homologs to
produce good alignments. In such cases, the sequences of the
putative FR templates can be used as queries by SC methods to
retrieve their homologs from sequence DBs and MSAs can be
produced for the templates as well. Comparison of the MSAs
produced for the target and template sequences, and in particular
of the pattern of conserved and putatively essential residues, may
support the hypothesis of the existence of evolutionary relation-
ships between them. An informative way to highlight sequence
conservation in MSAs is provided by the WebLogo (109) pro-
gram, producing a picture in which residues occurring at each
alignment position are shown by the one-letter code, the size
of each letter being proportional to their frequency of occur-
rence. MSAs are most informative when they contain a relatively
high number of sequences, similar enough to one another to be
certain of their homology and to allow for the production of a
correct alignment, and divergent enough to allow for conserved
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positions to be distinguished from variable ones. For this reason,
redundant and outlier sequences (e.g., those that have %_ID >80%
with any other sequence in the alignment or <20% with all other
sequences in the alignment, respectively) are usually eliminated.
Other kinds of editing include the deletion of alignment regions
other than those matching the target domain, which may be present,
for example, if the sequences retrieved from the DBs comprise addi-
tional domains besides that homologous to the target. Additionally,
shifts in the aligned sequences can be introduced manually based
on structural information such as those described in the following
(Sections 3.3.2.2, 3.3.2.4, and 3.3.2.5). Although guidelines such
as these can be useful to start with, production of a good-quality
MSA is very much a process of trial and error. In general, choices
on how to edit MSAs depend on specific features of the sequences
contained therein, and on a balance between the computational and
human time required to analyze a high number of sequences and the
accuracy requested of the final result. This, in turn, depends largely
on the difficulty of the prediction: in case of “easy” targets, for which
reliable templates aligning well with the target can be identified,
even the pairwise BLAST alignments might be sufficient; conversely,
when the templates are distant homologs, detectable only by pro-
file-based or FR methods, with very low %_ID and difficult to align,
all available information from sequence and structural homologs
should be exploited. Often, several rounds of alignment editing and
re-alignment are required to produce high-quality MSAs.

Several programs are available to visualize MSAs, allowing
the user to color a.a.s according to residue type or conservation,
edit the alignment to eliminate redundancies and outliers as well
as alignment columns and blocks, and save them in different
sequence formats. Such programs include Belva (110), Seaview
(111), BioEdit, CINEMA (112), and various other tools from
the Expasy Web site.

SSE are usually among the best conserved parts of evolutionar-
ily related proteins; therefore, they should also be found in corre-
sponding positions in the sequence alignment. Additionally, inser-
tions and deletions of more than one or two residues are unlikely
to occur within SSE, whereas they can easily take place within the
conformationally more variable and solvent exposed loop regions.

The secondary structure assignment for the template structures
can be calculated by programs such as DSSP or obtained from the
PDBWeb site. This contains both the DSSPautomated assignment
and the manual assignment provided by the experimentalists who
have solved the structure, which may be more accurate than those
calculated automatically. Secondary structure predictions for the
target can be obtained as described above (Section 3.2). Mapping
the SSE calculated for the template(s) and predicted for the target
on the target-template(s) pairwise alignments or MSAs might help
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refine the sequence alignments. If the SSE do not align and/or
large insertions or deletions occur within these regions, the target-
template alignment may be modified to adjust for these features,
which are likely to be incorrect. However, unless it is obvious how
to correct errors in the sequence alignment, modifying it by hand
is only advised once one has reached a certain degree of experi-
ence. Hybrid- or meta-profiles combining sequence and secondary
structure information are now used by many of the methods that
have been most successful in the CASP experiments (e.g., Meta-
BASIC (113), see Section 3.5.2); additionally, several FR methods
(e.g., 3D-PSSM, Phyre, and mGenThreader) report the SSE of the
templates and those predicted for the target in their output target-
template alignments.

The template region aligned to the target by SC methods does
not necessarily correspond to a structural domain of the template,
but it can be shorter, if only a fraction of the template domain
displays recognizable sequence similarity with the target, or
longer, in case regions before or after the template domain have
also similar sequence to the target. Indeed, the initial domain
definition of the target, which has been preliminarily provided by
domain prediction servers (Section 3.2), may be refined during
the prediction procedure based on accurate target-template(s)
alignments. Until this step is performed, it is advisable to use a
slightly larger segment of the target sequence than that predicted
to correspond to the target domain.

The boundaries of the template domains matching the target
can be identified based on SCOP, which is widely believed to be
the “gold standard” of protein structure classification, and where
protein domains are classified according to sequence, structural,
functional, and evolutionary criteria. In case the template struc-
tures have been made available from the PDB more recently than
the date of the latest SCOP release, a domain assignment for them
may be found in other structural classification DBs, such as CATH
or FSSP. If no DB contains a pre-calculated domain definition for
the selected templates, this can be obtained by running the tem-
plate structures through one of the available programs for domain
assignment, such as Domain Parser (114, 115), PDP (116), or
DOMPLOT (117). Mapping the structural domain definition of
the templates on the target-template sequence alignment(s) can
help to refine the initial prediction of target domain boundaries.

