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Overview of Consensus Algorithms in
Cooperative Control

This chapter overviews consensus algorithms in cooperative control. The mo-
tivation for information consensus in cooperative control is given. A litera-
ture review on consensus algorithms is provided. Theoretical results regard-
ing consensus-seeking under both time-invariant and dynamically changing
communication topologies are summarized. A few specific applications of con-
sensus algorithms to multivehicle cooperative control are described. The or-
ganization of the monograph is also introduced.

1.1 Introduction

The abundance of embedded computational resources in autonomous vehi-
cles enables enhanced operational effectiveness through cooperative teamwork
in civilian and military applications. Compared to autonomous vehicles that
perform solo missions, greater efficiency and operational capability can be
realized from teams of autonomous vehicles operating in a coordinated fash-
ion. Potential applications for multivehicle systems include space-based in-
terferometers; combat, surveillance, and reconnaissance systems; hazardous
material handling; and distributed reconfigurable sensor networks. To enable
these applications, various cooperative control capabilities need to be devel-
oped, including formation control, rendezvous, attitude alignment, flocking,
foraging, task and role assignment, payload transport, air traffic control, and
cooperative search.

Cooperative control of multiple autonomous vehicles poses significant the-
oretical and practical challenges. First, the research objective is to develop a
system of subsystems rather than a single system. Second, the communication
bandwidth and connectivity of the team are often limited, and the informa-
tion exchange among vehicles may be unreliable. It is also difficult to decide
what to communicate and when and with whom the communication takes
place. Third, arbitration between team goals and individual goals needs to
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be negotiated. Fourth, the computational resources of each individual vehicle
will always be limited.

Recent years have seen significant interest and research activity in the
area of coordinated and cooperative control of multiple autonomous vehicles
(e.g., [11, 15, 22, 24, 25, 28, 37, 49, 51, 62–65, 70, 72, 80, 82, 95, 100–102, 121, 123,
133,142,151,153,189,200,203,225–228,234,244]). Much of this work assumes
the availability of global team knowledge, the ability to plan group actions
in a centralized manner, and/or perfect and unlimited communication among
the vehicles.

A centralized coordination scheme relies on the assumption that each mem-
ber of the team has the ability to communicate to a central location or share
information via a fully connected network. As a result, the centralized scheme
does not scale well with the number of vehicles. The centralized scheme may
result in a catastrophic failure of the overall system due to its single point of
failure. Also, real-world communication topologies are usually not fully con-
nected. In many cases, they depend on the relative positions of the vehicles
and on other environmental factors and are therefore dynamically changing
in time. In addition, wireless communication channels are subject to multi-
path, fading and drop-out. Therefore, cooperative control in the presence of
real-world communication constraints becomes a significant challenge.

To understand the fundamental issues inherent in all cooperative control
problems, we offer the following, intuitively appealing, fundamental axiom:

Axiom 1.1 Shared information is a necessary condition for cooperation.

Information necessary for cooperation may be shared in various ways. For
example, relative position sensors may enable vehicles to construct state in-
formation for other vehicles [37], knowledge may be communicated among
vehicles using a wireless network [69], or joint knowledge might be pre-
programmed into the vehicles before a mission begins [16]. Under this ax-
iom, information exchange becomes a central issue in cooperative control. In
the following, we will refer to the information that is necessary for coopera-
tion as coordination information or coordination variable [139, 193]. Suppose
that a particular cooperation strategy has been devised and shown to work
if the team has global access to the coordination information. Cooperation
will occur if each member in the team has access to consistent, accurate, and
complete coordination information. However, in the presence of an unreliable,
dynamically changing communication topology and dynamically changing lo-
cal situational awareness of each vehicle, it is not possible for all of the vehicles
to have access to consistent, accurate, or complete coordination information,
that is, the vehicles may have different instantiations of the coordination vari-
able. Therefore, distributed algorithms need to be developed to ensure that
the team is converging to a consistent view of the coordination information.

As an example, consider a meet-for-dinner problem. In this problem, a
group of friends decides to meet for dinner at a particular restaurant but fail
to specify a precise time to meet. On the afternoon of the dinner appointment,
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all of the individuals realize that they are uncertain about the time that the
group will meet. A centralized solution to this problem is for the group to
have a conference call, to poll all individuals regarding their preferred time
for dinner, and to average the answers to arrive at a time when the group
will meet. However, this centralized solution requires that a conference line
be available and that the time of the conference call be known to the group.
Because whatever algorithm was used to convey the time of the conference
call to the group could also have been used to convey the time to meet for
dinner, the central problem remains.

The coordination variable in this example is the time when the group will
meet for dinner. The particular time is not what is important, but rather that
each individual in the group has a consistent understanding of that informa-
tion. A distributed solution to the problem would be for each individual to
call, one at a time, a subset of the group. Given his or her current estimate
of the meeting time, i.e., his or her instantiation of the coordination variable,
the individual might update his or her estimate of the meeting time to be a
weighted average of his or her current meeting time and that of the person
with whom he or she is conversing. The question is to determine under what
conditions this strategy will enable the entire team to converge to a consistent
meeting time.

To illustrate the meet-for-dinner example, suppose that there are 10 agents
who communicate with exactly one other individual, chosen randomly from
the group, for a random length of time. After the communication has expired,
the process is repeated. Figure 1.1 shows the evolution of the dinner times with
the above mentioned distributed approach, where the initial state is uniformly
assigned. Note that the entire team converges to a consistent meeting time
under switching communication topologies.

