
Principles of the Spin Model Checker
Supplementary Material on Spin Version 6

Mordechai (Moti) Ben-Ari
http://stwww.weizmann.ac.il/g-cs/benari/

December 20, 2010

Copyright 2010 by Mordechai (Moti) Ben-Ari.

This work is licensed under the Creative Commons Attribution Non-Commercial No
Derivs 3.0 License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nc-nd/3.0/; or, (b) send a letter to Creative Commons, 543 Howard Street,
5th Floor, San Francisco, California, 94105, USA.



In December 2010, Version 6 of SPIN was released; this version introduced new structures
into the modeling language PROMELA. This document describes the new structures and
shows how they can be used in the examples from Principles of the Spin Model Checker.
The latest software archive ps-programs.zip contains these modified programs.

The new version of SPIN also made changes to the format of its output data. This re-
quired some modifications of the JSPIN development environment; the new version can
be downloaded from http://code.google.com/p/jspin/.

The modifications of PROMELA include: a for-statement that replaces the use of a macro;
a select-statement for nondeterministic selection of values; the scope rules have been
changed; formulas in linear temporal logic (LTL) can be included within the PROMELA

source; LTL formulas can contain expressions; LTL formulas can use keywords for the
temporal operators.

Version 6 also supports multiple never-claims and synchronous products of claims but
this will not be discussed here.

The notation §n.m refers to Listing n.m in Principles of the Spin Model Checker.

1 The for-statement

PROMELA uses the nondeterministic guarded command do to support loops. When you
want a simple counting loop, the following code can used (§1.8):

byte i;

i = 1;

do

:: i > 10 -> break

:: else ->

/* body of the loop */

i++

od;

This code is frequently encapsulated in a pair of macros: for and rof.

A new control structure implements a counting loop directly:

byte i;

for (i : 1..10) {

/* body of the loop */

}

This is equivalent to the following code which is different from that used in §1.8:

2



byte i;

i = 1;

do

:: i<= 10 ->

/* body of the loop */

i++

:: else -> break

od;

The bounds can be expressions:

for (i : 0..N-1)

PROMELA differs from many programming languages in that the index variable must be
explicitly declared prior to the loop.

Many of the examples (§1.8, §3.5, §6.2, §11.14) were changed to use the for-statement.

2 The select-statement

To choose a value nondeterministically, you can use an if-statement with true (absent)
guards. For example, to choose the next row in the 8-queens problem, we used (encap-
sulated within an inline construct Choose in §11.5):

if

:: row = 1

:: row = 2

...

:: row = 8

fi

This can now be succinctly written as:

select(row : 1..8)

The bounds can be expressions and the variable must be previously defined.

Since true and false are just names for the constants 1 and 0, the following is correct:

bool b;

select(b : false..true)

as a replacement for:

bool b;

if :: b = false :: b = true fi

The implementation of select uses a nondeterministic loop (Section 4.6.2):

3



row = 1;

do

:: row < 8 -> row++

:: break

od

3 Scope rules

Previously, inline definitions did not create a new scope for variable declarations, al-
though the syntax is implies that it does. Given the definition:

inline write(n) {

byte nsq;

nsq = n*n;

printf("n = %d, n squared = %d\n", n, nsq)

}

The following is illegal:

active proctype P() {

byte a = 10, b = 12;

write(a);

write(b)

}

because the variable nsq is redeclared by write(b) within the scope of the proctype.
SPIN, however, runs the program as expected, although an error message is given. Now,
the program runs without the error message because the scope of nsq is limited to the
inline constructs.

Warning

Do not write byte nsq = n*n; in the inline definition!
The scope rule refers only to the name itself; all variables within a proctype

are still collected and placed at the beginning of the proctype and initialized
once when the proctype is activated.

Note: §6.3 was and is illegal because an array name cannot be passed to an inline defi-
nition, although this is not expressly forbidden in the PROMELA reference manual.

4



4 LTL formulas

Consider an algorithm for solving the critical-section problem:

bool csp = false, csq = false;

active proctype P() {

do

::

...

csp = true; /* Enter critical section */

csp = false; /* Leave critical section */

...

od

}

active proctype Q() { /* Similar */ }

To verify mutual exclusion we have to show that the following LTL formula holds:

[]!(csp && csq)

while to verify absence of starvation the formula is:

[]<>csp

In SPIN this is done by: (a) writing the LTL formula in a file (or an argument); (b) negat-
ing the formula; (c) translating it into a never-claim; (d) running a verification with the
never-claim. In previous versions of SPIN, the user had to negate the formula and then
run a command to translate it into a never-claim; the never-claim was then included as
an argument to the verification.1 Currently, the LTL formula can be written within the
PROMELA program:

bool csp = false, csq = false;

ltl { []!(csp && csq) }

SPIN will automatically negate the formula and translate it into a never-claim when the
verification is performed.

To simplify matters even further, several named LTL formulas can be included and the
choice of the formula to use is made when the verification is done:

ltl mutex { []!(csp && csq) }

ltl nostarvation { []<>csp }

1An environment can simplify the process. For example, JSPIN automatically negates the LTL formula,
translates it into a never-claim when a button is clicked and then includes the claim in the arguments to the
verification.

5



When there is only one LTL formula in a program, just perform the verification (spin -a,
gcc, pan) and the formula will be automatically used by SPIN. When there is more than
one (named) LTL formula, you must specify which formula is to be used in a verification.

jSpin

Enter one name in the text field labeled LTL formula and select LTL name from
the toolbar or the Convert menu.

Command line

Specify one name when the verification is done:

pan -N mutex

The inclusion of multiple LTL formulas within a PROMELA program simplifies the con-
figuration management of a project because all the correctness properties are contained
within the same file as the source code of the model.

Additional new features concerning LTL formulas:

• Expressions can be used in an internal LTL formula, so it is no longer necessary to
define symbols for this purpose: ltl { [](critical <= 1) }.

• A remote reference is considered an expression, so ltl { []!(P@cs && Q@cs) }

can be given as the correctness specification of §5.3 without defining the symbol
mutex. The formula must appear after the proctype’s where the labels are defined.

• Temporal operators can be given as keywords:

ltl mutex { always !(csp && csq) }

ltl nostarvation { always eventually csp }

6



http://www.springer.com/978-1-84628-769-5


