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Automatic Tuning of Control Parameters

Riding on the advances in adaptive control and techniques, modern industrial
controllers are becoming increasingly intelligent. Many high-end controllers
appearing in the market now come equipped with auto-tuning and self-tuning
features. No longer is tedious manual tuning an inevitable part of control
systems. The role of operators in PID tuning has been reduced to simple
specifications and decision.

Different systematic methods for tuning controllers are available, but re-
gardless of the design method, the following three phases are usually applica-
ble:

1. The system is disturbed with specific control inputs or control inputs
automatically generated in the closed loop.

2. The response to the disturbance is analysed, yielding a model of the system
which may be non-parametric or parametric.

3. Based on this model and certain operation specifications, the control pa-
rameters are determined.

Automatic tuning of controllers means quite simply that the above proce-
dures are automated so that the disturbances, model calculation and choice
of controller parameters all occur within the same controller. In this way, the
work of the operator is made simpler, so that instead of having to derive or
calculate suitable controller parameters himself, he only needs to initiate the
tuning process. He may have to give the controller some information about
the system before the tuning is done, but this information will be considerably
simpler to specify than the controller parameters.

In this chapter, relay tuning approaches towards tuning of control systems
for servo-mechanisms are presented. The approaches are directly amenable to
be used in conjunction with the various control scheme presented in Chapter
2.
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3.1 Relay Auto-tuning

In order to commission the control schemes, a nominal system model is neces-
sary. In this section, the development of an automatic tuning method for the
parts of the control schemes needing the nominal model is considered. Among
the various automatic tuning methods proposed in recent time, the work due
to Aström and Hägglund (1995) is arguably the most attractive from a prac-
tical viewpoint. They use an on-off relay as a controller inserted in the control
loop as shown in Figure 3.1. With this arrangement, it is conjectured that
sustained oscillation will be generated in many systems. This conjecture has
also been field-proven in many applications involving process control systems.

Fig. 3.1. Relay feedback system

Since most systems will exhibit low-pass characteristics, the output oscil-
lation will approximate a sine wave with a period of tu and an oscillation
amplitude of a. Expressing the relay control signal, u by the first harmonic of
the Fourier series expansion of the square wave, the frequency response of the
system is given by

Gp

(
j
2π

tu

)
= −πa

4h
. (3.1)

where h represents the relay amplitude. Equation (3.1) is a complex equation.
The system parameters may be inferred from this relay feedback arrangement
by solving Equation (3.1), provided the number of parameters to be deter-
mined is less than or equal to two. This simple operation may be viewed in
the frequency domain using the describing function analysis method. The nec-
essary condition for oscillation is that the feedforward transmission must be
equal to –1, equivalently described by

Gp

(
j
2π

tu

)
N(a) = −1. (3.2)
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Suppose the transfer function Gp(s) is known. Equation (3.2) may be
solved graphically by plotting the negative inverse of the describing function,
– 1

N(a) , with the Nyquist curve of Gp(s). An intersection point will typically
suggest the existence of a limit cycle oscillation. The period and amplitude of
the oscillation are given by the frequency response parameters of that point.
One problem with conventional relay tuning is that certain systems do not
exhibit stable limit cycle oscillations. Typically, these systems have only low
order dynamics and no transportation lag. This is especially true for servo-
mechanical systems which rarely exhibits a phase lag of more than −π, and
which probably explain why relay feedback methods have been mainly applied
to process control systems thus far. This observation is visually clear from a
frequency domain analysis. The describing function of a standard relay is given
by Equation (3.3).

N(a) =
4h

πa
. (3.3)

The negative inverse of the describing function is shown in Figure 3.2 as DF1.
For the Nyquist curve of the system also shown in Figure 3.2, typical of a
servo system, it is clear there is no intersection between the Nyquist curve
and DF1 in the finite frequency range.

Another shortcoming associated with the standard autotuning method is
that the experiment identifies the only point on the Nyquist curve that inter-
sects the negative real axis. This point may not, however, provide adequate
information on the system for control design.

To overcome the two shortcomings, some modifications to the conventional
relay feedback arrangement are needed. From Figure 3.2, for the limit cycle
oscillation to occur, it may be necessary to introduce a phase angle to the
negative inverse describing function. The modified negative inverse describing
function is shown pictorially in Figure 3.2 as DF2. Two possible ways of
introducing this phase lag will be described in the following subsections.