For cooperative control strategies to be effective, a team of vehicles must
be able to respond to unanticipated situations or changes in the environment
that are sensed as a cooperative task is carried out. For some applications (e.g.,
cooperative observation on the same phenomenon or target), as the environ-
ment changes, the vehicles in the team must agree as to what changes took
place. For some other applications (e.g., accurate formation geometry main-
tenance), the vehicles need to maintain relative states between each other or
achieve different group behaviors. A direct consequence of Axiom 1.1 is that
cooperation requires that the group of vehicles agrees on the instantiations of
the coordination variable or that differences between the instantiations of the
coordination variable converge to prespecified values. A critical problem for
cooperative control is to determine algorithms so that a team of vehicles can
agree on the instantiations of the coordination variable or that differences be-
tween the instantiations of the coordination variable converge to prespecified
values in the presence of (i) imperfect sensors, (ii) communication dropout,
(iii) sparse communication topologies, and (iv) noisy and unreliable commu-
nication links.
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Fig. 1.1. Discrete-time meet-for-dinner simulation

1.2 Literature Review: Consensus Algorithms

When multiple vehicles agree on the value of a variable of interest, they are
said to have reached consensus. Information consensus guarantees that vehi-
cles sharing information over a network topology have a consistent view of
information that is critical to the coordination task. To achieve consensus,
there must be a shared variable of interest, called the information state, as
well as appropriate algorithmic methods for negotiating to reach consensus on
the value of that variable, called the consensus algorithms. The information
state represents an instantiation of the coordination variable for the team. Ex-
amples include a local representation of the center and shape of a formation,
the rendezvous time, the length of a perimeter being monitored, the direction
of motion for a multivehicle swarm, and the probability that a military tar-
get has been destroyed. By necessity, consensus algorithms are designed to be
distributed, assuming only neighbor-to-neighbor interaction between vehicles.
Vehicles update the value of their information states based on the informa-
tion states of their neighbors. The goal is to design an update law so that the
information states of all of the vehicles in the network converge to a common
value.

Consensus algorithms have a historical perspective in [32, 41, 55, 81,
131, 236], to name a few, and have recently been studied extensively in
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the context of cooperative control of multiple autonomous vehicles [69, 97,
126, 145, 158, 190]. Some results in consensus algorithms can be understood
in the context of connective stability [215]. Consensus algorithms have ap-
plications in rendezvous [26, 58, 124, 125, 135, 216, 220, 221], formation con-
trol [69,115,118,127,134,165,174], flocking [50,59,120,147,155,169,232,238],
attitude alignment [117,176,179,188], perimeter monitoring [38], decentralized
task assignment [6, 143], and sensor networks [76, 154,159,223,260].

1.2.1 Fundamental Consensus Algorithms

The basic idea of a consensus algorithm is to impose similar dynamics on the
information states of each vehicle. If the communication network among ve-
hicles allows continuous communication or if the communication bandwidth
is sufficiently large, then the information state update of each vehicle is mod-
eled using a differential equation. On the other hand, if the communication
data arrive in discrete packets, then the information state update is modeled
using a difference equation. This section overviews fundamental consensus
algorithms in which a scalar information state is updated by each vehicle us-
ing, respectively, a first-order differential equation and a first-order difference
equation.

Suppose that there are n vehicles in the team. The team’s communica-
tion topology can be represented by directed graph Gn

�
= (Vn, En), where

Vn = {1, . . . , n} is the node set and En ⊆ Vn ×Vn is the edge set (see Appen-
dix B for graph theory notations). For example, Fig. 1.2 shows three different
communication topologies for three vehicles. The communication topology
may be time varying due to vehicle motion or communication dropouts. For
example, communication dropouts might occur when an unmanned air vehi-
cle (UAV) banks away from its neighbor or flies through an urban canyon.
The most common continuous-time consensus algorithm [69,97, 126,158,190]
is given by

ẋi(t) = −
n∑

j=1

aij(t)[xi(t) − xj(t)], i = 1, . . . , n, (1.1)

where aij(t) is the (i, j) entry of adjacency matrix An ∈ R
n×n associated

with Gn at time t and xi is the information state of the ith vehicle. Setting
aij = 0 denotes the fact that vehicle i cannot receive information from vehicle
j. A consequence of (1.1) is that the information state xi(t) of vehicle i is
driven toward the information states of its neighbors. The critical convergence
question is, when do the information states of all of the vehicles converge to
a common value?

Although (1.1) ensures that the information states of the team agree, it
does not dictate a specified common value. For example, consider a cooperative
rendezvous problem where a team of vehicles is tasked to arrive simultaneously
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Fig. 1.2. Three different communication topologies for three vehicles. Subplot (c)
is strongly connected because there is a directed path between every pair of nodes.
However, (a) and (b) are not strongly connected.

at a specified location known to all vehicles. Because the rendezvous time is
not given and may need to be adjusted in response to pop-up threats or
other environmental disturbances, the team needs to reach consensus on the
rendezvous time. To do this, each vehicle first creates an information state
xi that represents the ith vehicle’s understanding of the rendezvous time. To
initialize its information state, each vehicle determines a time at which it is
able to rendezvous with the team and sets xi(0) to this value. Each team
member then communicates with its neighbors and negotiates a team arrival
time using consensus algorithm (1.1). Onboard controllers then maneuver each
vehicle to rendezvous at the negotiated arrival time. When environmental
conditions change, individual vehicles may reset their information state and
thus cause the negotiation process to resume.

Note that (1.1) does not permit specifying a desired information state.
We show in Section 1.2.2 that if the communication topology is fixed and
the gains aij are time invariant, then the common asymptotic value is a lin-
ear combination of the initial information states. In general, it is possible to
guarantee only that the common value is a convex combination of the initial
information states.

