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Qualitative theory of non-smooth dynamical
systems

In this chapter, we give an overview of the basic theory of both smooth and
non-smooth dynamical systems, to be expanded upon in later chapters. In
particular we shall define what we meant by each of the italicized terms en-
countered in Chapter 1. We start with the definition of a dynamical system and
review the essential concepts from the theory of smooth dynamical systems
that can also apply to non-smooth systems. This material is available in the
now many textbooks on nonlinear dynamics and chaos, and so only the briefest
of details are given, with appropriate references. Next, in Sec. 2.2, we define
carefully what we mean by the different classes of piecewise-smooth dynamical
systems that we treat. In Sec. 2.3, we point out the relation to some of the
other mathematical formalisms that exist for defining non-smooth systems.
Section 2.4 considers notions of stability and bifurcation in non-smooth sys-
tems and introduces the key concept of the book, that of discontinuity-induced
bifurcation (DIB), where an invariant set changes its topology with respect to
the set of discontinuity surfaces. This is naturally followed by Sec. 2.5, which
explains the idea of a discontinuity mapping (DM) which is the main analyti-
cal tool to be used in Chapters 6–8. The chapter ends with a brief discussion
in Sec. 2.6 of numerical methods for simulation, parameter continuation and
bifurcation detection in non-smooth systems.

2.1 Smooth dynamical systems

The qualitative theory of differential equations [7, 124, 273, 168] begins with a
quite general definition of a dynamical system. This is written in terms of an
n-dimensional state space (or phase space) X ⊂ R

n (with the usual topology)
and an evolution operator φ that takes elements x0 of the phase space and
evolves them through a ‘time’ t to a state xt

φt : X → X, xt = φt(x0).



48 2 Qualitative theory of non-smooth dynamical systems

The time t takes values in an index set T , which we usually consider to be
either discrete (the integers Z) or continuous (the real numbers R). Note that φ
may not be uniquely defined for all t ∈ T . For example, so called noninvertible
dynamical systems may not be defined for t < 0; or in certain systems, some
initial states x0 may diverge to infinity in a finite time. Formally, in these
cases we need to define a space-dependent subset T ∗(X) ⊂ T such that φt(x)
is uniquely defined for x ∈ X provided t ∈ T ∗(X). We shall, however, ignore
such technicalities, other than to state that only positive time should be taken
for noninvertible systems.

Definition 2.1. A state space X, index set T and evolution operator φt are
said to define a dynamical system if

φ0(x) = x, for all x ∈ X, (2.1)
φt+s(x) = φs(φt(x)) for all x ∈ X, t, s ∈ T. (2.2)

The set of all points φt(x) for all t ∈ T is called the trajectory or orbit
through the point x.

The phase potrait of the dynamical system is the partitioning of the state
space into orbits.

Remarks

1. Properties (2.1) and (2.2) define φt to be a semi-group.
2. When the dynamical system is invertible (uniquely defined for t < 0 as well

as for t > 0), then we have the additional property that is a consequence
of (2.1) and (2.2)

φtφ−t = id.

Definition 2.2. A dynamical system satisfying (2.1) and (2.2) is said to be
smooth of index r, or Cr, if the first r derivatives of φ with respect to x
exist and are continuous at every point x ∈ X.

We shall often be interested in dynamics that is, in some sense, recur-
rent or repeatable. Specifically, we will gain an understanding of the phase
space structure by from specific sets that remain invariant under the system
dynamics.

Definition 2.3. An invariant set of a dynamical system (2.1), (2.2) is a
subset Λ ⊂ X such that x0 ∈ Λ implies φt(x0) ∈ Λ for all t ∈ T . An invari-
ant set that is closed (contains its own boundary) and bounded is called an
attractor if

1. for any sufficiently small neighborhood U ⊂ X of Λ, there exists a neigh-
borhood V of Λ such that φt(x) ∈ U for all x ∈ V and all t > 0, and

2. for all x ∈ U , φt(x) → Λ as t→ ∞.
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The set of all attractors of a given system typically describes the long-term
observable dynamics. A given dynamical system may have many competing
attractors, with their relative importance being indicated by the size of the
set of initial conditions that they attract; that is, their domain of attraction

Definition 2.4. The domain of attraction (also known as the basin of at-
traction) of an attractor Λ is the maximal set U for which x ∈ U implies
φt(x) → Λ as t→ ∞.

We already saw in Fig. 1.14(a) that domains of attraction in non-smooth
systems can have remarkably complicated structures, which can be true in
smooth systems too.

Another useful notion is to define points in phase space that are eventually
approached infinitely often in the future, or were approached infinitely often
in the past.

Definition 2.5. A point p is an ω-limit point of a trajectory φt(x0) if there
exists a sequence of times t1 < t2 < . . . with ti → ∞ as i → ∞ such that
φti(x0) → p as ti → ∞. If instead there exists a sequence of times with
t1 > t2 > . . . and ti → −∞ and φti(x0) → p, then we say that p is an α-limit
point of x0. The ω- (α-) limit set of x0 is the set of all possible ω- (α-) limit
points. The set of all such ω-limit points (or α-limit points) for all x0 ∈ X is
called the ω-limit set (or α-limit set) of the system. This set is closed and
invariant.

An ω-limit point is sometimes called a recurrent point of the dynamical system.
There is only so much that can be gained from this abstract definition of

a dynamical system. Its usefulness is that it defines properties like attractors,
and domains of attraction for quite general classes of system such as partial
differential equations, systems with time delays and discrete-valued systems.
However, when dealing with smooth systems, we shall largely only be inter-
ested in cases where the state space X is (possibly some subset of) Euclidean
space R

n and the evolution is either described by a discrete-time map or a
continuous-time flow. We now take each in turn.

2.1.1 Ordinary differential equations (flows)

Given a system of ordinary differential equations (ODEs)

ẋ = f(x), x ∈ D ⊂ R
n, (2.3)

where D is a domain, then {X,T, φt} defines a dynamical system if we set
X = D and T = R and let φt(x) := Φ(x, t) be the solution operator or flow
that takes initial conditions x up to their solution at time t:

∂

∂t
Φ(x, t) = f(Φ(x, t)), Φ(x, 0) = x . (2.4)
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Remarks

1. If we suppose the vector field f is Cr−1 for some r > 2, then (2.4) implies
the flow Φ(x, t) is one index smoother; that is, the dynamical system is
Cr, since f is a derivative of Φ.

2. Note that we have not included in the above the possibility that the
vector field f depends explicitly on time t. However such systems can be
treated within the general framework by allowing time to be an additional
dynamical state. For example, taking the (n+1)st state xn+1 = t, implies
ẋn+1 = 1 so that the (n+1)st component of f is unity. In many examples
time appears periodically, and then it can be helpful to consider the phase
space to be cylindrical:

Example 2.1 (A periodically forced system). Consider the forced system

ü+ 2ζu̇+ ku = a cos(ωt). (2.5)

If we set X = R
2 × S1 ⊂ R

3, with x3 = t mod(2π/ω), we obtain

ẋ1 = x2,

ẋ2 = −kx1 − 2ζx2 + ax3,

ẋ3 = 1,

with corresponding phase potrait depicted in Fig. 2.1.

0

identify

x1

x2

x3

2π
ω

x1

x2

x3

Fig. 2.1. Schematic description of the cylindrical phase space associated with the
periodically forced system (2.5).

We shall be concerned with systems that depend on parameters. So we
shall often write
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ẋ = f(x, μ),

where μ ∈ R
p is a set of parameters. If we say that f is smooth, we mean that

the dependence on μ is as smooth as it is on x. Unless it is crucial, we shall
often drop the explicit parameter dependence of f and return to the more
compact notation f(x).

Systems of ODEs can exhibit the following kinds of invariant sets, see
Fig. 2.2.

Equilibria. The simplest form of an invariant set of an ODE is an equilibrium
solution x∗ which satisfies f(x∗) = 0. These are also sometimes called
stationary points of the flow since Φ(x∗, t) = Φ(x∗, 0) for all t.

limit cycles. The next most complex kind of invariant set would be a periodic
orbit, which is determined by an initial condition xp and a period T . Here
T is defined as the smallest time T > 0 for which Φ(xp, T ) = xp. periodic
orbits form closed curves in phase space (topologically they are circular).
A periodic orbit that is isolated (does not have any other periodic orbits
in its neighborhood) is termed a limit cycle.

(a) (b) (c)

(d)

(e)

(f)

Fig. 2.2. Phase potrait representation of invariant sets of smooth flows: (a) equilib-
rium, (b) limit cycle, (c) invariant torus, (d) homoclinic orbit, (e) heteroclinic orbit,
(f) chaotic attractor.

Invariant tori. Invariant tori are the nonlinear equivalent of two-frequency
motion (see Fig. 2.3). Flow on a torus may be genuinely quasi-periodic in
that it contains no periodic orbits, or it may be phase locked into containing
a stable and an unstable periodic orbit, which wind a given number of times
around the torus.
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Fig. 2.3. Possible motion on an invariant torus, (a) phase locked, and (b) quasi-
periodic.

Homoclinic and heteroclinic orbits. Another important class of invari-
ant sets are connecting orbits, which tend to other invariant sets as time
asymptotes to +∞ and to −∞. Consider, for example, orbits that connect
equilibria. A homoclinic orbit is a trajectory x(t) that connects an equi-
librium x∗ to itself; x(t) → x∗ as t → ±∞. A heteroclinic orbit connects
two different equilibria x∗1 and x∗2; x(t) → x∗1 as t → −∞ and x(t) → x∗2
as t → +∞. Homoclinic and heteroclinic orbits play an important role in
separating the basins of attraction of other invariant sets.

Other invariant sets. It is quite possible for dynamical systems to contain
certain simple geometric subsets of phase space where trajectories must
remain for all time once they enter. For example, an ODE system written
in the form

ẋ1 = f1(x1, x2, x3)
ẋ2 = x1f2(x1, x2, x3)
ẋ3 = x1f3(x1, x2, x3)

for smooth functions fi, i = 1, . . . , 3 has as an invariant set the plane
{(x1, x2, x3) ∈ R

3 : x1 = 0}. The dynamics on this invariant plane could
contain equilibria, periodic orbits and other attractors. Similarly, in addi-
tion to invariant tori, flows can contain invariant spheres, cylinders, etc.
invariant sets that are everywhere locally smoothly described by an m-
dimensional set of co-ordinates are called invariant manifolds, important
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examples of which are stable and unstable manifolds of saddle points, which
we shall encounter shortly.

Chaos. More complex invariant sets are chaotic, a term that might be defined
in a number of different ways, but we suppose:

Definition 2.6. A closed and bounded invariant set Λ is called chaotic
if it satisfies the two additional conditions:
1. It has sensitive dependence on initial conditions; i.e.:

There exists an ε > 0 such that, for any x ∈ Λ, and any neighborhood
U ⊂ Λ of x, there exists y ∈ U and t > 0 such that |φt(x)−φt(y)| > ε

2. There exists a dense trajectory that eventually visits arbitrarily
close to every point of the attractor, i.e.:
There exists an x ∈ Ω such that for each point y ∈ Ω and each ε > 0
there exists a time t (which may be positive or negative) such that
|φt(x) − y| < ε.

The first property says that initial conditions in the invariant set diverge
from each other locally. The second property says that there is at least
one trajectory in the invariant set such that not only eventually comes
back arbitrarily close to itself, but to every point of the invariant set.
This property ensures that we are talking about an attractor composed
of a single piece, not two separate ones. This property is also known as
topological transitivity.
We saw several examples of chaotic attractors of non-smooth systems in
Chapter 1. For flows (smooth or non-smooth), it can be shown that the
dimension of phase space must be at least three in order for a flow to
exhibit chaos. Various techniques for analyzing and quantifying chaotic
motion exist, such as Lyapunov exponents, time series analysis, invariant
measures, fractal dimension, etc. For a more thorough treatment of the
statistical properties of chaos see for example the book by Sprott [242].
Some of these notions have counterparts in non-smooth systems, see for
example the work of Kunze [165].

Flows naturally lead to maps through the process of taking a (Poincaré)
section through the flow and considering the map of that section to itself
induced by the flow; see Fig. 2.5. We will make this important concept precise
in Sec. 2.1.5 below.

2.1.2 Iterated maps

Given a map defined by the rule

x �→ f(x), x ∈ D ⊂ R
n, (2.6)

then T = Z; that is, ‘time’ is integer-valued, and the operator φ is just f .
Evolving through time m > 0 involves taking the mth iterate of the map;
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φm(x0) = xm = f(xm−1) = f(f(xm−2)) = . . . := f (m)(x0),

where a superscript (m) means m-fold composition

f (m)(x0) =

m times
︷ ︸︸ ︷

f ◦ f ◦ . . . ◦ f(x0) .

Again we shall write f(x, μ) for systems that depend on parameters μ ∈ R
p.

A useful way of studying one-dimensional maps is via cobweb diagrams
that plot xn+1 against xn by reflecting in the main diagonal

Example 2.2 (logistic map). An example of a cobweb diagram for the logistic
map given by

x→ μx(1 − x), x ∈ [0, 1], 0 < μ ≤ 4 (2.7)

is given in Fig. 2.4.

xn

xn+1

1

1

0
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xn

xn+1

1

1

0
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Fig. 2.4. Cobweb diagrams for the logistic map (2.7) starting with x0 = 0.8 showing:
(a) convergence to a stable fixed point for μ = 1.5; (b) convergence to a period-two
attractor for μ = 3.1; (c) period-four attractor (note that here the initial condition
is set to x = 0.5), and (d) chaotic behavior for μ = 4.

Definition 2.7. A mapping (2.6) is said to be invertible for x ∈ D ⊂ R
n if

given any x1 ∈ D there is a unique x0 ∈ D such that x1 = f(x0). In such a
case we define the inverse mapping f (−1) by x0 = f (−1)(x1) for all points x1

in f(D).

Note that the smoothness of the dynamical system in the case of maps is
given simply by the smoothness of the function f . Smooth (that is, at least
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C1) invertible maps, with smooth inverses are referred to as diffeomorphisms.
We will now list some important types of invariant sets of maps.

fixed points. The simplest kind of invariant set of a map is a fixed point,
which is a point x∗ such that f(x∗) = x∗. fixed points of maps have a close
connection to periodic orbits of flows, through the induced (Poincaré) map;
see Fig. 2.5

periodic points. Next in order of complexity come periodic points, which
satisfy f (m)(x∗) = x∗ for some (least value of) m > 0. We refer to such
a point as a period-m point of the map and its orbit as a period-m orbit.
Clearly each point f (i)(x∗), i ≤ m− 1 of a period-m orbit is also a period-
m point. These again are the close analogs of periodic orbits of flows (of
a higher period), implying more intersections with a Poincaré section; see
Fig. 2.5(b).

Π Π

Π

(a)
(b)

(c)

Fig. 2.5. Depicting the relation between maps and flows obtained by taking a
Poincaré section Π through the phase space of the flow and considering the induced
map from Π → Π. (a) The correspondence between fixed points and period-T limit
cycles; (b) between period-m points and higher-period limit cycles (m = 3 in this
case); and (c) between invariant circles and invariant tori.

Invariant circles. Analogous to invariant tori of flows are invariant closed
curves of a map, which again may be defined by taking a Poincaré sec-
tion of a torus; see Fig. 2.5(c). Such closed curves are topologically circles,
and we can reduce the dynamics on an invariant closed curve to that of a
map of the unit circle to itself, a so-called circle map. The dynamics off or
transverse to an invariant closed curve can also be complex. Typically, as
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parameters vary, such curves lose their smoothness and eventually fail to
exist as continuous invariant sets; see for example [9, 168, 8] for the kind
of dynamics one expects under such bifurcation sequences for smooth sys-
tems. Recently Zhusubaliyev & Mosekilde [281, 282, 280] and Dankowicz,
Piiroinen & Nordmark [65] found yet more complex bifurcation sequences
can occur near an invariant circle of certain piecewise-smooth systems; we
shall return to non-smooth circle maps in Chapter 4 and non-smooth torus
bifurcations in Chapter 9.4.3. For comparison with the non-smooth case,
we will recall here just a few standard results for the dynamics on smooth
invariant circles. For more details, see for example the book by Arrowsmith
and Place [9].
Consider a map f : S(1) → S(1), where S(1) is the unit circle.

Example 2.3 (Arnol’d circle map). A canonical example of a circle map is
the Arnol’d circle map (or standard map)

θ → f(θ) = θ + α+ ε sin(θ) (mod 2π), (2.8)

where 0 ≤ ε < 1. When ε = 0, clearly the map describes a rigid rotation
through an angle α. If α = p/q is rational, then all points are periodic
with period q. If α is irrational, then motion never repeats and all initial
conditions θ0 are quasi-periodic and ∪∞

n=1f
(n)(θ0) fills out the entire cir-

cle. However, the dynamics is not chaotic since nearby initial conditions
remain close.

For ε > 0, then one can use the notion of rotation number to define the
equivalent of these two behaviors.

Definition 2.8. Consider a circle map f : S(1) → S(1), which can be
written in functional form as f(θ mod 2π) mod 2π, where f : R → R is
called a lift of f . We define the rotation number ρ of a point x ∈ [0, 2π)
by

ρ(f, x) =
(

lim
n→∞

f (n)(x) − x

n

)

(mod 2π). (2.9)

Now, we have the standard result; see for example [73, 151]:

Theorem 2.1. Suppose a circle map f is continuous and has a continuous
inverse; then the rotation number is independent of initial condition x;
that is, ρ(f, x) = ρ(f).

If the rotation number is irrational, it can be shown that (under the addi-
tional assumption that both the map f and its inverse are differentiable)
the dynamics is topological equivalent to a rigid rotation through angle
ρ; thus, the dynamics is non-chaotic and the forward iterate of any initial
condition eventually fills the whole circle. In contrast, if ρ = p/q is ratio-
nal, then the dynamics is said to be mode locked and there is at least one
orbit of period q. Typically there will be two such orbits, with one stable
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and one unstable. Given a family of circle maps parameterized by α, then
the rotation number will generically be rational over intervals of α-values.
Both irrational and rational rotation numbers occur for sets of α-values
that have positive measure. We will return to the study of circle maps in
Chapter 4, where we show that they are closely linked to maps that are
discontinuous on an interval.

Chaos. Definition 2.6 of chaotic invariant sets also applies to maps. In con-
trast to flows where the phase space must be at least three-dimensional,
in the noninvertible case, maps of dimension one can exhibit chaos. We
have already seen this for the square-root map in case study VII in Chap-
ter 1. Smooth one-dimensional maps can be chaotic too, as the following
well-known example shows:

Example 2.4 (logistic map continued). Consider again the logistic map
(2.7). For μ > 1, there are two fixed points at x = 0 and x = (μ − 1)/μ.
For 1 < μ < 3, the non-trivial one is the unique attractor of the system.
For μ > 3, there are also two period-two points

x =
1 + μ±

√

μ2 − 2μ− 3
2μ

.

