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Appearance

3.1 Introduction

Modelling of organ appearance in the virtual scene is the next element of
the scenario generation process. As stated in [116], realism of rendered scenes
demands complexity, or at least the appearance of complexity. Therefore, we
strive to enhance the visual richness of the surface triangle models generated in
the previous step by adding further detail. The application of surface textures
to geometric models – also referred to as texturing – is currently one of the
key techniques in interactive computer graphics, to add complexity and thus
realism to visual rendering. With this approach, the representation of minute
object detail with geometric information can be avoided. Moreover, texture
mapping requires only little additional computational effort in the rendering
process.

3.1.1 Definitions

The term texture does not have a specific general or mathematical definition.
Depending on the context, it can have different meanings. For instance, from
the point of view of the sense of touch, it denotes the tactile properties of the
external surface of an object (e.g., roughness, stickiness). For the gustatory
sense, the texture of food relates to specific properties, for instance, crispness
or crunchiness. In contrast to this, in material sciences, the term characterizes
material properties resulting from the orientation of crystallites.

In the visual domain, one usually thinks of texture as an area which con-
tains a uniform spatial characteristic, which is often attributed to a specific
material of the object or surface. In a general sense, the texture appearance
is due to the varying light reflectance characteristics of the surface structure.
The appearance can be due to different physical effects, ranging from vari-
ation of light absorption and reflection (denoted as flat textures) caused by
submicroscopic structures, via macroscopic effects such as self-shadowing and
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Figure 3.1. Different classes of textures. (a) Submircoscopic variation causing spa-
tially varying color perception, (b) Surface relief on macroscopic scale, (c) Collection
of objects from distance

-occlusion, to mere collections of objects seen from a distance (Figure 3.1).
Texture patterns are usually a combination of all of these classes, and a clear
separation is not possible. It should be noted that the appearance of textures
is strongly influenced by viewing direction and illumination conditions. These
factors are also critical in endoscopic imaging – our source of sample textures
– and therefore have to be taken into account.

In addition, several perceptual properties are often attributed to textures,
which shall be briefly addressed in the following.

Regularity. Textures can be subdivided into deterministic and stochastic
variants. The former are usually built by repetition of basic patterns in
various directions – a typical example being a brick wall. The latter obey
a nontrivial probability distribution, and show no dominant frequency or
pattern – a typical example being clouds or pasture. Most natural textures
fall into the second category.

Isotropy. While isotropic textures are completely independent of direction,
and can for instance be freely rotated, anisotropic ones show dominant
directions in their appearance – an example of the latter being wood
grain.

Resolution. In perceptual terms, texture resolution is related to homogene-
ity and scale. Usually, textures are invariant under translation, and to a
certain degree also to scale. The smallest patch of a texture which ex-
hibits the same perceptual characteristics can be regarded as the texture
resolution.

Composition. Textures are often built up in a hierarchical manner contain-
ing smaller subtextures. This allows us to treat the different levels of the
texture separately. An example of this could be the characteristic sub-
structures of organ surfaces, such as specks on livers.

Many contributions to understanding texture perception in the human
visual system, especially discrimination issues, have been made by Bela Julesz
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Figure 3.2. Application of texture mapping in computer graphics. (a) Bump map-
ping, (b) Light map, (c) Environment mapping, (d) Cellular texture

(e.g., [132]). He conjectured that textures with the same power spectrum or
with identical second-order correlations cannot easily be discriminated. This
topic will be discussed in more detail in Section 3.6.1.

Finally, it should be noted that semantics are often attributed to a specific
texture, depending on the viewing context or preknowledge of the beholder.
This is for instance true for medical experts, who gain information from an
organ’s appearance which might not be obvious to laymen.

3.1.2 Texturing in Computer Graphics

The discussion so far has examined textures from a general point of view.
However, the application of textures in computer graphics is the main focus
of our endeavors, therefore, this area is reviewed with more detail.

The notion of texture mapping was initially introduced in 1974 by Edwin
Catmull as a new technique to perform high quality image synthesis [49].
While the major application of texturing is the representation of surface color,
several other visual effects based on textures have been developed. In the
following some typical techniques are outlined.

Surface color. The standard texturing approach uses one-, two-, or
three-dimensional patterns, which are mapped to the surface of an object
to determine its color. Initially introduced in [49], this notion is nowa-
days the most common application of textures. It will also be the major
focus of the investigations related to surgical scene generation. Further
generalization of the method by including transparency, as described in
[94], allows the rendering of a number of natural phenomena, for instance,
clouds or smoke.

Illumination enhancement. Real-time rendering algorithms require sur-
face normals to compute light reflection. By using textures to define local
perturbations of the normals, an otherwise flat surface appears to have
bumps and wrinkles (Fig. 3.2(a)). This method, known as bump map-
ping, was introduced in [28]. A different effect related to lighting can be
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achieved with light maps. Precomputed illumination data are used to lo-
cally modulate light intensity (Fig. 3.2(b)). The increased use of per pixel
shading, however, makes this approach more and more obsolete. A dif-
ferent texture-based illumination technique was introduced to represent
highly reflective surfaces, which mirror the object surroundings. In order
to approximate results obtained from time consuming ray tracing, envi-
ronment mapping can be applied (see e.g., [106]). In this method, a texture
built up from images of the surrounding environment is indexed by the
directions of rays reflected on the object surface (Fig. 3.2(c)).

Geometry adaptation. An alternative application of texture maps is to de-
fine the actual geometric variation of object surfaces. In contrast to bump
mapping, this technique creates real bumps in the model. Therefore, high
mesh resolutions are required, and interactivity is only possible in limited
cases. Hypertexture or cellular texture methods fall into this category. The
former was presented in [207], where object shape was defined as the pro-
cedural modification of density in three-dimensional space. The latter was
introduced in [84], and denotes the generation of geometric patterns by bi-
ologically motivated cellular development. With this technique, surface el-
ements such as scales, feathers, or thorns can be represented (Fig. 3.2(d)).

3.1.3 Relevance to Surgical Education

Apart from the underlying technical aspects, the relevance of appropriate tex-
turing of surgical scenes should also be examined from the medical point of
view. Especially in the limited views of minimally-invasive settings, where the
surgical site is accessed through natural orifices or small incisions in the skin,
texture contains several cues facilitating spatial navigation. As discussed in
[32, 196], changes in texture characteristics according to perspective distortion
provide knowledge about depth and orientation. Since endoscopic interven-
tions are usually performed with monoscopic cameras, these monocular depth
cues contain significant additional semantic information. Apart from this, dif-
ferent kinds of texture of various organs provide further cues for orientation.
This is especially true for laparoscopic procedures in the human abdomen,
where a large variety of structures is present. Typical organ surface textures
allow a surgeon to infer his position from the limited endoscopic view. For
instance, fat, intestines, or liver all exhibit characteristic surface patterns and
color. Moreover, the variation of individual organ textures hints at possible
pathological changes. The distinct appearance of the uterine endometrium
could for instance provide knowledge about the presence of endometritis or
hyperplasia. Thus, in an advanced education system, the organ textures should
also reflect the pathologies present in the training scenario. In terms of the
level of realism, appropriately varying textures represent a significant element
of a surgical scene. They affect the training of low-level skills, e.g., orientation
in the surgical site; as well as high-level skills, e.g., decision making according
to semantic information.
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Figure 3.3. Pictures taken during laparoscopic interventions. (a) Cranial section
of abdomen showing liver, gallbladder, peritoneum, and diaphragm, (b) Close-up of
diaphragm with typical vascular structures, (c) Kaudal section of abdomen depict-
ing uterus, ovary, and peritoneum, (d) Uterus structure, including corpus, fallopian
tubes, and other adnexa, (e) Patches of fat covering intestinal structures, (f) Small
intestine with fat and typical vessel trees

As discussed earlier, the methods presented in the following sections of
this chapter were developed for two settings – gynecological laparoscopy
and hysteroscopy. Because of different access methods to the uterus, varying
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Figure 3.4. Pictures taken during hysteroscopies. (a) View inside the fluid-filled
uterine cavity with no abnormal findings, (b) Small polyps growing from the en-
dometrial wall, (c) Larger polyp inside uterine cavity, (d) Uterine leiomyoma with
typical vessel structures

requirementsfor organ texturing have to be met. In Figures 3.3 and 3.4, snap-
shots of real interventions show characteristic views of both approaches. Typ-
ical surface textures can be seen in both collections. It should be noted that
the imaging conditions vary greatly for the two methods. While in the gas-
insuflated abdomen high quality pictures of all structures can easily be taken,
the intrauterine image quality is usually quite low. The depicted selection
represents samples taken under nearly optimal conditions.

3.1.4 Process Elements

In the next sections, all the steps necessary for generation of organ textures
will be discussed in detail. The first element is the intraoperative image ac-
quisition to form a ground truth, which is necessary for most of the texture
synthesis methods. Then image enhancements are carried out to deal with
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Figure 3.5. Texturing process for hysteroscopy simulation (from [203])

the often suboptimal imaging conditions. Subsequently, the image data can
be used for textures synthesis. Thereafter, additional procedural texturing
methods can be applied to include further detail in the textures. The final
step comprises the mapping of the texture to the geometric organ surface.

It should be noted that tissue is often covered by vascular structures.
These vessel patterns contain vital information for the surgeon, and need to be
reproduced appropriately. However, the structures are usually too complex to
be synthesized with texture generation approaches. Moreover, vessels also have
to be included in the simulation as geometric objects, since they will be sources
of bleeding when cut. Therefore, vascular trees have to be treated separately
from the underlying base texture. The discussion in this chapter is constrained
to the generation of varying, organ-specific base textures. The integration of
vessel systems will be briefly reviewed in Chapter 5. Nevertheless, it should
be noted that some surface structures exist – for instance, specks on livers, or
follicles on ovaries – which will be addressed in this chapter.

In order to provide an overview of all necessary steps, the texturing ap-
proach taken for the hysteroscopy setting is depicted in Figure 3.5. The
method uses tileable, variable textures created from in vivo images for the
texture synthesis. Textures are mapped to 3D mesh geometry by mesh param-
eterization, taking into account the visibility of seams and distortion reduc-
tion. More details of these process elements, as well as those for laparoscopic
textures, are explained after a review of previous work.

3.2 Previous Approaches in Surgery Simulation

This section focuses on a survey of the methods used for generation of textures
in the context of surgical simulation or for other related natural phenomena.
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Figure 3.6. Fourier spectra of different organ textures. (a) Endometrium texture
t1, (b) Magnitude of Fourier transform log(|T1|), (c) Bowel texture t2, (d) Magnitude
of Fourier transform log(|T2|)

More general work in texture generation and mapping will be addressed below.
More precisely, procedural texturing will be detailed in Section 3.5, human
texture perception in Section 3.6.1, and a review of pixel- and patch-based
texture synthesis will be provided in Section 3.6.2. Nevertheless, here previous
attempts related to surgical simulation are examined, in order to put the
presented texturing methods into an application-oriented context.

The most basic approach for creating organ textures suggested in the
past is direct texture painting. This usually requires a medical illustrator
to manually draw the texture with the help of appropriate tools. In [233] a
two-dimensional painting method was used to obtain textures for a virtual
environment targeting biomechanical analysis and education. The illustrator
has to ensure in a trial and error process that the 2D drawings map to the
3D geometry without distortion. More advanced approaches proposed to draw
textures directly in 3D. Initial steps in this direction were reported in [113];
however, the lack of a true 3D user interface makes difficult an intuitive usage
of the system. Improved tools, for instance using haptic interfaces, were pre-
sented later, e.g., in [2, 130, 20]. Nevertheless, the direct painting of textures
does not meet the requirements of variable training scene generation, since a
new texture would have to be created or adapted for every new organ. While
high texture detail might be achievable with such an approach, its costly and
time consuming nature prohibit its usage in our setting.

An interesting alternative to direct painting in the spatial domain is pre-
sented in [160], where the author suggests drawing a texture in the frequency
domain. It is possible to create patterns found in wood or canvas with this
method. Nevertheless, it is admitted that the correct spectrum for natural
textures might be as complicated as the texture itself. In Figure 3.6, logarith-
mic transformations of the Fourier spectra of two representative samples are
depicted. Unfortunately, no patterns can be identified which would encourage
closer examination of texture drawing in the frequency domain.

In [154] an approach using polyhedron decomposition is described which
allows the treatment of each surface triangle as an independent entity with
its color information stored in a unique texture space. The triangles are ar-
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ranged in the parameter space to optimize area coverage. Textures represent-
ing anatomical details are manually placed by medical experts with a 3D tool,
and interactively mapped to the surface. Blending between different texture
patches reduces discontinuities. The method has been applied in a simulator
for minimally invasive neurosurgery. Real images acquired during endoscopy
are used to manually generate the texture patches. Again, these methods re-
quire too much manual input from the user.