Consensus algorithm (1.1) is written in matrix form as

ẋ(t) = −Ln(t)x(t),

where x = [x1, . . . , xn]T is the information state and Ln(t) = [�ij(t)] ∈ R
n×n

is the nonsymmetrical Laplacian matrix associated with Gn (see Appendix B).
Consensus is achieved or reached by a team of vehicles if, for all xi(0) and all
i, j = 1, . . . , n, |xi(t) − xj(t)| → 0, as t→ ∞.

When communication among vehicles occurs at discrete instants, the in-
formation state is updated using a difference equation. The most common
discrete-time consensus algorithm has the form [97,145,190,236]

xi[k + 1] =
n∑

j=1

dij [k]xj [k], i = 1, . . . , n, (1.2)

where k denotes a communication event; dij [k] is the (i, j) entry of a row-
stochastic matrix D = [dij ] ∈ R

n×n (see Appendix C for matrix theory no-
tations) at the discrete-time index k with the additional assumption that
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dii[k] > 0 for all i = 1, . . . , n and dij [k] > 0 for all i �= j if information flows
from vehicle j to vehicle i and dij [k] = 0 otherwise. Intuitively, the informa-
tion state of each vehicle is updated as the weighted average of its current
state and the current states of its neighbors. Note that a vehicle maintains
its current information state if it does not exchange information with other
vehicles at that instant. Discrete-time consensus algorithm (1.2) is written in
matrix form as

x[k + 1] = D[k]x[k].

Similar to the continuous-time case, consensus is achieved or reached if, for all
xi[0] and for all i, j = 1, . . . , n, |xi[k] − xj [k]| → 0, as k → ∞.

1.2.2 Convergence Analysis of Consensus Algorithms

Convergence Analysis for Time-invariant Communication
Topologies

In this section, we investigate conditions under which the information states
of consensus algorithm (1.1) converge when the communication topology is
time invariant and the gains aij are constant, that is, the nonsymmetrical
Laplacian matrix Ln is constant. As noted in Appendix B, zero is always
an eigenvalue of −Ln, and all nonzero eigenvalues of −Ln have negative real
parts. As also noted in Appendix B, the column vector 1n of ones is an
eigenvector associated with the zero eigenvalue, which implies that span{1n}
is contained in the kernel of Ln. It follows that if zero is a simple eigenvalue
of Ln, then x(t) → x̄1n, where x̄ is a scalar constant, which implies that
|xi(t) − xj(t)| → 0, as t → ∞, for all i, j = 1, . . . , n. Convergence analysis
therefore focuses on conditions to ensure that zero is a simple eigenvalue of
Ln. Otherwise the kernel of Ln includes elements that are not in span{1n},
in which case consensus is not guaranteed.

If the directed graph of Ln is strongly connected (see Appendix B), then
zero is a simple eigenvalue of Ln [69, Proposition 3]. However, this condition is
not necessary. For example, consider the nonsymmetrical Laplacian matrices

L3(1) =

⎡

⎣
1 −1 0
0 1.5 −1.5
0 0 0

⎤

⎦ , L3(2) =

⎡

⎣
1 −1 0
0 1.5 −1.5
0 −2 2

⎤

⎦ , L3(3) =

⎡

⎣
1 −1 0
0 1.5 −1.5
−2 0 2

⎤

⎦ ,

(1.3)
of the directed graphs shown in Fig. 1.2. Although all of the nonsymmetrical
Laplacian matrices in (1.3) have simple zero eigenvalues, Figs. 1.2a and 1.2b
are not strongly connected. The common feature is that the directed graphs of
L3(1), L3(2), and L3(3) all have directed spanning trees. As shown in [115,127,
193,255], zero is a simple eigenvalue of Ln if and only if the associated directed
graph has a directed spanning tree. This result implies that (1.1) achieves
consensus if and only if the directed communication topology has a directed
spanning tree or the undirected communication topology is connected.
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For discrete-time consensus algorithm (1.2), Theorem C.1 implies that all
eigenvalues of D are either in the open unit disk or at 1. As shown in [190], if
1 is a simple eigenvalue of D, then limk→∞ Dk → 1nν

T , as k→ ∞, where ν is
an n×1 nonnegative left eigenvector of D associated with the eigenvalue 1 and
satisfies νT 1n = 1. As a result, x[k] = Dkx[0] → 1nν

Tx[0], as k → ∞, which
implies that, for all i, xi[k] → νTx[0], as k→ ∞, and thus |xi[k] − xj [k]| → 0,
as k → ∞.

Theorem C.5 implies that 1 = ρ(A) is a simple eigenvalue of row-stochastic
matrix A if directed graph Γ (A) is strongly connected, or equivalently, if A
is irreducible. As in the continuous-time case, this condition is sufficient but
not necessary. Furthermore, for row-stochastic matrix D, Γ (D) has a directed
spanning tree if and only if λ = 1 is a simple eigenvalue of D and is the only
eigenvalue of modulus one [190]. As a result, under a time-invariant communi-
cation topology with constant gains aij , (1.2) achieves consensus if and only
if either the directed communication topology has a directed spanning tree or
the undirected communication topology is connected [190].

Equilibrium State under a Time-invariant Communication
Topology

We now investigate the consensus equilibrium for the special case in which
the communication topology is time invariant and the gains aij are constant
(i.e., constant Ln). When the directed communication topology has a directed
spanning tree, it follows from [193] that limt→∞ e−Lnt → 1nν

T , where ν =
[ν1, . . . , νn]T is an n × 1 nonnegative left eigenvector of Ln associated with
the simple zero eigenvalue and satisfies

∑n
j=1 νj = 1. As a result, for each

i = 1, . . . , n, xi(t) →
∑n

j=1 νjxj(0), as t→ ∞, that is, the equilibrium state is
a weighted average of the initial information states in the network. However,
some of the components of ν may be zero, implying that the information states
of some vehicles do not contribute to the equilibrium.