3.1.1 Relay with Delay

A phase lag in the relay negative inverse describing function (frequency do-
main) may be associated with a pure delay in the time domain. If L is the
additional time delay introduced, the resultant phase angle shift of the neg-
ative inverse describing function can be shown to be ω∗L, where ω∗ is the
frequency of the point of intersection between the inverse describing function
of the relay-delay element and the Nyquist curve of the system. The set-up is
illustrated in Figure 3.3.

If a stable limit cycle oscillation exists, the period and the amplitude of
the oscillation can be measured. The model parameters may be obtained by
solving Equation (3.2) algebraically. For a second-order model given by
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Fig. 3.2. Nyquist Plot where limit cycle does not exist with standard relay auto-
tuning

Fig. 3.3. Relay with a pure delay

Gp(s) =
Kp

s(Tps + 1)
,

with the relay experiment conducted on the position loop, the model parame-
ters are given by Equations (3.4) and (3.5).
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Kp =
ω∗

√
1 + T 2

p ω∗2

K∗ , (3.4)

Tp = −cot(ω∗L)
ω∗ . (3.5)

It is straightforward to show that Kp = K2/K1 and Tp = M/K1, where
K1, K2, M are defined as in Equation (2.53).

3.1.2 Two-channel Relay Tuning

A two-channel relay tuning method was first proposed by Friman and Waller
(1997). A describing function with a phase lag may be broken down into two
orthogonal components. These components may be conveniently chosen to be
along the real and imaginary axes. In this method, an additional relay that
operates on the integral of the error is added in parallel to the conventional
relay loop. With this method, the phase lag can be specified by selecting proper
design parameters h1 and h2. The basic construction is shown in Figure 3.4.
A similar set of equations for the system parameters may be obtained as in
the case of relay with a delay:

Kp =
πa

4
√

h2
1 + h2

2

ω∗
√

1 + ω∗2T 2
p ,

Tp =
h1

h2ω∗ . (3.6)

3.2 Friction Modelling Using Relay Feedback

It has been noted in Equation (2.120) that, considering the frictional and load
forces present, the dynamic model of a PMLM can be described by

ẍ =
aẋ + u − F̄fric − F̄load

b
. (3.7)

Neglecting the Stribeck effect, the frictional force affecting the movement of
the translator can be modelled as a combination of Coulomb and viscous
friction. The mathematical model may be written as

F̄fric = [fc + fv|ẋ|]sgn(ẋ), (3.8)
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Fig. 3.4. Set-up of the two-channel relay tuning

where parameters fc and fv relate to the coefficients of Coulomb and viscous
friction respectively.

For loading effects which are independent of the direction of motion, F̄load

can be described as
F̄load = flsgn(ẋ). (3.9)

Cumulatively, the frictional and load forces can be described as one external
disturbance F given by

F = [f1 + f2|ẋ|]sgn(ẋ), (3.10)

where f1 = fl + fc and f2 = fv. Figure 3.5 graphically illustrates the char-
acteristics of F . Figure 3.6 is a block diagram depicting the overall model of
the servo-mechanical system. It is an objective in this section to estimate the
key characteristics of F using a relay feedback experiment.

3.2.1 Friction Identification Method

Under the double channel relay feedback for servo-mechanical systems, the
closed-loop arrangement depicted in Figure 3.7 may be posed equivalently in
the configuration of Figure 3.8, consisting of a parallel relay construct acting
on the linear portion of the servo-mechanical system. The second feedback
relay (FR2 which is cascaded to an integrator) is necessary to excite oscillation
at a finite frequency since the phase response of servo-mechanical systems
rarely exceeds −π.

The parallel relay construct (henceforth called the equivalent relay ER)
consists of feedback relays FR1 and FR2, as well as the inherent system
relay SR due to frictional and load forces. The describing function (DF) ap-
proximation is thus directly applicable towards the analysis of the feedback
system.



3.2 Friction Modelling Using Relay Feedback 89

Fig. 3.5. F-ẋ characteristics

Fig. 3.6. Model of the servo-mechanical system under the influence of friction

The DF of the equivalent relay (NER) is simply the sum of the individual
DFs due to the feedback relays (NFR1), (NFR2) and the inherent system relay
(NSR), i.e.,

NER = NFR1 + NFR2 + NSR.