As μ is further increased, a chaotic attractor is born via a so-called period-
doubling cascade; see Fig. 2.6. Note that in the ‘chaotic’ range of μ-values,
the attractor actually alternates between parameter intervals of chaos and
intervals of periodic orbits (so-called periodic windows) appearing in the
bifurcation diagram.

0.1

1

2.4 4μ

x

Fig. 2.6. The bifurcation diagram of the logistic map (2.7) showing the period-
doubling cascade to chaos as the parameter μ is increased and the presence of peri-
odic windows within the chaos.
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For invertible maps, at least two dimensions are required in order for there
to be chaotic invariant sets.

2.1.3 Asymptotic stability

When considering dynamical systems with physical application, we are usually
only interested in stable behavior. Important notions of stability in dynamical
systems include that of either Lyapunov or asymptotic stability of an invariant
set. In general, the former means stability in the weak sense that trajectories
starting nearby to the invariant set remain nearby for all time, whereas the
latter is more or less synonymous with the concept of an attractor (Definition
2.3). Both refer to stability of invariant sets with respect to perturbations of
initial conditions, at fixed parameter values. There are other less restrictive
versions of this kind of stability, such as input–output stability, orbital stabil-
ity, and controllability of arbitrary trajectories (not just invariant sets), but
these will not concern us. For simplicity we shall define stability only of equi-
libria of flows. Similar definitions can be given for fixed points of discrete-time
systems, or for other invariant sets of either continuous-time or discrete-time
systems.

To formally define Lyapunov stability, consider a generic nonlinear system
of the form (2.3) and assume that it has an equilibrium point that, without
loss of generality, is at the origin; that is, f(0) = 0:

Definition 2.9. The equilibrium state at the origin is said to be (Lyapunov)
stable if for any ε > 0, there exists a δ > 0 such that

‖x0‖ < δ ⇒ ‖Φ(x0, t)‖ < ε,∀t > 0.

Definition 2.10. The equilibrium state at the origin is said to be asymptot-
ically stable (in the sense of Lyapunov) if

1. it is stable;
2. limt→∞Φ(x0, t) = 0.

We will say that an equilibrium is unstable if it is not stable according to
Definition 2.9.

Thus, stability refers to the ultimate state of the dynamics not being al-
tered under small changes to the initial conditions. For equilibria, the notion
of stability is closely linked to the eigenvalues of the corresponding linearized
ODEs, with a sufficient condition for stability being that all eigenvalues lie in
the left half of the complex plane. Similar sufficient conditions for asymptotic
stability exist for other invariant sets. For example, for fixed points of maps,
stability is guaranteed if all eigenvalues (often called multipliers) of the lin-
earization of the map lie inside the unit circle. Proving stability can be more
tricky in the case that eigenvalues lie on the imaginary axis. One technique
is to construct so-called Lyapunov functions that act like the energy of a per-
turbation from the invariant set in question, and then prove that this energy
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decreases with time as one follows the dynamics. As we shall see in Sec. 2.4,
for non-smooth systems, proving asymptotic stability even in the case of equi-
libria whose eigenvalues in the left half-plane can be highly tricky. There, the
Lyapunov function technique can be extremely useful.

We next deal with a quite different notion of stability, that of invariance
of the dynamics under perturbation to the system itself rather than to initial
conditions.

2.1.4 Structural stability

Dynamical systems theory aims to classify dynamics qualitatively. structurally
stable systems are ones for which all ‘nearby’ systems have qualitatively
‘equivalent’ dynamics. Thus we need a precise notion of nearby and also of
equivalence.

‘Nearby’ refers to any possible perturbation of the system itself [the func-
tion f(x)], including variation of the system’s parameters. We want to call two
systems ‘equivalent’ if their phase spaces have the same dimension and there
phase potraits contain the same number and type of invariant sets, which in
the same general position with respect to each other. To achieve such a defi-
nition, we use topology, which is the mathematics of ‘rubber sheet geometry.’
Mathematically we want to say that two phase potraits are the same if there
is a smooth transformation that stretches, squashes, rotates, but not folds
one phase potrait into the other. Such transformations are called homeomor-
phisms, which are continuous functions defined over the entire phase space
whose inverses are also continuous.

Definition 2.11. Two dynamical systems {X,T, φt} and {X,T, ψt} are topo-
logical equivalent if there is a homeomorphism h that maps the orbits of the
first system onto orbits of the second one, preserving the direction of time.

For discrete time systems, two topological equivalent maps f and g that
satisfy

f(x) = h−1(g(h(x))), implying h(f(x)) = g(h(x)),

for some homeomorphism h, are said to be topologically conjugate, and we
can write more simply

f = h−1 ◦ g ◦ h. (2.10)

For ODEs, the homeomorphism should apply at the level of the flow.

Definition 2.12. Two flows Φ(x, t) and Ψ(h(x), t)) that correspond, respec-
tively, to ODEs ẋ = f(x) and ẏ = g(y) are said to be topologically conju-
gate if there exists a homeomorphism h such that

Φ(x, t) = h−1(Ψ(h(x), t)). (2.11)
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Actually, for topological equivalence of flows, the conjugacy does not need to
apply at each time t. Rather, we require the weaker condition that there is an
invertible, continuous mapping of time t �→ s(t) so that we can write

Φ(x, t) = h−1(Ψ(h(x), s(t))) . (2.12)

Note, though, that conditions (2.11) and (2.12) are hard to check in practice,
because one must solve the ODE exactly in order to construct an explicit
expression for the flow operator Φ. A more restrictive condition, which is easier
to check in practice, is that two ODEs be smoothly topologically conjugate; that
is, the homeomorphism h in (2.11) is differentiable, with differentiable inverse
(a diffeomorphism). Then we can write

f(x) =
(

dh(x)
dx

)−1

f(h(x)).

Having defined what we mean by topological equivalence, we can now
define structural stability.

Definition 2.13. A flow (or discrete-time map) is structurally stable if
there is an ε > 0 such that all C1 perturbations of maximum size ε to the
vector field (map) f lead to topological equivalent phase potraits.

One key application of topological equivalence is to show that ‘normally’
dynamical systems in the neighborhood of an invariant set are topological
equivalent to the linearization of the system about that set. We consider this
in the two specific contexts of equilibria of flows and fixed points of maps. As
we shall see in the next subsection, the result for maps implies an analogous
result for periodic orbits of flows.

Consider first an equilibrium x∗ of ẋ = f(x). Now, for small y = x − x∗,
we can expand f as a Taylor series about x∗ to write

ẏ = fx(x∗)y +O(y2),

and drop the O(y2)-term. (Here fx(x∗) given by (fx)i,j = ∂fi/∂xj is the
Jacobian derivative of the vector field evaluated at x∗.) The general solution
to the linear system is

y(t) = exp(fx(x∗)t)y(0).

Usually this can be expressed in terms of the eigenvalues and eigenvectors of
fx(x∗). For example, in the case that Jacobian has a full set of n independent
eigenvalues {λi : i = 1, 2, . . . n}, then we can write

y(t) = V −1diag{e−λ1t, e−λ2t, . . . e−λnt}V y(0),

where the ith column of V contains the eigenvectors of fx corresponding to
eigenvalue λi. (Here diag{·} means the diagonal matrix whose entries on the
main diagonal are those stated.) So if the spectrum (set of eigenvalues) of
fx(x∗) is in the left half-plane, then the solution of the linear system tends to
zero as t→ ∞ and the equilibrium of the linear system is stable.
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Definition 2.14. We shall refer to the eigenvalues of an equilibrium x∗ of
an ODE ẋ = f(x) to mean the eigenvalues of the associated Jacobian matrix
fx(x∗). An equilibrium is said to be hyperbolic if none of its eigenvalues lie
on the imaginary axis.

It can be proved [168, Ch. 2] that the flow local to any two hyperbolic equi-
libria of n-dimensional systems that have the same number of eigenvalues with
negative real part are topologically equivalent to each other. In particular, we
have

Theorem 2.2 (Hartman–Grobman). The dynamics close to a hyperbolic
equilibrium point are topologically equivalent to that of the system linearized
about that point.

An equilibrium x∗ with ns > 0 eigenvalues of negative real part and nu > 0
eigenvalues of positive real part is called a saddle point. Close to x∗ we can
define the stable [unstable] manifold W s(x∗) [Wu(x∗)], which is an invariant
manifold of the flow that is composed of all trajectories that tend to x∗ as
t → ∞ (t → −∞). W s(x∗) is of dimension ns and is tangent at x∗ to the
stable eigenspace of fx(x∗); similarly W s(x∗) is of dimension nu and is tangent
at x∗ to the unstable eigenspace of fx(x∗). See Fig. 2.7.

λ1λ2λ3

v1

v2

v3

W u
1

W u
2

W s

λ1

λ2

λ3

v1

v2

v3

W u
1

W u
2

W s

Fig. 2.7. Stable and unstable manifolds near 3 dimensional saddle equilibria with
(a) purely real eigenvalues and (b) complex stable eigenvalues (a saddle focus). The
vectors vk are the eigenvectors corresponding to the eigenvalues λk.
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Similarly, consider a fixed point x∗ of a map x �→ f(x) (period-m points
can be treated as well, since they are fixed points of f (m)). Linearizing about
this fixed point, we get

y �→ fx(x∗)y, with solution yn = [fx(x∗)]ny0.

Hence yi → 0 as i→ ∞, satisfying the second of the conditions for asymptotic
stability of the linearized system, if all eigenvalues μi of fx(x∗) lie inside the
unit circle.

Definition 2.15. We shall refer to the multipliers λi of a fixed point x∗ of a
map x→ f(x) to mean the eigenvalues of the associated linearization fx(x∗).
A fixed point is said to be hyperbolic if none of the multipliers lie on the
unit circle.

For a general map in n-dimensions, one can define the orientability of the
map close to a fixed point as the sign of the product of all its multipliers
∏n

i=1 λi. If this product is positive, the map is locally orientable; if negative,
the map is non-orientable. If the product is zero, then the map is noninvertible.
Note that any map that arises as the Poincaré mapof a smooth flow must be
orientable [271]. Figure 2.8 shows the two possible types of orientable saddle
point in two-dimensional maps. That with negative multipliers [Fig. 2.8(b)] is
sometimes referred to as a flip saddle. One can also define stable and unstable
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Fig. 2.8. The dynamics near a saddle fixed point of a map in the cases of (a) two
positive multipliers, and (b) two negative multipliers. Numbers denote subsequent
iterations of the map starting from the point labeled ‘1’.

manifolds at saddle points analogously as for equilibria of flows. Note, though,
a distinction with the case of flows. In a flow, a one-dimensional manifold is
composed of a single trajectory. In a map, a one-dimensional manifold contains
many orbits; see Fig. 2.9. Hence stable and unstable manifolds in maps can
intersect transversally (at a non-zero angle), whereas if a stable and unstable
manifold intersect in a flow, they must do so along a line; that is, they must
share a common trajectory.
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W s
W u

(a)

W s
W u

(b)

Fig. 2.9. (a) The stable and unstable manifolds close to a saddle fixed point in
two dimensions with positive multipliers. (b) Similar figure in the case of negative
multipliers, where, for clarity, only the dynamics along the unstable manifold is
depicted. Similar behavior is observed on the stable manifold with the difference
that the direction of ‘hoppings’ is reversed.

There are similar notions of hyperbolicity for other invariant sets. Loosely
speaking, an invariant set is hyperbolic (sometimes called normally hyperbolic)
if the dynamics in directions transverse to the set is exponentially attracting
or repelling at rates that are faster than the dynamics in the invariant set. See,
for example, [272]. Generally speaking, hyperbolic dynamics are structurally
stable.

Many dynamical systems that arise in applications are not structurally
stable. For example, systems can have persistent non-hyperbolic equilibria
(center points) if they preserve a first integral such as energy. An important
such class is that of Hamiltonian systems, which have very different dynamics
than the systems in question here; see, for example, the reprint collection by
Miess and MacKay [184]. Alternatively, the system may be invariant under
the action of a symmetry, which again leads to certain structurally unstable
things happening generically. The dynamics of systems with symmetry is a
large subject in its own right, and one that we do not deal with here; see, for
example, the book by Golubitsky, Schaeffer & Stewart [120]. Largely speaking,
we shall avoid Hamiltonian or symmetric systems in what follows.

2.1.5 Periodic orbits and Poincaré maps

We have already hinted at the important connection between flows and maps.
We now make this connection more precise. One of the main building blocks
of the dynamics of a set of ODEs are its periodic solutions, and these provide
a natural way to transform between flows and maps. Consider a limit cycle
solution x(t) = p(t) to (2.3) of period T > 0; that is, p(t+T ) = p(t). To study
the dynamics near a such a cycle, we construct a Poincaré section, which is
an (n−1)-dimensional surface Π that contains a point xp = p(t∗) on the limit
cycle and which is transverse to the flow at xp. Let us introduce a notation
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πx

Φ(x, T )

P (x)

Π

xp

x

p(t)

Fig. 2.10. The construction of a Poincaré mapclose to a periodic orbit p(t).

that
Π = {x ∈ R

n : π(x) = 0}, (2.13)

for some smooth scalar function π. Then the transversality condition is that
the normal vector πx(xp) to Π at xp has a non-zero component in the direction
of the Φt(xp, 0) = f(xp). (Here a subscript x or t means differentiation with
respect to that variable). That is, we require

πx(xp)f(xp) �= 0. (2.14)

where a subscript x or t means partial differentiation with respect to that
variable, so that πx(xp) is the normal vector to Π at x = xp.

Now, we can use the flow Φ to define a map P from Π to Π, called the
Poincaré map, which is defined for x sufficiently close to xp via

P (x) = Φ(x, τ(x)),

where τ(x) is defined implicitly as the time closest to T for which

π(Φ(x, τ(x))) = 0. (2.15)

By the Implicit Function Theorem (see Theorem 2.4 below), the transversality
(2.14) guarantees that there is a locally unique solution for τ(x). Note that
we can then define the Poincaré mapas a smooth projection S of the time-T
map Φ(·, T ) for x ∈ Π

P (x) = S(Φ(x, T ), x), where S(y, x) = Φ(y, τ(x) − T ); (2.16)

see Fig. 2.11. Thus, xp becomes a fixed point of the map P .
We can study the stability (and possible bifurcations of) the periodic so-

lution by studying the linearization Px of the Poincaré map at xp. It will be
important for us to be able to compute this linearization when we consider
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grazing bifurcations of periodic orbits in Chapters 6–8. Computing the total
derivative with respect to x, we have

Px(xp) = Φx(xp, T ) + Φt(xp, T )τx(xp),

and, from implicit differentiation of (2.15),

τx(xp) = −πx(xp)Φx(xp, T )
πx(xp)Φt(xp, T )

.

Hence

Px(xp) =
(

I − Φt(xp, T )πx(xp)
πx(xp)Φt(xp, T )

)

Φx(xp, T )

=
(

I − f(xp)πx(xp)
πx(xp)f(xp)

)

Φx(xp, T ). (2.17)

Note that (2.17) is a rank-one update of the time-T map Φx(xp, T ) around p(t)
(the multiplying factor is the linearization of S defined in (2.16)). The n× n
matrix Φx(xp, T ) is referred to as the Monodromy matrix and corresponds
to the fundamental solution matrix up to time T of the linear variational
equations

ẏ = fx(p(t))y, (2.18)

around the periodic orbit p(t). The direction of the flow Φt(xp, t) = f(xp)
can easily be shown to solve (2.18) and, hence, f(xp) is an eigenvector of
Φx(xp, T ) corresponding to the multiplier 1. Letting the expression (2.17) act
on f(xp), we see that this corresponds to an eigenvalue 1 of the linearized
Poincaré mapPx. However, since this eigenvector does not lie in the linear
approximation to Π we will never see its effect when computing the Poincaré
maptaking only points x ∈ Π.

Other than this trivial eigenvalue, the eigenvalues of the Monodromy ma-
trix are precisely the multipliers λi of the Poincaré map. This can be argued as
follows (see for example [168, Thm. 1.6] for a more careful proof). The non-
trivial eigenvectors of the Monodromy matrix form an (n − 1)-dimensional
invariant subspace Π̃, say, that does not contain the direction f(xp). Hence
Π̃ can be chosen to be a Poincaré section, as it satisfies the transversality con-
dition (2.14). Now all we need to show is that the multipliers of two Poincaré
maps P and P̃ defined via two different sections Π and Π̃ are the same. Let Π
be given by (2.13), (2.15), and let Π̃ := {x : π̃(x, τ̃(x)) = 0}. The equivalence
of these two maps arises because we can write

P̃ = S̃−1 ◦ P ◦ S̃, where S̃(x) = Φ(x, τ(x) − τ̃(x)), (2.19)

where S̃ is the smooth mapping that takes points in Π̃ to Π using the flow;
see Fig. 2.11(b). Linearizing (2.19) we obtain that

P̃x = S̃−1
x PxS̃x.
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Fig. 2.11. (a) Illustrating a Poincaré mapdefined by the first intersection with a
surface Π : {π(x) = 0} in the direction of increasing π(x). (b) A representation in
two dimensions of the smooth projection Sm along the flow lines between Poincaré
sections Π and Π̃.

Hence P̃x and Px are similar matrices that must have the same eigenvalues.
In fact, the expression (2.19) applies for any two Poincaré sections along the
orbit p(t). It also shows that the two Poincaré maps satisfy the condition
(2.10) to be topological equivalent. Summarizing, we have

Theorem 2.3. All Poincaré maps defined with respect to any Poincaré sec-
tion that is transverse to the flow around a periodic orbit p(t) of a smooth ODE
(2.3) are locally topological equivalent. Moreover, they have the same non-zero
multipliers λ1, . . . λn−1. The linearization of the corresponding time-T map
around p(t) is related by the formula (2.17) and has eigenvalues 1, λ1, . . . λn−1.

Now, we say that a hyperbolic periodic orbit p(t) is one whose Poincaré
maphas multipliers λi, i = 1, . . . n − 1 that are all off the unit circle. The
Hartman–Grobman theorem for maps then tells us that flow around the orbit
is locally topologically equivalent to the linearization. An obvious consequence
of this is that hyperbolic periodic orbits are necessarily isolated in phase space.

Poincaré maps do not necessarily require a periodic orbit in order to be
defined. A Poincaré section Π can be taken anywhere in the phase space,
provided the flow is everywhere transverse to it, as for example in Fig. 2.5(c)
where Π is chosen transverse to the flow on an invariant torus. For transver-
sality, we require that a condition equivalent to (2.14) applies throughout Π.
So if we define Π as before to be the zero-set of a smooth function (2.13),
then we are only interested in defining a Poincaré mapfor points x for which

π(x) = 0 and πx(x)f(x) �= 0.

The map is defined by the first intersection with Π in the same sense. That is,
P (x) = Φ(x, τ(x)), where τ(x) is the first time t > 0 such that π(Φ(x, t)) = 0
and πxf(Φ(x, 0)) · πxf(Φ(x, t)) > 0; see Fig. 2.11(a). Note that the map P
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may not be defined for the whole Poincaré section, since not all points need
to return.