To illustrate this phenomenon, consider the nonsymmetrical Laplacian
matrices given in (1.3). It can be verified that, for L3(1), x(t) → x3(0)13,
for L3(2), x(t) → [0.5714x2(0) + 0.4286x3(0)]13, and, for L3(3), x(t) →
[0.4615x1(0) + 0.3077x2(0) + 0.2308x3(0)]13. Note that with L3(1), the ini-
tial information states of vehicles 1 and 2 do not affect the equilibrium.
With L3(2), the initial information state of vehicle 1 does not affect the equi-
librium. However, with L3(3), all of the vehicle’s initial information states
affect the equilibrium. Observing the directed graphs shown in Fig. 1.2, we
can see that, for L3(1), vehicle 3 is the only vehicle that can pass information
to all of the other vehicles in the team, either directly or indirectly. Simi-
larly, for L3(2), both vehicles 2 and 3 can pass information to the entire team,
whereas, for L3(3), all vehicles can pass information to the entire team.

Next, define the nonnegative matrix M = maxi �iiIn − Ln. Because ν is
the nonnegative left eigenvector of Ln corresponding to the zero eigenvalue, ν
is also the nonnegative left eigenvector of M corresponding to the eigenvalue
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maxi �ii of M . From Theorem C.1, it follows that ρ(M) = maxi �ii. If the
directed communication graph is strongly connected, so is the directed graph
of M , which also implies that M is irreducible (see Appendix C). By Theo-
rem C.5, if M is irreducible, then ν is positive. Therefore, when the directed
communication topology is strongly connected, all of the initial information
states contribute to the consensus equilibrium because νi �= 0 for all i. Fur-
thermore, if νi = 1/n for all i, then the consensus equilibrium is the average
of the initial information states, a condition called average consensus [158].
If the directed communication topology is both strongly connected and bal-
anced, then 1n is a left eigenvector of Ln associated with the simple zero
eigenvalue. Therefore, as shown in [158], average consensus is achieved if and
only if the directed communication topology is both strongly connected and
balanced. It can be shown that, in the case of undirected communication,
average consensus is achieved if and only if the topology is connected [158].

To illustrate these ideas, Fig. 1.3 shows time histories of the information
states for two different updates strategies. Figure 1.3a shows the information
states for ẋ = −L3(3)x, where L3(3) is given in (1.3). Because the directed
graph of L3(3) is strongly connected, all of the vehicle’s initial conditions con-
tribute to the equilibrium state. However, the equilibrium is not an average
consensus because the directed graph is not balanced. In contrast, Fig. 1.3b
shows the time histories of the information states for ẋ = −diag(w)L3(3)x,
where w is the positive column left eigenvector of L3(3) corresponding to
the zero eigenvalue satisfying wT 13 = 1 and diag(w) is the diagonal matrix
whose diagonal entries are given by w. It can be shown that directed graph
Γ
[
diag(w)L3(3)

]
is strongly connected and balanced, resulting in average con-

sensus.
In contrast, when the directed communication topology has a directed

spanning tree, the consensus equilibrium is equal to the weighted average
of the initial conditions of those vehicles that have a directed path to all
other vehicles [193]. Requiring a directed spanning tree is less stringent than
requiring a strongly connected and balanced graph. However, as shown above,
the consensus equilibrium is a function only of the initial information states
of those vehicles that have a directed path to all other vehicles.

Convergence Analysis for Dynamic Communication Topologies

Communication topologies are often dynamic. For example, communication
links among vehicles might be unreliable due to multipath effects and other
disturbances. Alternatively, if information is exchanged by means of line-of-
sight sensors, the neighbors visible to a vehicle might change over time, e.g.,
when a UAV banks away from its neighbor. Therefore, in this section, we
investigate conditions under which consensus algorithms converge under ran-
dom switching of the communication topologies.

One approach to analyzing switching topologies is to use algebraic graph
theory, which associates each graph topology with an algebraic structure of
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Fig. 1.3. Consensus for three vehicles. Subplots (a) and (b) correspond to ẋ =
−L3(3)x and ẋ = −diag(w)L3(3)x, respectively. Because 0.4 is the average of the
initial states (0.2, 0.4, 0.6), average consensus is achieved in (b), where the directed
graph is strongly connected and balanced, but not in (a), where the directed graph
is only strongly connected.

corresponding matrices. Because (1.1) is linear, its solution can be written
as x(t) = Φ(t, 0)x(0), where Φ(t, 0) is the transition matrix corresponding
to −Ln(t). Φ(t, 0) is a row-stochastic matrix with positive diagonal entries
for all t ≥ 0 [192]. Consensus is achieved if limt→∞ Φ(t, 0) → 1nμ

T , where
μ is a column vector. It is typical to assume that the communication topol-
ogy is piecewise constant over finite lengths of time, called dwell times, and
that dwell times are bounded below by a positive constant [97]. In this case,
An(t) and hence Ln(t) are piecewise constant with dwell times τj = tj+1 − tj ,
where t1, t2, . . . are the switching instants, and thus consensus is achieved if
limj→∞ e−Ln(tj)τje−Ln(tj−1)τj−1 · · · e−Ln(t0)τ0 = 1nμ

T . Because e−Ln(tj)(t−tj)

is a row-stochastic matrix, convergence analysis involves the study of infinite
products of stochastic matrices.