A different strategy using texture samples and avoiding distortion, discon-
tinuity, and repetitiveness is presented in [194]. It is based on the triangular
tiling of a surface at a user-specified scale. The tiling defines a local param-
eterization, which is used to map triangular texture patches to the surface
triangles. If the tiling is relatively homogeneous, distortions are expected to
remain favorable. Due to the selected tiling, texture patches have to match
their color and local derivative at the borders. The patches are either cre-
ated manually or semiautomatically. In the former case, the patches are hand
drawn samples, or manually edited real images. In the latter case, the tex-
tures are synthesized based on nonperiodic cellular patterns [297] or fractal
noise [208]. This method was used to apply texture samples to a 3D mesh of
a liver. The patches were synthesized with Worley’s approach, and four sets
of equilateral triangles with isotropic homogeneous texture were applied. This
work was later extended in [193] by adding dynamic effects directly to the
surface texture, for instance, cauterization marks or blood drops. These ef-
fects were added with direct painting paradigms, and distortions were avoided
by considering the local Jacobians. The texture variation achieved with these
techniques is rather limited, due to the small number of triangular patches.

A different approach for obtaining textures for medical scenes is the map-
ping of real volumetric data to surfaces. In [224], the Visible Human data
set is utilized to obtain texture for organs. The authors segment individual
structures from the data. Thereafter, polygon models are placed along the
segmented boundaries and textured directly from the volumetric data. New
textured surfaces, created for instance during cutting procedures, can also
be obtained on the fly. Unfortunately, the segmentation of the anatomical
structures in the dataset is time-intensive and tedious, and can be carried out
only with limited precision. Moreover, variable scenes cannot be generated
with this approach. Similarly, volumetric texture mapping is also proposed in
[162]. A tetrahedral mesh is mapped to the Visible Human data, which can
be cut and deformed. An interesting alternative has been suggested in [144];
namely to generate organ-specific CT color lookup tables based on the Visi-
ble Human CT and cryosectional data. By the mapping of Hounsfield units to
RGB values, different CT datasets can be colorized. Nevertheless, this method
provides only an approximate colorization of organs, and does not include de-
tailed surface information. Moreover, the appearance of specific pathologies
cannot be obtained with this approach.

Another recent trend in surgical simulation is the use of methods inspired
by image-based rendering [136] for realistic visualization. For instance, in [82],
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real images are combined with artificial specular reflections, modulated by a
set of reflectance maps, to simulate different views by the endoscopic camera.
The maps are generated with Perlin fractal noise. As an application example,
this method was used in bronchioscopy simulation. The model geometries are
obtained from CT images, while the textures are acquired from live endo-
scopic images, and later registered to the model. Unfortunately, the authors
do not discuss the texturing process in more detail. It is not clear how cor-
rect correspondences between texture and geometry are obtained. Moreover,
it is not explained how problems like missing regions or highlights visible in
the actual endoscopic images are handled. Finally, the approach would have
to be repeated for every new model. A similar approach is reported in [218],
where specular highlights are created with environment mapping, utilizing
current graphics hardware extensions. However, the authors do not report on
how the cube map of the texture is generated in order to avoid distortions.
Recently, a combination of conventional texture mapping, image mosaicking,
view-dependent texture mapping, and light source shading has been proposed
in [129] for realistic rendering of surgical scenes. The authors assume that
the background in endoscopic simulation does not change significantly, thus
enabling the rendering of novel views with image-based rendering principles.
First, mosaicking is applied to composite background images from an endo-
scopic video sequence. Since different viewing angles cause varying specular
highlights, a number of these background images are created for different an-
gles. During runtime, view-dependent blending of these images is performed.
However, the scene foreground, i.e., the actual interactive liver model, is ren-
dered with standard methods. Therefore, a large difference in rendering quality
between foreground and background can be noticed in the scene.

For completeness, reaction-diffusion processes, which have been suggested
for the synthesis of natural textures [295, 270], should also be mentioned. With
this approach, chemical processes describing pattern formation in biological
morphogenesis are simulated. As an example, typical animal fur patterns can
be reproduced with this method. However, there is no straightforward exten-
sion of reaction-diffusion texture generation to the formation of specific organ
patterns.

3.3 Data Acquisition and Enhancement

3.3.1 In Vivo Image Acquisition

The first step in the texture generation chain is the acquisition of image data
from real interventions. This is necessary, since for the majority of organs an
analysis/synthesis paradigm is followed. Only in limited simple cases can a
texture be defined with a purely functional approach. Therefore, a ground
truth covering the visual appearance of organs in healthy as well as patho-
logic conditions has to be obtained. Due to the varying boundary conditions
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of laparoscopic and hysteroscopic interventions, different image acquisition
techniques have to be used.

Table 3.1. Excerpt of in vivo image database

Original image Cropped and masked
image

Properties

• ID: 105
• Object: polyp
• Age: postmenopausal
• Resolution: medium
• Size: 374x312
• Focus: excellent

• ID: 142
• Object: polyp
• Age: unknown
• Resolution: medium
• Size: 198x140
• Focus: good

• ID: 149
• Object: polyp
• Age: unknown
• Resolution: medium
• Size: 253x111
• Focus: good

• ID: 151
• Object: endometrium
• Age: unknown
• Resolution: high
• Size: 329x292
• Focus: good

The largest limitations are encountered in hysteroscopy, mainly due to
time constraints and poor visibility inside the uterus. The former are due to
the problem of fluid overload caused by absorption or intravasation. Operation
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time and the consumed quantity of the distension media have to be closely
monitored. Generally, an operation time of 30 mins should not be exceeded.
Due to this, only a limited amount of time can be spent obtaining high quality
images of structures inside the uterus. Moreover, the view usually is obscured
by floating tissue fragments, blood, and endometrial fibers. Therefore, instead
of acquiring specific high-quality images, pictures were obtained from 10 hours
of in vivo video taken during various hysteroscopies. Images representing dif-
ferent structures in the uterine cavity were selected, labeled, and input into a
texture database. Usually, high resolution views of characteristic tissues were
chosen, which optimally were perpendicular to the surface and without strong
camera spotlight effects. 69 different samples were obtained that contained us-
able textures of various types of tissue. In Table 3.1 a few categorized textures
of the searchable database are visualized.

In contrast to this, the acquisition process during laparoscopy is less com-
plex. Since time constraints are less severe, and individual organs can be
selectively brought into view, higher quality samples can be taken. In order to
minimize the disturbance of the normal surgical procedure, snapshots can be
taken by pressing a foot pedal. With this approach, about 400 high resolution
true color images were obtained from 16 different laparoscopies.

3.3.2 Image Enhancement

Before the acquired images can be used for texture synthesis, a few additional
preprocessing steps have to be carried out. The first step is to crop from the
image the region which contains the appropriate sample for a specific organ
texture. It should be noted that the quality of the image can be diminished
by a number of effects. Texture samples can show a trend due to orientation,
scale, or viewing angle. This is especially the case for highly curved organ sur-
faces. In order to reduce this trend, images should be taken from flat areas of
an organ with a perpendicular viewing direction. However, perspective distor-
tion present in endoscopic cameras cannot be avoided. A previous calibration
of the optical system before image acquisition might reduce these effects; how-
ever, such a process has to be performed before every operation, and cannot
easily be integrated into the normal workflow. Moreover, image quality might
be further deteriorated due to blur – a particular obstacle in hysteroscopy.
Finally, problems can be encountered due to the interlaced imaging mode,
in which half images are acquired alternatingly for even and odd lines. This
sometimes adds high frequency noise to the data.

The cropped samples obtained in the first step should contain relatively
homogeneous regions of the desired base texture. However, additional struc-
tures might be present in the sample, which have to be removed before further
analysis. This includes highlights coming from the camera system. Since a per-
pendicular viewing direction is sought, these interfering highlights are usually
part of the image. In laparoscopy, specular reflections are present; while in
hysteroscopy, diffuse intensity shifts are encountered. Apart from this, other



3.3 Data Acquisition and Enhancement 67
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Figure 3.7. Reduction of intensity drift for texture samples. (a) Texture sample
of liver surface, (b) Drift reduction with quadratic fit, (c) Texture sample of uterus
surface, (d) Drift reduction with quadratic fit

surface structures which should not be part of the base texture also have to
be removed, e.g., vessels, or structures like follicles on ovaries. Therefore, re-
gions containing these types of structures are masked in the images. It should
be noted that this results in arbitrarily shaped texture samples with masked
pixels which have to be taken into account in the later processing steps.

Illumination trends due to drifts in intensity and saturation caused by
unhomogeneous distribution of light energy and diffuse reflection on curved
organ surfaces are another difficulty. While these effects might not be directly
noticeable by a human observer, they have to be rectified before the synthesis
process. One approach to alleviate this situation is to perform a filtering in
HSV space based on least squares fitting. To this end, the RGB color image
is converted to HSV space.

H =

⎧
⎪⎪⎨

⎪⎪⎩

60 · G − B
Max − Min, if Max = R

60 · B − R
Max − Min + 120, if Max = G

60 · R − G
Max − Min + 240, if Max = B

(3.1)

S = 1 − Min

Max
V = Max ,

where Max is the maximum of the color channel triplet (R,G,B) ∈ [0.0, 1.0]3,
and Min the minimum of these values (with Max−Min �= 0 and Max �= 0).
In HSV space, drift will be corrected by separately processing the Hue (H)
and Value (V ) channel. A least squares approximation is performed with a
quadratic or cubic fit function.

f(x, y) =
k∑

n=0

k∑

m=0

cn,m xnym, with k ∈ {2, 3} . (3.2)
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In order to determine the unknown coefficients cn,m, the least squares
solution to an overdetermined system of linear equations has to be obtained.
In the case of a quadratic fit, the equation system takes the form
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where vi are the respective H or V values at positions (xi, yi) of the i unmasked
texels in the sample texture. Equation 3.3 can be solved with standard solvers,
e.g., Householder reflections or Givens rotations. After the coefficients of the fit
function have been determined, the drift of the initial sample can be adjusted
by subtracting the quadratic or cubic fit, and subsequently adding the mean
of the sample texels. Finally, the new values are converted back to RGB color
space (examples of the overall process are shown in Figure 3.7).

Hi = � H
60� mod 6, f = H

60 − Hi, (3.4)

p = V · (1 − S), q = V ·
(
1 − (S · f)

)
, t = V ·

(
1 −

(
S · (1 − f)

))
.

R = V, G = t, B = p, if Hi = 0

R = q, G = V, B = p, if Hi = 1

R = p, G = V, B = t, if Hi = 2

R = p, G = q, B = V, if Hi = 3

R = t, G = p, B = V, if Hi = 4

R = V, G = p, B = q if Hi = 5

The final step in the image preprocessing is the reduction of colors by
quantization. The acquired true color images can in principle contain more
than 16 million different color values. As we will see later, computation time
is often directly related to the number of colors. Therefore, it is advisable
to limit the amount of the latter. The sample images are well suited for this
step, since only a limited number of tones and intensities is present. Moreover,
errors created during the process are obscured by the stochastic nature of the
samples. Instead of uniform quantization of the color channels, more sophis-
ticated algorithms such as the ones discussed in [99] or [298] should be used.
Typically, 32 colors are sufficient for the majority of the samples. Figure 3.8
shows examples of the color reduction.
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(a) (b) (c) (d)

Figure 3.8. Color reduction by quantization. (a) Original texture sample of en-
dometrial wall, (b) Quantized sample with 32 colors, (c) Original texture sample of
uterus, (d) Quantized sample with 32 colors

3.4 Base Texture Generation

The next step in the texturing chain is the generation of the base textures.
Generally, two different strategies could be followed for this: empirical proce-
dural texture generation based on closed mathematical formulations, or an-
alytical approaches applying example-based synthesis. Mainly the latter are
used in the scenario definition process, since procedural methods suffer from
several limitations. The main drawback is the nonintuitive control of the al-
gorithms. First, an appropriate mathematical representation has to be found
that describes a specific pattern. Moreover, a number of parameters have to be
manually supplied to control the results. Nevertheless, a few simpler textures
can be generated with the former strategy. Therefore we first discuss these
methods, before moving on to the other category.

Furthermore, it should be noted that the dimensionality of the generation
has to be considered. Directly obtaining 3D textures avoids several texturing
problems encountered in 2D approaches. The most significant advantage is
the circumvention of the surface mapping step. Therefore, inherent obstacles
in 2D, such as distortion or continuity problems, can be avoided. Instead, the
textured object is “carved” from the block of texture. This works especially
well for patterns that emerge from real 3D phenomena, e.g., wood or marble.
However, 3D strategies perform well only with relatively homogeneous and
isotropic textures. Moreover, it should be noted that not all characteristics of
some specific 2D patterns can easily be reproduced with a 3D texture. Con-
sider as a typical example a texture with uniform, filled circles. A volumetric
version should contain uniformly distributed spheres; however, an arbitrary
surface cut from this block would not contain circles of uniform size. In this
sense, 2D approaches appear to be more flexible. Nevertheless, in this case an
appropriate solution for mapping the texture to a 3D surface has to be found.
Both 2D and 3D textures have been used in texture generation, and thus both
will be discussed in the following.
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3.5 Procedural Textures

3.5.1 Review

The notion of procedural texturing was initially coined in [208]. Instead of
explicitly specifying and storing all details of a texture, they are abstracted
into a function or algorithm (i.e., the procedure) which can then be evaluated
on the fly. With this approach, problems with texture memory or bandwidth
limitations can be avoided. Moreover, due to the procedural design, texture
resolution is infinite, since magnifications can be interactively generated. An-
other concept which has to be mentioned in this context is solid texturing.
Introduced by Ken Perlin at the same time as [94] and [206], this paradigm
decouples texture from geometry and defines it in 3D space. This obviates the
mapping of a 2D texture to a 3D surface, thus also avoiding any distortions
or discontinuities.