The structural alignment of the template domains shows which
regions are structurally conserved among them, and are therefore
likely to be conserved in a target protein of unknown structure
evolutionarily related to them. This alignment might be extended,
by including other proteins of known structure whose evolution-
ary relationships with the template(s) have been ascertained on



3.3.2.5. Structural Analysis
of Selected Template
Domains

Protein Structure Prediction 61

the basis of structural criteria, to get a more precise definition
of the conserved “core” and variable regions among proteins
homologous to the target. Proteins of known structure evolu-
tionarily related to the template(s) can be obtained from SCOP,
in which closely and distantly related homologs are classified within
the same family or superfamily, respectively, (se¢ Note 4), or from
other structural classification DBs mentioned in Section 2.

Pre-compiled alignments of protein domain structures are
available from specific DBs (e.g., Homstrad, FSSP, and CE) and
may include the selected templates. Alternatively, structural align-
ments of the templates can be built by using one of the many
available programs for protein structural alignment (a large, if
incomplete, list is available from Wikipedia). Choosing which
one(s) to use depends partially on how many proteins match the
template and have to be aligned. Some programs perform only
pairwise alignments (e.g., LGA (118), DaliLite (119), Mammoth
(120) and VAST (121)) whereas others can perform multiple
structure alignments (e.g., CE (122), SSAP (123), S§M (124),
PriSM (125), Mammoth-mult (126), and POSA (127)), provid-
ing a global alignment of all the input structures and, in princi-
ple, better results. Although no automated program is capable of
systematically producing accurate alignments of highly divergent
structures, most structural alignment programs can produce rela-
tively good alignments of similar structures, as should be the case
for templates identified based on sequence similarity to the same
target. Depending on the time available and the level of accuracy
required, the templates might be run through several servers to
compare the results.

Many predictors successful at CASP exploit information deriv-
ing from the structural alignment of multiple templates to identify
conserved regions, guide sequence alignments, and /or build chi-
meric models from fragments extracted from different templates,
to be compared and evaluated in subsequent steps using consensus
and/or quality assessment criteria (see Section 3.3.4).

Regions that are structurally conserved among the templates and
their homologs and, therefore, are putatively conserved in the
target structure as well, in general correspond to SSE and con-
served loops, and should not contain insertions or deletions in
the target-template sequence alignments. Therefore, if “gaps”
occur within these structurally conserved regions, they will have
to be moved to regions where they might be more easily accom-
modated from a structural point of view.

As protein structures are more conserved than sequences
during evolution, structurally conserved regions may have low
sequence similarity; nevertheless, they should contain “key”
structural features allowing them to assume similar conforma-
tions. Such features have been identified in the past for several



62

Al-Lazikani, Hill, and Morea

protein families and found to consist, most often, of residues
belonging to one of the following categories: (1) residues, in
general hydrophobic in nature, having low solvent accessibility,
interacting with one another within the protein core (128);
(2) residues conferring special structural properties to the pro-
tein region where they occur: Gly, Asn, and Asp, able to assume
more frequently than other residues positive ¢ values; or Pro,
whose main-chain nitrogen atom is involved in peptide bonds
found more frequently than those of other residues in css, rather
than trans, conformation and that, lacking the main-chain hydro-
gen bond donor capability, cannot take part in the formation of
structures maintained by regular hydrogen bond patterns,
e.g., a-helices or internal B-strands; (3) Cys residues, that can
be involved in the formation of covalent disulfide bonds; (4) any
other residues that appear to play a specific structural role in a
given family (e.g., negatively charged Asp and Glu and polar Asn
residues binding calcium ions in the cadherin family (129, 130),
and polar or charged residues able to form hydrogen bonds or
salt-bridges maintaining the conformation of antibody hyper-
variable loops (131-134)). Comparison of evolutionarily related
structures can allow identifying conserved residues having a key
structural role, which are likely to be conserved in the target struc-
ture as well, and represent useful landmarks to help refine pair-
wise target-template sequence alignments and MSAs. Joy (135) is
a program that reports different types of residue-based structural
information (e.g., secondary structure, solvent accessibility, posi-
tive @ values, cis-peptides, involvement in disulfide and hydrogen
bonds) on sequence alignments. Additionally, NACCESS (136),
HBPLUS (137), and Procheck (138, 139) can be used to calculate
solvent accessible surface area, involvement in hydrogen bond
formation, and main-chain dihedral angles (Ramachandran plots),
respectively.

Residues playing a key functional role are also likely to be
conserved, in either type or physicochemical properties, between
the target and template structures. These may be identified from
the literature and/or from template structures in complex with
their ligands, in case these are available. Protein-ligand contacts
can be calculated by LIGPLOT (140) and pre-calculated contacts
can be obtained from the PDBsum Web site (141).

In principle, residues highly conserved in MSAs might be
involved in key structural and/or functional roles. However,
in practice, the possibility to predict involvement in important
structural or functional roles from sequence conservation is highly
dependent on the MSA “quality”: if the sequences comprised
in the MSA are too closely related, other positions besides the
essential ones will be conserved; conversely, if the sequences are
distantly related, essential structural or functional roles might
be played by non-identical residues sharing specific physicochemical
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features that might not be easy to identify from an MSA. Never-
theless, once putative key structural and/or functional residues
have been identified as described, the conservation of specific
features (e.g., main-chain flexibility, hydrogen bond donor abil-
ity, presence of an aromatic residue at a position involved in a
cation-T interaction, etc.) at given positions can be searched in
an MSA in a targeted way. Programs like COLORADO3D (142)
and CONSURF (143) color each residue in a protein structure
according to its conservation in the MSA given as input and,
therefore, allow visualization of the structural location of con-
served and variable residues.