A classical result given in [253] (see also [192]) demonstrates the con-
vergence property of infinite products of SIA matrices (see Appendix C).
Specifically, let S = {S1, S2, . . . , Sk} be a finite set of SIA matrices with
the property that every finite product SijSij−1 · · ·Si1 is SIA. Then, for
each infinite sequence Si1 , Si2 , . . . there exists a column vector ν such that
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limj→∞ SijSij−1 · · ·Si1 = 1νT . Because the number of potential communi-

cation topologies is finite, the set of matrices {Sj
�
= e−Ln(tj)(tj+1−tj)}∞j=1 is

finite if the allowable dwell times τj = tj+1 − tj are drawn from a finite set.
Reference [97] shows that these matrices are SIA and uses this result to show
that the heading angles of a swarm of vehicles achieve consensus using the
nearest neighbor rules of [239]. This is a special case of discrete-time consensus
algorithm (1.2), if there exists an infinite sequence of contiguous, uniformly
bounded time intervals, having one of a finite number of different lengths,
with the property that across each interval, the union (see Appendix B) of
the undirected communication topologies is connected. See [78, 126, 158, 208]
for extensions.

Consider, on the other hand, the more realistic assumption that the dwell
times are drawn from an infinite but bounded set or An(t) is piecewise
continuous1 and its nonzero and hence positive entries are uniformly lower
and upper bounded. In this case, let S = {S1, S2, . . . } be an infinite set
of n × n SIA matrices, let Nt be the number of different types (see Ap-
pendix B) of all of the n × n SIA matrices, and define the matrix function
χ(P ) = 1−mini1,i2

∑
j min(pi1j , pi2j). Then, limj→∞ SijSij−1 · · ·Si1 = 1νT if

there exists a constant d ∈ [0, 1) such that, for every W
�
= Sk1Sk2 · · ·SkNt+1 ,

it follows that χ(W ) ≤ d [253]. It can be shown that this condition is sat-
isfied if there exists an infinite sequence of contiguous, uniformly bounded
time intervals, with the property that across each interval, the union of the
directed communication topologies has a directed spanning tree [190, 192].
Reference [168] considers a similar problem by studying the products of row-
stochastic matrices with a lower triangular structure. In addition, a lower
bound on the convergence rate of consensus algorithm (1.2) under directed
switching communication topologies is derived in [36].

Lyapunov Analysis of Consensus Algorithms

Nonlinear analysis can also be used to study consensus algorithms [71,
128, 145]. For discrete-time consensus algorithm (1.2), a set-valued Lya-
punov function V is defined as V (x1, . . . , xn) = (conv{x1, . . . , xn})n, where

conv{x1, . . . , xn} denotes the convex hull of {x1, . . . , xn}, and Xn �
= X ×

· · · × X . It is shown in [145] that V (t2) ⊆ V (t1) for all t2 ≥ t1, and that
x(t) approaches an element of the set span{1n}, which implies that consensus
is reached. Using set-valued Lyapunov theory, [145] shows that discrete-time
consensus algorithm (1.2) is uniformly globally attractive with respect to the
collection of equilibrium solutions span{1n} if and only if there exists K ≥ 0
such that the union of the directed communication topologies has a directed
spanning tree across each interval of length Kh, where h is the sample time.

1 Accordingly, Ln(t) is piecewise continuous.
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For continuous-time consensus algorithm (1.1), [144] considers the Lya-
punov candidate V (x) = max{x1, . . . , xn} − min{x1, . . . , xn}. It is shown
in [144] that the equilibrium set span{1n} is uniformly exponentially sta-
ble if there is an interval length T > 0 such that, for all t, the directed graph
of − ∫ t+T

t Ln(s)ds has a directed spanning tree.
As an alternative analytic method, [219,246,247] applies nonlinear contrac-

tion theory to synchronization and schooling applications, which are related
to information consensus. In particular, (1.1) is analyzed under undirected
switching communication topologies, and a convergence result identical to
the result given in [97] is derived. In addition, [13] uses passivity as a design
tool for consensus algorithms over an undirected communication topology.

Information consensus is also studied from a stochastic point of view
in [87,88,256], which consider a random network, where the existence of an in-
formation channel between a pair of vehicles at each time is probabilistic and
independent of other channels, resulting in a time-varying undirected commu-
nication topology. For example, adjacency matrix An = [aij ] ∈ R

n×n for an
undirected random graph is defined as aii(p) = 0, aij(p) = 1 with probability
p, and aij = 0 with probability 1 − p for all i �= j. In [88], consensus over an
undirected random network is addressed by notions from stochastic stability.

Communication Delays and Asynchronous Consensus

When information is exchanged among vehicles through communication, time
delays from both message transmission and processing after receipt must be
considered. Let σij denote the time delay for information communicated from
vehicle j to reach vehicle i. In this case, (1.1) is modified as

ẋi = −
n∑

j=1

aij(t)[xi(t− σij) − xj(t− σij)].

In the simplest case, where σij = σ and the communication topology is time-
invariant, undirected, and connected, average consensus is achieved if and
only if 0 ≤ σ < π

2λmax(Ln) [158], where Ln is the Laplacian matrix of the undi-
rected communication topology and λmax(·) denotes the largest eigenvalue of
a matrix. See [30, 119] for extensions.

Alternatively, consider the case in which the time delay affects only the
information state that is being transmitted so that (1.1) is modified as

ẋi = −
n∑

j=1

aij(t)[xi(t) − xj(t− σij)].