One of the benefits of studying Poincaré maps rather than flows is that
they drop by one the dimension of the sets we need to consider. Thus, limit
cycles of flows correspond to isolated fixed points of Poincaré maps; invariant
tori correspond to closed curves of the map; and chaotic invariant sets decrease
their fractal dimension by one.

2.1.6 Bifurcations of smooth systems

Broadly speaking, there two notions of ‘bifurcation’, one analytical and the
other topological. From the first point of view, bifurcations are branch-
ing points of parameterized sets of solutions x(μ) to nonlinear operators
G(x, μ) = 0. Simply put, a ‘bifurcation’ is a point at which the Implicit
Function Theorem fails; see, for example, [141, 55, 47, 119]).

Theorem 2.4 (Implicit Function Theorem). Suppose that for some μ =
μ0 there exists a solution x = x0 to a smooth nonlinear equation G(x, μ) = 0,
where G : R

n × R → R
n; then, provided Gx(x0, μ0) is nonsingular, a smooth

path of solutions x(μ) can be continued locally, with x(μ0) = x0.

This analytic point of view does not adapt naturally to the study of non-
smooth systems, and so the notion adopted in this book is that a bifurcation
is a change in the topology of the phase portraits of a dynamical system as a
parameter is varied. Of particular importance are changes to the number and
nature of the attractors of the system. A rich theory now exists for smooth
systems, which we shall briefly review here. Many more details can be found
in the books by Guckenheimer & Holmes [124], Kuznetsov [168] and Wiggins
[273]; hence, we give only a quick introduction to bifurcation theory applied
to parameterized systems either in the form of a smooth vector field or map

ẋ = f(x, μ), or x �→ f(x, μ) (2.20)

for x ∈ R
n, μ ∈ R

p.
We define a bifurcation simply in terms of loss of structural stability upon

varying a parameter.

Definition 2.16. A bifurcation occurs at a parameter value μ0 if the dy-
namical system {X,T, φt} is not structurally stable.

An unfolding (or versal unfolding) of a bifurcation is a simplified system
that for small μ − μ0 contains all possible structurally stable phase potraits
that arise under small perturbations of the system at the bifurcation point.

The codimension of a bifurcation is the dimension of parameter space
required to unfold the bifurcation.

A bifurcation diagram is a plot of (some measure of) the invariant
sets of a dynamical system against a single bifurcation parameter μ, which
indicates stability.
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We can distinguish between two kinds of bifurcation:

Definition 2.17. A local bifurcation arises due to the loss of hyperbolicity
of an invariant set upon varying a parameter. All other bifurcations are called
global bifurcations.

Many kinds of local bifurcations of smooth systems have been studied and
classified; see for example Kuznetsov [165, Chs. 2–5]. Figure 2.12 summa-
rizes the main types of codimension-one local bifurcations of smooth vector
fields and an associated representative bifurcation diagram. In each case, un-
der appropriate defining and non-degeneracy conditions, one can calculate an
appropriate normal form that can be obtained by smooth co-ordinate trans-
formations from any system that undergoes the bifurcation in question.

fold

x

μ

e.g., ẋ = μ − x2

x

μ

transcritical

e.g., ẋ = μx − x2
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Period-1

e.g., x �→ (1 + μ)x − x3

Fig. 2.12. Main codimension-one local bifurcations in smooth dynamical systems.

Note that steady bifurcations of equilibria of flows— fold (or saddle-node)
bifurcations and the associated pitchfork or transcritical bifurcations for sys-
tems with symmetry or invariance— have a direct analogy for limit cycle
bifurcations; that is, bifurcations of fixed points of maps. The defining con-
dition for the former is that there is an eigenvalue at zero and for the latter
that there is a multiplier at 1. The case of the Hopf bifurcation is more sub-
tle. The direct analog for maps is when a complex pair of eigenvalues crosses
the unit circle. This torus or Neimark–Sacker bifurcation causes the birth of
invariant circles of the map, with all inherent complications associated with
the dynamics of circle maps that we outlined earlier. There are also special
cases when the multipliers concerned are low-order roots of unity. Finally, for
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maps there is the case of the period-doubling or flip bifurcation, which has no
analog in equilibrium bifurcations. Many of these bifurcations come in super-
or subcritical subcases, depending on whether a stable nontrivial invariant set
is created as the trivial equilibrium (or fixed point) becomes unstable, or vice
versa.

In contrast, global bifurcations typically occur because of a change in the
topology of stable and unstable manifolds of invariant sets (see, for example,
[168, Chs. 6 and 7]). A typical example is a homoclinic bifurcation when the
stable and unstable manifold of the same invariant set form an intersection
or tangency at a fixed parameter value. See Fig. 2.13 for two examples. Also,
stable and unstable manifolds of other invariant sets can form an intersec-
tion in a heteroclinic connection that can cause the sudden appearance or
disappearance of a chaotic attractor in a boundary crisis bifurcation [168].

(a)
μ < 0 μ = 0

μ > 0

(b)
μ < 0 μ = 0

μ > 0

tangency

tangency

W u

W s

Fig. 2.13. Two global bifurcations. (a) A homoclinic bifurcation to a saddle equi-
librium creating a single stable limit cycle. (b) A homoclinic tangency to a saddle
point in a two-dimensional map creating a homoclinic tangle, which implies the ex-
istence of a chaotic invariant set through the Smale-Birkhoff homoclinic theorem
[124, Thm. 5.3.5].

An interesting feature of smooth dynamical systems is that they can ex-
hibit a cascade of local bifurcations under parameter variation. A well-known
example is the period-doubling cascade. Here, a supercritical period-doubling
at a parameter value μ1 creates a stable period-2 orbit, followed by a further
period-doubling of the period-2 orbit at μ = μ2, creating a stable period-4
orbit, and so on, as we saw in Fig. 2.6. Remarkably, we observe a universal
scaling law, established by Feigenbaum [97], that
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lim
k→∞

μk − μk−1

μk+1 − μi
= δ = 4.6692 . . . . (2.21)

That is, the period-doubling sequence converges to a finite μ-value, and in the
limit, the rate of convergence is the same for ‘all’ systems! For more precise de-
tails see, for example, [56, 73]. This universality of the period-doubling cascade
has only been shown for a certain class of one-dimensional maps that have ‘a
single hump’ like the logistic map, but it also applies to many ODEs because
of the folded structure of their Poincaré maps. For one-dimensional maps, one
can say much more, and we find cascades of periodic orbits described by the
following theorem

Theorem 2.5 (Sharkovskii [235]). Consider the following ordering of all
positive integers:

1 < 2 < 4 < . . . 2k < 2k + 1 < . . .

. . .

< 2k+1 · (2l + 1) < 2k+1 · (2l − 1) < . . . < 2k+1 · 5 < 2k+1 · 3 <
. . . < 2k · (2l + 1) < 2k · (2l − 1) < . . . < 2k · 5 < 2k · 3 <
. . .

. . . < 2 · (2l + 1) < 2 · (2l − 1) < . . . < 2 · 5 < 2 · 3 <

. . . < (2l + 1) < (2l − 1) < . . . < 5 < 3.

If f is a continuous map of the interval [−1, 1] to itself with a periodic point of
period p, then, for any q < p (where the inequality sign refers to the ordering
above), f has a periodic point of period q.

Remarks

1. This result contains the statement ‘period 3 implies chaos’ that was the
title of the paper by Li & Yorke [178] from which the word chaos was first
used to describe bounded non-repeating motion.

2. Often in applications a period-q (q �= 2k) orbit first appears by a fold bifur-
cation upon increasing a parameter beyond the end of a period-doubling
cascade. This leads to a periodic window of parameter values within which
this orbit is stable, with the windows separated by chaotic regions. Thus
the Sharkovskii ordering often gives the ordering of stable periodic win-
dows that are observed in simulations of bifurcation diagrams ‘inside’ the
chaotic regime after the end of period-doubling cascade (see, for example,
Fig. 2.6).

Sharkovskii’s Theorem relies heavily on the smoothness assumption for the
map. An important feature of this book, and especially the results in Chapters
3 and 4, will be the identification of other types of cascades of stable periodic
orbits close to a bifurcation point. We shall see that these cascades do not
generally follow the Sharkovskii ordering, in that either the chaos is robust
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(i.e., has no periodic windows), or if windows exist they obey period-adding
type orderings for which we see intervals of periodic motions of period n
obeying the simple ordering n < n+ 1 < n+ 2 < . . .. Indeed, as we shall see,
period-adding is one of the unifying features of the behavior of non-smooth
systems.

2.2 Piecewise-smooth dynamical systems

We now move onto the main theme of this chapter where we set the scene for
a systematic study of the dynamics of non-smooth systems. Motivated by the
case studies in Chapter 1, we shall introduce three classes of piecewise-smooth
system: maps, flows and hybrid systems. Note that a complete existence and
uniqueness theory does not exist, as far as we are aware, for these quite broad
classes of system. Instead, in Sec. 2.3 below, we shall show the relation of these
classes to other more precise formulations for the description of non-smooth
dynamics for which such theory does exist. Nevertheless, our rather loose
classification, while perhaps lacking mathematical rigor, shall prove highly
useful in explaining the dynamics observed in example systems.

2.2.1 Piecewise-smooth maps

Definition 2.18. A piecewise-smooth map is described by a finite set of
smooth maps

x �→ Fi(x, μ), for x ∈ Si, (2.22)

where ∪iSi = D ⊂ R
n and each Si has a non-empty interior. The intersection

Σij between the closure (set plus its boundary) of the sets Si and Sj (that
is, Σij := S̄i ∩ S̄j) is either an R

(n−1)-dimensional manifold included in the
boundaries ∂Sj and ∂Si, or is the empty set. Each function Fi is smooth in
both the state x and the parameter μ for any open subset U of Si.

(a) (b) (c)

Fig. 2.14. Examples of piecewise-smooth one-dimensional maps: (a) piecewise-
linear continuous map; (b) piecewise-linear discontinuous map; (c) square-root piece-
wise smooth map. In each case S1 = {x < 0}, S2 = {x > 0} and Σ12 = {x = 0}.
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A set Σij for a piecewise-smooth map is usually termed a border or dis-
continuity boundary that separates regions of phase space where different
smooth maps apply. Examples of piecewise-smooth one-dimensional maps are
given in Fig. 2.14. Note that in the above definition we allow the possibility
that one of the component maps Fi may itself be non-smooth (in the sense of
having infinite or ill-defined derivatives) at the boundary Σij . For example,
the square-root map in Fig. 2.14(a) is such that the first derivative of F2(x)
tends to ∞ as x→ 0. We also include the case that Fi �= Fj along Σij , so that
the map has a jump in state as in Fig. 2.14(b). Such maps are discontinuous
piecewise-smooth maps. In this case, there are a number of choices that one
can make about the value of the map for points in Σij : for example, taking
the average of Fi and Fj there; or allowing the map to be set valued at this
point, taking all possible convex combinations {Fi + λ(Fj − Fi) : 0 ≤ λ ≤ 1}.
In practice, such choices make little practical difference to the dynamics of
the map, since they describe what happens to a set of points of zero measure.

Definition 2.19. The order of singularity of a point x̂ ∈ Σij of a continu-
ous piecewise-smooth map is the order of the first non-zero term in the formal
power-series expansion of F1(x) − F2(x) about x = x̂.

Remarks

1. This order is −1 times the usual definition of the order of a singularity
in complex variable theory. That is, a complex f(z) is said to have a pole
with singularity of O(n) if its Laurant series expansion starts with a term
of order z−n. Here we are saying that the map has singularity of order n
if the Taylor series expansion of F1(x)−F2(x) starts with a term of order
xn.

2. Note that we allow this order to be non-integer:

Example 2.5 (square-root map). Consider the square-root map described
in case study VII. According to the functional form (1.32), we have

S1 = {x < σ}, S2 = {x > σ}, Σ12 = {x = σ},

F1 =
√
σ − x+ rσ, F2 = rx,

and hence
[F1 − F2](σ + ε) = ε1/2 +O(ε).

In this case we say that this map has an O(1/2) singularity.

Maps that are locally piecewise-linear and continuous such as Fig. 2.14(a)
and case study VIII are said to have anO(1) singularity. Clearly differentiation
of these one-dimensional maps with respect to x leads to maps with singulari-
ties of one order lower. For this reason we shall say that a point of discontinuity
of a map with a jump, as in Fig. 2.14(b) and the heart attack map, case study
VI, has an O(0) singularity at a point x ∈ Σij if 0 < ‖F1(x) − F2(x)‖ <∞.
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(a) (b)

S1 S2

Σ12

Si Sj

Σij

Fig. 2.15. Illustrating schematically trajectories of (a) a piecewise-smooth flow, and
(b) a piecewise-smooth map.

2.2.2 Piecewise-smooth ODEs

Definition 2.20. A piecewise-smooth flow is given by a finite set of ODEs

ẋ = Fi(x, μ), for x ∈ Si, (2.23)

where ∪iSi = D ⊂ R
n and each Si has a non-empty interior. The intersec-

tion Σij := S̄i ∩ S̄j is either an R
(n−1)-dimensional manifold included in the

boundaries ∂Sj and ∂Si, or is the empty set. Each vector field Fi is smooth
in both the state x and the parameter μ, and defines a smooth flow Φi(x, t)
within any open set U ⊃ Si. In particular, each flow Φi is well defined on both
sides of the boundary ∂Sj.

A non-empty border between two regions Σij will be called a discontinu-
ity set, discontinuity boundary or, sometimes, a switching manifold.
We suppose that each piece of Σij is of codimension-one, i.e., is an (n − 1)-
dimensional smooth manifold (something locally diffeomorphic to R

n) embed-
ded within the n-dimensional phase space. Moreover, we shall demand that
each such Σij is itself piecewise-smooth. That is, it is composed of finitely
many pieces that are as smooth as the flow. See Fig. 2.15(a).

Note that Definition 2.20 does not uniquely specify a rule for the evolution
of the dynamics within a discontinuity set. One possibility is to assign each
Σij as belonging to a single region S̄i only. That is, Fi rather than Fj applies
on Σij . In fact, such notions make little difference except in the case where
the flow becomes confined to the boundary (Filippov trajectories). Before we
get to that case, let us first consider what might happen to the flow of the
piecewise-smooth ODE as we cross a discontinuity boundary Σij .

Definition 2.21. The degree of smoothness at a point x0 in a switching
set Σij of a piecewise-smooth ODE is the highest order r such the Taylor
series expansions of Φi(x0, t) and Φj(x0, t) with respect to t, evaluated at t = 0,
agree up to terms of O(tr−1). That is, the first non-zero partial derivative with
respect to t of the difference [Φi(x0, t) − Φj(x0, t)]|t=0 is of order r.
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Remarks

• This definition almost accords with the usual definition of smooth func-
tions, thinking of the flow at a point as being a function of t. Thus, if
we say that a piecewise-smooth flow has degree of smoothness r across a
discontinuity boundary, then it is Cr−1 but not Cr. The vector field is
one degree less smooth (because it is by definition the time derivative of
the flow). Thus for a flow with degree of smoothness r according to the
definition, the vector field will be Cr−2 but not Cr−1.

• Note the subtle distinction between this definition and the corresponding
Definition 2.19 for the singularity of a map. Here we do not allow the
possibility for the degree of smoothness to be non-integer. [Although there
is a growing literature on differential equations with fractional order right-
hand sides (see, for example, [155]) we shall not treat them here.]

Now, consider an ODE local to a single discontinuity set Σ12 that can be
written

ẋ =
{

F1(x, μ), if x ∈ S1

F2(x, μ), if x ∈ S2
,

where F1 generates a flow Φ1, F2 a flow Φ2. We have

∂Φi(x, t)
∂t

∣

∣

∣

∣

t=0

= Fi(x),

∂2Φi(x, t)
∂t2

∣

∣

∣

∣

t=0

=
∂Fi

∂t
=
∂Fi

∂Φi

∂Φi

∂t
= Fi,xFi(x),

where a second subscript x means partial differentiation with respect to x.
Similarly

∂3Φi(x, t)
∂t3

∣

∣

∣

∣

t=0

= Fi,xxF
2
i + F 2

i,xFi,

etc. So, if F1 and F2 differ in an mth partial derivative with respect to the
state x, we find that the flows Φ1 and Φ2 differ in their (m + 1)st partial
derivative with respect to t.

Therefore, if F1(x) �= F2(x) at a point x ∈ Σ12, then we have degree of
smoothness one there. Systems with degree one are said to be of Filippov type.
Examples of Filippov systems from Chapter 1 include case studies III, IV and
V; the relay controller, friction oscillator and DC–DC converter examples.

Alternatively if F1(x) = F2(x) but there is a difference in the Jacobian
derivatives F1,x �= F2,x at x, then the degree of smoothness is said to be 2. A
difference in the second-derivative tensor F1,xx �= F2,xx gives smoothness of
degree three, etc. Systems with smoothness of degree two or higher may be
called piecewise-smooth continuous systems, typified by the next example

Example 2.6 (bi-linear oscillator). The bi-linear oscillator, case study II, can
be written as the first-order system by setting u = x1,v = x2 and t = x3 so
that
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ẋ1 = x2 (2.24)
ẋ2 = −2ζx2 − kix1 + cos(x3) (2.25)
ẋ3 = 1. (2.26)

where the value of ki depends on region Si, with S1 = {x1 < 0}, S2 =
{x1 > 0}. Clearly the flow here has degree of smoothness two at all points in
Σ = {x1 = 0}. If instead k1 = k2 and the coefficient ζ in (2.24)–(2.26) had
been allowed to vary across Σ, then the degree of smoothness would be one,
at all points in Σ except where x2 = 0; in which case, the degree would be
two. Thus we have cases where the degree of smoothness is the same at all
points in Σ and cases where it is not. This distinction shall become crucial
when we consider grazing bifurcations in Chapters 6 and 7.

Definition 2.22. A discontinuity boundary Σij is said to be uniformly
discontinuous in some domain D if the degree of smoothness of the sys-
tem is the same for all points x ∈ Σij ∩ D. We say that the discontinuity is
uniform with degree m if the first non-zero partial derivative of Fi − Fj

evaluated on Σij is of order m− 1. Furthermore, the degree of smoothness is
one if Fi(x) − Fj(x) �= 0 for x ∈ Σij ∩ D.

In fact, the assumption of uniform discontinuity imposes a great restric-
tion on the form that Fi − Fj can take. Consider a general piecewise-smooth
continuous system with a single boundary Σ that can be written as the zero
set of a smooth function H

ẋ =
{

F1(x), H(x) > 0,
F2(x), H(x) < 0, (2.27)

where F1(x) = F2(x) if H(x) = 0. Suppose that the flow is uniformly
discontinuous with degree m as in Definition 2.22. Then local to H = 0 we
must be able to write

F2(x) = F1(x) + J(x)H(x)m−1, (2.28)

for some smooth function J(x) ∈ R
n. To see this, note that H may locally be

chosen as one of the co-ordinates close to the boundary and that a non-zero
coefficient of H(x)k in the Taylor series expansion of F2 − F1, for k < m− 1,
means that the kth derivative of F2 −F1 does not vanish on Σ. Hence Hm−1

must be a factor of F2 − F1. For example, for the bi-linear oscillator (2.24)–
(2.26), which has m = 2, we have H(x) = x1 and J(x) = (0,−k2 + k1, 0)T .