This section describes the generation of a 3D protein model
based on target-template(s) sequence alignment(s).

Choosing the best template is usually done based on both struc-
tural features of the template(s) and information collected for
the production of optimal target-template(s) alignments as
described in Section 3.3.1.1, such as: E-values, and other statis-
tical scores provided by different methods to evaluate the likeli-
hood of the existence of structural relationships between target
and template(s); %_ID; number and distribution of gaps; length
of the aligned regions (i.e., coverage of the target sequence); cor-
respondence between SSE of the templates and those predicted
for the target; absence of insertions and deletions in the target-
template alignment within regions corresponding to those struc-
turally conserved among the templates; and conservation of key
structural and functional residues between target and template.

If good alignments with different templates are available, struc-
tural considerations can help decide which template structure(s)
is/are likely to produce most suitable models for their intended
applications. In general, x-ray crystallography provides more precise
pictures of protein structures than NMR spectroscopy. However, it
should be kept in mind that x-ray structures and, therefore, mod-
els based on them, represent static images of proteins, which often
assume multiple conformations in solution. In the case of structures
determined by x-ray crystallography, the parameters to take into
account are the following (see also Volume I, Chapter 3).

1. Resolution and B-factor. The lower the values of these param-
eters, the better the quality of the structure. In general, for
resolution values <2.0 A the quality of the structure is very
high, for values >3.0 A it is low; B-factor values <3035, in
the range 40-80, and >80 indicate well-determined, mobile,
and unreliable regions, respectively.

2. Completeness. Regions corresponding to those relevant for

our model in the target-template sequence alignment should
not be missing from the template structure (e.g., N-terminal
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regions are often cleaved out; exposed loops and N- and
C-terminal regions might remain flexible in the crystal struc-
ture and not be determined; older, low-resolution structures
may contain only Co carbon atoms; etc. ).

3. Protein conformation. The same protein domain can have
different conformations in different PDB files, depending
on the functional state of the domain (e.g., free vs. ligand
bound), crystal packing interactions (i.c., interactions with
other copies of the same molecule in the crystal), experi-
mental conditions used (e.g., pH, ionic strength, etc.). All
this information is contained in the coordinate files of the
protein structures, which can be freely downloaded from the
PDB and visualized using a number of freely available struc-
ture visualization programs such as Swiss-PDB Viewer (144),
RasMol (145), Protein Explover (146), Cn3D (147), WHAT
IF (148), MolMol (149), and VMD (150). The choice of the
template(s) is a trade-oft between all these different factors,
and the purpose of the model may also be a useful guide
(e.g., when modeling receptor-ligand interactions, tem-
plates in the ligand-bound conformation should be chosen,
if available).

In experiments like CASP, predictors often build chimeric mod-
els assembling together fragments taken from different templates
and /or build several models, based on different main templates
and different target-template alignments, which are evaluated
at a later stage (see Section 3.5.2).

Template-based modeling involves taking advantage of as much as
possible information from proteins of known structure putatively
homologous to the target, i.e., from the selected template(s).
Once refined target-template(s) sequence alignments have been
obtained and one or more principal templates have been chosen,
model building itself is a relatively straightforward procedure,
which can be carried out interactively using structure manipulation
programs such as Swiss-PDB Viewer, InsightIl/Biopolymer, or
WHAT IF.

1. Modeling of the main-chain atoms of regions conserved in
the template structure(s). If a single best-template has been
detected, the main-chain atoms of conserved regions in the
optimized target-template alignment are imported from this
template. Conversely, if different regions of the target appear
to be more closely related to different structures (e.g., they
contain ‘gaps’ in the alignment with the best template but
not with other templates), the conserved main-chain regions
of the templates are optimally superimposed (using the struc-
tural alignment programs mentioned in Section 3.3.2.4),
and the regions to serve as templates for different segments
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of the target are joined together and imported in the target
model.

. Modeling of the main-chain atoms of structurally variable
regions. In case insertions and/or deletions are present in
the sequence alignment of the target with all templates and
cannot be modeled based on the coordinates of homolo-
gous structures, several techniques can be applied to model
the regions containing them (usually loops). For a restricted
number of loops, sequence—structure relationships have been
described, based on which loop conformation can be pre-
dicted quite accurately (e.g., antibody loops (131-134, 151),
and B-hairpins (152, 153)). However, with the exception of
these particular cases, and although encouraging results have
been achieved in CASP6 in the CM category, in which four
groups were able to predict loops larger than five residues
with RMSD <1.0 A (14) (see Note 1), no method is cur-
rently available to accurately and consistently model regions
of more than five residues that cannot be aligned to a tem-
plate; the larger the loops, the more difficult their prediction.
Therefore, these regions may either be left out of the model,
especially if they are far from the sites of interest of the protein
(e.g., active sites) or, if included, it should be pointed out that
their reliability is much lower than that of the regions con-
served in, and imported from, homologous templates.