When σij = σ and the communication topology is directed and switching, the
consensus result for switching topologies remains valid for an arbitrary time
delay σ [144].
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For discrete-time consensus algorithm (1.2), it is shown in [230] that if con-
sensus is reached under a time-invariant undirected communication topology,
then the presence of communication delays does not affect consensus. In addi-
tion, the result in [145] is extended to take into account bounded time delays
in [12]. Furthermore, [258] shows sufficient conditions for consensus under
dynamically changing communication topologies and bounded time-varying
communication delays.

More generally, in an asynchronous consensus framework [31,35,67,68,140],
each vehicle exchanges information asynchronously and updates its state with
possibly outdated information from its local neighbors. As a result, heteroge-
nous vehicles, time-varying communication delays, and packet dropout must
be taken into account in the same asynchronous consensus framework. Ref-
erence [68] categorizes several consensus results in the literature according to
synchronism, connectivity, and direction of information flow.

1.2.3 Synthesis and Extensions of Consensus Algorithms

Consensus Synthesis

In some applications, consensus algorithms must satisfy given requirements
or optimize performance criteria. For example, when a UAV or micro air
vehicle (MAV) swarm consists of hundreds or thousands of vehicles, it might
be desirable to solve the fastest distributed linear averaging (FDLA) problem,
which is defined as follows [259]. LetW = [wij ] ∈ R

n×n be such that wij = 0 if
information is not exchanged between vehicle i and vehicle j. Given x[k+1] =
Wx[k], find W to minimize

rasym(W ) = sup
x[0] �=x̄

lim
k→∞

(‖x[k] − x̄‖
‖x[0] − x̄‖

)1/k

,

subject to the condition that limt→∞W k = 1
n1n1T

n , where x̄ = 1
n1n1T

nx[0].
In other words, the FDLA problem is to find the weight matrix W that guar-
antees the fastest convergence to the average consensus value. In contrast to
discrete-time consensus algorithm (1.2), weights wij can be negative [259].
With the additional constraint wij = wji, the FDLA problem reduces to a
numerically solvable semidefinite program [259]. A related problem is consid-
ered in [106], where an iterative, semidefinite-programming-based approach is
developed to maximize the algebraic connectivity of the Laplacian matrix of
undirected graphs (see Appendix B) with the motivation that the algebraic
connectivity of the Laplacian matrix characterizes the convergence rate of the
consensus algorithm.

Another problem is considered in [202], which focuses on designing consen-
sus algorithms in which the information state is updated according to ẋi = ui,
and the information available to the ith vehicle is given by yi = Gix, where
x = [x1, . . . , xn]T , yi ∈ R

mi , and Gi ∈ R
mi×n. The information control input
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is designed in the form of ui = kiyi + zi, where ki is a row vector with mi

components and zi is a scalar.
More generally, consider an interconnected network of n vehicles whose in-

formation states are updated according to ẋi =
∑n

j=1 Aijxj +B1iwi +B2iui,
i = 1, . . . , n, where xi ∈ R

n denotes the information state, wi ∈ R
m de-

notes disturbances, and ui ∈ R
r denotes the information control input with

i = 1, . . . , n. Letting x, w, and u be column vectors with components xi, wi,
and ui, respectively, the dynamics of x are denoted by ẋ = Ax+B1w+B2u.
Reference [52] focuses on synthesizing a decentralized state feedback control
law that guarantees consensus for the closed-loop system without disturbances
as well as synthesizing a state-feedback controller that achieves not only con-
sensus but optimal H2 performance for disturbance attenuation.

Extensions of Consensus Algorithms

Consensus algorithm (1.1) is extended in various ways in the literature. For
example, [17, 47] generalize the consensus equilibrium to a weighted power
mean or arbitrary functions of the initial information states. In [104], quan-
tized consensus problems are studied, where the information state at each
node is an integer. In [224], an external input is incorporated in (1.1) so that
the information state tracks a time-varying input. Consensus with a constant
reference state is addressed in [99, 143], and consensus is addressed with a
time-varying reference state in [90,180]. In [229], necessary and sufficient con-
ditions are derived so that a collection of systems is controlled by a team
leader. An approach based on nonsmooth gradient flows is developed in [48]
to guarantee that average consensus is reached in finite time.

The single-integrator consensus algorithm given by (1.1) is also extended
to double-integrator dynamics in [89, 186, 261] to model more naturally the
evolution of physical phenomena, such as a coaxial rotorcraft MAV that can
be controlled through gentle maneuvers with a decoupled double-integrator
model. For double-integrator dynamics, the consensus algorithm is given by

ẍi = −
n∑

j=1

aij(t)[(xi − xj) + γ(ẋi − ẋj)],

where γ > 0 denotes the coupling strength between the information state
derivatives and both xi and ẋi are transmitted between team members. It is
shown in [186] that both the communication topology and coupling strength γ
affect consensus-seeking in the general case of directed information exchange.
To achieve consensus, the directed communication topology must have a di-
rected spanning tree and γ must be sufficiently large. See [196] for extensions
to higher-order dynamics.

Related to consensus algorithms are synchronization phenomena arising in
systems of coupled nonlinear oscillators. The classical Kuramoto model [114]
consists of n coupled oscillators with dynamics given by
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θ̇i = ωi +
k

n

n∑

j=1

sin(θj − θi), (1.4)

where θi and ωi are, respectively, the phase and natural frequency of the
ith oscillator; and k is the coupling strength. Note that model (1.4) assumes
full connectivity of the network. Model (1.4) is generalized in [98] to nearest
neighbor information exchange as

θ̇i = ωi +
k

n

n∑

j=1

aij(t) sin(θj − θi).