The first usage of a mathematical function to define a solid texture can be
found in [94]. Inspired by [229], the author uses Fourier expansions to represent
real-world detail at a statistical level, for instance to represent clouds or trees.

T (xs, ys, zs) =
n∑

i=1

ci

(
sin(ωixs) + Pxi

+ 1
)

2
·

n∑

i=1

ci

(
sin(ωiys) + Pyi

+ 1
)

2
(3.5)

where Pxi
and Pyi

represent phase shift functions which are added to avoid
regularities in the pattern. ci and ωi provide some control over the amplitude
and period of the signal.

Also in [206], basic solid texturing was applied. It is suggested that projec-
tion functions be defined to extrude 2D texture into 3D space – in the simplest
case this can be an orthogonal projection, for instance, to generate 3D wood
textures from concentric circles. Moreover, the usage of combination functions
to merge different solid textures is also described. A typical granite texture
could for example be generated by combining three basic solid textures.

The most sophisticated procedural approach has been described in [208].
It is based on the application of pseudo-noise, which is used as a numerical
representation of the randomness found in natural structures. It should be
noted that pseudo-noise only gives the appearance of randomness; neverthe-
less, it is sufficient for generating convincing textures. The core element of the
algorithm is the definition of a random noise function ν : IRn −→ IR, which
should be band-limited. Concentrating the energy in a small section of the
frequency spectrum results in similar size and anisotropy of the apparently
random variations. Moreover, the outcome should be statistically invariant
under translation and rotation. Since we aim at generating solid textures, the
following discussion is limited to defining ν for n = 3.

The first step is to define a grid of pseudo-random gradient vectors g
positioned at 3D lattice points q. These random vectors are generated by a
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(a) (b) (c) (d)

Figure 3.9. Examples of Perlin procedural textures. (a) Fractal turbulence τ with
m = 0, (b) Fractal turbulence τ with m = 3, (c) Marble texture µ with m = 0, (d)
Marble texture µ with m = 4

Monte Carlo simulation, which computes N points uniformly distributed on
the surface of a unit sphere. The vectors are stored in an array G, which is
usually periodic to limit the number of vectors. This is acceptable as long
as the repetition occurs over a long distance – in practice N = 256 yields
good results. In the next step, vectors g are randomly assigned to lattice
points. This can be done with a heuristic indexing function based on lattice
coordinates i, j, k.

g(i, j, k) = G
[
τ
[
(i + τ [ (j + τ [ k mod N ]) mod N ]) mod N

]]
, (3.6)

where τ represents an array containing a precomputed random permutation
of the numbers 0 to N − 1. After assigning the random gradient vectors using
Equation 3.6, the noise function can be evaluated at an arbitrary 3D position
p = (x, y, z) by calculating a weighted sum of inner products at the eight
closest lattice points qi,j,k.

ν(x, y, z) =
�x�+1∑

i=�x�

�y�+1∑

j=�y�

�z�+1∑

k=�z�
ω(p − qi,j,k)

[
g(i, j, k) · (p − qi,j,k)

]
. (3.7)

Here, ω represents an S-shaped, cubic drop-off filter to weigh the inter-
polants in each dimension.

The resulting noise function can now be used to generate textures with
random appearance, either by direct mapping to colors, or as an additional
parameter in a composite mathematical description. One typical approach is
to generate fractal turbulence by iterating over octaves.

τ(p) =
m∑

i=0

ν(2i · p)
2i

. (3.8)

It should be noted that usually after a few harmonics the changes are less
than the resolution of the texture, both in terms of spatial and grey value
resolution.
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Textures resembling marble can for instance be generated with

µ(p) =
∣
∣cos(c1p1 + c2p2 + c3 τ

(
p
)∣
∣ , (3.9)

where c1 and c2 allow control of the period of the typical marble patterns
in two main directions, and c3 denotes the strength of the turbulence. pi

represents the i-th component of the vector. Examples of procedural texture
according to the discussed algorithm are depicted in Figure 3.9.

While Perlin’s noise function provides reasonable results, there are a few
shortcomings. One problem is the definition of the function, which causes it
to evaluate to zero at the lattice points. This might be noticeable as a dis-
turbing regular appearance. Since in general any noise function which fulfills
the requirements stated above could be used, other approaches for procedural
noise generation were also scrutinized.

In [159] a sparse convolution algorithm for three-dimensional noise is in-
troduced. It is synthesized by the convolution of a kernel h(p) with a Poisson
noise process of impulses, which are uncorrelated in intensity and distributed
at uncorrelated locations in space. Due to the impulse nature of the noise, the
convolution reduces to a summation over the impulses.

ν̃(p) =
m∑

i=0

αi · h(p − pi) , (3.10)

where pi is the location of the i-th impulse and αi a scaling parameter. Using
this in the more general form of Equation 3.8, a new turbulence function is
obtained:

τ̃(p) =
m∑

i=0

βi(ν(γip)) . (3.11)

The parameters βi and γi can be used to individually control the amplitude
and scale of all noise basis functions, respectively. As an example for the kernel
h, a smooth cosine function was used to obtain a wood-like appearance.

3.5.2 Generation of Simple Textures

While the schemes discussed above are not sufficient to generate the more com-
plex surface patterns found on most organs, they can be used to generate some
of the simpler base textures, for instance those of fat or intestine. This can be
accomplished by using the noise scalars to linearly interpolate between two
typical colors in RGB space. These colors can be selected to be the minimal
and maximal color value of a specific source image. In Figure 3.10, two gener-
ated example textures applied to artificially generated surfaces are depicted.
To assess the quality of this result, the same objects are also shown integrated
into a real in vivo scene. The noise was generated with Equation 3.11, using
m = 1, β0 = 5.0, β1 = 10.0, γ0 = 1.0, γ1 = 0.707.
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(a) (b) (c)

Figure 3.10. Simple textures obtained from procedural approaches. (a) Example
texture resembling fat, (b) Example texture resembling bowel, (c) Sample objects
integrated into in vivo image

It can be concluded that the presented approach enables the procedural
generation of acceptable simple base textures. However, a number of prob-
lems have to be solved, which make the approach infeasible in most cases.
Manual tuning is required to set the parameters of the noise functions, as well
as specifying the correct RGB values to use for interpolation. In addition,
color interpolation in RGB space can only provide meaningful output if the
sample colors are relatively close to each other. Carrying out the interpola-
tion in HSV space might be more appropriate for this. Moreover, a higher
order interpolation with more sampling points might also provide better color
variation.

In the context of the scene generation process, procedural texturing also
does not fulfill the posed requirements. Synthesis times can be long at higher
resolutions, and due to the empirical nature of the approach, several attempts
might be necessary to obtain the desired results. Since the scene definition
should be carried out by medical experts with the provided tools, this al-
gorithm behavior is not acceptable. Due to the fact that also textures with
higher variability should be generated, we focus mainly on texture synthesis
by way of example.

3.6 Texture Synthesis

The underlying idea of approaches falling into the synthesis category is texture
creation from example. A sample is supplied to an algorithm and analyzed,
and then a new texture is automatically created resembling the original one.
Different strategies can be used to ensure the similarity between the input and
output texture. This paradigm fits quite well into the training scene generation
process, since the methods can easily be controlled by novice users, i.e., the
medical personnel in our case. The overall process should require as little user
intervention as possible. However, if interaction should become necessary or
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is desired by the user, control of the method should be intuitive. Interactive
control over the placement of texture by the user should also be allowed.
Nevertheless, overall synthesis quality should not be limited by providing this
option. These boundary conditions will have some influence on the selection
of the synthesis algorithm.

3.6.1 Human Texture Perception

A number of texture synthesis approaches are inspired by research examining
the human perception of texture. This area of investigation was pioneered by
the work described in [132]. Two random visual patterns, either side-by-side,
or one contained in the other, were presented to test subjects. The patterns
were identical in their probability distribution of the n-th order, but differed
in their (n + 1)-th-order distribution. The test subjects had to perform a
spontaneous visual discrimination task with these patterns. It was observed
that textures differing in their first-order statistics can easily be discrimi-
nated, while patterns with the same first- and second-order statistics could
not be distinguished. This led to the well known conjecture that textures ap-
pear indistinguishable to humans if their first- and second order statistics are
identical [133].

This assumption, however, was later disproved by the same group [45,
134]. They were able to create textures with iso-second-order patterns which
were distinguishable in pre-attentive human visual perception experiments.
Nevertheless, inspired by the earlier work, pixel pair statistics are still very
common in texture synthesis approaches. Especially for the less structured
textures found on human organs, methods based on second-order distributions
using pixel pairs yield good results.

More recent work based on psychophysical and neurophysiological exami-
nations indicates that a multichannel spatial frequency and orientation analy-
sis is performed within the visual cortex (see, e.g., [122, 179, 273, 64, 23, 178]).
It was suggested that the response of cells in the primary visual cortex of
mammals can be modeled with Gabor filter kernels [91]. Thus, similar tex-
tures should produce the same responses to a bank of oriented filters.

3.6.2 Review

Texture synthesis methods proposed in the past originate from diverse under-
lying ideas and follow different strategies. A distinction of the approaches is
not straightforward, since often a combination of methods is used. One possi-
ble categorization discriminates between pixel- and patch-oriented synthesis.
The former synthesizes a pixel at a time, while the latter pastes complete
patches into the new texture.
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Pixel-Based Synthesis

Synthesis algorithms focusing on single pixels can be further subdivided ac-
cording to their sampling strategy. The first class determines new textures by
matching global statistics in feature space. The second class generates pixels
based on local information in the sample and result texture.

A number of methods following a global sampling approach have been de-
veloped. One of the first – inspired by the work of Julesz – has been reported
in [92]. A pixel-wise optimization strategy is followed, minimizing a goal func-
tion with respect to selected statistical features. Given a sample texture Tsrc

and a target texture Ttgt, pixels in the latter are changed so as to minimize the
error E between the respective feature vectors psrc and ptgt. One key element
of the approach is the appropriate definition of the feature vectors. One op-
tion is to model the texture by pixel pair co-occurrences at certain distances,
thus capturing second-order statistical properties. Unfortunately, in such a
straightforward implementation, the computation time depends quadratically
on the number of texture colors. As an alternative, it was suggested that the
full co-occurrence matrices be replaced with simpler models based on moments
of various order, for instance, second-order spatial moments combined with
first-order spatial averages (i.e., autocovariance with intensity histograms).
However, this resulted in reduced synthesis quality.

A different paradigm was followed in [117], inspired by psychophysical
studies which assume that a bank of space localized filters are underlying hu-
man texture perception to discriminate texture fields. The method consists
of matching histograms at different levels of a Laplacian or steerable texture
pyramid. The first phase is the analysis of a sample texture, which consists
of building an image pyramid where the levels are obtained by convolution
and subsampling. The same is done for a white noise image, which is modified
iteratively in the second phase to match the appearance of the sample tex-
ture. This is achieved by multiscale matching of marginal histograms. While
the Laplacian pyramid is suited for isotropic textures, the steerable version
enables the synthesis of textures with some oriented structures. Although
there is no proof of convergence, reasonable results are obtained after a few
iterations. Nevertheless, the technique performs only well on basic stochastic
homogeneous textures. Moreover, performing too many matching iterations
can introduce artifacts in the synthesized image.

A method related to the previous work was introduced in [31]. Again
a multiresolution filter-based approach is applied, following a coarse-to-fine
manner. The algorithm randomizes an input texture sample while preserving
the cross-scale dependencies. First an analysis pyramid is constructed based on
responses to a bank of oriented first- and second-order Gaussian derivatives.
Then the synthesis is carried out on subsequent levels by building a set of
candidate pixels for a specific texture location. The candidates are selected
if the distances of features between the analysis pixel feature vector and the
synthesized feature vector is below a set of selected thresholds. Difficulties in
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this method are due to the nonintuitive tuning of the threshold parameters;
especially, since the outcome is very sensitive to this choice. Additionally,
boundary artifacts are produced when the textures are not tileable.

Another approach following a multiresolution paradigm has been suggested
in [244, 217]. This method is based on matching first- and second-order proper-
ties of wavelet coefficients and coefficient pairs of steerable pyramids. Pixels in
the image pyramid are updated according to iterative orthogonal projections
from the filter response of the synthetic texture onto that of the sample.

A combination of multiscale feature matching with Markov Random Field
(MRF) methods – the FRAME model – has been presented in [309, 308].
It builds on comparing marginal histograms of Gabor filter bank responses
as features. The synthetic texture is updated according to MRF probability
functions. While a solid mathematical framework is presented, the method is
computationally quite expensive.