One common way to model loops is based on structural
searches of the PDB database for protein regions having:
(1) the same length as the loop to model; (2) a similar con-
formation of the main-chain atoms of the residues before and
after the loop; and (3) a similar pattern of “special residues”
that can confer special structural properties to the protein
region in which they occur (e.g., Gly, Asn, Asp, or Pro, see
Section 3.3.2.5) and are often important determinants of
loop conformation. Conversely, “ab initio” methods do not
use information contained in structural DBs but try to simu-
late the folding process or explore the conformational space
of the loop region, for example, by molecular dynamics or
Monte Carlo methods, followed by energy minimization
and selection of low-energy conformations (154).

The interactive graphics software Swiss-PDB Viewer provides
options to evaluate the compatibility of loops derived from
structural searches of the PDB with the rest of the target model
based on the number of unfavorable van der Waals contacts
that they establish and on the results of energy calculations. The
groups using Swiss-PDB Viewer and the Loopy program (155)
of the Jackal package were among the most successtul predictors
of loops in the CASP6 CM category. Other software tor loop
modeling includes LOBO (156) and ModLoop (157).
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3. Side-chains are generally modeled by “copying” the con-
formations of conserved residues from their structural
template(s) and selecting those of mutated residues from
libraries containing the most common conformations that
each residue assumes in protein structures (rotamers). After
all non-conserved residues have been replaced, unfavorable
van der Waals contacts might be present in the model and
have to be eliminated, for example, by exploring side-chain
conformations different from those involved in the clashes.
Alternative side-chain conformations may be examined also
to try and bring potentially interacting residues next to each
other, for example, in case hydrogen-bond donor or accep-
tors or, more rarely, positively or negatively charged groups,
found in a buried region of the model do not have an inter-
action partner nearby.

Several programs have been developed to automatically model
side-chain conformations, which take into account the above
factors and explore combinatorially a number of rotamers for
cach residue of the model to try and find an optimal conforma-
tional ensemble. SCRWL (158) was used by several groups pro-
viding good rotamer predictions in the CM category in CASP6
(14) where, as expected, prediction of rotamers was found to
be more difficult for surface than for buried residues, which are
subjected to stronger constraints. However, methods providing
the best rotamer predictions were not the best at predicting side-
chain contacts, which are, in turn, best predicted at the expense
of rotamer accuracy (14). The program Protinfo AB CM (159)
and the Scap program (160) of the Jackal package were used
by some of the best predictors of side-chain contacts in the CM
category in CASP6.

The ability of several programs (Modeller (161), SegMod/
ENCAD (162), SwissModel (163), 3D-JIGSAW (164), Nest (165)
of the Jackal package, and Builder (166)) to build 3D models start-
ing from target-template sequence alignments has been assessed
(167). In this test Modeller, Nest, and SegMod/ENCAD performed
better than the others, although no program was better than all the
others in all tests. Modeller is the program used by most of the suc-
cessful CASP groups to generate 3D models from target-template
alignments produced using SC- or FR-based methods. The relative
performance of SwissModel (163), CPHmodels (168), 3D-JIGSAW,
and ESyPred3D (169) is continuously evaluated by EVA.

Programs like Procheck, Whatcheck (170), and Swiss-PDB Viewer
evaluate the quality of 3D structures based on parameters such
as the number of main-chain dihedral angles lying outside the
allowed regions of the Ramachandran Plot, unfavorable van der
Waals contacts, and buried polar residues not involved in hydro-
gen bond formation. Some of these programs also evaluate the
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energy of bond lengths, angles, torsions, and electrostatic inter-
actions based on empirical force fields. These evaluations can be
useful to highlight errors in the model resulting from the mod-
eling procedure, or more rarely, inherited from the template
structures. However, it is worth stressing that the stereochemical
correctness of the model is no guarantee of its biological accu-
racy, i.e., its actual similarity to the target structure.

Other model quality assessment programs (MQADPs), such
as ProSa (171), Verify-3D (15, 172), and ANOLEA (173, 174)
evaluate model quality based on the comparison between the 3D
context of each target residue in the model and the 3D con-
text commonly associated with each residue in known structures.
Environmental features taken into account by these programs
include neighboring residues or atoms, solvent accessible surface
area, and secondary structure of each residue. Similar structural
features are incorporated in the neural-network based ProQ (175)
and ProQres (176) programs, which assign quality measures to
protein models or parts of them, respectively. Other tools, such
as COLORADO3D, help evaluate model quality by visualizing
information such as sequence conservation, solvent accessibility,
and potential errors, including those detected by ProSa, Verify-
3D, and ANOLEA. MQAP-Consensus (177) uses a consensus of
MQAP methods registered in CAFASP to evaluate and select
models produced by different servers, all of which can be down-
loaded from the CAFASP4 MQAP Web server. One or more of
these MQAPs were used by the most successful predictors in
CASP6 to evaluate their models at various stages of the model
building and refinement procedures. Successful prediction strate-
gies included collecting models from different servers or building
a number of models based on different templates and/or dif-
ferent target-template alignments, and screening them based on
quality assessments performed by MQAPs. The regions that are
structurally conserved in the different models and/or are con-
sidered to be reliable by MQAPs are retained, whereas structur-
ally variable and /or less reliable regions according to MQAPs are
realigned and remodeled until they either reach an acceptable
quality, as measured by MQAP methods, or their quality cannot
be improved anymore in subsequent refinement cycles.

Blind predictions of both the overall and residue-based quality
of protein models were analyzed by human assessors for the first
time in CASP7. The relative assessment paper in the 2007 issue of
the Journal PROTEINS dedicated to CASP7 provides a reliable
picture of the relative performance of MQAPs in blind tests.