2.2.3 Filippov systems

The case of systems a with uniform degree of smoothness one must be treated
with great care since we have to allow the possibility of sliding motion. In order
to define sliding, it is useful to think of a system (2.27) local to a discontinuity
boundary between two regions defined by the zero set of a smooth function
H(x) = 0; see Fig. 2.16.
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Definition 2.23. The sliding region of the discontinuity set of a system of
the form (2.27) with uniform degree of smoothness one is given by that portion
of the boundary of H(x) for which

(HxF1) · (HxF2) < 0.

That is, HxF1 (the component of F1 normal to H) has the opposite sign to
HxF2. Thus, the boundary is simultaneously attracting (or repelling) from both
sides.

(a) (b)

Fig. 2.16. A typical discontinuity boundary of a two-dimensional Filippov system
showing the behavior of the vector fields on both sides. Bold and dashed regions
represent (a) attracting and (b) repelling sliding motion, respectively. Dotted lines
indicate three individual trajectory segments.

Note that the case of most interest is when the sliding region is attracting
since, as is clear from Fig. 2.16, repelling sliding motion cannot be reached
by following the system flow forward in time. However, attracting sliding mo-
tion can be reached in finite time. Henceforth, sliding will always be taken to
mean ‘attracting sliding’ unless otherwise stated. Such motion leads to loss
of information on initial conditions. Compare for example the two trajecto-
ries A and B of the two-dimensional flow represented in Fig: 2.16; they enter
the sliding region at different points, but leave at the same point. Thus while
they came from different initial conditions in the past, their future evolution
is identical (the trajectory segment C). Thus, there is an infinite rate of at-
traction in forward time and the flow is not uniquely defined in reverse time.
Another simple example of non-inevitability in mechanics is that of plastic
impacts (e.g., imagine dropping a mature tomato on the floor!). Whatever
the pre-impact velocity, the post-impact velocity is always zero.

As a consequence, any Poincaré mapassociated with trajectories that in-
volve sliding motion will be noninvertible and have a multiplier that is zero
(corresponding to the infinite rate of attraction). Now, the formalism of
piecewise-smooth systems itself does not say how to define the evolution of
the system as it undergoes sliding. One has to do something extra.

Two approaches exist in the literature for formulating the equations for
flows that slide when written in the general form (2.27). These are Utkin’s
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equivalent control method [257] and Filippov’s convex method [100]. In Utkin’s
method one supposes that the system flows according to the sliding vector
field F12, which is the average of the two vector fields F1 (in region S1) and
F2 (in region S2) plus a control β(x) ∈ [−1, 1] in the direction of the difference
between the vector fields:

F12 =
F1 + F2

2
+
F2 − F1

2
β(x). (2.29)

Specifically the equivalent control is

β(x) = −HxF1 +HxF2

HxF2 −HxF1
.

Filippov’s method, by contrast, takes a simple convex combination of the two
vector fields

F12 = (1 − α)F1 + αF2 (2.30)

with 0 ≤ α ≤ 1, where

α(x) =
HxF1

Hx(F1 − F2)
. (2.31)

Sometimes, where there is no ambiguity, we shall write

Fij := Fs

to represent the sliding vector field
Now it is a simple exercise to show that the above two methods are alge-

braically equivalent with β = 2α−1. (Note though that as shown in [257] there
are some special cases where the two methodologies lead to subtly different
results.) In both cases it is straightforward to show that the vector field Fs

lies orthogonal to the direction Hx and so lies tangent to Σ. Utkin’s method
has the interpretation that β is precisely the control power that is needed to
pull the flow back to being in a direction that is tangent to Σ; see Fig. 2.17(a).
Another interpretation, from Filippov’s method, is that just the right convex
combination of the vector fields needs to be taken for the resulting field Fs

to lie in Σ; see Fig. 2.17(b). A final interpretation is obtainable by separat-
ing the boundary to regions S1 and S2 slightly, within a hysteresis loop; see
Fig. 2.17(c). That is, an initial condition in S1 is allowed to evolve under flow
F1 until penetrating a small distance ε into S2, then evolves under F2 until
passing back through Σ to a distance ε on the other side. (Thinking of the
central heating example introduced in the Introduction, this would be where
the temperature threshold for switching on the boiler is slighter greater than
that for switching it off.) Then we can consider α to be proportion of time
that a trajectory spends in the region S1, in the limit ε→ 0.

Returning to the perfect sliding case, if the control β(x) = −1 (equivalently
α = 0), then the flow must be governed by F1 alone, which must by definition
be tangent to Σ at such a point. Similarly, β = 1 (α = 1) represents a tangency
of the flow F2 with Σ. Hence we can define the sliding region as
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(a) (b) S1F2

ΣFs

α

S2(1 − α)

F1

S1

F2

ΣFs

b

a μ

F1

S2

a = (F1 + F2)/2

time

t2

t1
α = t1/t2

(c)

b = (F2 − F1)/2

u

ε

−ε

Fig. 2.17. The equivalent definitions of the sliding flow Fs, as defined in the text,
illustrated in the two-dimensional case. In (c) the variable u is in the direction Hx

orthogonal to Σ.

̂Σ := {x ∈ Σ : −1 ≤ β ≤ 1},

and the boundaries of the sliding region as

∂ ̂Σ± := {x ∈ Σ : β = ±1},

with tangency of one vector field or other occurring at the two different types
of boundary.

2.2.4 Hybrid dynamical systems

Hybrid dynamical systems are combinations of maps and flows, giving rise to
discontinuous, piecewise-smooth flows. They can arise both as models of im-
pacting systems or in the context of the interaction between digital and analog
systems. The notion of a hybrid dynamical system is a broad concept that en-
compasses a number of different formalisms in the literature. For example,
hybrid automata [71, 183] are defined as dynamical systems with a discrete
and a continuous part. The discrete dynamics can be represented as a graph
whose vertices are the discrete states (or modes) and whose edges are transi-
tions. The continuous states take values in R

n and evolve along trajectories,
typically governed by ODEs or differential algebraic equations. The interac-
tion between the discrete and the continuous dynamics takes place through
invariants and transition relations. Each mode has an invariant associated
with it, the violation of which as the system evolves says that a transition
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must take place. The transition relations describe conditions on the contin-
uous state that enable the transition to occur and also the effect (or reset)
that the transition will have on the continuous state. This formalism is really
quite broad and covers a wide variety of possible systems both physical and
virtual, and in fact all the other formulations we describe in this chapter can
be seen as just a special case. The drawback with such a general description
is that it does not necessarily allow much general information to be gleaned,
which applies to all systems of this class. For more details, see the book by
Van der Schaft and Schumacher [71].

In this book we shall reserve the name ‘hybrid’ for a specific kind of
piecewise-smooth system that comprises a collection of different smooth flows
and maps; see Fig. 2.18

Definition 2.24. A piecewise-smooth hybrid system comprises a set of
ODEs

ẋ = Fi(x, μ), if x ∈ Si, (2.32)

plus a set of reset maps

x �→ Rij(x, μ), if x ∈ Σij := S̄i ∩ S̄j . (2.33)

Here ∪iSi = D ⊂ R
n and each Si has a non-empty interior. Each Σij is either

an R
(n−1)-dimensional manifold included in the boundary ∂Sj and ∂Si, or is

the empty set. Each Fi and Rij are assumed to be smooth and well defined in
open neighborhoods around Si and Σij, respectively.

S1 S2

Σ Σ

R

R

x−

x+

(a) (b)

S+ S−

Fig. 2.18. (a) A hybrid system and (b) the impacting class of hybrid system.

In this book we will mostly study a special type of hybrid systems mo-
tivated by the impact oscillator example described in case study I. For such
systems we generally consider surfaces Σij that act as hard constraints, so
that the reset Rij maps the set Σij back to itself.

Definition 2.25. An impacting hybrid system is a piecewise-smooth hy-
brid system for which Rij : Σij → Σij, and the flow is constrained locally to
lie on one side of the boundary; this is, in Si = Si ∪Σij.
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We shall often refer to the reset map Rij in this context as being the
impact law or impact rule. The discontinuity boundaries Σij will be referred
to as impact surfaces and the event of a trajectory intersecting Σij as an
impacting event or just an impact.

Throughout this book, we shall often consider a restrictive class of impact-
ing hybrid systems that contain just one impact surface Σ. Suppose that such
a surface Σ can be defined by the zero set of a smooth function H(x),

Σ = {x : H(x) = 0}, and let S+ = {x : H(x) > 0}, (2.34)

with the dynamics constrained to the region S+; see Fig. 2.19. Such systems
can be thought of as describing the dynamics local to any impact surface in a
general, multiple region system. Locally the dynamics may be written in the
form

ẋ = F (x) if H(x) > 0, (2.35)

x �→ R(x) if H(x) = 0, (2.36)

for a smooth vector field F (which is well defined in a full neighborhood
of Σ including for H < 0) and reset map R. Suppose an impact occurs at
time t0. Let x− and x+ represent the intersection of the flow with Σ both
immediately before and immediately after the impact, so that x− = limt→t−0

,
x+ = limt→t+0

. Hence we can write the impact surface as

x+ = R(x−). (2.37)

x

psi

Σ

S+

RRR

Fig. 2.19. The surface Σ and a multiple impacting trajectory for an impacting
hybrid system with a single discontinuity boundary.

In order to be definite, we shall also assume a restrictive class of impact law
that depends on the normal velocity v(x) at which the trajectory approaches
the impact manifold, given by

v(x) ≡ dH/dt = HxF. (2.38)

Specifically, we suppose that
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R(x) = x+W (x)HxF = x+W (x)v(x) (2.39)

for a some smooth functionW (x) ∈ R
n. To motivate why (2.39) is a reasonable

form to take, note that we would like an impact law that takes a grazing
trajectory (one for which v(x) = 0) to itself and that is a smooth function of
v(x) otherwise. More complex forms of reset maps than (2.39) are required
to deal with impacting mechanical systems with friction. For example, the
so-called Painlevé paradox deals with mechanical systems that can both slide
and impact; see, for example, [243, 174].

Given an impact rule of the form (2.39), the surface Σ can therefore be
divided into three separate regions, Σ−, Σ+ and Σ0 according to whether the
normal velocity is, respectively, negative, positive or zero:

Σ− = {x ∈ Σ : v(x) < 0}, Σ+ = {x ∈ Σ : v(x) > 0},
Σ0 = {x ∈ Σ : v(x) = 0}.

In general, if we write the impact law in the form (2.37), then we have x− ∈ Σ−

and x+ ∈ Σ+. In this case a flow in S+ intersects Σ−, is mapped to Σ+ and
then continues in S+. The set Σ0 is called the grazing set, and impacts close
to it lead to subtle dynamics that we will analyze in detail in Chapter 6.

Example 2.7 (impact oscillator). Let us show that the impact oscillator with
the simple coefficient of restitution law for impact, studied in case study I, fits
into this framework. We can write the equations of motion (1.1) in the form

(

ẋ1

ẋ2

)

=
(

0 1
−1 −2ζ

)(

x1

x2

)

+
(

0
cos(ωt)

)

, (2.40)

together with the impact rule
(

x1(t+j )
x2(t+j )

)

=
(

1 0
0 −1 − r

)(

x1(t−j )
x2(t−j )

)

, (2.41)

which applies at times tj for which x1 = σ. Letting x3 = t, we see that this fits
into the above framework with x = (x1, x2, x3)T , H = x1 − σ, HxF (x) = x2,
and W (x) = −(0, 1 + r, 0)T .

Many more examples of hybrid systems of this form will be given in Chap-
ter 6, in which the detailed dynamics of hybrid systems and their bifurcations
will be analyzed.

Let us now consider the basic flow of the simple impacting system (2.35)–
(2.39). Starting from an initial condition x(0) = x0 in S+, the ODE (2.35)
generates a smooth flow Φ(x0, t) up until the flow strikes Σ, at time t0, say.
Suppose that this impact is transversal, so that the normal velocity v(x(t0)) <
0. Hence x− = x(t0) ∈ Σ−. This point is then mapped instantaneously under
the action of the reset map to the point x+ = R(x−). If v(x+) > 0, so
that x+ ∈ Σ+, then the flow moves away from Σ back into the set S+ and is
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described by the flow Φ(x+, t). In principle, this scenario can repeat arbitrarily
often, as illustrated in Figure 2.19.

However, this is not the only possible dynamics of the system. Consider
a grazing point for which v(x−) = 0, where the impact map becomes the
identity. In order to understand what happens, it is useful to define the normal
acceleration of the flow with respect to the boundary:

a(x) = d2H/dt2 = (HxF )xF = HxxFF +HxFxF. (2.42)

Now, in the case where a(x−) > 0 at a grazing point, the curvature of the
flow will cause the trajectory to immediately leave Σ. However, if a(x) < 0,
then the flow will become stuck to the boundary, rather akin to the sliding
flow of a Filippov system. Thus the sticking subset of the grazing set Σ0 is
determined by the conditions

Σ0
− ≡ {x : H(x) = 0, v(x) = 0, a(x) < 0}.

The sticking motion evolves under the action of the vector field F , con-
strained to lie on the surface Σ. If we define the impact law according to
(2.39), then it is possible to express the sticking vector field as

ẋ = Fs(x) = F (x) − λ(x)W (x), (2.43)

where

λ(x) =
a(x)

(HxF )xW
. (2.44)

To see that this corresponds to a sticking flow, note that in order to stick
we require H(x(t)) = v(x(t)) ≡ 0. Differentiating the conditions H(x) = 0
and v(x) = 0 with respect to time, we have Hxẋ = 0 and vxẋ = 0. The first
of these conditions is satisfied identically when HxW = 0, and the second
condition if

0 = (HxF )xF − λ(HxF )xW = a(x) − λ(HxF )xW, (2.45)

which defines λ according to (2.44). Note that (2.43)–(2.44) define a smooth
flow Φs(x, t), which is also defined within a neighborhood of Σ, but for which
the set Σ{x : H(x) = 0} is invariant. For the hybrid system, the sticking flow
ceases to apply when the trajectory leaves Σ0

−. At such a point a(x) = 0, but
da(x)

dt := ax(x)ẋ > 0 and hence the system moves into S+ where the original
flow Φ applies. The condition that the vector field remains in the sticking
region is λ(x) > 0. The formalism of complementarity systems described in
the next section helps us understand the role played by this extra variable λ.

Typically, unlike the sliding motion in Filippov systems, impacting systems
do not enter a sticking region directly, but via a chattering sequence (also
known in control theory as a Zeno phenomenon [145]). Such a sequence begins
if an impact occurs within Σ−, close to the set Σ0 with v(x+) � 1 and
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R

sticking region

Fig. 2.20. A chattering sequence followed by sticking and release.

a(x+) < 0; see Fig. 2.20. There follows an infinite sequence of impacts, of
successively reduced velocity, which converges in finite time, onto a point in
the sticking set [42, 203]. After the accumulation of such a sequence, the
motion will evolve in the sticking set in the manner described above. We shall
return to an analysis of chattering in Chapter 6. Chattering sequences are a
commonly observed feature of hybrid systems and require special care when
computing the flow numerically.

Hybrid systems, then, generally have state jumps. This should be con-
trasted with Filippov systems that have jumps in the vector field (time deriva-
tive of the flow) and piecewise-smooth continuous systems that have jumps
in the second or higher derivative of the flow. Thus we can extend the notion
of degree of smoothness in Definition 2.21 to say:

Definition 2.26. A hybrid dynamical system that undergoes a jump in the
system state Φ(x, t) �→ Rij(Φ(x, t)) on a discontinuity boundary Σij is said to
have degree of smoothness zero.

2.3 Other formalisms for non-smooth systems

The choice of formalism we choose in this book is essentially to deal with
piecewise-smooth maps or with piecewise-smooth systems that have integer
degree of smoothness across each of its boundaries Σij . However, there is no
guarantee that such a formulation leads to existence or uniqueness of solutions
in all circumstances. Let us therefore briefly present several other formalisms
for which more mature analytic theory is available.

2.3.1 Complementarity systems

Complementarity dynamical systems formalize the notion of a mechanical
system with unilateral constraints. Such systems can be written most simply
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in the form of a differential algebraic equation plus inequality constraints (see
for example the reviews by Brogliato and co-workers [38, 127] and references
therein):

ẋ = f(x, λ), (2.46)
g(x,w, λ) = 0, (2.47)
0 ≤ w⊥λ ≥ 0, (2.48)
re-initialization rule R for state x. (2.49)

Here x ∈ R
n is the system state, g ∈ R

m are a set of side relations, λ ∈ R
l

is a so-called slack variable and w ∈ R
l is the corresponding signal or system

output. The expression w⊥λ means that the vector w is orthogonal to λ,
whereas λ,w ≥ 0 means that all components of λ and w are non-negative.
Hence, if a component wi is positive then the corresponding λi must be zero,
and vice versa.

Let us consider the dynamics of a system written in the form (2.46)–
(2.47). The set of m relations (2.47) implicitly defines the signal w in terms
of the states and slack variables (often the relations can be written explicitly
as w = g̃(x, λ)). The most important part of the system is the orthogonality
(or ‘complementarity’) relation (2.48). This should be understood component-
wise. That is, for each i, either λi is zero and wi is non-negative or λi is positive
and wi is zero. At transition points, that is at times tj for which λi(tj) and
wi(tj) are both zero for some i ≤ m, then one in general has to apply a rule
(2.49) to reset the state x(t+j ) = R(x(t−j ), w, λ). Complementarity systems
may be seen as a special case of hybrid automata, where the discrete states
are the λi, the particular set of wi that are non-zero describe the invariants,
and the state re-initialization rule (and choice of new set of non-zero wi) gives
the transition relations.