Connections between phase models of coupled oscillators and kinematic
models of self-propelled particle groups are studied in [213]. Analysis and de-
sign tools are developed to stabilize the collective motions. The stability of
the generalized Kuramoto coupled nonlinear oscillator model is studied in [98],
where it is proven that, for couplings above a critical value, all oscillators syn-
chronize given identical and uncertain natural frequencies. Extensions of [98]
to a tighter lower bound on the coupling strength are given in [46] for the
traditional Kuramoto model with full connectivity. The result in [98] is also
extended to account for heterogenous time delays and switching topologies
in [162].

Synchronization of coupled oscillators with other nonlinear dynamics is
also studied in the literature. As an example, consider a network of n vehicles
with information dynamics given by

ẋi = f(xi, t) +
n∑

j=1

aij(t)(xj − xi), (1.5)

where x = [x1, . . . , xn]T . In [219], partial contraction theory is applied to
derive conditions under which consensus is reached for vehicles with dynam-
ics (1.5). As another example, [166] studies a dynamic network of n nonlinear
oscillators, where the state equation for each oscillator is given by

ẋi = f(xi) + γ
n∑

j=1

aij(t)(xj − xi),

where xi ∈ R
m and γ > 0 denotes the global coupling strength parameter.

It is shown in [166] that the algebraic connectivity of the network Laplacian
matrix plays a central role in synchronization.

1.2.4 Design of Coordination Strategies via Consensus Algorithms

In this section, we briefly describe a few applications of consensus algorithms
to multivehicle coordination problems.
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Rendezvous Problem

The rendezvous problem requires that a group of vehicles in a network ren-
dezvous at a time or a location determined through team negotiation. Con-
sensus algorithms can be used to perform the negotiation in a way that is
robust to environmental disturbances such as nonuniform wind for a team of
UAVs. The rendezvous problem for a group of mobile autonomous vehicles is
studied in [124, 125], where synchronous and asynchronous cases are consid-
ered. In [124, 125], vehicles execute a sequence of stop-and-go maneuvers to
rendezvous in a distributed manner without communication between neigh-
bors. A stop-and-go maneuver takes place within a time interval consisting of
a sensing period during which neighbors’ positions are determined, as well as
a maneuvering period during which vehicles move in response to the positions
of their neighbors.

Figure 1.4 shows a simple coordination framework for multivehicle ren-
dezvous, where a consensus manager applies distributed consensus algorithms
to guarantee that all vehicles reach consensus on a rendezvous objective such
as a rendezvous time or rendezvous location. Based on the output of the con-
sensus manager, each vehicle uses a local control law to drive itself to achieve
the rendezvous time and/or location. An application of Fig. 1.4 is described
in [110], where multiple UAVs are controlled to converge simultaneously on
the boundary of a radar detection area to maximize the element of surprise.
Teamwide consensus is reached on time-over-target, requiring each vehicle to
adjust its velocity to ensure synchronous arrival.

Fig. 1.4. A simple coordination framework for multivehicle rendezvous. The con-
sensus manager applies distributed consensus algorithms to guarantee that the team
reaches consensus on a rendezvous objective. Based on the output of the consensus
manager, each vehicle applies local control laws to achieve the rendezvous objective.

Formation Stabilization

The formation stabilization problem requires that vehicles collectively main-
tain a prescribed geometric shape. This problem is relatively straightforward

 
Consensus manager 

Local  
control 

… Local  
control 
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in the centralized case, where all team members know the desired shape and
location of the formation. On the other hand, in the decentralized formation
stabilization problem, each vehicle knows the desired formation shape, but the
location of the formation needs to be negotiated among team members. The
information state for this problem includes the center of the formation. Each
vehicle initializes its information state by proposing a formation center that
does not require it to maneuver into formation. The consensus algorithm is
then employed by the team of vehicles to negotiate a formation center known
to all members of the team.

In [69], an information flow filter is used to improve stability margins and
formation accuracy through propagation of the formation center to all vehi-
cles. Formation stabilization for multiple unicycles is studied in [127] using a
consensus algorithm to achieve point, line, and general formation patterns.
In addition, the simplified pursuit strategy for wheeled-vehicle formations
in [133] can be considered a special case of continuous-time consensus al-
gorithm (1.1), where the communication topology is a unidirectional ring.
Furthermore, feedback control laws are derived in [115] using relative infor-
mation between neighboring vehicles to stabilize vehicle formations.

Formation Maneuvering and Flocking

Consensus algorithms can be applied to execute decentralized formation ma-
neuvers. For example, in [118], a class of formation maneuvers is studied where
the desired position of each robot, hd

i (t), is either communicated to the team
by a centralized entity or is preprogrammed on each robot. The robots are
to maintain a prespecified formation shape even during transients and in re-
sponse to environmental disturbances. In other words, when one robot slows
down or maneuvers to avoid an obstacle, the other robots must maneuver
to maintain the formation shape. The intervehicle communication network is
limited and requires a decentralized approach to maintain the formation. The
mobile robot dynamic model is feedback linearized as the double-integrator
system ḧi = ui, where hi denotes the location of a point on the ith robot that
is not on the wheel axis and ui denotes the control input. The decentralized
formation control law is given in [118] as

ui = −Kgh̃i −Dgḣi −Kf

n∑

j=1

aij(h̃i − h̃j) −Df

n∑

j=1

aij(ḣi − ḣj), (1.6)

where Kg and Kf are symmetrical positive-definite matrices, Dg and Df

are symmetrical positive-semidefinite matrices, and h̃i
�
= hi − hd

i . In control
law (1.6), the first two terms guarantee that hi approaches hd

i , whereas the
second two terms guarantee that the pairs h̃i, h̃j and ḣi, ḣj reach consensus. If
consensus can be reached for each h̃j , the preservation of the desired formation
shape is guaranteed during maneuvers.
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A similar approach can be applied to the rigid body attitude dynamics