Based on the results of quality assessment programs, 3D models can
be refined to eliminate obvious structural mistakes (for example
by selecting alternative side-chain rotamers to eliminate unfavo-
rable residue-residue interactions) using structure visualization
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programs such as Swiss-PDB Viewer and InsightIl/Biopolymer
(178). Swiss-PDB Viewer, GROMACS (179), NAMD (180),
TINKER, and the Discover module of InsightIl can also per-
form energy minimizations. Since no evidence has been collected
over the various CASP experiments about model improvements
achieved by energy minimization procedures, these should only
be limited to the regions showing bad geometrical parameters
(e.g., those in which fragments from different structures have
been joined, for example, in loop modeling) and involved in
clashes that cannot be relieved by changing side-chain confor-
mations (e.g., those involving main-chain atoms and/or proline
side-chains). However, as discussed for loop modeling, since
there is no evidence that such procedures will improve the model
(i.e., make it more similar to the target structure, as opposed to
improving its geometry) rather than make it worse, and depend-
ing on the proximity of any problematic regions to important
structural /functional sections of the model, small structural
errors may also be left unrefined and indicated as potentially less
reliable regions in the model.

The increase in evolutionary distance between target and tem-
plate is associated with a reduction of the conserved core and an
enlargement of the variable regions, which in turn makes it more
and more difficult to align the target and template sequences cor-
rectly. For distantly related templates (e.g., those identified by
FR methods) errors in the target-template(s) sequence alignment
might result in serious mistakes that cannot be corrected by mod-
ifying the coordinates of the final model. When this occurs, it is
necessary to re-evaluate the target-template alignment by making
use of any 3D information contained in the model, and try to
modify the alignment in such a way that the new model gener-
ated from it will not contain the aforementioned errors. Several
cycles of model building and evaluation might be necessary to
achieve this result.

As discussed in the preceding, evolutionarily related domains
of known structure are used as templates for the whole target.
When no template structure can be identified in the DBs by
either sequence-based or FR methods, two scenarios are possible:
either a structure similar to the target is present in the DBs, but
none of the aforementioned SC- or FR-based methods is able to
detect it, or no similar structure is available, i.e., the target struc-
ture is actually a NF. In both cases, different methods from those
described before have to be used. The so-called ab initio meth-
ods, which use computationally intensive strategies attempting
to recreate the physical and chemical forces involved in protein
tolding, have been, until now, less successful at predicting protein
structures in absence of structural templates than the knowledge-
based approaches. These exploit information contained in the
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structure databases, from which fragments potentially similar to
the targets are extracted and assembled together to produce a full
3D model of the target (18, 19).

Models built by fragment-assembly techniques are evaluated
using knowledge-based statistical potentials and clustering pro-
cedures. Knowledge-based potentials contain terms derived from
statistical analyses of protein structures as well as physicochemical
terms (e.g., terms for pairwise interactions between residues or
atoms, residue hydrophobicity, hydrogen bonds, and main-chain
and side-chain dihedral angles). Since large numbers of confor-
mations are generated for each target, a clustering analysis is
performed based on structure similarity and the cluster centroid
model is usually chosen. Models representative of highly popu-
lated clusters are assumed to be more likely to be correct than
models from less populated clusters. Several NF methods take
advantage of homologous sequence information, either for sec-
ondary structure predictions or as input for model building, and
some use 3D models produced by automated CM, FR, and/or
NF prediction servers and consensus SSE predictions to derive
structural restraints that are used to guide or constrain a subse-
quent fragment assembly procedure or folding simulation. Man-
ual intervention can occur at different stages, for example,
to choose templates or fragments, or inspect models.

Although originally developed for NF predictions, fragment-
based methods have been used by several successful predictors
in the FR category in both CASP6 and CASP5, and the group
that developed the program Rosetta (19, 182-186) and the server
Robetta (187-189) has been the most successful at predicting the
structure of difficult FR targets, i.e., targets for which no evolu-
tionary relationship with known structures is apparent and are clas-
sified in the CASP FR/A (A: analogous) sub-category (190, 191).

Unfortunately, the performance of these methods on real
NF targets is somewhat less successful. In CASP6, nine targets
whose structures did not show overall similarities with already
known folds based on the results of the LGA program (68) were
evaluated in the NF category (190). Three of them, however,
turned out to be variants of known folds, in that they contain
sub-structures that match sub-structures in known proteins, and
were therefore defined as NF “easy” (190). In the NF category,
models bearing an overall structural similarity with the target
structures were submitted only for these three “easy” targets.
For the remaining six NF “hard” targets, which did not show
any similarity to known folds (and were, therefore, the only truly
“novel” folds), no globally correct prediction was submitted. It
should be mentioned, however, that all of the NF “hard” targets
were relatively large proteins (115-213 a.a.s vs. 73-90 a.a.s of NF
“easy” targets), which are particularly difficult to predict by NF
methods. The best structure predictions for these targets were
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limited to partial regions, although often larger than standard
supersecondary structures, which could not be assembled into
correct global topologies. Since it is not obvious how to compare
predictions for different target fragments in the context of globally
incorrect models, it is particularly difficult to evaluate these pre-
dictions and decide which of the methods were the most success-
ful. Further, the difference between the best and average models
submitted for these targets is not very large, and since most mod-
els are poor even large differences in ranking are unlikely to be
significant. Another general drawback of methods used to predict
NF targets is that predictors were not particularly good at recog-
nizing their best models, which highlights a problem with rank-
ing. Finally, even considering all the nine NF targets, the sample
size is too small to draw statistically significant conclusions (190).
Taking all these caveats into account, FRAGFOLD (192), CABS
(193), and Rosetta were used by the best performing groups in
the NF category, although several other groups submitted each at
least one best model for different targets. Another freely available
program that was used by a relatively well-performing group is
ROKKY (194).