Example 2.8 (impact oscillator). We illustrate the complementarity frame-
work with the impact oscillator, case study I, which can be written in the
complementarity form

(

ẋ1

ẋ2

)

=
(

0 1
−1 −2ζ

)(

x1

x2

)

+
(

0
cos(ωt) + λ

)

,

w = x1 − σ,

0 ≤ w⊥λ ≥ 0,
(

x1(t+j )
x2(t+j )

)

=
(

1 0
0 −1 − r

)(

x1(t−j )
x2(t−j )

)

. (2.50)

For this example, there are two kinds of motion (active modes): free motion of
the oscillator where λ = 0 and w > 0, which implies that x1 > σ; and sticking
motion where λ > 0 and w = 0; hence, x1 = σ. Here, the slack variable λ
should be interpreted as a Lagrange multiplier, namely the force being exerted
by the obstacle on the particle to stop it from penetrating. Clearly if this force
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became negative, then the particle would be pulled into the obstacle; hence
the requirement that λ ≥ 0. In fact, it is possible to calculate explicitly the
value that λ must take. Suppose that the particle is instantaneously in contact
with the obstacle at some time τ . Then x1(τ) = σ. If it is to remain in contact,
then we require that x1(t) ≡ σ for some time interval t ∈ (τ, τ + ε). Hence
ẋ1(τ) = 0 and ẍ1(τ) = 0 also. The first of these conditions gives x2(τ) = 0,
and the second gives

λ = σ − cos(ωt). (2.51)

Hence, sticking motion can only occur for t-values such that cos(ωt) < σ.
In order to describe the motion completely we need to consider the tran-

sition times tj when both λ and w are zero. Suppose first that the system is
in free motion at t−j and reaches the constraint x1 = σ. Then w = 0. Here,
we apply the reset rule (2.50), which is just Newton’s restitution law. Now,
exceptions arise when the velocity x2 = 0 at the impact point, so that grazing
occurs. Then we have to look at the sign of ẋ2 = cos(ωt−j ) − σ. If this is
positive, then we have a grazing trajectory, which immediately passes back
into free motion again, since the reset rule gives ẋ1(t+j ) = x2(t+j ) = 0 but
ẍ1(t+j ) = ẋ2(t+j ) > 0 and so x1 > σ for t = tj + ε for some ε < 0. However,
if ẋ2 < 0, then a sticking motion ensues with a non-zero value of λ. As we
have described above, the sticking region can only be entered after an infinite
sequence of impacts (a chattering sequence). In contrast, the exit boundary
from the sticking region is given by a zero of λ defined by (2.51). Hence, at
this point we have that the first three time derivatives of x1 are zero, but
d3

dt3x1(t) = −ω sin(ωt), which if negative implies that we are once again in the
regime of free motion for small subsequent times. (In practice, this quantity
will always be negative since the particle enters the sticking region at some
time t such that cos(ωt) < σ and leaves it at the first later time at which
cos(ωt) = σ. Hence the angle ωt must be in the third or fourth quadrant,
depending on whether σ > 0 or σ < 0. Hence sin(ωt) must be positive.)

We can generalize this example by putting any piecewise-smooth ODE
system into complementarity form, at least local to a single discontinuity
boundary. For piecewise-smooth continuous systems in a neighborhood of a
single uniformly discontinuous boundary, where F1(x, μ) − F2(x, μ) is of the
form (2.28), a corresponding complementarity formulation of (2.27) is

{

ẋ = F1(x, μ) + λm−1J(x, μ), w = −H(x, μ) + λ,
0 ≤ w ⊥ λ ≥ 0, (2.52)

for which there is no need for a reset rule. Table 2.1 shows the possible active
modes of motion of the system.

In the Filippov case, i.e., for systems with degree of smoothness one, a
different form of complementarity formulation is required. For example, given
a two-zone system (2.27) with a single discontinuity boundary, we have
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Table 2.1. The different possible active modes for the dynamics of the piecewise-
smooth continuous ODE (2.52).

w and λ dynamical system

w = 0, λ > 0 ẋ = F2 = F1(x, μ) + H(x, μ)m−1J(x, μ)

w > 0, λ = 0 ẋ = F1(x, μ)

w = 0, λ = 0 ẋ = F1(x, μ) and H(x, μ) = 0

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẋ = F1(x, μ) + λ1(F2(x, μ) − F1(x, μ)),
w1 = −H(x, μ) + λ2,
w2 = 1 − λ1,
0 ≤ w1 ⊥ λ1 ≥ 0,
0 ≤ w2 ⊥ λ2 ≥ 0.

(2.53)

Table 2.2 gives the different possible dynamical regimes of such systems.

Table 2.2. The different possible active modes for the dynamics of the Filippov
system (2.53).

C1 C2 dynamical system

w1 = 0, λ1 = 1 w2 = 0, λ2 ≥ 0 ẋ = F2(x, μ)

w1 ≥ 0, λ1 = 0 w2 = 1, λ2 = 0 ẋ = F1(x, μ)

w1 = 0, 0 ≤ λ1 ≤ 1 0 ≤ w2 ≤ 1, λ2 = 0 ẋ = F1(x, μ) + λ1(F2(x, μ) − F1(x, μ))
H(x, μ) = 0

Notice that the concept of the sliding vector field is embedded in the
complementarity description of the system of interest. In fact, in the third
case in Table 2.2, the dynamical system is a convex combination of the two
original vector fields. The parameter λ1 can be calculated directly from the
requirement that H(x, μ) ≡ 0 along such solutions. Hence

dH

dt
(x, μ) := Hx(x, μ) [F1(x, μ) + λ1(F2(x, μ) − F1(x, μ))] = 0. (2.54)

Thus
λ1 =

HxF1

HxF1 −HxF2
,

which is the parameter α in Filippov’s convex method introduced in (2.30).
There thus seems an advantage of the complementarity framework over the
piecewise-smooth one in this case. Checking the slack variables will automat-
ically detect when sliding is occurring and when the sliding region is exited.
That we had to differentiate the constraint once to obtain λ1 means that
the constraint and the differential equation have relative degree one. Equiv-
alently the sliding mode of the complementarity system is an index 1 differ-
ential algebraic equation (DAE). Note, in contrast, that the complementarity
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formulation for piecewise-smooth continuous systems (2.52) does not require
differentiation of the constraint, since λ is given explicitly. Thus the constraint
has relative degree zero, and the mode when w = 0 is a DAE with index 0,
which is equivalent to just an ODE.

Finally, consider a hybrid system with a single impact boundary for which
the reset map is written in the form (2.39). This can be written as the com-
plementarity system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ = F (x, μ) − λW (x, μ),
w = H(x, μ),
0 ≤ w ⊥ λ ≥ 0,
x(t+) = x(t−) +W (x(t−), μ)HxF (x(t−), μ),

(2.55)

which is a generalization of the complementarity framework for the impact
oscillator (2.50). Note that this has relative degree two in the sticking mode,
since the value for λ is obtained by differentiating the constraint H(x) = 0
twice with respect to t.

The complementarity framework is not just restricted to problems with
single discontinuity boundaries. In principle each of the above kinds of con-
straints and corresponding slack variables can be concatenated to take account
of multiple boundaries.

Σ1

̂Σ1

Σ2

̂Σ2

Fig. 2.21. Higher-order sliding occurring when two sliding regions ̂Σ1 and ̂Σ2 in-
tersect.

For example, suppose a piecewise-smooth system is written in the form

ẋ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F1(x), if H1(x) > 0, H2(x) > 0,
F2(x), if H1(x) > 0, H2(x) < 0,
F3(x), if H1(x) < 0, H2(x) > 0,
F4(x), if H1(x) < 0, H2(x) < 0;
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see Fig. 2.21. This can be rewritten as the following complementarity system:

ẋ = λ1λ2F1(x) + λ1(1− λ2)F2(x) + (1− λ1)λ2F3(x) + (1− λ1)(1− λ2)F4(x),
(2.56)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

w1 = −H1(x, μ) + λ3, w2 = −H2(x, μ) + λ4,
w3 = 1 − λ1, w4 = 1 − λ2,
0 ≤ w1 ⊥ λ1 ≥ 0, 0 ≤ w2 ⊥ λ2 ≥ 0,
0 ≤ w3 ⊥ λ3 ≥ 0, 0 ≤ w4 ⊥ λ4 ≥ 0.

(2.57)

The most interesting case is when both w1 and w2 are zero, whereas w3 and w4

are both positive. Then, according to (2.57), we have 0 < λ1 < 1 and 0 < λ2 <
1 and the motion is constrained to a codimension-two set {H1(x) = H2(x) =
0}. The flow on this set we refer to as higher-order sliding, which we shall
return to in Chapter 8, and is given by (2.56), where λ1 and λ2 are obtained
from the pair of simultaneous equations that arise from differentiation of the
constraints

H1x [λ1λ2F1 + λ1(1 − λ2)F2 + (1 − λ1)λ2F3 + (1 − λ1)(1 − λ2)F4] = 0,
H2x [λ1λ2F1 + λ1(1 − λ2)F2 + (1 − λ1)λ2F3 + (1 − λ1)(1 − λ2)F4] = 0.

Once the problem has been formulated in the complementarity framework,
it is possible to study its well-posedness using the analytic tools developed for
unilaterally constrained optimization; see, for example, [40] for an extensive
review. For example, any complementarity systems for which we can write

w = G(x) +Dλ

for a smooth function G and invertible matrix D, is equivalent to a set of
ODEs with degree of smoothness at least 1. If the matrix D is a so-called
P -matrix (i.e., a matrix with positive principal minors), then it can be shown
that the corresponding complementarity problem has a unique solution. This
means that systems such as (2.52) where D = 1 and G = H(x, μ) have a
unique solution for all parameter values μ.

Complementarity systems are also useful because they provide a general
framework for describing systems with more than one (perhaps many thou-
sands) of constraints. They come armed with a set of numerical solution tech-
niques, that do not require the precise detection of the events tj , where λi

and wi are both zero; see [41] for a review.

2.3.2 Differential inclusions

Another way of putting piecewise-smooth systems on a rigorous footing is to
use a variational formulation. We shall not go into details, but the key notion
is that of a differential inclusion. Here we allow the right-hand side of an
ordinary differential equation ẋ = f(x) to be not strictly a function (that is,
returning a single value f(x) for each x), but to be set-valued. For example,
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such set-valued functions arise in Coulomb dry friction laws encountered in
mechanics. Specifically, Coulomb friction models objects in contact that slip
over each other with velocity v only if their tangential contact force ft exceeds
some critical value. The function

ft = C(v) = α0sgn(v) − α1(v) + α2(v)3 (2.58)

occurring in case study IV is an example of such a law, see Fig. 2.22(a). The
problem with (2.58) is that it does not specify what value ft should take at
v = 0. Using the notion of a differential inclusion, we rewrite ft as a set-valued
function

ft(v) =
{

{[−α0, α0]}, if v = 0,
α0sgn(v) − α1v + α2v

3, otherwise.

So now, instead of ÿ + y = ft(1 − ẏ) + a cos(νt), we write

ÿ + y − a cos(νt) ∈ ft(1 − ẏ),

because at ẏ = 1, ft can take on a range of values. In [69], Deimling explains
that to obtain a well-posed problem, one has to ‘fill in’ the gap between
[−α0, α0] at v = 0 (i.e., perform a so-called convexification of the problem).

v v

ftft(a) (b)

−μ0

μ0

−μ1

μ1

Fig. 2.22. Two idealized Coulomb friction characteristics showing the tangential
force ft as a function of velocity v.

In general, any Filippov system can be written as a differential inclusion.
For example, a two-zone system can be written as

ẋ ∈ f(x), where f =

⎧

⎨

⎩

{F1(x)}, if H(x) > 0,
{F2(x)}, if H(x) < 0,

{F1(x) + α(F2 − F1)|0 ≤ α ≤ 1}, if H(x) = 0.

The concept of the inclusion is especially useful when we take more general
Coulomb friction laws like the one in Fig. 2.22(b), where the static coefficient
of friction is different from the dynamic one:

ft(v) =
{

[−μ0, μ0], if v = 0,
{μ1sgn(v)}, otherwise.
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In cases where the right-hand side f(x) of an inclusion ẋ ∈ f(x) satisfies
some quite general properties (f is upper semi-continuous, non-empty, convex
and compact for all x, and is bounded by an affine function of x), then there
is a general theory that gives the existence of absolutely continuous solutions
[69]. Unfortunately, many non-smooth systems when put into an inclusion
form do not satisfy these hypotheses.

Example 2.9 (Lagrangian systems). Another way of writing a general impact-
ing mechanical system in differential inclusion form is to use a Lagrangian ap-
proach. This leads to a second-order ODE system for generalized co-ordinates
q ∈ R

n. Consider such a system with mass matrix M(q) and generalized non-
contact forces F (q, q̇, t), in the absence of damping, that is constrained to the
region of configuration space S = {h(q) ≥ 0}. Its dynamics may be written as

M(q)q̈ + F (q̇, q, t) ∈ ∂ψS(q), if t �= tk, (2.59)
q̇(t+k ) = R(q̇(t−k )), if t = tk, (2.60)

where the {tk, k = 1, 2, 3 . . .} are the a priori unknown set of impact times
where q ∈ Σ = {h = 0}, and R is a reset rule. Here ∂φ(q) represents the
sub-differential (the set of all possible one-sided limits limt→0

φ(q+tv)−φ(q)
t for

any vector v) and ψS1 is the indicator function of the set S1, which is 0 for all
points inside S1 and infinite outside. Thus ∂ψS1 is the empty set for all points
outside S1, is equal to the normal cone NK(x) = {z|z · (x − z) = 0, for all
z ∈ S1} inside the boundary Σ = ∂S, and is 0 for points in the interior of S.
This set is not compact, and so the general existence theory does not apply. A
particular form of reset map R (corresponding to coefficient of restitution 0)
is the so-called Moreau collision mapping that the velocity q̇(t+k ) is in the so-
called polar cone V (q) for q ∈ Σ. Here V (x) = {z|z ·x ≤ 0, for all x ∈ NK(x)},
with the additional constraint that the jump in kinetic energy is minimized.

A way of dealing more generally with systems that have state jumps is
via the formalism of measure differential inclusions introduced by Schatzman
[230] and Moreau [192]. This is motivated by the idea that one would like a
framework that allows the velocity jumps at impacts to be included explicitly
in the differential equation.

Example 2.10 (impact oscillator without damping).

ü = −u+ f(t), u > σ, plus the impact law.

It is tempting to integrate, and write formally
∫

du̇ =
∫

(−u+ f(t))dt+
∫

dR(u),

where dR is a measure that is zero at all times other than tk and gives the
value of the jump in u̇ at impact. This leads to a general formulation where
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one defines a measure dμ = dt+Σk≥0δ(tk), where δ(x) is the Dirac δ function,
and we write

du̇
dμ

+ (u− f(t))
dt
dμ

∈ F (u, t),

where

F (u, t) =
{

{0}, if t �= tk,
[0,∞], if t = tk.

Here we have introduced an example of a measure differential inclusion,
which more generally can be written in the form

dx
dμ

+ g(x(t+), t+)
dt
dμ

∈ F (x(t+), t+),

where μ is a positive measure on the time axis, and the set-valued function
F (x, t) satisfies the properties of being a cone for all x and t. The more general
multi-degree-of-freedom mechanical system (2.59), (2.60) with impacts can
also be put in this framework, upon writing

−M(q(t))
dq̇
dμ

− F (q(t), v(t))
dṫ
dμ

∈ ∂ψV (q(t))(q̇(t+) ⊆ ∂ΨS (g(t)) ,

which is an example of a so-called Moreau sweeping process; see [166].
Many things can be proved about the dynamics of each of many subtly

different classes of differential inclusions (either in measure form or not). They
also have use in that they suggest natural ways to define numerical algorithms
that preserve the properties of the inclusion that can be proved theoretically.
However, we shall ignore such mathematical technicalities in this book and
stick to a more pragmatic approach.

2.3.3 Control systems

Many concepts in non-smooth dynamical systems have a counterpart (often
with different notation) in control theory. There, the goal is often to prove sta-
bility of some target state (such as an equilibrium point), or to design control
laws in order to achieve such stability. See for example [240, 179, 255]. This
book takes a rather different emphasis, which is to gain a qualitative under-
standing of complex dynamics via the (discontinuity-induced) transitions that
can occur upon varying a parameter. It is nevertheless useful to spell out links
with some of the ideas that arise in the control theory literature. For simplic-
ity, we stick to the case of single-input single-output (SISO) systems. Here,
the concept of relative degree is important; with the term having a rather dif-
ferent meaning to its use in complementarity systems, but nevertheless having
a close link to our concept of degree of smoothness.

Consider a SISO linear system [240] given by
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ẋ = Ax+Bu,
y = CTx+Du.

(2.61)

Here x(t) ∈ R
n is the state vector, u(t) ∈ R the control input and y(t) ∈ R

the output of the system.

Definition 2.27. The relative degree of the SISO linear control system
(2.61) can be defined in terms of Markov parameters

(M0,M1,M2,M3, . . .) := (D,CTB,CTAB,CTA2B, . . .)

as the first index i for which Mi is nonzero.

Now it is easy to see how this concept is closely related to the degree of
smoothness introduced in Definition 2.21. Take a relay control system, case
study III, as a representative example. The system can be written as

ẋ = Ax+Bu,
y = CTx+Du,
u = −sgn(CTx).

(2.62)

Then, according to Definition 2.27, this system has relative degree 0 provided
D �= 0. In this case the discontinuity of the input u is translated into a
discontinuity of the output y. Thus the relative degree is equal to one less
than the degree of smoothness defined by Definition 2.21.

If instead D = 0 but CTB �= 0 in (2.62), then the relative degree is 1 and
the output y is continuous but

ẏ = CT ẋ = CTAx+ CTBu

is discontinuous. Again the relative degree is one less than the degree of
smoothness, which is 2 since the first derivative is the lowest differential of the
state y having discontinuity. Similarly, if D = 0, CTB = 0 but CTAB �= 0,
then (2.62) has relative degree two because y and ẏ are continuous, but

ÿ = CT ẍ = CTA2x+ CTABu

is discontinuous. That is, the second derivative of the output is now discon-
tinuous and the degree of smoothness is thus three.

These concepts extend to nonlinear control systems too. A general single-
input single-output nonlinear system can be written as

ẋ = f(x) + g(x)u,
y = h(x). (2.63)

The system (2.63) is said to have relative degree r at a point x∗ if

1. LgLk
fh(x) = 0 for all x in a neighborhood of x∗ and all k < r − 1;

2. LgLr−1
f h(x∗) �= 0.
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Here we have introduced the following useful notation

Definition 2.28. The Lie derivative Lf is the total time derivative along
the direction of the flow governed by vector field f . Specifically, if f(x) and
g(x) are smooth vector fields and h(x) is a smooth scalar function, then we
have

Lfh(x) :=
∂h

∂x
f(x),

LgLfh(x) :=
∂(Lfh)
∂x

g(x),

LgLk
fh(x) :=

∂(Lk−1
f h)
∂x

g(x),

L0
fh(x) := h(x).

Consider, for example, a case where the relative degree is two at a point
x∗. Here r = 2 and k < 1, which gives

LgL0
fh(x) = ∂(L0

f h)

∂x g(x) = hxg(x) = 0,

LgL1
fh(x∗) = ∂(L1

f h)

∂x g(x∗) = ∂(hxf
∂x g(x∗) = (hxxf + hxfx)g(x∗) �= 0;

or, showing the link to the linear SISO system (2.61)

LgL0
fh(x) = hxg(x) = AB = 0,

LgL1
fh(x∗) = (hxxf + hxfx)g(x∗) = (0Ax∗ + CTA)B = CTAB �= 0,

where Ax = f(x), B = g(x) and CTx = h(x).
The Lie derivative will prove useful in Chapters 6, 7 and 8 for analyzing

the flow near to grazing intersections. At various points in the book, we will
borrow other concepts from control theory, where it is useful, such as observer
canonical form, controllability and relay control.