A difficulty, which hampers the application of all these multiscale ap-
proaches in our specific texture generation process is the masking of pixels.
During the convolution steps between the different subbands, unknown tex-
ture values have to be propagated, which reduces the quality of the overall
synthesis process.

For completeness, the work described in [100, 101] should also be men-
tioned. Instead of matching global features, the authors suggest performing a
global spectral analysis of a texture sample in order to obtain basis and per-
turbation functions for procedural texture generation. A 2D texture sample
Ts is approximated by using a summation of cosines.

r(x, y) = A0 +
N∑

i=1

Ai cos
(
2π(fix + giy) + θi

)
. (3.12)

Here, A0 is the average value of the texture, Ai the amplitude of the
i-th significant term, fi, gi its frequencies, and θi its phase, respectively. The
cosines are determined by spatial partitioning of the spectrum of Ts and se-
lecting the dominant signal in each bin. A new texture Tn, which can be 2D
or 3D, can then be synthesized by using a pseudorandom signal. A problem
is the control of the variation along the third dimension, since the texture
remains a 2D pattern, which is perturbed along the third axis. This situation
can, however, be partly alleviated by using additional samples representing
different orthogonal slices of a structure.

In contrast to the methods discussed above, several approaches follow lo-
cal sampling strategies. The majority of these algorithms model texture as a
Markov Random Field and generate new images by stochastic sampling.

A core assumption of MRF is locality, that is, the value of a pixel is pre-
dictable from a finite set of neighboring pixels, and independent of the rest.
This property of spatial Markovianity is described by the local conditional
probability density function (LCPDF) (see, e.g., [24, 97]).
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P (Xs = xs|Xr = xr, r �= s) = P (xs|xr, r ∈ Ns) , s ∈ S, xs ∈ L (3.13)

where xs ∈ L is the state of the variable Xs at site s on texture lattice S, and
Ns ⊂ S is a neighborhood of s. The second property of MRF is stationarity.
This usually refers to the fact that the marginal probability of any texture
window remains invariant under translation.

In order to calculate 3.13, the equation is reformulated according to the
Hammersly-Clifford theorem [24]. Under positivity condition on a finite lat-
tice, an MRF can be rewritten as a Gibbs random field, which assigns a
probability to each realization X = x in the MRF.

P (X = x) =
1
Z

e

(
−
∑

C⊂S VC(x)
)

. (3.14)

Here, VC assigns a potential based on site values to the clique C, which is
a subgraph of S where all sites are neighbors, and Z is a normalizing constant.
The conditional probability can then be obtained using the defined potential
function.

P (Xs = xs|Xr = xr, r �= s) =
e

(
−
∑

s∈C VC(x)
)

∑
λ∈L e

(
−
∑

s∈C VC(λ,x�=i)
) . (3.15)

New texture can thus be synthesized by drawing samples from the dis-
tribution P . Two distinct strategies can be identified to carry out this step.
Parametric approaches try to learn the parameters of the assumed under-
lying Gibbs distribution from samples. Unfortunately, this is hampered by
the high dimensionality of the approach. The main problem is the fitting
of all parameters for larger neighborhood sizes, which is computationally in-
tractable. Therefore, nonparametric methods refrain from explicitly determin-
ing the MRF model.

The former approach was applied in [62]. The authors assumed autobi-
nomial conditional probabilities for the clique potentials as a texture model.
Second-order statistics of particular textures were compared to those predicted
by the MRF.

A cluster-based, semiparametric model was introduced in [216]. The prob-
ability function was compressed with discretized Gaussian kernels.

P (x) =
N∑

i=1

wi

( M∏

j=1

Gi,j(x)
)

, wi > 0,
∑

wi = 1 (3.16)

where wi are weighting parameters. According to the restricted probability
function, the value of a new pixel is then determined in a fixed order within a
causal neighborhood. Moreover, to reduce complexity, a hierarchical approach
is applied.
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In contrast to the previously discussed methods, nonparametric texture
synthesis approaches do not require the direct estimation of parameters in
statistical models.

Initial work in this direction has been described in [204]. The authors de-
veloped a noncausal, nonparametric, multiscale MRF model capable of syn-
thesizing a large range of textures. The local conditional probability density
function was determined to obtain the probability of a pixel value in a non-
causal neighborhood. A nonparametric estimate of the LCPDF of a sample
image was obtained by building its multiscale histogram. A Parzen-window
density estimator is applied to the multiscale histogram in order to determine
the LCPDF. Pixelwise stochastic relaxation is then carried out to synthesize
a new texture. Moreover, they augmented their coarse-to-fine approach with
local annealing and parallelization of the relaxation.

In [79] a nonparametric sampling approach was described. Assuming an
MRF model, a probability distribution for a target pixel is obtained based
on its already synthesized neighbors, and on windows of the sample texture
with similar neighborhoods. An exhaustive nearest neighborhood search has
to be performed for each target pixel. A new image is grown in a spiral, one
pixel at a time, starting from an arbitrarily placed 3x3 seed. In general, the
neighborhood window has to be large enough to capture local structures com-
pletely. Moreover, problems can occur when no good matches can be found.
The algorithm can get lost in the search space and start sampling randomly
which produces incorrect results.

A similar technique was suggested in [290]. Again, no explicit probability
distribution was constructed. The authors synthesized a new texture pixel by
pixel in scanline order, while preserving local similarity. This was done by con-
sidering an L-shaped neighborhood of fixed size in the current output image,
and searching the input sample for the candidate with the most similar neigh-
borhood, which was then copied into the output image. Again, this method is
quite slow, due to the extensive searching process. Therefore, the authors sug-
gest accelerating the neighbor search with tree-structured vector quantization
(TSVQ). A further improvement in computation time could be achieved by
incorporating a multiresolution pyramid. These enhancements make the algo-
rithm two orders of magnitude faster then the previous one. Unfortunately,
the method tends to introduce some blurring into the results.

A further improvement of the nearest neighbor search is described in [8].
It is based on the observation that neighbors to a pixel in the output image
often come from locations in the sample image which are near to the sources
of pixels in its current neighborhood. Thus instead of an exhaustive search, a
limited number of candidates is generated, based on the original locations of
the current neighborhood pixels. To this end, a coherence map is maintained,
which stores source locations of synthesized pixels.
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Patch-Based Synthesis

In recent years a different paradigm for texture synthesis has emerged. No
explicit mathematical texture model is developed, but instead a heuristic
approach is followed, in which new textures are obtained by copying com-
plete patches from example images. Usually, this is performed in an iterative
fashion, where new patches are selected according to some error metric. The
latter ensures an optimal fitting of overlap regions at the patch edges. The
overall process can be influenced by selecting the patch size or the extent of
the overlap regions. The main focus of most methods is the treatment of the
patch boundaries, as well as employing optimal search strategies to select the
patches.

The first work following a patch-based strategy – termed chaos mosaics
– was reported in [300]. Instead of copying individual pixels, the authors
randomly placed source texture patches in the output image. Their biggest
problem was feature discontinuities across seams. In later work they overcame
some of these problems with simple cross-edge filtering [299]. A key feature of
their method was the fast synthesis of output images with reasonable quality.

Related to the previous method, in [219] lapped textures are introduced,
which can be used to cover arbitrary triangle meshes with example textures.
Seams across patches are avoided with alpha blending. A robust flattening
approach is used to minimize distortions and match local orientation.

A synthesis process termed image quilting is outlined in [80]. New textures
are synthesized one patch at a time in scanline order by placing overlapping
square samples from a source image. Candidate patches are selected randomly
from the source so as to minimize the L2 norm for pixels in the overlapping
area. Once a square patch has been found, an optimal cutting patch between
adjacent patches is determined. The authors apply dynamic programming to
perform this minimum error boundary cut.

Similarly, in [161] another patch-based sampling strategy is suggested. In-
stead of determining an optimal cut between patches, boundary errors are
alleviated by simple blending. In addition, a number of algorithmic improve-
ments are made to enable real-time user interaction. An approximate nearest
neighbor search scheme is followed for patch selection. Principal component
analysis is applied to reduce the dimensionality in this step. Moreover, further
enhancements could be achieved by using hierarchical data structures, e.g.,
kd-trees to find the nearest neighbor or quad-trees to select initial candidates.

Improved handling of patch overlap regions used in a hybrid synthesis
approach is described in [192]. A multiscale paradigm is followed to minimize
the border error. After a candidate patch is selected, the error of the overlap
region is examined. If it exceeds a predefined threshold, a smaller patch is
resynthesized and tested again. If necessary, this process is iterated down to
individual pixels. In order to speed up the candidate search, it is carried out
in the Fourier domain. This allows a quick calculation of the error with a fast
Fourier transform (FFT).
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In [150] the treatment of the patch boundaries is formulated as a graph cut
problem. By representing the overlap region as a graph, the task of finding
the best seam turns into the search for a minimum-cost graph cut. Again,
an FFT-based acceleration is applied by carrying out patch searching in the
Fourier domain.

Patch-based texture synthesis provides good results at reasonable process-
ing times; however, a number of limitations exist which make their usage
complicated in our application area. One problem is due to the image masks
present in our texture samples, which limit the candidate search. Another
drawback is the recalculation of texture patches necessary if affine transfor-
mations are to be applied to the texture, which reduces interactivity during
the scene generation process. Finally, due to the patch oriented nature of
these methods, stochastic variation can be diminished compared to pixel-wise
strategies. For these reasons, pixel-wise synthesis approaches are mainly em-
ployed. In the following two sections, the methods applied to generate textures
for laparoscopic as well as hysteroscopic scenes are discussed in more detail.

3.6.3 Texture Generation for Laparoscopic Simulation

In the context of simulation of surgical interventions in laparoscopy, a two-
stage texture generation process can be followed [182]. The main step consists
of pixel-based texture synthesis. It provides base textures of moderate stochas-
tic variation, which is sufficient for the majority of the abdominal organs. If
required, these textures can then be enhanced by adding low-frequency detail
in a second step, following a procedural approach.

The synthesis method applied is the one detailed in [92]. Inspired by Julesz’
conjecture, it models texture by pixel-pair statistics. An advantage of this ap-
proach is its capability of dealing with masking, which is often necessary due
to the low quality of our source images. Moreover, the method can easily be
extended to 3D synthesis, which simplifies the required texture mapping to ob-
ject meshes. Furthermore, the technique allows the integration of directional
control of the synthesis process, which permits the generation of anisotropic
textures. Finally, varying levels of synthesis quality can be achieved by ap-
plying different statistical models for determining the texture feature vectors.
This allows for the selection of an appropriate model depending on the char-
acter of the sample image, while the texture generation procedure stays the
same.

The main idea of this approach is to minimize the error between feature
vectors containing a statistical description of a source and a target texture.
First, for a given sample image Tsrc, the feature vector psrc is determined.
Similarly, the vector ptgt of an arbitrary sized target texture Ttgt is obtained.
Following an optimization in a least squares sense, pixels in the output image
are changed, so as to minimize the error between the feature vectors.

E = ‖ptgt − psrc‖2 != min . (3.17)
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Figure 3.11. Translation window TR for determining co-occurrences

To initialize this procedure, the target texture is filled with noise, which
should match the histogram of that of the source image. This can be done by
randomly copying pixels of the sample texture to the target lattice. While this
is only an approximation of the source histogram, the resulting deviation does
not influence the synthesis approach. Moreover, since first-order statistics are
part of the applied texture models, this will automatically be adapted during
the optimization. Finally, the random initialization ensures variation of the
output samples.

After this initial setup step, the algorithm iteratively visits locations in
the output lattice in a random order. The current texel value l is replaced
with the value l′, which maximally decreases the squared Euclidean feature
vector difference. Recomputing the whole vector ptgt to determine the error
E would tremendously decrease performance. However, this is not necessary.
Instead, it is sufficient to just determine the change of error ∆E resulting from
replacing l with l′ in the target texture.

∆E = E(l) − E(l′) . (3.18)

Thus for each location the algorithm visits, we have to determine the
value l′, which maximizes ∆E . If such a value can be found, l is replaced by
l′, and the feature vector ptgt as well as the error E have to be updated.

Following the outline of the algorithm, we now have to define the statistical
models which should be used to determine the feature vectors. While a number
of approaches would be possible, this discussion focuses on the co-occurrence
and the autocorrelation models.
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Co-occurrence Model

This model is based on the co-occurrence of pixel color pairs in the texture
lattice with a relative distance of τ . This translation vector is usually encoded
with the tuple (τx, τy) denoting the L1-distance in the x- and y-direction,
respectively. The probability of co-occurrence of colors l1, l2 ∈ L = {1, . . . , L}
at distance τ is given by:

rτ (l1, l2) =
1
N

N∑

i=1

δ(ti − l1) · δ(ti+τ − l2) . (3.19)

Here, N is the total number of texture pixels t in the image lattice. They
are indexed in 1D fashion, with ti being at location (x, y) and ti+τ at location
(x + τx, y + τy). By determining all probabilities for all colors l1, l2 ∈ L for a
specific translation τk, we can setup a co-occurrence matrix.