The Rosetta folding simulation program by the Baker group
(19, 182-184) is not only one of the best available methods for
NF and difficult FR targets predictions (the Baker group was the
best or among the best performing at predictions without tem-
plate in the last CASP editions) but, being freely available, it is
also one of the most popular and one that has been incorporated
in a large number of metaservers (see Section 3.5.2). The output
of Rosetta contains a number of 3D models of the target protein
ordered according to an energy score. As for FR methods, this
score cannot be solely relied upon, and all additional sequence,
structural, functional, and evolutionary information that can be
gathered about the target should be exploited. Since a sequence
tor which no prediction can be provided by either SC- or FR-
methods might be a difficult FR target (FR/A) rather than an
NF, top scoring models and other models that might be cor-
rect based on all available information about the target should be
used to search structural DBs with structural alignment programs
(e.g., DALI (31), VAST, CE, S§M, Mammoth-mult). If proteins
of known structure showing significant structural similarity with
these models can be found (i.e., the sequence is likely to be a dif-
ficult FR target), these should be examined to identify sequence,
structural, and/or functional evidence (e.g., key residues, see
Section 3.3.2.5) that might support the hypothesis of the cor-
rectness of the model(s) produced for the target. Conversely, if
no protein showing global structural similarity with the target is
detected, the target might indeed have a novel fold. Neverthe-
less, searches of structural DBs might detect proteins containing
sub-structures similar to those of the target, and the analysis of
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these structurally similar regions might provide important clues
supporting some models over others.

Given their independence from structural templates, NF
techniques can be useful to try to predict not only complete 3D
structures for targets that elude CM and FR methods, but also
loops and other regions of models generated by template-based
methods that are not conserved with respect to the available tem-
plates.

A number of automated CM, FR, and NF methods and metaserv-
ers for protein structure prediction are described in the relevant
sections of this chapter (e.g., see Sections 3.3.1.1, 3.3.1.2,
3.3.3.2, 3.4, and 3.5.2), together with their performance in the
hands of expert users. As far as the performance of automated
methods without user intervention is concerned, SPARKS2 and
SP3 have been the first and third best performing servers in the
CM category in CASP6, and the 14th and 22nd overall best
predictors in ranking including human predictors (14). The sec-
ond best server was STRUCTFAST (195). In the FR category
Robetta was the best server and the overall ninth best predictor in
ranking including human predictors. In the NF category, Robetta
was the best server. The best performing servers in Livebench and
CAFASP are all metaservers (see Section 3.5.2), in particular 3D-
Jury (196), 3D-Shotgun (197-200), Pcons, and Pmodeller (201).

In spite of the good performance of the best automated
methods in blind tests, intervention by expert users (often by the
same authors of the automated procedures) consistently provides
significantly improved results with respect to fully automated
methods, indicating that, in spite of much effort, the prediction
community has not yet managed to encode all expert knowledge
on protein structure prediction into automated programs. There-
fore, depending on the number of models required, the purpose
tor which they are built, and the user’s level of expertise, auto-
mated programs might be best used as a support for, rather than
a replacement of, human predictions.

Metaservers collect a variety of predictions and structural infor-
mation from different automated servers, evaluate their quality,
and combine them to generate consensus predictions that might
consist either in the result provided by a single structure predic-
tion server and reputed to be the best among those examined, or
in the combination of results provided by different servers. Puta-
tive PDB templates, target-template sequence alignments, and
3D structural models are collected from fully automated SC, FR,
or NF method-based servers and in some cases other metaserv-
ers that perform regularly well in blind test experiments such as
CASP, CAFASP, or Livebench. This information is often inte-
grated with domain, secondary structure, and function predictions,
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as well as with information derived from analyses of protein struc-
tures, e.g., protein structure classification by SCOP and /or FSSP
and secondary structure assignment by DSSP. Depending on the
metaserver, different types of predictions are returned, consist-
ing of 3D model coordinates (202) or target-template sequence
alignments from which 3D models can then be generated (113).
Preliminary models may be fragmented and spliced to produce
new hybrid models and /or subjected to refinements to eliminate
errors such as overlapping regions or broken chains. Predictions
of domain boundaries, secondary structure, transmembrane heli-
ces, and disordered regions are often provided as well.

Metaservers exploit a variety of criteria and methods to evalu-
ate the quality of alignments and models that they collect and
produce, including: the scores associated with the predictions by
contributing servers; the extent to which different alignments
agree with one another; contact order, i.c., the average sequence
separation between all pairs of contacting residues normalized by
the total sequence length (203, 204); structural comparisons of
independent models and detection of large clusters of structures
with similar conformations (205); and model /structure evalua-
tion programs mentioned before, such as ProSa, Verify-3D, ProQ,
ProQres, and COLORADO3D. Well-scoring model fragments
(e.g., consensus predictions provided by unrelated methods) are
considered to be reliable and are included in the model, whereas
for poorly scoring regions models based on alternative alignments
are generated and assessed using MQAUPs until they reach accept-
able quality or their quality cannot be further improved.