2.4 Stability and bifurcation of non-smooth systems

The extension of well-established concepts for smooth systems to the case
of non-smooth systems is still an open research area. We shall hence try to
establish a pragmatic approach for studying the asymptotic and structural
stability of our chosen classes of piecewise-smooth maps, flows and hybrid
systems (Definitions 2.18, 2.20 and 2.24). Our aim is to come up with a util-
itarian definition of a discontinuity-induced bifurcation (DIB) that allows us
to explain the dynamical transitions that were observed in the case study ex-
amples introduced in Chapter 1. First we need to assess the notion of stability.
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2.4.1 Asymptotic stability

It is a particularly cumbersome task to provide necessary and sufficient condi-
tions that guarantee the asymptotic stability of an invariant set of a piecewise-
smooth systems if that set straddles the boundary between two regions Si

and Sj ; see, for example, [179] for a review. Even the problem of assessing the
asymptotic stability of an equilibrium that rests on a discontinuity boundary
is an open problem in general [36]. Let us focus on the problem for the special
case of piecewise-linear systems, which will be of relevance to the material in
Chapter 5.

Consider the piecewise-linear system

ẋ =
{

A−x if CT x ≤ 0
A+x if CT x ≥ 0

, (2.64)

where A± ∈ R
n×n and c ∈ R

n. We assume that the overall vector field is
continuous across the hyperplane {x : CT x = 0}, but the degree of smoothness
is uniformly one. This means that

A− − A+ = ECT ,

for some E ∈ R
n. For the planar case, i.e., n = 2, a complete theory is

possible and it can be shown that the equilibrium point x = 0 of (2.64)
is asymptotically stable under certain strict conditions, provided the system
obeys the property of observability often used in control theory.

Definition 2.29. Two matrices A ∈ R
n×n and CT ∈ R

p×n are said to be
observable if the observability matrix, O, defined as

O =

⎛

⎜

⎜

⎝

CT

CT A
...

CT An−1

⎞

⎟

⎟

⎠

has full rank. Equivalently, for single-output systems, where V ∈ R
1×n,

observability implies det(O) �= 0.

Theorem 2.6 ([49]). Consider the system (2.64) with n = 2. Assume that
the pair (CT , A−) is observable. Then

1. The origin is asymptotically stable if and only if
a) neither A− nor A+ has a real non-negative eigenvalue, and
b) if both A− and A+ have non-real eigenvalues, then σ−/ω−+σ+/ω+ <

0, where σ± ± iω± (ω± > 0) are the eigenvalues of A±.
2. The system (2.64) has a non-constant periodic solution if and only if both

A− and A+ have non-real eigenvalues and σ−/ω− + σ+/ω+ = 0, where
σ± ± iω± (ω± > 0) are the eigenvalues of A±. Moreover, if there is one
periodic solution, then all other solutions are also periodic. Moreover any
such periodic solution has period equal to π/ω− + π/ω+.
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1

0

0 0
−1

−1

−1

x1

x2 x3

Fig. 2.23. A trajectory of the piecewise-linear system (2.64)–(2.66).

In higher dimensions, the problem becomes considerably more difficult. A
seemingly paradoxical situation can occur whereby the origin of the individual
systems ẋ = A−x and ẋ = A+x is asymptotically stable, but is unstable for
the combined system (2.64):

Example 2.11 (Unstable piecewise-linear system [51]). Consider the system
(2.64) with

A− =

⎛

⎝

−1 −1 0
1.28 0 −1

−0.624 0 0

⎞

⎠ , A+ =

⎛

⎝

−3.2 −1 0
25.61 0 −1
−75.03 0 0

⎞

⎠ (2.65)

and

c =

⎛

⎝

1
0
0

⎞

⎠ . (2.66)

Now, the eigenvalues of A− are −0.2 ± i and −0.6, whereas the eigenvalues
of A+ are −0.1 ± 0.5i and −3. Both sets are strictly in the left half-plane
which would imply stability of the origin of each linear systems individually.
Yet the combined piecewise-linear system has trajectories that tend to ∞; see
Fig. 2.23.

In essence, the paradox is caused by the geometric relationship between
the eigenvectors of the matrices A− and A+. Clearly if the eigenvectors of the
two matrices were perfectly aligned, then stability of the matrices A− and A+

would be sufficient to establish stability of the piecewise-linear system. In fact,
in certain other special cases, it is possible to establish conditions for stability
for systems of the form (2.64) in three dimensions. For example, using the
theory of invariant cones, Carmona et al. [51] have established the following
result.

Theorem 2.7 ([51]). Consider the system (2.64) with n = 3. Assume that
the pair (CT , A−) is observable. Let A± and c be given by



96 2 Qualitative theory of non-smooth dynamical systems

A± =

⎛

⎝

t± −1 0
m± 0 −1
d± 0 0

⎞

⎠ , C =

⎛

⎝

1
0
0

⎞

⎠

(so-called observer canonical form). Suppose that the eigenvalues of the ma-
trices A± are λ± ∈ R and σ± ± iω±, where ω± > 0. Also, suppose that

(σ− − λ−)(σ+ − λ+) < 0 and (t+ − t−)(σ+ − λ+) ≤ 0,

then the origin is an asymptotically stable equilibrium point if, and only if, λ±

are both negative.

In the control theory literature, a more general tool has been proposed for
the stability analysis of piecewise-smooth dynamical systems. Take, for ex-
ample, the problem of establishing whether an equilibrium point in a discon-
tinuity boundary of a piecewise-smooth dynamical system is asymptotically
stable. One technique for proving such stability is to find a common Lya-
punov function, that is, a function V (x) that is Lyapunov (positive definite
and decreasing along trajectories) for each of the vector fields defining the
system dynamics in each of the phase space regions [179]. However, finding
such functions in practice is at best difficult.

General progress toward understanding and classifying the dynamics of
piecewise-smooth systems using such methods would appear hopeless. Draw-
ing lessons from smooth dynamical systems theory, we advocate in this book
a rather different approach. Instead of focusing on asymptotic stability of
individual states or invariant sets, we focus instead on structural stability
and bifurcation. Since proving stability from first principles can be hard, one
should instead attempt to classify all the mechanisms that can lead to in-
stability as a parameter is varied. Along with the classification should come
techniques, both analytical and numerical, for identifying which case occurs
in a particular example system and for understanding the nearby dynamics.

2.4.2 Structural stability and bifurcation

Consider a general invariant set of a piecewise-smooth dynamical system as
defined in Definitions 2.18, 2.20 or 2.25. Bifurcations that involve invariant
sets contained within a single region Si for all parameter values of interest can
be studied using smooth bifurcation theory. Also, it may be that the invariant
set of a flow crosses several discontinuity boundaries, but nevertheless the
Poincaré map associated with that invariant set is smooth. For example, in
Sec. 2.5 below, we shall show that the Poincaré map associated with a periodic
orbit that crosses all discontinuity sets Σij transversally is smooth. Thus, all
the bifurcations discussed in Sec. 2.1.6 can also occur in piecewise-smooth
systems. However, other bifurcations are unique to piecewise-smooth systems.
These typically involve non-generic interactions of an invariant set with a
discontinuity boundary.
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For piecewise-smooth systems such as (2.23) and (2.22) or (2.32) and
(2.33), which define a dynamical system (this excludes the possibility of re-
gions of phase space where there is repelling sliding or repelling sticking motion
since this leads to no uniqueness in forward time), one can adopt the same
notion of bifurcation as in Definition 2.16, applied to the entire system. How-
ever, we may wish to highlight other events that might not be a bifurcation
of the entire system in this classical sense. In control systems for example,
it may be important to identify whether a certain switch is activated. Or, in
a mechanical system, we may need to know whether an attractor contains
trajectories that impact or go beyond a certain threshold at which a bi-linear
spring moves into its stiffer region. The transition that causes such an event
will typically represent an invariant set forming a new crossing of a disconti-
nuity boundary, as a parameter is varied. For example, at a parameter value
μ = μ0, a limit cycle of a piecewise-linear flow may become tangent to a dis-
continuity boundary Σij at a grazing point. Alternatively, an equilibrium of
a flow, or fixed point of a map, may approach a discontinuity boundary as
μ → μ0. Now, if the degree of smoothness is sufficiently high, this will not
affect the stability of these invariant sets and there will be no bifurcation in
the sense of Definition 2.16. In the Russian literature, (e.g., [95, 98]), the term
C-bifurcation has been adopted for such transitions that involve an invari-
ant set doing something structurally unstable with respect to a discontinuity
boundary. (The Russian character C, pronounced “S”, stands for sewing, as
one sews together two different trajectory segments on either side of the dis-
continuity boundary.) When the invariant set is the fixed point of a map,
these have also been termed border-collision bifurcations [205].

Here we shall introduce the broader concept of a discontinuity-induced
bifurcation [64, 79]. By this term we will identify qualitative changes to the
topology of invariant sets with respect to the discontinuity boundaries. Specifi-
cally, we wish to single out parameter values at which the invariant set changes
its event sequence; that is, the order and sense of interaction with the discon-
tinuity boundaries. Such changes are typically brought about (or induced)
through non-transversal interaction with a discontinuity boundary. However,
in keeping with the qualitative theory of dynamical systems, we should like
a definition of a discontinuity-induced bifurcation that is purely topological
and does not refer to individual trajectories or invariant set. In order to come
up with such a notion, we will need new definitions of structural stability and
topological equivalence that call two dynamical systems non-equivalent if key
invariant sets in the dynamics change their event sequence. We shall state
this new definition of equivalence in the case of a hybrid dynamical system;
corresponding definitions for piecewise-smooth maps and flows follow in an
obvious manner.

Definition 2.30. Let {T,Rn, φt} and {T,Rn, φ̃t} be two hybrid piecewise-
smooth dynamical systems (2.32), (2.33) defined by countably many differ-
ent smooth flows φi(x, t) and φ̃i(x, t) in finitely many phase space regions Si
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and S̃i, respectively, i = 1 . . . N , with smooth resets Rij and R̃ij applying,
respectively, at each non-empty discontinuity boundaries Σij and Σ̃ij.

Two such piecewise-smooth systems are called piecewise-topological
equivalent if:

1. They are topological equivalent; that is, there is a homeomorphism h that
maps the orbits of the first system onto orbits of the second one, preserving
the direction of time so that φt(x) = h−1(φ̃s(h(x))) where the map t→ s(t)
is continuous and invertible.

2. The homeomorphism h can be chosen so as to preserves each of the dis-
continuity boundaries. That is, for each i and j, h(Σij) = Σ̃ij.

(a) (b)
S1

S1

S2S2

S3

S3

S4
S4

Fig. 2.24. Two phase potraits that are topological equivalent but not piecewise
topological equivalent according to Definition 2.30. Note that the portrait in each
separate region Si, i = 1, . . . , 4 is topological equivalent between (a) and (b); yet in
(a) there is a limit cycle that does not enter all four phase space regions, whereas in
(b) the corresponding limit cycle does not visit region S1. If a parameter is varied
between these two cases, a DIB must occur, in this case, a grazing bifurcation of the
limit cycle with the boundary Σ12.

To motivate the second part of this definition, we want to call the two phase
potraits illustrated in Fig. 2.24 non-equivalent, because in panel (a) there is
a limit cycle that visits all four phase space regions, whereas in (b) the limit
cycle visits only three of them. To see that this example fails the definition
of equivalence, note that to transform from one phase portrait to another the
limit cycle must be ‘pulled through’ the boundary Σ12. Such a transformation
cannot be achieved in a continuous way. In other words, the limit cycle and
Σ12 are not in the same general position with respect to each other. This then
leads us to our topological definition of a discontinuity-induced bifurcation
(DIB) for parameterized piecewise-smooth dynamical systems. For example,
we shall want to say that a discontinuity-induced bifurcation must occur if
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we continuously vary parameters between those used to obtain the two phase
potraits in Fig. 2.24.

The definition of DIB proceeds as for the definition of smooth bifurcations.
We start by saying what we mean by structural stability:

Definition 2.31. A piecewise-smooth system is piecewise-structurally sta-
ble if there is an ε > 0 such that all C1 perturbations of maximum size ε of
the vector field (map) f , that leave the number and degree of smoothness prop-
erties of each of the boundaries Σij unchanged, lead to piecewise-topological
equivalent phase potraits.

Definition 2.32. A discontinuity-induced bifurcation (DIB) occurs at
a parameter value at which a piecewise-smooth system is not piecewise-
structurally stable. That is, there exists an arbitrarily small perturbation that
leads to a system that is not piecewise-topological equivalent.

Remarks

1. Note that we have been somewhat imprecise about what kind of perturba-
tions are allowed in Definitions 2.31 and 2.32. One wants only to consider
perturbed systems for which the partitioning of phase space into regions Si

remains topologically the same and that the degree of smoothness across
each boundary does not change. We also want that the resets Rij map
boundaries Σij to the equivalent parts of phase space. In fact, it remains
an open problem to show that Definitions 2.30 and 2.32 are well defined
mathematically. Strictly speaking, we need to define a topological space
for each class of piecewise-smooth system in order to define topological
equivalence correctly. The rigorous theory of DIBs is still in its infancy,
and we shall not pursue this further here. Rather we shall treat Definition
2.32 as a working definition.

2. The concepts of codimension and unfolding can also be constructed, as in
Definition 2.16 for bifurcations in smooth systems, but here one has to be
even more careful to state what kinds of perturbation are allowed. Again
we adopt a working definition of codimension that it is the ‘degree of
unlikeliness’ of the discontinuity-induced bifurcation. That is, how many
parameters would one expect to have to vary in order to correctly unfold
the bifurcation?

3. Under Definition 2.32 classical bifurcations are also DIBs. However, our
main focus in this book is the particular class of discontinuity-induced bi-
furcations that are caused by something structurally unstable happening
with respect to a discontinuity set Σij . Bifurcations that have nothing to
do with discontinuity sets we shall refer to as smooth bifurcations. Most of
the rest of this book will be about cataloging the various non-smooth tran-
sitions (particularly those of codimension-one) that can occur in piecewise-
smooth systems. We shall also provide unfoldings of the ensuing dynamics
and ways of calculating these unfoldings in examples. Moreover we shall
seek to show how these DIBs explain the observed dynamics.
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4. In the special case of Filippov systems in R
3 there is now a rigorous

structural stability theory; see the work by Filippov [100], Teixera [248],
Simic & Johansson [239] and references therein.

2.4.3 Types of discontinuity-induced bifurcations

The main aim of rest of this book is devoted to a classification and analysis
of the most commonly occurring types of DIBs. As we shall see, these lie
at the heart of explaining what was observed in the case study examples
introduced in Chapter 1. Let us list some of the most commonly occurring
types of codimension-one DIBs (see Fig. 2.25):

Border collisions of maps. These are conceptually the simplest kind of DIB
and occur when, at a critical parameter value, a fixed point of a piecewise-
smooth map lies precisely on a discontinuity boundary Σ. For maps with
singularity of order one (i.e., locally piecewise-linear continuous), there is
now a mature theory for describing the bifurcation that may result upon
varying a parameter through such an event. Remarkably, the unfolding
may be quite complex. Even in one dimension, we saw in case study VIII
that a period-1 attractor can jump to a period-n attractor for any arbi-
trary n, or to robust chaos without any periodic windows. In one and two
dimensions, more or less everything is known. But in general n-dimensional
maps, bifurcation information on only the simplest kinds of periodic points
is known. This material is presented in Chapter 3. Chapter 4 then goes on
to study border collision bifurcations in maps with other degrees of singu-
larity, including the discontinuous and square-root cases from case studies
VI and VII.

Boundary equilibrium bifurcations. The simplest kind of DIB for flows
occurs when an equilibrium point lies precisely on a discontinuity boundary
Σ. In Filippov systems and hybrid systems with sticking regions, there is
also the possibility of pseudo-equilibria, which are equilibria of the sliding or
sticking flow but are not equilibria of any of the vector fields of the original
system. There are thus possibilities where the equilibrium lies precisely on
the boundary between a sliding or sticking region and a pseudo-equilibrium
turns into a regular equilibrium (either under direct parameter variation or
in a fold-like transition where both exist for the same sign of the perturbing
parameter). There is also the possibility that a limit cycle may be spawned
under parameter perturbation of the boundary equilibrium, in a Hopf-like
transition. This material is treated in Chapter 5.

Grazing bifurcations of limit cycles. One of the most commonly found
DIBs in applications is caused by a limit cycle of a flow becoming tangent to
(i.e., grazing) with a discontinuity boundary. One might naively think that
this can be completely understood (upon taking an appropriate Poincaré
section that contains the grazing point) as a border collision. However, as
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μ < 0 μ = 0 μ > 0

S1S1S1
S2S2S2

(a)

μ < 0 μ = 0 μ > 0

(b)

μ < 0 μ = 0
μ > 0

(c)

μ < 0 μ = 0 μ > 0

(d)

μ < 0 μ = 0 μ > 0

(e)

Fig. 2.25. Examples of DIBs: (a) a border collision in a map; (b) a boundary equi-
librium bifurcation; (c) a grazing bifurcation of a limit cycle; (d) a sliding bifurcation
in a Filippov system; (e) a boundary intersection crossing.
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we shall see in Chapter 6 for hybrid systems and Chapter 7 for piecewise-
smooth ODEs this is not necessarily the case. Instead one has to analyze
carefully what happens to the flow in the neighborhood of the grazing point.
In fact, one can derive an associated map (the, so-called, discontinuity
map). But, the link between the singularity of the map and the degree of
smoothness of the flow is a subtle one that also depends on whether the
flow is uniformly discontinuous at the grazing point. This analysis explains
what is observed at the grazing bifurcations in the impact and bi-linear
oscillators, case studies I and II.

Sliding and sticking bifurcations. There are several ways that an invariant
set such as a limit cycle can do something structurally unstable with respect
to the boundary of a sliding region in a Filippov system. Chapter 8 is
devoted to a careful unfolding of each of these. The Poincaré maps so
derived have the property of typically being noninvertible in at least one
region of phase space, owing to the loss of information backward in time
inherent in sliding motion. This analysis helps to explain the dynamics
observed in the relay control and dry friction examples described in case
studies III and IV. In addition, in impacting systems, sticking regions can
be approached by infinite chattering sequences of impacts, which we have
seen already in case study I. Further details of such events will be given in
Chapter 6 in the context of the single degree-of-freedom impact oscillator.

Boundary intersection crossing/corner collision. Another possibility
for a codimension-one event in a flow is where an invariant set (e.g., a limit
cycle) passes through the (n−2)-dimensional set formed by the intersection
of two different discontinuity manifolds Σ1 and Σ2. In Chapter 7 we shall
consider such intersection crossing in Filippov systems in the case where
there is no sliding. We also consider there the special case where the jumps
in vector field across Σ1 and Σ2 are such that their intersection can be
considered as a ‘corner’ in a single discontinuity surface. This can explain
the dynamics observed in the DC–DC converter, case study V.

Some possible global bifurcations. One example, which we shall mention
in Chapter 5, involves a connection between the stable and the unstable
manifolds of pseudo-equilibria, which are equilibria of a sliding flow but not
of the individual flows either side of a discontinuity boundary.