M2(τk) =

⎛

⎜
⎜
⎜
⎝

rτk
(l1, l1) · · · rτk

(l1, l|L|)
...

. . .
...

rτk
(l1, l|L|) · · · rτk

(l|L|, l|L|)

⎞

⎟
⎟
⎟
⎠

. (3.20)

By combining all matrices M2(τk) for all translation vectors τk in the
texture lattice T , we could build the feature vector p. However, its size linearly
depends on the number of translations and quadratically on the number of
colors. Therefore, some reductions in size have to be made to keep the problem
manageable. The translations can be restricted to a certain distance. This
is done by considering just a limited window of translations. Moreover, by
exploiting the fact that rτ (l1, l2) = r−τ (l2, l1), we can further reduce the
number of translations. Hence, the translation window (see Figure 3.11) is
defined according to

TR =

⎧
⎪⎪⎨

⎪⎪⎩

(0 ≤ |τx| ≤ Nx ∧ 1 ≤ τy ≤ Ny) ∨
τ = (τx, τy) (−Nx ≤ τx ≤ −1 ∧ τy = 0)

τx, τy, Nx, Ny ∈ IN

⎫
⎪⎪⎬

⎪⎪⎭

. (3.21)

Therefore, the number of parameters in the vector needed to describe tex-
tures by using second-order spatial averages is finally given by |L|2 ·(2NxNy +
Nx +Ny). After setting up the initial feature vectors, the algorithm randomly
selects positions ti in the lattice of the target texture. For these positions
the texture value which maximizes ∆E has to be found. Since we limited the
translations to the window TR, we only have to examine the positions ti+τ

and ti−τ for a specific translation τ . Instead of recomputing the whole error,
we can just update the error change. If l+ is the color at ti+τ , and l− the one
at ti−τ , then a replacement of l with l′ at ti necessitates the replacement of
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co-occurrence (l, l+) with (l′, l+), and (l−, l) with (l−, l′) in the feature vector
ptgt. Thus, the vector update for the translation τ can be carried out following
the scheme

rtgt
τ (l, l+) := rtgt

τ (l, l+) − 1
N tgt

τ

(3.22)

rtgt
τ (l′, l+) := rtgt

τ (l′, l+) +
1

N tgt
τ

rtgt
τ (l−, l) := rtgt

τ (l−, l) − 1
N tgt

τ

rtgt
τ (l−, l′) := rtgt

τ (l−, l′) +
1

N tgt
τ

.

Here, N tgt
τ denotes the total number of pixel-pairs lying inside the output

image lattice for the specific translation τ . This update has to be applied
for all τ ∈ TR. Based on the vector updates of Equation 3.22, the resulting
contribution to the error change can be determined. When replacing l with l′

the error change is given by

∆E(l′) =
∑

τ∈TR

[
4

(N tgt
τ )2

+
2

N tgt
τ

·
(
rsrc
τ (l, l+) − rtgt

τ (l, l+) + rtgt
τ (l′, l+) − rsrc

τ (l′, l+)+

rsrc
τ (l−, l) − rtgt

τ (l−, l) + rtgt
τ (l−, l′) − rsrc

τ (l−, l′)
)]

.

(3.23)

Using this equation, we can now determine the value l∗ ∈ L − {l}, which
maximizes ∆E . If the error change is less than or equal to zero, then we
already have found the optimal value and can continue with a new location
in the lattice. Otherwise, we replace l with l∗, and update ptgt according to
Equation 3.22, as well as the error E := E + ∆E(l∗). It should be noted that
in order to deal with the boundary, the texture is regarded topologically as a
torus by joining opposite edges. This also produces output images, which tile
seamlessly. Example textures synthesized with this algorithm can be seen in
Figure 3.12.

While the convergence of the algorithm has not been proven theoretically,
in practice the error monotonically decreases with each scan. The lower bound
of the error is zero; however, one can not guarantee a perfect fit of the co-
occurrences (i.e., zero error). Typically, the optimization can be stopped after
6 iterations, where only a small percentage of pixels is changed. This change
rate can actually be used as a termination criterion. Moreover, it should be
noted that a fundamental element of the method is the random selection of
pixel locations. If a scanline order visitation scheme were followed, the error
decrease would not be homogeneous over the whole domain, which would
become visible as artifacts in the output texture.
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(a) (b) (c) (d)

Figure 3.12. Texture synthesis with co-occurrence model. (a) Drift-corrected, quan-
tized uterus texture sample, (b) Synthesized uterus texture, (c) Drift-corrected,
quantized liver texture sample, (d) Synthesized liver texture

A major drawback of the texture model is the large number of parame-
ters in the optimization. In order to synthesize textures of sufficient quality,
the translation window has to be large enough. This leads to a considerable
increase in computation time, which renders the method unfit for interac-
tive scene definition purposes. A reasonable alternative is the autocorrelation
model, which replaces the full co-occurrence matrices with second-order spa-
tial moments.

Autocorrelation Model

According to the Wiener-Khintchine theorem, the Fourier transformation of
the autocorrelation function describes the power spectrum of a signal.

J(ω) =
∫ ∞

−∞
K(τ)e−iωτdτ (3.24)

where the autocorrelation is defined as

K(τ) =
1

Nσ2

N∑

i=1

(ti − µ)(ti+τ − µ) (3.25)

with σ2 denoting variance and µ mean of the texture signal. The theorem
indicates that the autocorrelation function contains some information about
frequency and orientation in a texture. Therefore, it seems appropriate to use
it as a reduced statistical model for describing texture. However, since it only
provides the statistical moments, the histogram of the texture also has to be
taken into account by determining

H(l) =
1
M

M∑

i=1

δ(ti − l) ∀ l ∈ L (3.26)

with M being the number of pixels in the texture lattice. Combining the
histogram and the autocorrelation values for translations τ ∈ TR, we form
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(a) (b) (c) (d)

Figure 3.13. Texture synthesis with autocorrelation model. (a) Drift-corrected,
quantized uterus texture sample, (b) Synthesized uterus texture, (c) Drift-corrected,
quantized liver texture sample, (d) Synthesized liver texture

feature vectors psrc and ptgt. For this model, the length of the vectors is
reduced to |L| + (2NxNy + Nx + Ny).

The different definition of the feature vector also necessitates a new error
metric. Optimally, the histograms Hsrc and Htgt should be identical; how-
ever, due to the size of the optimization space, constraint optimization is not
practicable. Therefore, we minimize the error according to:

E = ‖pK
src − pK

tgt‖2 + α‖pH
src − pH

tgt‖
!= min (3.27)

where pK
<> and pH

<> denote the subvectors containing the autocorrelation and
histogram values, respectively. The parameter α has to be selected manually
to control histogram equality. As in the previous model, optimization is carried
out by maximizing the error change. When replacing pixel l with l′ at position
ti, first the histogram has to be updated:

Htgt(l) := Htgt(l) −
1

Mtgt
(3.28)

Htgt(l′) := Htgt(l′) +
1

Mtgt
.

Thereafter, the autocorrelation has to be recomputed. Again, for a specific
translation vector τ , values l− and l+ are affected.

Ktgt(τ) := Ktgt(τ) +
1

Nτσ2
(l′ − l)(l− + l+ − 2µ) (3.29)

where σ is the standard deviation, and µ the mean of the texture lattice T . As
in the previous model, we also have to determine the resulting contribution
to the error change, when replacing l with l′. Since in general α should be set
high enough to ensure histogram equality, we can assume that only minute
changes of the mean value µ will happen. By considering the value as being
constant, we can avoid the complete recomputation of the moments, and again
perform local error updates.
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Original image

(uterus sample)

Red channel

Red-Green
correlation

Green channel

Green-Blue
correlation

Blue channel

Blue-Red
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Figure 3.14. Correlation of color channels

∆E(l′) =
2α

M

(
Hsrc(l) − Htgt(l) − Hsrc(l′) + Htgt(l′) +

1
M

)

+
l′ − l

σ2

∑
τ∈TR

[ 1
N2

τ σ2
(l′ − l)(l− + l+ − 2µ)2

− 2
Nτ

(l− + l+ − 2µ)(Ksrc(τ) − Ktgt(τ))
]

.

(3.30)

After determining the optimal value l∗ ∈ L − {l}, the same update strat-
egy is followed as before. In general, the quality of the synthesis process is
reduced due to the model simplification. However, reasonable results can still
be achieved due to the rather stochastic nature of the organ textures. Exam-
ples synthesized using the same sample images as with the previous method
are depicted in Figure 3.13.

Algorithm Enhancements

Several improvements or extensions are possible based on the texture synthesis
approaches discussed above. Some of these will be outlined in this section.

One important aspect is the treatment of color in the synthesis methods.
So far, the discussion has been limited to samples using small numbers of
indexed colors resulting from a quantization step. While reasonable results can
be achieved with these reduced color models, the usage of full RGB images
as source textures for the synthesis process should also be examined. The
straightforward approach would be to reformulate the synthesis algorithm for
three-dimensional vectors containing the red, green, and blue channel of the
image. Unfortunately, due to the high correlation between the channels, a
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(a) (b) (c) (d)

Figure 3.15. Decorrelation of color channels (normalized view). (a) New color
channel 1, (b) New color channel 2, (c) New color channel 3 (primary channel), (d)
Color image based on primary channel

separate treatment of individual channels is not possible. An example of the
color correlation for a typical texture can be seen in Figure 3.14. The top
row shows the red, green, and blue components of the source image, while
the bottom row depicts the color distribution projected on the Red-Green,
Green-Blue, or Blue-Red surface of the RGB cube, respectively. A clear linear
correlation between the color channels is visible.

One option to amend this situation is the linear decorrelation of the color
channels via the Principal Component Analysis, thus defining a new, texture-
specific color space. This can be done by determining the eigenvalue decom-
position

C = PC̃PT (3.31)

of the texture covariance matrix

C =
1
N

∑

i

(Ti − µ)(Ti − µT ) (3.32)

where Ti is the RGB value of texel i, µ the vector of channel means of texture
T containing N texels. Matrix C is square, real, and symmetric, with orthog-
onal eigenvectors. Matrix P defines a linear transformation from color space
C into color space C̃. Since C̃ is diagonal, the three color channels are linearly
decorrelated. By subtracting the mean µ̃ from the decorrelated color chan-
nels, we obtain a new color space with mean values zero. However, it should be
noted that the PCA captures only linear correlation to reduce dimension, but
fails to detect nonlinear components. Since some nonlinear dependency is also
present in organ textures, the new color channels are not fully independent.
Nevertheless, the nonlinear component is in general negligible. Figure 3.15 de-
picts the obtained linearly decorrelated color channels for the previously used
example texture. Moreover, for the highly correlated organ textures, it can
usually be noticed that a primary channel exists, which contains most of the
texture color information. This allows one to focus the synthesis process only
on this channel. The final texture can then be obtained by setting the other
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(a) (b) (c) (d)

Figure 3.16. Synthesis examples using distance weighting with varying β. (a) Orig-
inal texture of endometrium, (b) Synthesized with β = 0.0 (unmodified version), (c)
Synthesized with β = 2.0, (d) Synthesized with β = 3.0

two channels to zero, and transforming the primary channel back into color
space C. An example of the backtransformation of the primary channel is also
visualized in Figure 3.15. The resulting texture can not easily be distinguished
from the original one.

An additional option to control the texture synthesis process is the integra-
tion of a distance weighting function. A problem of the general formulation
is the unbalanced contribution of different translations τk to the optimiza-
tion. Since a larger number of texels is included in the computation for longer
translations, mainly coarse structures are formed in the initial optimization
steps. This results in inaccuracies of fine detail, which becomes apparent as
slightly noticeable high-frequency noise in the image. To avoid this problem,
in Equation 3.23 the contribution to the error update of different translations
can be scaled with a weighting function w(τk). One possibility for the weight-
ing could be a Gaussian filter. A simpler function, also providing good results,
applies weighting according to

w(τk) =
1

(‖τk‖2)β
. (3.33)

The synthesis process can be influenced by selecting parameter β. For the
examined organ textures, values of β ≈ 2 lead to improved synthesis output.
An example of the influence of the parameter on the process is shown in
Figure 3.16.