According to Gelb and Vander Velde (1968),

NFR1(a) =
4h1

πa
,

NFR2(a) = −j
4h2

πa
,
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NSR(a) = j

(
4f1

πa
+ wf2

)
,

NER(a) =
4h1

πa
+ j

(
4(f1 − h2)

πa
+ wf2

)
.

For DF analysis, it is more convenient to work with the transfer function
of the linear system. The transfer function of the linear system from u to x is
assumed as

Gp(s) =
Kp

s(Tps + 1)
, (3.11)

where Kp = 1/a and Tp = b/a. Under the relay feedback, the amplitude and
oscillating frequency of the limit cycle is thus given approximately by the
solution to

Gp(jω) = − 1
NER(a)

, (3.12)

i.e., the intersection of the Gp(jω) and the negative inverse DF of the equiv-
alent relay.

The complex equation at Equation (3.12) will generate the following two
real equations:

|Gp(jω)| =
∣∣∣∣ 1
NER(a)

∣∣∣∣ ,

argGp(jω) + arg(NER(a)) = −π.

Clearly, two unknown parameters can be obtained from the solution of these
equations.

The negative inverse DF of the equivalent relay is approximately a ray to
the origin in the third quadrant of the complex plane, if h2 > f1 as shown in
Figure 3.9. The angle at which this ray intersects the real axis depends on the
relative relay amplitude of h1 and h2. In this way, a sustained limit cycle can
be induced from servo-mechanical systems, similar to the more conventional
single relay set-up for industrial processes.

Note that the choice of h1 = 0 and h2 > f1 will lead to a double integra-
tor phenomenon, where no sustained oscillation can be obtained from relay
feedback.

By varying h1 and/or h2, two relay experiments can be conducted, thus
deriving equations from which the unknowns Tp, f1 and f2 can be computed,
assuming the gain Kp is known or estimated from other tests. It is straightfor-
ward to show that the parameters can be directly computed from the following
equations:

Tp =
4h1,1Kp

πa1ω2
1

,

f1 =
w2a2h2,1 − w1a1h2,2

w2a2 − w1a1
,
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f2 = − 4
πa2w2

(
h1,2

Tpω2
+ f1 − h2,2

)
. (3.13)

where ω1, ω2 are the sustained oscillating frequencies of the limit cycle oscil-
lations from the relay experiments, a1 and a2 are the associated amplitudes of
the limit cycles, h1,1 and h2,1 are the amplitudes used in the first experiment
for the relays FR1 and FR2 respectively, and h1,2 and h2,2 are the correspond-
ing relay amplitudes used in the second experiment.

Fig. 3.7. Dual relay set-up

3.2.2 Simulation

To illustrate the accuracy of the estimates of f1 and f2 from the relay method,
a simulation example is provided.

Consider the process:

Gp(s) =
10

s(0.2685s + 1)
, (3.14)

with f1 = 0.5, f2 = 0.01. In the first experiment, the relay parameters are
chosen as h1 = 2 and h2 = 1.5. Tp is correctly identified as Tp = 0.265.

In the second experiment, the parameters are chosen as h1 = 1 and h2 =
0.7. f1 and f2 are correctly identified as f1 = 0.5104 and f2 = 0.0065. The
limit cycle oscillations corresponding to the two experiments are shown in
Figure 3.10 and 3.11.
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Fig. 3.8. Equivalent system

3.2.3 Initialisation of Adaptive Control

It should be noted that, while the parameter estimation is self-adapting in
an adaptive controller (such as the scheme presented in Chapter 2), a good
set of initial values provided by the relay experiments is important to ensure
good initial transient behaviour and efficient convergence of the parameter
estimates. The following simulation example will illustrate this point clearly.

The exact parameters used in the simulation are a = −10.5, b = 0.1429,
f1 = 10 and f2 = 10. The adaptive controller is desired to track a pre-
specified trajectory. Figure 3.12 shows the adaptive control performance with
zero initial values, i.e., a = b = f1 = f2 = 0. The convergence rate is slow and
the tracking error is large. Figure 3.13 shows the performance when initial
values of a = −5, b = 0.05, f1 = 6.9979 and f2 = 6.9979 are used. The
tracking error is reduced and convergence rate is faster. Figure 3.14 shows
the performance when good initial values are used with a = −10, b = 0.1,
f1 = 9.7971 and f2 = 9.7971. Both the tracking error and convergence rate
exhibit improved characteristics compared to the preceeding two cases.