˙̂qi = −1
2
ωi × q̂i +

1
2
q̄iωi, ˙̄qi = −1

2
ωi · q̂i,

Jiω̇i = −ωi × (Jiωi) + Ti,

where, for the ith rigid body, q̂i ∈ R
3, q̄i ∈ R, and qi = [q̂Ti , q̄i]

T ∈ R
4 is

the unit quaternion, that is, the Euler parameters (see Appendix D), ωi ∈ R
3

is the angular velocity, and Ji ∈ R
3×3 and Ti ∈ R

3 are, respectively, the
inertia tensor and the control torque. Defining vec

(
[q̂, q̄]T

)
= q̂ as the operator

that extracts the vector part of a quaternion, the control torque is given
by [117,176,188]

Ti = −kGvec
(
qd∗i qi

)−DGωi−kS

n∑

j=1

aijvec
(
q∗j qi

)−DS

n∑

j=1

aij(ωi−ωj), (1.7)

where kG > 0 and kS ≥ 0 are scalars, DG is a symmetrical positive-definite
matrix, DS is a symmetrical positive-semidefinite matrix, q∗ is the quaternion
conjugate, and qd is the centrally commanded quaternion. The first two terms
in (1.7) align the rigid body with the prespecified desired attitude qdi . The
second two terms in (1.7) are consensus terms that cause the team to maintain
attitude alignment during the transients and in response to environmental
disturbances [176].

Using biologically observed motions of flocks of birds, [198] defines three
rules of flocking and applies them to generate realistic computer animations.
The three rules of flocking are collision avoidance, velocity matching, and flock
centering. Together these rules maintain the flock in close proximity without
collision. Reference [198] motivates the use of similar rules for multivehicle
robotic systems [155,232]. As an example, consider the vehicle dynamics

ṙi = vi, v̇i = ui,

where ri and vi are the position and velocity of vehicle i, respectively, and ui

denotes its input. In [155], the control input ui is defined as

ui = −∂V (r)
∂ri

+
n∑

j=1

aij(r)(vj − vi) + fγ
i , (1.8)

where the first term is the gradient of a collective potential function V (r),
the second term drives the system toward velocity consensus, and the third
term incorporates navigational feedback. In (1.8), the first term guarantees
flock centering and collision avoidance among the vehicles, the second term
guarantees velocity matching among the vehicles, and the third term achieves
a group objective. Equation (1.8) has been validated for flocking with undi-
rected communication topologies.
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1.3 Monograph Overview

The subject of this monograph is distributed coordination of multiple au-
tonomous vehicles. The objective of distributed coordination is to have mul-
tiple autonomous vehicles work together efficiently to achieve collective group
behavior via local interaction. This monograph introduces distributed con-
sensus algorithms and their applications in cooperative control of multiple
autonomous vehicles. The consensus algorithms require only neighbor-to-
neighbor information exchange, which minimizes the power consumption, in-
creases the stealth, and improves the scalability and robustness of the team.
In addition, the consensus algorithms allow the interaction topologies among
the vehicles to be dynamically changing, sparse, or intermittent. This feature
is particularly useful for real-world application scenarios where communica-
tion topologies are usually not fully connected, communication links are often
noisy and unreliable, and vehicles have only limited communication range
and bandwidth. This monograph includes both theoretical and experimen-
tal results in distributed coordination of multiple ground robots, spacecraft,
and UAVs. The theoretical results address distributed consensus algorithms
and their extensions for single-integrator, double-integrator, and rigid body
attitude dynamics and show convergence analysis results in the presence of
directed, limited, and unreliable information exchange among vehicles. Those
results extend many existing results in the area of cooperative control. In
the application chapters of the book, we apply the distributed consensus al-
gorithms to several multivehicle cooperative control applications, including
formation keeping for wheeled mobile robots and spacecraft and cooperative
perimeter tracking and timing for a team of UAVs. The application results
demonstrate issues and challenges in multivehicle cooperative control.

This monograph consists of six parts and six appendices. The first part
overviews consensus algorithms in cooperative control of multiple autonomous
vehicles (Chapter 1). The second part introduces consensus algorithms for
single-integrator dynamics (Chapter 2) and consensus algorithms with a ref-
erence state (Chapter 3). The third part introduces consensus algorithms for
double-integrator dynamics (Chapter 4) and their extensions to a reference
model (Chapter 5). The fourth part focuses on attitude consensus for rigid
body attitude dynamics (Chapter 6) and relative attitude maintenance and
reference attitude tracking (Chapter 7). The fifth part introduces consensus-
based design methodologies for distributed multivehicle cooperative control
(Chapter 8). The sixth part applies consensus algorithms to several multive-
hicle cooperative control applications: rendezvous and axial alignment with
multiple wheeled mobile robots (Chapter 9), distributed formation control of
multiple wheeled mobile robots with a virtual leader (Chapter 10), a decentral-
ized behavioral approach to multiple robot formation maneuvers (Chapter 11),
deep space spacecraft formation flying (Chapter 12), cooperative fire moni-
toring with multiple UAVs (Chapter 13), and cooperative surveillance with
multiple UAVs (Chapter 14). In addition, Appendices A–F review, respec-
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tively, selected notations and abbreviations, graph theory notations, matrix
theory notations, rigid body attitude dynamics, linear system theory back-
ground, and nonlinear stability theory background.

1.4 Notes

The results in this chapter are based mainly on [191]. For further literature
review on consensus algorithms, see [156].
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