While the introduction of a weighting function is a rather heuristic step,
a more formal approach can be taken using information theory principles
to compute transinformation. This measure (sometimes also referred to as
mutual information) denotes how much information can be obtained about
one random variable by observing another. Generally, the transinformation of
X relative to Y is given by

I(X,Y ) =
∑

x,y

p(x, y) log
(p(x|y)

p(x)

)
. (3.34)
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(a) (b) (c) (d)

Figure 3.17. Transinformation-based reduction of translation window. (a) Original
uterus texture, (b) Transinformation for window TR with Nx = Ny = 10, (c)
Reduced set of translations TR′, (d) Synthesized texture with TR′

For the synthesis process, this model can be applied to determine how
much information about a texture is contributed by a specific translation
τ . Using the previously defined co-occurrence rτ (l1, l2), as well as rτ (l1|l2),
which denotes the conditional probability of texel i having color l1, given that
texel i + τ has color l2, we can compute the transinformation I(i, i + τ) for
a specific τ by examining all pairs of colors l1, l2 ∈ L. Determining this for
all translations τ ∈ TR, we can select only those which contribute more in-
formation than a user-defined threshold. This approach limits the number of
translations, and thus also the overall computation time, while the synthesis
quality is more or less maintained. An example is depicted in Figure 3.17.
By removing all translations which contribute less than 20% of the maximal
transinformation, the number of translations in a window TR(Nx = Ny = 10)
can be reduced from 220 to 77. It is interesting to note that the profile of the
transinformation for the type of texture we examine is similar to the weighting
applied in the previous method. Thus, due to the radially decreasing weights,
the previous method also increases the influence of nearby texels, while more
distant locations are neglected. By building a thresholded transinformation
window, however, the number of computations can be significantly reduced.
Unfortunately, for both methods some iterative tuning of the controlling pa-
rameters – weighting function or transinformation threshold – is required to
obtain the desired results.

The synthesis techniques discussed so far have focused only on obtaining
isotropic output images. However, for some specific organ surface patterns it
would be useful to also allow generation of anisotropic textures. This is for
instance true for the uterus, where texture is oriented along muscle fibers. In
order to include anisotropy into the synthesis process, we have to extend the
approach by considering the local coordinate systems in the texture, which
define the orientation at that position. When considering a specific translation
τ = (τx, τy) in window TR for the current texture location, we can apply a
mapping to the local coordinate system via a rotation θ and optionally also a
scaling (ux, uy). This gives a local set of translations τ̃ .
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Figure 3.18. Rotation of translation window to include local orientation in the
synthesis process. The example shows a sinusoidal wave overlaid on the texture
lattice

τ̃x = uxτx cos(θ) − uyτy sin(θ) (3.35)
τ̃y = uxτx sin(θ) + uyτy cos(θ) .

Since the new translations usually do not coincide with the texture lat-
tice, the color has to be bilinearly interpolated. If a quantization has been
performed for the sample texture, then the new color might not be part of the
histogram, and thus it has to be mapped to the closest color value. It should
also be noted that for indexed color images, a bilinear interpolation cannot be
done. Instead the color of the nearest neighbor has to be selected. An example
of including local orientation into the synthesis is visualized in Figure 3.18.
A sinusoidal wave is used to obtain local orientation θ at each lattice point,
while no scaling is applied. A texture with prominent horizontal patterns is
used as the source image to better visualize the effect. It has to be mentioned
that for more isotropic textures, the visual effect is reduced and sometimes
almost not visible.

While this process allows the inclusion of local orientation into the synthe-
sis process, the question of how to obtain these local patterns still has to be
addressed. The anisotropies have to match the actual geometry of the object
to be textured. Thus an orientation field has to be defined on an arbitrary
triangular mesh. In practice, a user would specify a few major orientations
on the mesh, while the remaining ones are obtained from an optimization
process, ensuring smooth transitions. An orientation at a specific vertex i can
be described by a local coordinate system (ui,vi,ni). Since ni is the normal
at the vertex, the remaining degree of freedom is rotation θi around it. Thus
in an optimization process, the difference between the rotations of the local
coordinate systems at vertices i and j, which are connected by edge (i, j), has
to be minimized. A global energy term can be defined according to
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(a) (b) (c)

Figure 3.19. Synthesis of isotropic 3D texture, (a) Original uterus texture, (b)
Synthesized texture block, (c) Uterus surfaces carved out of 3D texture

Eθ =
∑

(i,j)

1
|(i, j)| ·

1 − cos
(
h(θi, θj)

)

2
(3.36)

where h(θi, θj) is a scalar valued function measuring the difference between
the orientation of the local coordinate systems connected by an edge. Af-
ter optimization by minimizing the energy term, a vector field with smooth
transitions is obtained.

In the previous sections mainly 2D textures were considered; however, this
approach can also be extended to generate 3D textures. Assuming that the
examined texture is isotropic, a statistical description can be built without
taking the lattice orientation into account. Instead of using specific transla-
tion vectors τ , only the length of the vectors affects the model, thus making
it independent of the dimension. Therefore, the statistical model for a spe-
cific 3D translation vector can be obtained from a 2D vector with the same
length. It should be noted that vectors in space might occur for which a spe-
cific translation in 2D with corresponding length cannot be found. In these
cases, the nearest neighbor can again be taken into consideration. With this
simple extension, it is possible to synthesize isotropic 3D texture volumes. As
mentioned, volumetric textures have the advantage that a mapping step to
an object surface is not necessary. Figure 3.19 depicts a synthesized volume
texture, which is mapped to the geometry of a uterine cavity. Nevertheless,
computation times become quite high, even for smaller textures, thus mak-
ing an interactive processing infeasible. Moreover, to obtain sufficient surface
detail, high volume resolution is required. Due to texture memory limitations
this cannot be achieved if several different textures are needed.

The described methods allow synthesis of organ textures of high quality.
Nevertheless, a number of limitations were encountered. Using only highly
homogeneous source images results in output images acceptable for highly
realistic simulation. However, several organs show low frequency patterns on
their surface, which cannot easily be replicated by the algorithm. Figure 3.20
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(a) (b) (c)

Figure 3.20. Limitations of the synthesis models. (a) Drift-corrected, quantized
uterus endometrium sample, (b) Synthesized with co-occurrence model, (c) Synthe-
sized with autocorrelation model

depicts an example with synthesis outcome of insufficient quality for a sample
with unhomogeneous patterns. Moreover, even with the optimized approaches,
the computation time is still unfavorable. Finally, some iterative, and unfor-
tunately also nonintuitive, parameter tuning is necessary to improve the out-
come of the synthesis. With medical experts as the end users of the scene
generation tool, this is not acceptable.

3.6.4 Texture Generation for Hysteroscopic Simulation

In order to be able to synthesize a wider range of textures, including inhomo-
geneities and anisotropies at low and high frequencies, a different approach
has been integrated into the texture generation framework based on Markov
random fields. A fast, multiscale nonparametric synthesis approach is fol-
lowed, as outlined in [204], which captures sufficient higher-order statistical
characteristics.

General MRF Model

In order to define the MRF, the pixels of an image x with dimension Mx×Mx

are considered to be at sites s on a lattice S = {(i, j) | 0 ≤ i, j < Mx}. Each
site represents a variable Xs which is equal to a value xs within the state
space Λ. For grey value or color indexed images, the state space is defined as
Λ = {0, 1, 2, . . . , L − 1}, where L is the number of grey levels or colors. The
configuration space for the sets of variables X = {Xs | s ∈ S} is the set of all
possible images Ω = ΛMx×Mx . For a texture to be modeled as an MRF, it
is assumed that the value of the pixels depends only on a limited number of
local neighbors. In [24] it was proven that the joint probability measure on Ω
is uniquely determined by its LCPDF with respect to a specific neighborhood
system
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P (xs |xr, r �= s) = P (xs |xr, r ∈ Ns) (3.37)

where Ns represents a predefined neighborhood of site s. For homogeneous
MRF a symmetric neighborhood of order c for a site s can be defined as

N c
s = {(k, l) ∈ S | 0 < (k − i)2 + (l − j)2 ≤ c} . (3.38)

For a parametric approach the LCPDF has to be estimated from the multi-
dimensional histogram of a particular texture using Gibbs distributions. This
allows us to define the probability density via appropriate parametric poten-
tial functions. The parameters have to be optimized to match the LCPDF
to the histogram. Unfortunately, the sample data are sparsely dispersed over
the corresponding multidimensional histogram and the true distribution is
not known, which leads to results of lower accuracy when using parametric
estimation. Therefore, a nonparametric approach is followed.

Nonparametric MRF Model

Given a texture sample y ∈ Ω and a neighborhood system N = {Ns | s ∈ Sy},
the first step of the nonparametric MRF is to determine the multidimensional
histogram of the image. To this end, the frequency of occurance of a specific
combination of pixel values L for all sites p using neighborhood Np is obtained.

F (L0, . . . , L|Np|) =
∑

p∈Sy,Np⊂Sy

δ(yp − L0)
∏

r∈Np

δ(yr − Lnr
) (3.39)

where nr are indices for the sites r in neighborhood Np. By determining F
for all combinations of L0, . . . , L|Np| ∈ Λ, the multidimensional histogram can
be built. The total number of dimensions is the statistical order of the model,
which is equal to the neighborhood size N = |Np|. The LCPDF can now be
calculated according to

P (ys | yr, r ∈ Ns) =
F (ys, yr, r ∈ Ns)

∑
L̃∈Λ F (L̃, xr, r ∈ Ns)

. (3.40)

It should be noted that the multidimensional histogram is usually only
sparsely filled. If a 3 × 3 neighborhood were used with 32 grey levels, then
the histogram would contain 329 ≈ 3.51 × 1013 bins. Even a large sample
image with a resolution of 1024×1024 pixels would only fill a minute fraction
of the histogram space. This situation can be alleviated by smoothing the
distribution over the histogram. To this end a nonparametric density estimator
can be applied. The Parzen-window estimator spreads each sample datum
over a larger area in the histogram. Denoting Zp = [yp, yq, q ∈ Np] and z =
[xs, xr, r ∈ Ns], the true density function can be approximated with
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(a) (b) (c)

Figure 3.21. Synthesis examples with the nonparametric MRF model (3x3 neigh-
borhood). (a) Drift-corrected, quantized uterus endometrium sample, (b) Synthe-
sized texture example 1, (c) Synthesized texture example 2

F̂ =
1

nhd

∑

p∈Sy,Np⊂Sy

K
{ 1

h
(z − Zp)

}
(3.41)

where n is the number of sites p ∈ Sy, and d = |Np| + 1 the dimension of the
histogram (i.e., the number of elements in Zp). The histogram is convolved
with a radially symmetric Gaussian kernel.

K(z) =
1

(4πd/2)
e

(
− 1

2z
T z

)

(3.42)

The area of influence of the density estimator is controlled by the window
parameter h. If it is too small, then noise will be introduced into the estimation
function f̂ . If it is too large, then local detail will be blurred. According to
[243], an optimal selection of the parameter can be done according to

hopt = σ
{ 4

n(2d + 1)

}1/(d+4)

(3.43)

where σ2 is the variance of the histogram of training image y. The LCPDF
can thus be approximated using the Parzen-window density estimator.

P̂ (xs|xr, r ∈ Ns) =

∑
p∈Sy,Np⊂Sy

e

(
(−1/2h2)(z−Zp)T (z−Zp)

)

∑
xs∈Λ

∑
p∈Sy,Np⊂Sy

e

(
(−1/2h2)(z−Zp)T (z−Zp)

) (3.44)

In order to synthesize a texture, stochastic relaxation can be applied us-
ing the estimation of the LCPDF. A popular approach for the relaxation is
the Iterative Conditional Modes (ICM) method described in [25]. Starting
with a randomly generated texture, the image sites are randomly visited and
updated maximizing the marginal posterior distribution at each pixel. For
small neighborhood sizes, superior results can be obtained using the nonpara-
metric MRF model. In Figure 3.21, results from applying the method to the
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Figure 3.22. Decimation between grid levels in multiscale approach

previously shown unhomogeneous texture are depicted. One problem already
encountered in the previous approach is the propagation of low-frequency,
global image characteristics. These are typically propagated across the image
lattice only by local interactions, and the relaxation can get stuck in local
minima. To tackle this difficulty, a multiresolution technique can be followed.

Multiscale Texture Synthesis

The underlying idea is to synthesize coarse structures at lower resolution, and
successively add more detail as the resolution increases. In this scheme, the
outcome of the relaxation at one level constrains the relaxation at the following
one. In addition to giving higher synthesis quality, this also reduces the number
of iterations necessary to reach equilibrium. The multiscale representation is
defined by images Xl for each level l on lattices given by:

Sl = {(2li, 2lj) | 0 ≤ i, j < N/2l} (3.45)

where S0 is the highest resolution image. The lattice Sl+1 is obtained from
Sl by decimation. The multigrid representation is depicted in Figure 3.22.
Moreover, the neighborhood relationship for each level also has to be redefined:

N c
s (l) =

{
(2lm, 2ln) ∈ Sl | 0 < (i − m)2 + (j − n)2 ≤ c

}
. (3.46)

Starting from the lowest resolution, at each grid level stochastic relaxation
is carried out until equilibrium is reached. This requires that decimations Yl
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(a) (b) (c)

(d) (e) (f)

Figure 3.23. Multiscale texture synthesis. (a) Level 5 (4×4), (b) Level 4 (8×8), (c)
Level 3 (16× 16), (d) Level 2 (32× 32), (e) Level 1 (64× 64), (f) Level 0 (128× 128)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� Full
confidence

� No
confidence

Level n

Level n + 1

Figure 3.24. Propagation of pixel temperature between levels

of the training image are also obtained for all levels to construct the LCPDF.
The individual equilibria of the multiscale approach during a synthesis process
are shown in Figure 3.23.
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Algorithm Enhancements

An extension of the synthesis approach can be made by including a pixel
temperature function into the process. As with stochastic annealing, a local
temperature function is integrated into the relaxation process. Each pixel
is assigned a temperature with 0 ≤ ts ≤ 1, which represents a degree of
confidence in the current value, where 0 denotes no, and 1 full confidence. The
temperature is integrated into the Parzen-window estimation of Equation 3.41
by weighting the difference between the sample and output neighborhood
values:

(z − Zp) =
[
xs − yp, (xr − yr)(1 − tr), r ∈ Ns

]
. (3.47)

After the relaxation process at level l + 1, all pixels propagated to level l
receive complete confidence, while the rest have no confidence assigned (see
Figure 3.24). Every time a pixel value is changed in the following relaxation
on the new level, its temperature is adjusted according to

ts = max

{

0,
1 +

∑
r∈Ns

tr

|Ns|

}

. (3.48)

At the start of the relaxation, only the values propagated from the previous
level are used in the LCPDF. However, as the process advances, other sites
gain more confidence, and affect the computation. Additionally, the confidence
level can be used as a relaxation termination criteria, i.e., when all sites have
reached full confidence, the relaxation can move on to the next level.