Many of the available metaservers have implemented com-
pletely automated procedures to cover the full spectrum of struc-
ture predictions, from CM to NF, by combining template-based
and de novo structure prediction methods. First, several well-
performing CM and FR servers are queried with the sequence of
the target protein. If homologs with experimentally characterized
3D structure are detected, the conserved regions of the target are
predicted by template-based modeling and the variable regions
(e.g., loops, N- and C-terminal extensions) by NF methods such
as the Rosetta fragment-insertion protocol. If no reliable struc-
tural homolog is found, the target sequence is sent to NF predic-
tion servers (most often Robetta).

Predictors that used metaservers performed among the best
in the more recent CASP editions, in both CM (14) and FR
(191) categories. Although metaservers owe much of their pre-
dictive power to the quality of the results provided by remote
servers, their ability to choose, evaluate, and combine different
predictions has often resulted in better performances than those
achieved by the remote prediction servers alone.

Meta-BASIC and 3D-Jury were used by the top ranking pre-
dictor in both CASP6 CM and FR/H categories (14, 191), and
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3D-Jurywas also used by another of the top four predictors in the
CM category (2006).

The group that developed the Robetta server ranked best in
FR/A, among the best in FR and NF, and well in the CM cat-
egory in CASP6. The Robetta server itself performed well in both
the CM and FR categories in CASPO.

The Genesilico metaserver (202) was used by one of the most
successful groups in the CM and FR categories in CASP5 and
was one of the best in all categories in CASP6, where Genesilico
was used in combination with the FRankenstein3D program for
splicing of FR models (207) and fragment assembly techniques
for NF targets (193).

Pcons, Pmodeller and Pcons5 (208, 209), and Bioinbgu, 3D-
Shotgun and Inub (197-200) were among the best performing serv-
ers in CASP5 and groups using them performed well, although not
among the best, in both the CM and FR categories in CASP6.

The groups using @TOME (210) and a combination of CHI-
MERA and FAMS (211) performed well, although they were not
among the best groups, in CASP6.

Before embarking on the modeling procedure, however auto-
matically, it might be worth checking whether 3D models for
the target of interest are available among protein model DBs.
The SwissModel Repository (212) and ModBase (213) contain 3D
models of all sequences in the SwissProt and TrEMBL databases
that have detectable sequence similarity with proteins of known
structure, generated by the SwissModel and Modeller programs,
respectively. FAMSBASE (214), built using the fully automated
modeling system FAMS, contains comparative models for all the
proteins assigned to many sequenced genomes. Of course, mod-
els produced automatically, even those for “ecasy” CM targets,
may contain significant errors; to detect them, models should
be subjected to all the sequence, structure, function, and evolu-
tionary analyses described before. The Protein Model Database
(PMDB) (215) stores manually built 3D models together with
any supporting information provided. It contains, among others,
the models submitted to the past CASP editions, and it allows
users to submit, as well as to retrieve, 3D protein models.

A general indication of the accuracy of template-based models is
provided by sequence-structure relationships derived from the
analysis of homologous proteins (13). Based on these analyses,
if the sequence identity between target and template in the con-
served core regions is about 50% or higher, we can expect the
main-chain atoms of the core regions of the target structure to
be superimposable to the best template and, consequently, to the
model built on this template, with an RMSD value (see Note 1)
within 1.0 A. However, for sequence identities as low as 20%,
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the structural similarity between two proteins can vary to a large
extent (13).

Similar results are provided by the structural comparison of the
target domain structures and the best models produced for them
in CASP6 (Fig. 2.2). For %_ID values between the sequences of
target and best-template of 50% or higher, the GDT_TS (se¢ Note 1)
between the real target structure and the best model submitted
for it was 90 or higher. For %_ID values between 20% and 30%
the GDT _TS varied between about 100 and 50. For %_ID val-
ues <20%, the GDT_TS was between 90 and 40 for CM targets,
between 90 and 30 for FR targets, and from 60 to <20 for NF
targets. In other words, for sequence identities of 20% or lower,
the model built can vary from either having a globally very similar
structure to the target (GDT_TS >80) to only having a few small
fragments showing some structural similarity to the target (GDT_
TS <20). A visual example of structural variations corresponding to
representative GDT_TS values is shown in Fig. 2.2.

In CASP6, for “easy” CM targets template detection and
production of accurate target-template sequence alignments were
carried out successfully and the accuracy of the produced mod-
els was quite high, at least in the conserved regions. Conversely,
model refinement and improvement over the best template were
still open issues: In only a few cases were the best predictors able
to produce 3D models more similar to their target structures
than the structures of the best templates. In most cases, improve-
ments over the best templates were obtained only for the easiest
targets, whereas for harder targets the best templates were gener-
ally much more similar to the target structures than any model.
In CASP7, for the first time, models of such “easy” CM targets
were assessed in a separate category to establish whether there
has been any improvement in these areas. For “hard” CASP6
CM targets choosing the right template and producing the cor-
rect target-template alignment proved to be challenging tasks
(14), and both became more and more difficult with an increase
in the evolutionary distance between targets and best templates.
For most FR targets the top predictions contained all or most
of the SSE in the right place or with small shifts with respect to
the target structure. However, for many targets most predictions
had little resemblance to the target structure (191). For “hard”
NF targets, only fragments of the best models resembled the real
target structures (190).