Chapter 9 briefly treats extensions to the theory of DIBs, which are in
each case motivated by a further case study example of practical significance,
for which a detailed treatment is beyond the scope of the book. Topics include
parameter and noise sensitivity; bifurcations that involve invariant tori graz-
ing with a discontinuity surface; the similarity between grazing in piecewise-
smooth flows and hybrid systems in the limit of large discontinuities; and
codimension-two bifurcations.
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2.5 Discontinuity mappings

The analysis of discontinuity-induced bifurcation in maps is relatively straight-
forward; one merely has to consider the fate of iterates that land either side
of the discontinuity. DIBs in piecewise-smooth flows or hybrid systems are far
harder to analyze, because one must establish the fate of topologically distinct
trajectories close to the structurally unstable event that determines the bifur-
cation. In this section we introduce a key analytical tool that enables the study
of DIBs involving limit cycles and other invariant sets that are more complex
than mere equilibria. The concept is that of a discontinuity map (DM), a term
first introduced by Nordmark [197]. This is a synthesized Poincaré mapthat
is defined locally near the point at which a trajectory interacts with a discon-
tinuity boundary. When composed with a global Poincaré map(for example
around the limit cycle) ignoring the presence of the discontinuity boundary,
one can then derive a (typically non-smooth) map whose orbits completely
describe the dynamics in question.

To illustrate why discontinuity maps are both necessary and useful, con-
sider the piecewise-smooth flow illustrated in Fig. 2.26(a),(b), for which there
is a Poincaré surface Π lying in one of the regions Si, which is intersected
transversally at the point xp by a periodic orbit p(t) of period T .

Fig. 2.26. (a) Simple periodic orbit p(t) in piecewise smooth ODE that does not
intersect any discontinuity surfaces. (b) Simple periodic orbit that intersects a single
surface twice. (c) Equivalent to (b) but for an impacting hybrid system. (d) A grazing
periodic orbit.

(a) Π xp

Σ

(d) Π xp

Σ

Π

Σ
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Σ x0

xp
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For points x̂ ∈ Π close to xp, we may define a Poincaré map P : Π → Π.
It is natural to ask what form P takes when ‖x− xp‖ is small. The answer to
this question takes three forms, and depends crucially upon the nature of the
orbit p(t).

If p(t) lies wholly inside Si, as in Fig. 2.26(a) then nearby orbits will also
lie inside Si. In this case the time-T map starting from x will be the smooth
flow map P (x) = Φi(x, t), which has a well-defined Taylor series,

P (x) = N(x− xp) +O
(

|x− xp‖2
)

, (2.67)

where N = Φi,x(xp, T ) is the Jacobian derivative with respect to x of the flow
Φi around the periodic orbit, evaluated at x = xp. More interesting things
happen if the periodic orbit p(t) intersects discontinuity surfaces Σij .

Consider next the case illustrated in Fig. 2.26(b), where p(t) has two trans-
verse intersections with a discontinuity set Σ. In this case it is tempting
to write that the linearization of the Poincaré maptakes the form P (x) =
N1N2N3(x− xp), where N1, N2 and N3 are linearizations of the flows Φ1, Φ2

and Φ1, respectively, for the appropriate times for the trajectory starting at xp

to, respectively, reach Σ for the first time, to pass between the first and second
intersections of Σ, and to pass from Σ back to Π. However, this is not the
case because, as we shall see in Sec. 2.5.2, each time Σ is crossed transversally,
one must apply a correction to the Poincaré map. This correction is necessary
because the time taken for trajectories at points x close to xp to reach the
discontinuity boundary Σ will in general vary, and so a small error will be
made in assuming that the linearization required is that of Φ1 for a constant
time. The correction to this error is the discontinuity map in this case. The
effect of the DM on the matrix N1 is to multiply it by a so-called saltation
matrix [2, 194, 173] whose derivation we give below. A similar correction must
be applied to the matrix N2. Not introducing these corrections will in general
result in wrong conclusions being made about the Floquet multipliers of the
periodic orbit p(t). Note in this case, provided the form of the jump in the
vector fields upon crossing Σ is described by a smooth function, then the dis-
continuity mapping and the associated global Poincaré maparound p(t) will
both be smooth. Similar considerations apply to impacting hybrid systems
where a periodic orbit p(t) has a single impact with a discontinuity surface as
in Fig. 2.26(c).

Now consider for a moment the special case where the velocity normal to
Σ is zero, so that the periodic orbit grazes the discontinuity surface, as in
Fig. 2.26(d). Note that the trajectories from some initial conditions x ∈ Π
near xp do not intersect Σ at all, whereas others intersect Σ with a low normal
velocity. The discontinuity mapping in this case is the identity for orbits that
do not cross Σ, but is defined as the local correction that must be applied to
initial conditions that do cross Σ, so that a Poincaré mapcan be applied as if
Σ were not there. As we shall motivate briefly in Sec. 2.5.3 below, the effect
of applying the DM to the map in (2.67) in this case is to introduce additional
terms proportional to fractional powers of ‖x − xp‖, such as ‖x − xp‖1/2 or
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‖x− xp‖3/2. An analysis of the behavior of maps with fractional powers will
be given in Chapter 4. Detailed derivations of DMs close to different kinds
of DIBs, along with analyzing their dynamical consequences, form the main
subject Chapters 6, 7 and 8.

In the case that trajectories intersect discontinuity boundaries transver-
sally, then typically one still has to compute a discontinuity mapping in order
to derive a globally correct Poincaré map. This is because even though the
trajectory itself may be continuous (or in the case of a hybrid system, the
trajectory’s evolution would be defined by a continuous reset map), there is
a correction that must be to the first and higher derivatives of the flow. This
correction arises because the discontinuity boundary acts like a new Poincaré
section that is distinct from the fixed time-t section that is implicitly defined
flow.

2.5.1 Transversal intersections; a motivating calculation

Before deriving the general form of the transverse discontinuity mapping for an
arbitrary piecewise-smooth or hybrid system, let us start with the motivating
case of a simple impacting hybrid system of the form (2.35) and (2.36). Here we
assume a smooth reset map R applies whenever the smooth flow Φ, governed
by vector field F , impacts the discontinuity surface Σ := {x : H(x) = 0}
transversally; see Fig. 2.27. We shall analyze the dynamics of a trajectory
with initial condition x̂ that is close to a reference trajectory xp that impacts
Σ := {x : H(x) = 0} at a point x∗. It is perhaps most useful to think of xp as
belonging to a periodic orbit p(t), for which x∗ is the unique point of impact;
although the analysis that follows shall be entirely local to a neighborhood
of x∗. Let us define t1 to be the time for which Φ(xp, t1) = x∗ and let x0

be the point reached by flowing for the same time from initial condition x̂,
so that Φ(x̂, t1) = x0. Note that, in general, x0 will not lie in Σ. Instead, we
must continue the flow for a small additional time δ (which may be positive or
negative) until the trajectory intersects Σ. From this intersection point, the
map R is applied to reach the point x3 in Fig. 2.27. Now, the discontinuity
map Q is defined to be the mapping that takes x0 to x4, which is the point
obtained by flowing from x3 through a time −δ. That is,

Q(x0) = Φ(x3,−δ) = Φ(R(Φ(x0, δ)),−δ).

Thus, Q maps x0 to the appropriate point on the trajectory of the true hybrid
flow which, without resetting the time variable, can be evolved forward under
Φ as if the impact had occurred at time t1. In the case that x0 ∈ Σ, then
note that by definition δ = 0 and Q reduces to the reset map R. However, for
general points x0 close to x∗, Q contains an additional correction. We shall
now proceed to derive an expression for the leading-order correction.

For a general flow described by the differential equation ẋ = F (x), the so-
lution for small subsequent times δ starting from the point x0 can be expressed
as a Taylor series in δ:
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(a)
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Σ x∗ R(x∗)

(b) x̂ xp
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Q(x0)

x∗ R

R(x∗)
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x4

Fig. 2.27. (a) An impacting periodic orbit. (b) A blow-up near x∗ defining the
transverse discontinuity mapping Q(x).

x(t) = Φ(x0, δ) = x0 + δF (x0) +O(δ2).

Setting x0 = x∗ +Δx , we obtain

x(t) = x∗ +Δx+ δF (x∗) +O(δ2, δΔx, (Δx)2).

We wish to find the time δ for which H(x(δ)) = 0. Thus we require

H (x∗ +Δx+ δF (x∗) +O(2)) = 0. (2.68)

where O(2) refers to general quadratic terms in the small variables δ and Δx.
Now, because H(x∗) = 0, we find for x close to x∗

H = Hx(x∗)(x− x∗) +O(‖x− x∗‖2).

Hence, from (2.68) we seek a solution δ to the equation

0 = Hx(x∗) [Δx+ δF (x∗)] +O(2)

Thus, we find

δ = − Hx(x∗)Δx
Hx(x∗)F (x∗)

+O(2). (2.69)

Note that this expression is only valid provided Hx(x∗)F (x∗) �= 0, which is
precisely the condition that the flow crosses Σ transversally, i.e., with non-zero
velocity. Applying the reset map to the point Φ(x0, δ) gives for x3:

x3 = R[x∗ +Δx+ δF (x∗)] +O(2).

To obtain the discontinuity map we must find an expression for x4 in the form

x4 = Φ(x3,−δ)
= x3 − δF (x3) +O(2)
= R[x∗ +Δx+ δF (x∗)] − δF (R[x∗ +Δx+ δF (x∗)]) +O(2).
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Now, both R and F can be expanded as Taylor series about x∗. Hence, we
obtain

x4 = R(x∗) +Rx(x∗)[Δx+ δF (x∗)] − δF (Rx(x∗)) +O(2).

Using the expression (2.69) for δ, we finally obtain

x4 = R(x∗) +
Rx(x∗) + [F (R(x∗)) −Rx(x∗)F (x∗)]Hx(x∗)

Hx(x∗)F (x∗)
Δx+O(2).

Recalling that Δx := x0 − x∗, note that R(x∗) + Rx(x∗)Δx + O(2) is just
the first the first two terms in the Taylor expansion of R(x0). Hence, the
transverse discontinuity mapping is given, to leading order, by

x0 → Q(x0) = R(x0) +
[F (R(x∗)) −Rx(x∗)F (x∗)]Hx(x∗)

Hx(x∗)F (x∗)
(x0 − x∗). (2.70)

The second term in (2.70) is the leading-order correction to the reset map
R(x0); note that this term is linear in (x0 − x∗). Hence, failure to apply this
mapping when computing periodic orbits with impacts will in general lead to
incorrect linearizations (Monodromy matrices), hence incorrect Floquet mul-
tipliers and (potentially) incorrect conclusions about stability of the periodic
orbit.

2.5.2 Transversal intersections; the general case

Consider now a general hybrid system (2.32), (2.33) in R
n, which we assume

to have two phase space regions S1 and S2 as illustrated in Fig. 2.28, with
corresponding flows Φ1 and Φ2, and a single reset map R applying on the
boundary Σ between the two regions. Note that this covers both the case of
a piecewise-smooth flow (2.23) and an impacting hybrid system (as in the
previous calculation). In the case of a piecewise-smooth flow, the reset map R
is the identity mapping. For the impacting hybrid system,RmapsΣ → Σ, and
the flow Φ1 applies after the impact, so that the flow Φ2 becomes identically
Φ1 in what follows.

Suppose that a periodic orbit p(t) crosses the discontinuity set Σ transver-
sally at the two points x = x∗ and x∗∗ as illustrated in Fig. 2.28. The key
observation is that all nearby trajectories must then cross Σ transversally.
Then, since R, Φ1 and Φ2 are smooth, the Poincaré map associated with this
periodic orbit is smooth and has non-singular Jacobian. To compute this Ja-
cobian, and indeed the entire Poincaré map, consider the flow map for the
specific sequence of events that ensue from an initial condition x close to xp

in a Poincaré section Π.
Let us choose an origin of time such that the periodic orbit intersects the

Poincaré section Π at xp ∈ S1 when t = 0 and intersects Σ at the two times
t2 > t1 > 0. Trajectories close to the point x∗ and the time t1 are depicted in
Fig. 2.28(b).
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Fig. 2.28. (a) Defining the event sequence for a simple periodic orbit that generalizes
the two cases in Fig. 2.26. (b) Construction of the transverse discontinuity mapping
Q : x0 �→ x4.

Taking a nearby initial condition x to xp and evolving the flow forward
leads to a trajectory that intersects Σ at the point x2 close to x∗, at time
t1 + δ. If, in contrast, we evolve the flow from x for a fixed time t1, we reach
the point x0 = Φ1(x, t1) in the figure. Applying the map R and then the
flow Φ2 to the point x0 for t > t1 gives an error as we have applied R at
x0 and t = t1 rather than at x2 and at t = t1 + δ. To correct this we can
find the point x4 such that the action of Φ2 on the point x4 for future times
t > t1 coincides with the action of Φ2 on the point x3 = R(x2) for t > t1 + δ.
The correction x4 = Q(x0) is indicated in the figure and is the discontinuity
mapping in this case. This correction is applied to the point x0 and can be
defined theoretically by the expression

Q(x0) = Φ2(R(Φ1(x0, δ)),−δ) = Φ2(x3,−δ). (2.71)

The points x0, x2, x3 and x4 are all indicated in Fig. 2.28(b). Note that the
total elapsed time of the flow combination described by the discontinuity map
is δ − δ = 0.

A similar map can be applied to the subsequent intersection with Σ at the
point x∗∗. Then, the time-T map for the evolution of the overall piecewise-
smooth flow around p(t) becomes

P (x, T ) = Φ1[Q(Φ2[Q(Φ1[xp, t1]), t2 − t1]), T − t2],

which has Jacobian derivative

Px(x, T ) = Φ1,x[R(x∗∗), T − t0]Qx(x∗∗)Φ2,x[R(x∗), t0 − t0]Qx(x∗), Φ1,x(xp, t0)
(2.72)

where Qx is the linearization of (2.71).
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Definition 2.33. The transverse discontinuity map Q for the transverse
crossing of a discontinuity set Σij in a piecewise-smooth flow (or hybrid sys-
tem) is the extra mapping that the flow maps Φi and Φj must be composed
with in order to get a description of the piecewise-smooth (hybrid) flow. Thus,
if Σ is crossed in the sense of passing from region Si to Sj, the correct flow
map is Φ2 ◦Q ◦ Φ1. The Jacobian derivative Qx of Q is called the saltation
matrix.

We shall now extend the earlier calculation to derive an explicit expression
for the discontinuity mapping Q, and its derivative, the saltation matrix Qx.
In order to do so, suppose that the discontinuity set can be written locally as

Σ = {x ∈ R
n : H(x) = 0}

for some smooth function H. Consider again the local piece of the trajectory
in Fig. 2.27 with initial condition x in a neighborhood of xp. Evolving through
a time t1 we reach the point x0 = Φ1(x, t1), which is in a small neighborhood
of the point x∗ = Φ1(xp, t1). We suppose that x0 = x∗ + Δx, where ‖Δx‖ is
small and develop a Taylor series for Φ1(x0, δ), for small times δ.

For a flow described by the differential equation ẋ = F1(x), the solution
for subsequent times δ starting from the point x0 is given by

Φ(x0, δ) = x0 + δF1(x0) +
δ2

2
F1,x(x0)F1(x0) +O(δ3).

If we now set x0 = x∗ +Δx this expression takes the form

x(t) = x∗+Δx+δF1(x∗)+δΔxF1,x(x∗)+
δ2

2
+F1,x(x0)F1(x0)+O(3). (2.73)

Here O(3) refers to cubic terms in δ and Δx. The transversality of the inter-
section of p(t) with Σ allows us to assume that these are of the same order.

The first step to computing Q(x0) is to find the time δ and the point x2

at which H(x2) = H(Φ1(x0, δ)) = 0. Thus

H
[

x∗ +Δx+ δF1(x∗) + δΔxF1,x(x∗) + F1,x(x∗)F1(x∗)δ2/2 +O(3)
]

= 0.
(2.74)

Now, as H(x∗) = 0, the function H can also be expanded in x about x∗ as

H(x) = Hx(x∗)(x− x∗) +
1
2
(x− x∗)THxx(x∗)(x− x∗) +O(3).

So (2.74) can also be expressed as a Taylor series and solved term by term for
δ, under the assumption that the leading-order term

Hx(x∗)F1(x∗) �= 0. (2.75)

As before, this is precisely the condition that p(t) crosses Σ transversally.
Specifically we obtain
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δ = − Hx(x∗)Δx
Hx(x∗)F1(x∗)

+O(2), x2 = x∗ +Δx+ δF1(x∗) +O(2),

The quadratic and all higher terms in these expressions can also be evaluated
if higher-order expressions for the discontinuity mapping are required. In fact,
the assumption (2.75) guarantees that the discontinuity map Q is an analytic
function provided F1, F2 and R are also analytic.

According to (2.71), we now compute Q by applying the flow Φ2 to the
point

x3 := R(x2) = R [x∗ +Δx+ δF1(x∗)] +O(2).

for a time −δ. Now, Φ2 can be expanded about the point R(x∗) in the same
way as Φ1 was expanded about x∗; see (2.73). This gives

Q(x0) = x4 = Φ2(x3,−δ)
= R(x2) − F2(R(x2))δ +O(2)
= R(x0 + δF1(x∗)) − F2(R(x0 + δF1(x∗)))δ +O(2).

Furthermore, we will assume that the map R can be expanded about the point
x∗, so that

R(x0) = R(x∗) +Rx(x∗)Δx+
1
2
ΔxTRxx(x∗)Δx+O(3).

Using this expression we have

Q(x0) = R(x∗) +Rx(x∗)Δx+Rx(x∗)F1(x∗)δΔx− F2(R(x∗))δΔx+O(2)

= R(x∗) +
[

Rx +
Hx(x∗)

Hx(x∗)F1(x∗)
[F2(R(x∗)) −Rx(x∗)F1(x∗)]

]

(x0 − x∗)

+O(‖x0 − x∗‖2). (2.76)

Thus, the saltation matrix Qx in this general case is given by

Qx(x∗) = Rx(x∗) +
[F2(R(x∗)) −Rx(x∗)F1(x∗)]Hx(x∗)

Hx(x∗)F1(x∗)
.

We now consider examples where we can calculate the saltation matrix
explicitly.

Example 2.12 (A two-zone Filippov system without sliding). For Filippov sys-
tems in which R(x) = x and F1 �= F2 the saltation matrix is given by the
expression

Qx = I +
(F2 − F1)Hx

HxF1
, (2.77)

where I is the identity matrix. This expression was first derived in [2].
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Example 2.13 (Impacting systems). For impacting systems with a single im-
pact boundary written in the form (2.35), (2.36). the vector field F2 should be
identified with F1, since the R maps Σ− to Σ+. Upon letting F1 = F2 := F ,
we find that

Qx(x∗) = Rx(x∗) +
[F (R(x∗)) −Rx(x∗)F (x∗)]Hx(x∗)

Hx(x∗)F (x∗)
, (2.78)

which is precisely the linearization of (2.70) derived earlier.
As a specific application, consider the one-dimensional impact type hybrid

system considered in case study I, in which x = (x1, x2, x3), H(x) = x1 − σ,
R(x) = (x1,−rx2, x3) and F (x) = (x2, a, 1), with a = cos(ωt)) − x1 − 2ζx2

being the acceleration. (Note that the subscripts here refer to vector indices
rather than to the points in the Fig. 2.27.) We therefore have

Rx =

⎛

⎝

1 0 0
0 −r 0
0 0 1

⎞

⎠ , Hx = (1, 0, 0).