A further modification of the algorithm can be done by using a special-
ized neighborhood searching scheme. As previously discussed, an estimate of
the LCPDF is obtained based on a sum of Gaussian kernels. Since the data
are sparsely distributed, it can be assumed that the site giving the smallest
distance between vectors Zp and z will have the largest influence. Thus, the
LCPDF can be approximated by just searching for the site with minimal dis-
tance. The sample subset is selected as all pixels with a neighbor of the same
color as the respective neighbor of the output pixel being iterated. This is
similar to the method proposed in [8]; however the subset is larger, resulting
in a higher synthesis quality. Examples of the complete synthesis process can
be seen in Figure 3.25.

3.7 Additional Texture Detail

With the nonparametric MRF synthesis strategy it is possible to synthesize
textures showing relatively irregular patterns. However, some organ surfaces
exist which need a specialized treatment, since not all their texture charac-
teristics can be easily replicated. This includes, for instance, follicle patterns
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(a) (b) (c) (d)

Figure 3.25. Fast MRF-based synthesis examples of in vivo texture (from [203]).
(a) In vivo image, (b) Cropped and masked sample, (c) Synthesized texture 1, (d)
Synthesized texture 2

on ovaries or vessel trees on some organ surfaces. Thus, an approach is re-
quired to further augment generated textures with macroscopic structural
patterns. This can be done by procedural postprocessing of synthesized tex-
tures. The main idea is to optimally combine separate texture patterns, which
necessitates the definition of texture transfer functions. As two examples, the
enhancement of liver textures with low-frequency specks and ovary textures
with follicle patterns will be discussed.

3.7.1 Embedding of Specks into Liver Textures

After generating a homogeneous base texture for the liver, it can be further
enhanced by adding characteristic specks. Since these specks are usually too
small to use a texture synthesis strategy, their appearance is generated us-
ing the basic procedural approach. To make the pattern more granular, the
approach used for generating fat texture can be modified by steepening the
edges of the noise signal with a transfer function defined as

T̂i =
1
2

(

1 +
arctan

(
(2s + 1)4(2Ti − 1)

)

arctan(2s + 1)4

)

(3.49)

where Ti are the unmodified texture values, and s is a scaling factor (0 ≤
s ≤ 1). In order to merge the textures, a third, mask texture has to be cre-
ated, which defines the smooth transfer between the base and pattern texture.
For the specks, this mask texture can be automatically generated. To this
end, spheres with varying radii are randomly distributed in the texture space.
Moreover, to approximate the actual shapes of the specks, jitter, controlled by
a vectorial noise function, is added. Finally, the textures are blended according
to the mask texture. An example of this process is visualized in Figure 3.26.
It should be noted that adding smaller detail like the specks is necessary only
when dealing with relatively homogeneous base textures. More sophisticated
algorithms, like the described MRF approach, are usually capable of automat-
ically synthesizing these patterns.
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(a) (b) (c) (d)

Figure 3.26. Texture enhancement using blending. (a) Original textured surface,
(b) Automatically generated, randomized spheres, (c) Jittered spheres according to
noise function, (d) Blended 3D textures

3.7.2 Overlay of Real Follicle Textures

In some cases the embedding of additional texture is more complicated. This
is for instance true if the texture has to coincide with the actual geometrical
variation of an organ surface. An example of this is the follicles which can be
found on the surface of ovaries. A straightforward approach would be to let the
user mark those areas where different texture components should be blended.
For the blob-shaped follicles, this can be easily done. Figure 3.27 depicts the
addition of follicle textures onto an organ surface covered with a synthesized
homogeneous texture. In this special case, the follicle texture was not synthe-
sized, but cropped from the original image. While this basic approach leads
to acceptable results, it is not appropriate for the scene generation process,
since it involves too much manual tuning and image processing.

3.8 Texture Mapping

In the previous sections the generation of textures for surgical scenes has
been discussed. What remains to be done is the mapping of those textures to
object geometries. If the texture is stored in 3D-space as a trivariate scalar
or vector-valued function of indexed or RGB colors respectively, then the
surface mapping is trivial, since the texture values can be directly read at the
vertex coordinates. No seams or distortions are introduced with this approach.
However, 3D texturing is only viable for homogeneous, isotropic patterns.
Moreover, the resolution is rather small due to the currently still limited
texture memory. Also, the synthesis of 3D texture blocks takes considerably
longer than that of their 2D counterparts, thus hampering interactivity of
scene generation. If the texture is built as a bivariate field, then a bijective
mapping function has to be determined, relating 3D points on a mesh surface
to the parametric 2D texture space. This step can usually not be carried out
without introducing errors.

A mapping M between two surfaces S1 and S2 is called isometric, if the
geodesic distance dgeo between arbitrary points is maintained:
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(a) (b) (c) (d)

Figure 3.27. Addition of special texture patterns. (a) Follicles on real ovary, (b)
Virtual ovary covered with base texture, (c) Cropped follicle pattern, (d) Follicle
pattern embedded into base texture

∀pi,pj ∈ S1 : dgeo(pi,pj) = dgeo

(
M(pi),M(pj)

)
. (3.50)

In this case, the surface S1 is called developable. Gaussian curvature at a
point p on surface S is defined as

K =
1

R1R2
(3.51)

where R1 and R2 are the largest and the smallest principle radii of curva-
ture of the respective osculating circles. A sphere has, for instance, a constant
positive Gaussian curvature, while that of a cylinder is everywhere zero. Carl
Friedrich Gauss stated with his Theorema Egregium that an isometric map-
ping of surfaces with unequal Gaussian curvatures K is not possible [96]. Thus
distortions are inevitable when mapping from 2D texture patches with zero
curvature to 3D surfaces with non-zero curvature. So a method has to be
found to minimize these distortions.

It should be noted that to avoid this problem, one could also directly syn-
thesize textures on the 3D surfaces. Methods to extend the approach discussed
in Section 3.6.3 have been presented in [173]. The authors propose techniques
to locally project the 3D surface to a tangent plane, which is only successful
when the local curvature is not too high. Also, MRF-based synthesis directly
on surfaces has been suggested for homogeneous patterns [271, 291, 303],
as well as textures with local variations [306]. These approaches require the
warping of the spatial neighborhood function over the surface to approximate
the mesh curvature. Therefore, generally only relatively small texture struc-
tures can be reliably applied to a 3D surface with these methods. Moreover,
user interaction is needed to define a vector field over the surface in order to
provide a consistent orientation for the texture pattern. Finally, these types
of methods do not allow interactive transformations of texture over the 3D
surface.

For completeness, it also has to be mentioned that the previously dis-
cussed patch-based texture generation strategies can also be directly applied
to surfaces. The concept of directly pasting patches onto meshes was initially
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introduced in [219]. Refined versions targeting real-time synthesis were later
reported in [248, 176]. As in the 2D process, texture discontinuities along
seams can appear, which have to be minimized with boundary matching or
blending strategies. A drawback also of these approaches is the limited inter-
activity, due to the necessary recalculations of texture patches.

While direct texture generation on surfaces is a promising alternative, we
have decided to separate the synthesis and surface mapping steps. One reason
is the reuse of generated textures, which are stored in a database. A direct
mapping strategy would require a resynthesis of textures for each new mesh.
Nevertheless, some geometric information of the object meshes still has to be
taken into account in the texturing process, as previously exemplified with
the mapping of follicle patterns. In the following, the approach followed in the
scene generation process will be discussed. It contains two major steps aiming
at distortion minimization; namely, mesh cutting along seams and optimal
parameterization.

3.8.1 Mesh Cutting

For texture mapping, the object meshes created in the previous chapter have
to be parameterized (an extensive overview of current techniques can be found
in [86]). Our meshes are represented as piecewise linear triangular surfaces ST ,
defined by a set of triangles T = {T1, . . . , TN}. For the parameterization, a
piecewise linear mapping f : ST → S∗ of the surface ST ∈ IR3 into the
planar domain S∗ ∈ IR2 has to be found. As discussed above, distortions
are usually introduced in this step. A mapping can either be conformal, i.e.,
angle-preserving; or equiareal, i.e., area-preserving. An isometric mapping is
conformal and equiareal; however, since for our meshes such a mapping cannot
be found,we minimize a combination of angle and area distortion.

A surface can be mapped to a plane only if it is homomorphic to a disk.
Thus a number of cases can be encountered where a surface has to be cut
before the mapping step. The genus G of a closed surface is defined by the
Euler-Poincare formula:

G =
1
2
E − V − F − B + 2 (3.52)

where V , E, and F are the number of mesh vertices, edges, and faces, respec-
tively, and B the number of boundary loops. The genus of a surface can be
regarded as the number of holes or handles in a 2-manifold mesh. Surfaces
with non-zero genus are not homomorphic to a disk, and thus have to be cut
to reduce the genus. The same is true for a manifold mesh with a boundary.
If interior holes are present, then these surfaces also have to be separated.
Apart from this, the introduction of additional seams by the subdivision of
an already disk-like mesh can be applied to further reduce distortion. For
the scene generation process, the mesh cutting can be performed according
to [235]. Surfaces are separated along existing edges according to two quality
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(a) (b) (c) (d)

Figure 3.28. Relative visibility of triangle mesh faces (low=blue, high=red). (a)
Uterine cavity surface mesh, (b) Inside visibility measure, (c) Myoma surface mesh,
(d) Outside visibility measure

metrics. Firstly, a visibility measure for mesh edges is calculated by rendering
the scene from different viewpoints and marking the visible elements. Sec-
ondly, the distortion of mesh nodes is determined by estimating the Gaussian
curvature. The 3D surface is then separated along its nodes and seams with
high distortion, but minimal visibility.

Visibility Measure

In order to obtain edge visibility V (e), a graphics hardware-based approach
can be followed. The mesh is rendered orthographically either from multiple
viewing positions uniformly distributed on a bounding half-sphere, or into
multiple viewing directions from inside an object. This differentiation has to
be made, since the pathology meshes will be visible from the outside, whereas
the cavity surface will be seen from the inside. By assigning a unique color
to each polygon, the visibility of a face can be determined by the presence of
these colors in the rendered image. The edge visibility can then be obtained
by averaging the visibility of the adjacent faces. The relative visibility of the
faces of two example meshes are shown in Figure 3.28. It can be seen that
the tubal orifices in the uterine cavity have a low visibility from the inside.
Similarly, the visibility of the myoma stem region is reduced, since it is partly
covered by the surrounding cavity submesh.

Distortion Measure

In the next step, the distortion at the mesh vertices has to be determined. This
can be computed according to an approximation of the local Gaussian curva-
ture. To this end a spherical region around a specific vertex vi is considered.
The radius of the former is defined according to:

Ri = k max
vj∈Ni

‖vi − vj‖ (3.53)

where Ni is the set of nodes adjacent to vi, and k is a scaling factor. Based
on this, we define a local subset of triangles:
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(a) (b) (c) (d)

Figure 3.29. Relative distortion at triangle mesh vertices (low=blue, high=red).
(a) Uterine cavity surface mesh, (b) Distortion measure, (c) Smooth myoma mesh,
(d) Distortion measure

M̃k(vi) =

⎧
⎨

⎩

Tj | ∀vj ∈ Tj : ‖vi − vj‖ < Ri, if k > 0

Tj | vi ∈ Tj , if k = 0 .
(3.54)

Thus the subset is composed of all triangles falling completely into the
spherical region. The boundary Γk of the local subset Mk(vi) is piecewise
linear. By considering a new set N̂l of triangles T̂j = {vi,vi

Γk
,vi⊕1

Γk
}, which

are formed by the center vertex and two consecutive vertices on the boundary,
we can define the distortion measure:

Ψ ′
k(vi) = 1 −

∑
|N̂l| αl

2π
(3.55)

where αl are the angles at vertex vi in the new triangles. In order to accommo-
date for different mesh resolutions, k has to be varied in certain bounds. Unfor-
tunately, the distortion metric is quite sensitive to these variations. Therefore,
it is more appropriate to determine the distortions according to

Ψk(vi) = max
0≤q≤k

Ψ ′
q(vi) . (3.56)

It should be noted that at saddle points the metric can become negative.
Moreover, if the sum of the angles at a mesh boundary vertex is less than 2π,
then it is locally developable and the distortion is zero. Figure 3.29 depicts two
examples of the measure. The models are colored according to metric values
at the vertices. High distortion is present due to the local mesh curvature at
the orifices of the uterine cavity, or at the stem of the myoma.