Structural comparisons of the templates selected for a spe-
cific target (see Section 3.3.2.4) permit identification of rela-
tionships between %_ID and structural similarity for the target
tamily, based on which a more accurate prediction about the
expected model accuracy for targets belonging to that family
can be obtained. In any case, information about model accuracy
provided by sequence-structure relationships is limited to the
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conserved regions between target and template(s). Unless loop
regions belong to one of the restricted number of categories for
which sequence-structure relationships have been defined (see
Section 3.3.3.2), or side-chain conformations are strongly con-
served for structural and/or functional reasons, in general it is
not possible to know how accurate the predictions of loops or
side-chain conformations are before comparing them with the
real structures.

Automated programs can generally produce models of “casy”
CM targets (e.g., sequence identity with the templates >40%)
that are good enough for many practical applications. However,
these models may contain serious mistakes even in regions close
to the functional sites, the more so the higher the evolutionary
distance between target and template; therefore, it is wise to care-
fully compare their output with the template structures, espe-
cially in the key structural and functional regions. This is a point
of utmost importance: In principle, it is always possible to build
homology-based 3D models automatically; all that is needed is a
template structure and an alignment between the target and tem-
plate sequences. However, if the chosen template is not a real tar-
get homologue, or if the target-template sequence alignment is
wrong, the model is bound to be incorrect (“garbage in, garbage
out!”). In CASP, expert human predictors using semi-automated
procedures consistently produce better predictions than fully
automated methods. However, in choosing between the use of a
fully automated method and manual intervention it is important
to remember that in both CM and FR categories there was a big
difference between the best predictors and many of the others,
and that the best automated programs (see Section 3.5.1) per-
formed remarkably well compared with many human predictors.

4. Notes

1. The two commonly used measures to evaluate similarity
between protein structures used in this chapter are root-
mean-square deviation (RMSD) and global distance test
total score (GDT_TS). The RMSD between two structures
A and B is the average distance between a specific set of
atoms in structure A (e.g., Co. or main-chain atoms belong-
ing to a given set of residues) and the corresponding atoms
in structure B, after optimal superposition of their coordi-
nates. The formula to calculate the RMSD is:
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where 4 is the distance between the pair of atoms 7and Nis
the total number of superimposed atom pairs in the dataset.
The GDT_TS between two structures A and B represents
the percentage of residues of protein A whose Co atoms are
found within specific cut-off distances from the correspond-
ing Co atoms in structure B after optimal superimposition
of the two structures. In CASP the GDT _TS is calculated
according to the formula:

GDT_TS = (GDT_P1+GDT_P2+GDT_P4+ GDT_P8)/4,

where GDT_P1, GDT_P2, GDT_P4, and GDT_P8 repre-
sent the number of Co atoms of a target model whose dis-
tance from the corresponding atoms of the real structure,
after optimal model-to-structure superposition, is <1, 2, 4,
and 8 A, respectively, divided by the number of residues in
the target structure.

. The score of the BLAST alignment is calculated as the sum

of substitution and gap scores. Substitution scores are given
by the chosen substitution matrix (e.g., PAM, BLOSUM, see
Note 3), whereas gap scores are calculated as the sum of the
gap opening and gap extension penalties used in the search.
The choice of these penalties is empirical, but in general a
high value is chosen for gap opening and a low value for
gap extensions (e.g., BLAST default values for gap insertions
and extensions are 7—12 and 1-2, respectively). The rational
bases for these choices are that: (1) only a few regions of
protein structures (e.g., loops) can accommodate insertions
and deletions (hence, a high value for gap openings); and (2)
most of these regions can usually accept insertions and dele-
tions of more than a single residue (hence, the lower value
used for gap extension).

. Substitution matrices are 20 x 20 matrices containing a value

for each a.a. residue pair that is proportional to the probabil-
ity that the two a.a.s substitute for each other in alignments
of homologous proteins. The two most commonly used
matrix series, PAM (percent accepted mutation) (216) and
BLOSUM (blocks substitution matrix) (217), comprise sev-
eral matrices that have been designed to align proteins with
varying extent of evolutionary distance. PAM matrices with
high numbers (e.g., PAM 250) and BLOSUM matrices with
low numbers (e.g., BLOSUM 45) are suitable for aligning
distantly related sequences; conversely, low PAM (e.g., PAM 1)
and high BLOSUM (e.g., BLOSUM 80) number matrices
are appropriate to align closely related sequences. BLAST
default matrix is BLOSUM 62.

. In SCOP, protein domains are assigned to the same family if

they either have %_ID > 30% or, in case their %_ID is lower,
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if they have very similar structures and functions. Different
families are assigned to the same superfamily if they com-
prise proteins presenting structural and, often, functional fea-
tures suggesting a common evolutionary origin. Families and
superfamilies having the same major SSE in the same spatial
arrangement and with the same topological connections are
assigned to the same fold. Proteins assigned to the same fami-
lies and superfamilies are thought to be close and remote evo-
lutionary relatives, respectively, whereas proteins having the
same fold might still have a common origin but no evidences

strong enough to support this hypothesis are available yet.
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