3.3 Optimal Features Extraction from Relay Oscillations

In many relay feedback applications, it is required to measure the amplitude,
frequency and also phase shift quantities from sampled noisy, but periodic,
oscillations. Under the influence of measurement noise, it may be difficult
to extract these parameters accurately. These parameters are used in the
design of the controller, directly or indirectly. Thus, a reliable and accurate
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Fig. 3.9. Negative inverse describing function of the modified relay

identification of the key parameters associated with relay oscillations under
the influence of noise is important. A non-linear least-squares (LS) method
can be applied in a two-stage identification experiment.

Denote by {x̄(t) | t = t0, t0 + Ts, · · · , t0 + (Np − 1)Ts} a data series of a
sampled noisy sinusoidal signal where Np is the total number of point, Ts the
sampling period and t0 is the initial time. The true signal is

x(t) = A sin(ωt + θ). (3.15)

The optimisation problem is to locate a parameter set which will minimise a
performance index such as J(A, ω, θ) given by

J(A, ω, θ) =
Np−1∑
j=0

[x̄(t0 + jTs) − x(t0 + jTs)]2. (3.16)

This is clearly a non-linear least-squares problem. As shown in what follows,
the problem can be simplified to a two-stage linear LS identification problem.

Stage 1: Fixed ω

When ω is fixed, Equation (3.16) can be converted to a linear LS problem.
Defining
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Fig. 3.10. Input/output signals with h1 = 2 and h2 = 1.5
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Fig. 3.11. Input/output signals with h1 = 1 and h2 = 0.7

α1 = A sin(θ), , α2 = A cos(θ), (3.17)

for a given ω, the optimisation problem is to locate A and θ so that Jω(A, θ)
is minimised, where
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Fig. 3.12. Adaptive control with zero initial values
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Fig. 3.13. Adaptive control with initial values: a = −5, b = 0.05, f1 = 6.9979 and
f2 = 6.9979

Jω(A, θ) =
Np−1∑
j=0

[x̄(t0 + jTs) − α1 sin(ω(t0 + jTs))

−α2 cos(ω(t0 + jTs))]2. (3.18)
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Fig. 3.14. Adaptive control with initial values: a = −10, b = 0.1, f1 = 9.7971 and
f2 = 9.7971

This is clearly a linear LS problem which can be directly solved.

Stage 2: Varying ω

The parameter optimisation process can be repeated for a range of frequency
ω in the neighbourhood of the estimated value. It can be defined that

min
A,ω,θ

J(A, ω, θ) = min
ω

{min
A,θ

Jω(A, θ)}. (3.19)

In this way, the complete optimal parameter set (A, ω, θ) can be obtained.
Figure 3.15 shows the extraction of a sinusoidal profile from the noisy

oscillation signal of a relay feedback experiment.

3.4 Experiments

In this section, experimental results are provided to illustrate the effectiveness
of the relay method. The experimental set-up is similar to that presented in
Section 2.2.9.

Two relay experiments are conducted according to the procedures de-
scribed in Section 3.2. Tp is identified as Tp = 0.073. The friction parameters
are identified as f1 = 0.238 and f2 = 0.001. The limit cycle oscillations arising
from the two experiments are shown in Figure 3.16 and Figure 3.17.

With the model parameters, a PID feedback controller and a feedforward
friction compensator can be properly initialised. The overall control system is
shown in Figure 3.18. Since the mechanical structure and other components
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Fig. 3.15. Feature extraction from a noisy sinusoidal signal (solid—extracted sinu-
soid, dotted—actual sinusoid)

in the system have inherent and unmodelled high-frequency dynamics which
should not be excited, small adaptation gains are used.

Figure 3.19 and Figure 3.20 show the tracking performance to a refer-
ence sinusoidal profile with and without the feedforward friction compensator.
Clearly, with the friction compensator, the root-mean-square (RMS) value of
the tracking error can be drastically reduced from 11.2 μm to around 1.01
μm.
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Fig. 3.16. Input-output signals under the first relay experiment
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Fig. 3.17. Input-output signals under the second relay experiment
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Fig. 3.18. PID with friction pre-compensator
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Fig. 3.19. Tracking performance without friction compensation
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Fig. 3.20. Tracking performance with friction compensation
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