Optimal Seam Selection

Based on the metrics defined above, seams can now be laid in order to reduce
overall mesh distortion. An optimal cut path along the mesh edges has to be
found, which minimizes distortion and seam visibility. To this end, a solution
to a Prize-collecting Steiner tree has to be found. With G = (V,E) being
an undirected graph with associated vertex- and edge-weights, the Steiner
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(a) (b) (c)

Figure 3.30. Seams shown in red on different meshes, connecting high distortion
vertices. (a) Seam on uterine cavity mesh, (b) Seam on myoma mesh, (c) Seam on
polyp mesh

problem consists in finding a connected subgraph T = (VT , ET ) ⊂ G,VT ⊆
V,ET ⊆ E, that minimizes the objective function

c(T ) =
∑

v/∈VT

Ψ(v) +
∑

e∈ET

(
V (e) · |e|

)
. (3.57)

This problem is known to be NP-complete. An approximation of the solu-
tion is obtained following a two-stage process. First, vertices VT with distor-
tion above a defined threshold – the terminals – are selected. The threshold
can for instance be set to a percentage of the overall mesh distortion or be
user-specified. In order to force the seams to go through less visible areas,
the selection can be influenced by considering distortion scaled with vertex
visibility Ψ(v)/V (v). In the next step, a Steiner tree connecting the terminals
is determined.

A heuristic algorithm using front propagation is used to approximate the
result within polynomial time. Starting at each terminal of VT , a front is grown
along the edge with minimal cost. If two fronts meet, their paths are combined,
and the resulting subtree is added to the approximate Steiner tree. This is
continued until all fronts have merged. The edge cost defined in Equation 3.57
can also be extended by introducing an enhanced edge distortion measure:

∑

e∈ET

((
V (e) · |e|)(1 − Ψ(e)

))
. (3.58)

This results in more cuts being placed along edges of high curvature, where
texture artifacts are less visible. Figure 3.30 depicts seams obtained for differ-
ent meshes. Only a small number of vertices with high distortion were selected
as terminals.
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3.8.2 Mesh Parameterization

After mesh distortion – as well as possibly mesh genus – have been reduced by
introducing additional seams, the actual parameterization step can be carried
out, i.e., the mesh is flattened into the 2D plane.

Numerous methods for this step have been suggested in the past. One of
the first, described in [272], used graph theory, providing a barycentric map-
ping theorem for embedding a planar graph. Forces on the mesh vertices are
minimized by placing each vertex at the barycenter of its neighbors. This
approach was later extended in [85], where shape-preserving weights were
introduced. This avoids triangle flips in the presence of obtuse angles, guar-
anteeing bijective mapping for fixed, convex boundaries. An approach using a
discrete approximation of continuous harmonic maps is discussed in [78]. The
authors generate parameterizations while minimizing angular distortion with
the discrete maps. However, in some cases inverted elements can be generated.
In [227] the parameterization problem is considered as an optimal mapping
of a signal to a surface. A nonlinear stretch metric derived from Taylor ex-
pansions of the signal error is used to reduce distortion. Moreover, to speed
up the process, a hierarchical approach is applied. All these methods require
a predefined fixed, convex boundary in the parameterization domain. Thus,
the boundary mapping has to be specified in advance, preferably to a convex
polygon. This also denotes selecting boundary shape and node distribution.

Unfortunately, fixed boundary methods typically introduce additional dis-
tortions. This can be avoided with free boundary methods. An additional ad-
vantage of these techniques is the usually reduced number of seams required
in the mesh. An approach not requiring fixed boundaries has been discussed
in [121]. The authors use a most isometric parameterizations (MIPS) method,
minimizing a nonlinear deformation functional of the first fundamental form
of the mapping. However, their method is limited to rather simple cases. In
[158], the least squares conformal maps (LSCM) technique is proposed, which
also uses an adaptive boundary. An error metric based on the discretization of
Cauchy-Riemann equations is calculated for constructing free-boundary maps.
Unfortunately, bijective mapping is not guaranteed, since folded triangles
may appear. Another technique performing free-boundary parameterizationis
angle-based flattening (ABF) [236]. A functional is minimized according to
differences between 2D and 3D mesh angles. This robust and efficient method
generates provable conformal mappings with low stretch and no flipped tri-
angles. It is well-suited for the mesh parameterization in the scene generation
process and will be discussed in detail below.

Angle-Based Flattening

The angle-based parameterization approach is based on the observation that a
planar triangular mesh is defined by the angles within each triangle, except for
global scaling, rotation, and translation. An optimization problem is defined,
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where a set of constraints guarantees the validity of the flattened mesh. The
objective function to be minimized is given by

f(α) =
∑

t∈T

3∑

k=1

1
wt

k

(αt
k − α̂t

k)2 (3.59)

where αt
k are the three unknown planar angles of triangle t in counterclockwise

order; and wt
k are weights, which are usually set to (α̂t

k)−2 to consider relative
distortion. The optimal angles α̂t

k are derived from the 3D mesh angles βt
k

according to

α̂t
k =

⎧
⎨

⎩

2π · βt
k · (

∑
l β̃

t
l )

−1 | vt
k ∈ V \VΓ

βt
k | vt

k ∈ VΓ

(3.60)

where vt
k is the vertex at angle k of triangle t, VΓ is the subset of boundary

vertices, and β̃t
l are all angles around vertex vt

k. The unknown angles have
to fulfill a number of constraints. Each triangle t ∈ T has to be valid, thus
requiring

g1(t) =
3∑

i=1

αt
i − π

!= 0 . (3.61)

For interior nodes v ∈ V \VΓ mesh planarity has to be ensured.

g2(v) =
∑

Sv

αt
l − 2π

!= 0 (3.62)

where Sv is the set of angles adjacent to vertex v. Finally, edges shared by
two triangles should be of equal length. Thus, for each internal vertex

g∗3(v) =
∏

Sv

sin(αt
k⊕1)

sin(αt
k
1)

!= 1 (3.63)

where k ⊕ 1 and k � 1 denote in the current triangle the index of the next
and previous angle from the one at v, respectively. As indicated in [305], this
equation can be rewritten by applying the log function, in order to obtain a
diagonal Hessian matrix in the Lagrangian optimization step.

g3(v) =
∑

Sv

log
(
sin(αt

k⊕1)
)
− log

(
sin(αt

k
1)
) != 0 . (3.64)

The constrained minimization problem can be solved using Lagrangian
multipliers, giving the modified objective function

L(x) = L(α, λ1, λ2, λ3)

= f(α) +
∑

t

λt
1g1(t) +

∑

v

λv
2g2(v) +

∑

v

λv
3g3(v) . (3.65)
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(a) (b) (c) (d)

Figure 3.31. Parameterization by angle-based flattening. (a) Polyp mesh with cut
seams, (b) Flattened mesh, (c) Myoma mesh with cut seams, (d) Flattened mesh

Inequality constraints can be reformulated as equality constraints using
an active set strategy. Thus, a solution is obtained with a standard Newton
iteration

xn+1 = xn −∇2L−1(xn) · ∇L(xn) . (3.66)

For an initial guess the optimal angles α̂t
k can be selected. Due to the

discussed matrix variation, the Hessian is diagonal, but can become ill-
conditioned. Using a line search algorithm and a backtracking scheme alle-
viates this problem.

2D Mesh Retrieval

After solving for the 2D planar angles, the actual vertices need to be recon-
structed in the plane. Using a front propagation method, visiting one vertex
at a time can quickly become unstable from a lack of numerical precision.
Instead, the conversion problem can be formulated as a global linear system,
thus enabling the simultaneous computation of the 2D vertices. Given a tri-
angle t = (p1,p2,p3), then the edge p1p3 is given by:

p1p3 = M t · p1p2 =
sin(αt

2)
sin(αt

3)

⎛

⎝
cos(αt

1) sin(αt
1)

− sin(αt
1) cos(αt

1)

⎞

⎠p1p2 (3.67)

where αt
i is the angle at vertex i of triangle t. Thus, the third vertex is uniquely

defined with respect to the position of the two other vertices and the angles.So
to obtain the positions, a solution in the least-squares sense has to be found
for:

min
pi

∑

t=(pi,pi+1,pi+2)∈T

‖M t(pi − pi+1) + pi+2 − pi+1‖2 . (3.68)



108 3 Appearance

(a) (b) (c) (d)

Figure 3.32. Adapted parameterization to reduce linear distortions. (a) Flattened
mesh after standard ABF, (b) Distorted checkerboard texture, (c) Improved param-
eterization, (d) Enhanced length preservation

It should be noted that the mesh is defined except for translation, rota-
tion, and scaling. To eliminate these degrees of freedom, two vertices sharing
an edge can be fixed, e.g., by setting P0 and P1 to (0, 0) and (1, 0). This mini-
mization problem is well defined and has a unique minimum. The system can
for instance be solved with a SuperLU direct solver, thus finally providing the
parameterization for the 3D mesh, which can be used for texturing. Exam-
ples of the outcome of the angle-based flattening procedure are visualized in
Figure 3.31.

Reduction of Length Distortion

In the process carried out so far, a parameterization minimizing angular
distortion has been obtained. However, due to the angle-based formulation,
edge lengths are not preserved, thus introducing linear distortions. The mesh
smoothing algorithm suggested in [234] can be applied to alleviate this situa-
tion.

The first step is to define a linear approximate distortion function ρ based
on the erroneous edge lengths. With average distortion ρ̃i at mesh vertex i,
the distortion at an arbitrary point x inside a triangle of the parameterization
mesh with barycentric coordinates (u, v, w) can be defined as:

ρ(x) = ρ̃1u + ρ̃2v + ρ̃3w (3.69)

where the average distortion is the mean of the edge length change ratios
ρ∗ = ‖e2D‖ · ‖e3D‖−1 of all adjacent edges. In order to cancel out the length
distortion, the inverse mapping ρ−1 has to be determined. To this end, a uni-
form, regular grid can be adapted using Laplacian smoothing to conform to
the distortion function. After obtaining the adapted mesh, the actual map-
ping back to the original, regular mesh approximates ρ−1, and can thus be
applied to the initial parameterization. The effect of this step is depicted in
Figure 3.32. In order to better visualize the change, a regular pattern has been
applied to the geometry. It should be noted, however, that the visual effect is
less noticeable for more homogeneous, stochastic organ textures.
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(a) (b) (c)

Figure 3.33. Blending strategy to avoid visual artifacts. (a) Myoma mesh with cut
seams, (b) Noticeable texture discontinuities across seam, (c) Artifact removal via
alpha blending

Seam Blending

Thereafter, the texture can be projected back to the 3D surface by inverse
mapping. Due to the selected approach, texture discontinuities exist along
the cut seams of the mesh. Although number, length, and visibility of the
seams have been minimized, these discontinuities still create unwanted vi-
sual artifacts. To reduce these artifacts, hardware-based blending can be ap-
plied. Given a 2D planar mesh of a 3D surface, and a table of matching edges
along the seams, duplicate triangles along the seams can be introduced. These
contain the extrapolated texture coordinates from across the seam. Vertices
directly on the seam are given an alpha value of 0.5, while the rest are in-
crementally decreased as the overlaid triangles progress away from the edge.
Alpha blending can then easily be performed with standard graphics libraries.
The result of this step is shown in Figure 3.33. It should be noted that this
example shows an extreme case of seam discontinuity. Usually the seams are
less noticeable due to more homogeneous textures and the visibility reduction.

3.9 Modelling Examples

The methods described above have been used either in the laparoscopic or
the hysteroscopic simulator projects. MRF-based texture synthesis and ABF-
based parameterization have been integrated into the scenario definition pro-
cess for hysteroscopic training scenes. In Figure 3.34 several examples of tex-
ture mapping onto meshes relevant for laparoscopy as well as hysteroscopy
are shown. In a hysteroscopy scene, a number of different tissue structures
are present. Healthy anatomy as well as neoplasms exist, which usually have
different visual appearances due to the varying genesis of these objects. There-
fore, the texturing processes are carried out separately for the object sub-
meshes. Since texture discontinuities similar to the ones discussed above will
appear, an overlap region is included for each object mesh. By using several tri-
angle strips around the mesh boundaries, the blending across different textures
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(a)

(b)

(c)

(d)

(e)

Figure 3.34. Examples of textured meshes showing source image, object mesh
geometry, synthesized texture, and final result. (a) Liver, (b) Uterus, (c) Polyp, (d)
Myoma, (e) Endometrium around tubal ostium
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(a) (b)

(c) (d)

Figure 3.35. Complete hysteroscopy scene examples

can be improved. Several complete hysteroscopy scenes textured with the dis-
cussed method are presented in Figure 3.35.
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