If we set v = Hx(x∗)F (x∗) to be the normal velocity immediately before
impact and a− and a+ to be the normal accelerations immediately before and
immediately after the impact, we obtain

Qx =

⎛

⎝

1 0 0
0 −r 0
0 0 1

⎞

⎠ +
1
v

⎡

⎣

⎛

⎝

−rv
a+

1

⎞

⎠−

⎛

⎝

1 0 0
0 −r 0
0 0 1

⎞

⎠

⎛

⎝

v
a−

1

⎞

⎠

⎤

⎦ (1, 0, 0)

=

⎛

⎝

−r 0 0
a++ra−

v −r 0
0 0 1

⎞

⎠ =

⎛

⎝

−r 0 0
1+r
x2

(cosωt− σ) −r 0
0 0 1

⎞

⎠ , (2.79)

which is a result first derived by Fredriksson and Nordmark [107].

Example 2.14 (Onset of sliding in Filippov systems). Saltation matrices also
apply for trajectories of Filippov systems that undergo a transition into slid-
ing, as depicted in Fig. 2.29. Proceeding as above it is straightforward to
derive that the saltation matrix for this case is

Qx = I +
(F12 − F1)Hx

HxF1
,

where F12 is the sliding flow defined by (2.80).

2.5.3 Non-transversal (grazing) intersections

The above discontinuity mapping (2.76) was derived under the transversality
condition (2.75). So-called grazing occurs when a trajectory becomes tangent
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x∗

x̂

x0

xp

S1

Q(x0)
̂Σ

Fig. 2.29. Defining the saltation matrix for the onset of sliding.

to a discontinuity surface Σ. This occurs precisely when (2.75) is violated;
that is, when v := Hx(x∗)F1(x∗) = 0. Notice, from the expression (2.76) that
the saltation matrix contains terms which are proportional to 1/v as v → 0.
Specifically, the coefficient of 1/v is F2 − F1, which would be zero in the
case of flow with degree of smoothness two or higher. However, evaluation of
subsequent terms in the Taylor expansion of the discontinuity map show that
the factor 1/v enters at all orders, such that discontinuity with smoothness
degree n− 2 implies a singularity (proportional to 1/v) of the nth derivative
of the discontinuity map. Thus, the map is no longer analytic in the case of a
grazing impact. In fact, detailed calculations which will be given in Chapters 6,
7 and 8 show that we should expect terms like

√
Δx to occur in the expressions

for the resulting discontinuity maps in this case. However, first we have to
explain what we mean by a discontinuity map in the case of a grazing impact.

We illustrate the situation close to a grazing for an impacting hybrid sys-
tem in Fig. 2.30. In this figure, which is analogous to Fig. 2.27, we show a
distinguished trajectory locally lying entirely S1. This trajectory we assume
to graze with the discontinuity boundary Σ at the point x∗ at time t0.

To construct the discontinuity mapping, we need to know the fate of two
different types of trajectory with initial conditions close to x∗. Some trajecto-
ries do not cross Σ locally; for these, the discontinuity mapping is the identity.
In contrast, the discontinuity mapping will be non-trivial for the trajectory
illustrated in Fig. 2.30 that passes through the point x0 close to Σ at time t1,
hits Σ at the point x2 at time t0 + δ, is mapped to the point x3 by the map
Φ2(R(x2), t2 − t1) and continues in S1 from this point. Note that we allow
here for both the impacting hybrid system case, in which Φ2 is the identity, or
the piecewise-smooth flow case, where R is in the identity. In the latter case,
t2 − t1 is the time of flight of the trajectory until its second impact with Σ.

We shall describe two different ways of defining the non-trivial part of the
discontinuity map. These are constructed either, like the DM for transversal
trajectories defined above, such that the total elapsed time is zero—a so-
called zero-time discontinuity mapping (ZDM)—or are defined with respect
to a local Poincaré section—a Poincaré-section discontinuity mapping (PDM).
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Σ

R

Π

x0

x2

x4

x5

x∗

x1

x3

Fig. 2.30. A local illustration of the ZDM and PDM close to a grazing in an
impacting hybrid system. In this figure the solid line represents the actual flow of
the hybrid system, and the dashed line the extended flow. The ZDM is the map
x0 �→ x4 and the PDM is the map x1 → x5.

Our treatment is inspired by the analysis of n-dimensional impacting systems
by [106], which extends earlier results in [236, 264, 197, 142].

To explain the difference between the ZDM and the PDM, consider in
more detail the trajectory in Fig. 6.7 that passes through x0. It intersects the
Σ at x2 and is mapped to x3, where it subsequently evolves to the point x6.
By extending the smooth flow field F1(x) defined in the region H(x) > 0 (so
that it lies above Σ in S1) to the region H(x) < 0 (so that it now lies below
Σ), we may continue the trajectory forward from x2 under the action of the
flow map Φ1, or equally backward from x3. As the point x0 is close to xg,
then the smooth trajectory carried forward from x2 under the action of Φ1

will intersect the Poincaré surface

ΠN = {x : v = Hx(x)F1(x) = 0}

at a point x1 close to xg = 0. Similarly, the backward continuation of the flow
from x3 will intersect the set ΠN at the point x5. The mapping which takes
x1 to x5 is the PDM.

Definition 2.34. The Poincaré-section discontinuity mapping (PDM)
near a grazing orbit is the discontinuity mapping defined on a suitable surface
ΠN transverse to the flow, which contains the grazing set and intersects Σ
transversally, that takes initial conditions on ΠN back to themselves. There
is no requirement that this map take zero time.

The same trajectory starting from x3 can also be continued backward
under the action of Φ1 for a time −δ so that it passes through the point x4 at
the time t0. We then define the ZDM as the map from x0 to x4.
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Definition 2.35. The zero-time discontinuity mapping (ZDM) near a
grazing orbit is the discontinuity mapping in a neighborhood of the grazing
point x0 that takes zero time. That is, when this map is composed with the
flow map of the non-impacting system in order to define a trajectory of the
full system, the time taken is the same as for the flow map alone.

In order to analyze grazing bifurcations of periodic orbits, we suppose that
the trajectory passing through x∗ is part of a limit cycle p(t). Then, in order
to unfold the dynamics, we need to combine a grazing discontinuity mapping
(PDM or ZDM) with a Poincaré map defined around the limit cycle ignoring
the grazing point. For example, zero time condition allows the ZDM to be
incorporated in a natural way into the calculation of a fixed time-T Poincaré
map PS , sometimes called a stroboscopic map. For instance, for a grazing
periodic orbit that is contained entirely within region S1, the stroboscopic
map can be written as

PS = P2 ◦ ZDM ◦ P1,

where P1 describes the evolution with flow Φ1 through time t1 and P2 describes
the Φ1 through time T−t1. The PDM may be preferable to use as an analytical
tool for studying bifurcations of grazing limit cycles. It is also natural to apply
the PDM for autonomous systems and the ZDM for time-periodically forced
ones. The leading order terms of the ZDM and PDM generically have the
same power, but the PDM correction takes non-zero time.

We do not give here the general forms of these maps. Unlike the case
for transverse discontinuity mappings, there is no simple general expression
valid for all cases of hybrid and piecewise-smooth systems. Indeed the detail
evaluation of these mappings is rather lengthy in some cases; and forms the
main thrust of Chapters 6, 7 and 8 in the cases of impacting hybrid systems,
and piecewise-smooth systems with and without sliding, respectively. We shall
also show in more detail how to combine the ZDM or PDM with the full flow of
the system to produce an overall Poincaré mapand hence unfold the dynamics
near a grazing limit cycle and other related DIBs.

2.6 Numerical methods

Many examples presented in this book rely on computations of orbits of
piecewise-smooth and/or hybrid flows. For smooth flows, there are broadly
speaking two classes of numerical methods for investigating the possible dy-
namics for a range of parameter values, namely: direct numerical simulation,
and numerical continuation (also known as path-following). This classification
also applies to piecewise-smooth systems. The rigorous numerical analysis of
non-smooth dynamical systems remains a theory that is far from complete.
Therefore, we shall take a practical approach in this book, since our goal is
to use numerics to illustrate theory, rather than to analyze or derive optimal
numerical algorithms.
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2.6.1 Direct numerical simulation

When computing solutions to piecewise-smooth systems it is usually not pos-
sible to use general-purpose software packages directly, as most black-box
numerical integration routines assume a high degree of smoothness of the so-
lution. Accurate numerical computations must make special allowance for the
non-smooth events that occur when a discontinuity boundary Σij is crossed.
Simulation methods for non-smooth systems fall broadly into two categories;
time-stepping or event-driven. The former is most often used in many-particle
rigid body dynamics written in complementarity form for which there can be
perhaps millions of constraints and corresponding slack variables (Lagrange
multipliers). For such problems, to accurately solve for events when one of the
multipliers or constraint functions becomes zero within each time-step and
to subsequently re-initiate the dynamics would be prohibitively computation-
ally expensive. In contrast, the basic idea of time-stepping is to only check
constraints at fixed times at intervals Δt. There are adaptations to standard
methods for integrating ODEs and DAEs that are specifically designed for
complementarity systems, some of which are based on linear complementar-
ity problem solvers that have been developed in optimization theory. Clearly,
errors are introduced by not accurately detecting the transition times, and
therefore time-stepping schemes are often of low-order accuracy (i.e., with er-
ror estimates that ∼ O(Δt)q for a low q) and can completely miss grazing
events associated with low-velocity collisions. Several commercially available
implementations of time-stepping algorithms are available, especially for the
specific case of rigid body mechanics. These often have a variational formu-
lation and are able to deal with the difficult problem of the collision of two
rough bodies that may not have unique solutions. See the review by Brogliato
and co-workers [41] and the Chapter by Abadie in [39, Ch. 2] for more details.

In this book we are largely concerned with low-dimensional systems with
a small number of discontinuity boundaries (no more than say 10 of each). In
that context, explicit event-driven schemes are feasible, fast and accurate. In
these methods, trajectories within regions Si are solved using standard numer-
ical integration algorithms for smooth dynamical systems (e.g., Runge-Kutta,
implicit solvers, etc.). Using these methods, the times at which a discontinu-
ity boundary is hit are accurately solved for, and the problem is re-initialized
there. Here we include the possibility of sliding or sticking flow by allowing
portions Σ̃ij of discontinuity sets that are attracting to have the same status
as open regions Si, and to let the sliding vector field Fij apply there. We then
treat the boundary ∂Σ̃ as another discontinuity set. Similarly, in sticking re-
gions for impact-hybrid systems, we can compute the explicit sticking flow
that satisfies (2.43). Alternatively, one can use a DAE formulation, so that
the Lagrange multipliers α or λ remain as part of the problem and a con-
straint Hij = 0 is added which defines the discontinuity surface Σij . There
are now many reliable solvers for systems of differential algebraic equations,
for example, DDASSL [218].
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A key requirement for an event-driven method is the ability to define each
discontinuity boundary as the zero set of a smooth function Hij = 0. Also
we have to carefully define a set of transition rules at each boundary that
applies, if necessary, a reset rule Rij and switches to the integration of a new
dynamical system on the far side of the boundary. Thus, the time-integration
of a trajectory of the dynamical system is reduced to the finding of a set of
event times tk and events H(k)

ij such that

H
(k)
ij (x(tk)) = 0.

To achieve this we set up a series of monitor functions, the values of which are
computed during each step of the time-integration. If one of these functions
changes sign during a time step, then one needs to use a root finding method
to accurately find where Hij = 0. These ideas have been implemented in
Matlab by Piiroinen & Kuznetsov [222].

Special care has to be taken to allow for the possibility of a sequence of
event times converging onto a limit (for example, in a chattering sequence)
followed by sticking or sliding. Clearly it is not appropriate to calculate all of
the event times. To overcome this, it is typical to keep a record of the last few
events. If it appears that the event times are converging to a limit, then this
limit can be determined asymptotically, and then the procedure for a sliding
or slicking solution applied; see [203] for details.

Let us now see how the event-driven method works specifically in the case
of a two-zone Filippov system with sliding:

ẋ =
{

F1(x), if H(x) > 0,
F2(x), if H(x) < 0.

Note that the sliding vector field

Fs = (1 − α)F1(x) + αF2(x), where α =
HxF1

HxF1 −HxF2
(2.80)

is defined in a full neighborhood of Σ = {H = 0}. The flow is such that
Hx ≡ 0, so that it is confined to level sets H = const. So, a small error in
initial condition H(x(tj)) = ε will not in theory lead to flow precisely on Σ
but on another manifold a small distance away from it. In fact, as is well
known from constrained time-integration [10], a numerical approximation to
such flows will cause H(x(t)) to slowly drift away from this manifold. One
resolution to this [222] is to replace the sliding vector field with a regularized
version

̂Fs(x) = Fs − CHx(x)H(x),

where C is a positive constant. Note that ̂F12 = F12 on Σ, but away from the
switching manifold, we have exponential attraction in the direction Hx onto
it. See Fig. 2.31.
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(a) (b)Fij ̂Fij

̂Σ̂Σ

Fig. 2.31. (a) The sliding vector field Fij and (b) the regularized version ̂Fij near
a discontinuity boundary Σ. Dashed lines indicate qualitatively what might happen
to a numerical approximation to the flow.

One of the main uses of direct numerical simulation is to compute the
bifurcation diagrams of the set of attracting solutions directly. In this pro-
cess, for a fixed parameter value, a set of initial points is chosen and the flow
from each point is determined. The flow is computed for a sufficiently long
time for transients to decay and for the ensuing dynamics to be deemed to
have converged onto an attractor. This dynamics is then recorded, perhaps in
a suitable Poincaré section. The parameter is then changed slightly and the
same process is repeated. Of course, one has to build up experience about the
system in order to determine how long is a ‘sufficiently long time’. However,
an even more crucial question is to determine what set of initial conditions
to take in order to converge to the various possible attractors. One approach
here, which may minimize transient times, is to choose an initial condition
for the new parameter value to be a point on the attractor at the previous
parameter value. However, such an approach will necessarily miss the possibil-
ity of competing attractors present in the system. For example, consider the
bifurcation diagram Fig. 1.26 for the DC–DC converter example, case study
V, one sees several short intervals of the input voltage E for which in addition
to the main bifurcation branch there are competing attractors (for example,
a period-3 attractor around E = 24).

Thus, in general one should start from a range of different points within
a suitably defined subset D of the phase space from which one has a priori
knowledge that the attractors of the system must lie. But how to choose such
points within this set? The number of points should of course be chosen to
be as large as possible for the computational time available. One could start
with a regular grid of points, but there are advantages in choosing the initial
points at random. That is, at each fixed parameter value, use a random number
generator to choose initial conditions in D uniformly. This way, the situation
where attractors with small basins of attraction are missed consistently at
each parameter value are likely to be avoided. We will refer to this method for
computing bifurcation diagrams as a Monte Carlo method. Indeed, most of
the bifurcation diagrams presented in this book were computed this way. The
direct simulation method has many advantages in giving a quick and realistic
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picture of the bifurcation diagram of a system without assuming any a priori
structure about the number or form of the attractors.

2.6.2 Path-following

While having the merits described above, direct simulation suffers from the
two disadvantages that it does not accurately pinpoint bifurcation points, and
it only computes stable invariant sets (attractors). In order to accurately lo-
cate bifurcations it is sometimes necessary to compute unstable invariant sets.
For example, the collision of a limit cycle with an unstable equilibrium can
cause the sudden disappearance of that limit cycle; or, one might want to
detect the presence of an unstable limit cycle that at some subsequent pa-
rameter value may re-stabilize at a fold. Hence there is a complimentary need
for direct methods for computing specific invariant sets of dynamical systems.
These typically comprise methods for numerical path-following of these solu-
tions as a parameter varies, for detecting codimension-one bifurcations, and
possibly continuation of these bifurcation points in two or more parameters.
These bifurcations might be regular bifurcations that can also occur in smooth
systems, or they might be DIBs associated with the changing of the event se-
quence of the orbit. For smooth systems, there is a large literature on such
methods; see, for example, [168, Ch. 10] or [232] for general explanations, and
for example the software AUTO [88] and MatCont [74].

Let us illustrate the key ideas applied to the continuation, as a single pa-
rameter μ varies, of fixed points of maps x→ f(x, μ). This will be equivalent,
via the numerical construction of Poincaré maps, to the problem of finding
periodic orbits of non-smooth systems that have a given event sequence. It
is also entirely equivalent to computing equilibrium solutions of a piecewise-
smooth system ẋ = f(x, μ) within some fixed region Si. Once we can do this,
then we can use event detection to find parameter values where the event
sequence of the periodic orbit changes, or where a fixed point or equilibrium
hits a switching set Σij . Hence we naturally have a method for the detection
of DIBs.

The general setting is to find paths in the parameter space of smooth
parameterized systems of n equations in n unknowns that take the form

G(x, μ) = 0, G : R
n × R

1 → R
n, (2.81)

given some initial solution x = x0 at μ = μ0. For example, when computing
fixed points of maps, we take

G(x, μ) = x− f(x, μ).

The key idea behind numerical continuation is based on an appeal to the
Implicit Function Theorem to compute sequences of points at small intervals
along the solution curve x(μ) ≈ {(xi, μi), i = 0 . . . N}.
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The most commonly used method for solving systems of nonlinear equa-
tions is Newton’s method, but it is well known that this requires a sufficiently
good initial guess in order to converge [153]. There are many modifications
to the above method and implementation details. Its strength is the local
quadratic convergence guaranteed by Newton’s method. Its drawback is the
requirement to know the Jacobian matrix Gx. This is particular problematical
in the case of periodic orbits.

When computing a periodic orbit of a non-smooth system that involves
the crossing of a discontinuity boundary, one essentially needs a method to
compute the Poincaré mapP (x, μ) from some section Π := {x : π(x) = 0}
to itself, see Fig. 2.26. This can be done via a shooting method. (For alterna-
tive ways of computing periodic orbits in Filippov systems via concatenating
different boundary-value problems for each trajectory segment, see [72]). The
shooting approach takes an initial condition in Π and solves the flow, through
the various regions Si back to Π again, taking a total time τ(x). This defines
the point P (x), and the function to which we apply the continuation algorithm
is thus

G = x− P (x, μ),

a zero of which represents the existence of a periodic orbit. Therefore the
Jacobian we need is Gx = I − Px, so we therefore need an expression for
the linearized Poincaré mapPx. Here it is useful to apply the discontinuity
mappingQ described in the previous section. Indeed, for the case of transversal
intersections, the saltation matrix correction has been used successfully for
path-following [66] and for the detection of limit cycles [1].

So, now that we have the notation, definitions and methods (both analyt-
ical and numerical) at our disposal; we are ready to embark on a tour of dif-
ferent discontinuity-induced bifurcations. We start, in the next two chapters,
with the case of maps.
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