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Understanding Sampling

Summary. In Part I, we consider the analysis of discrete-time signals. In Chapter
1, we consider how discretizing a signal affects the signal’s Fourier transform. We
derive the Nyquist sampling theorem, and we give conditions under which it is
possible to reconstruct a continuous-time signal from its samples.

Keywords. sample-and-hold, Nyquist sampling theorem, Nyquist frequency, alias-
ing, undersampling.

1.1 The Sample-and-hold Operation

Given a function g(t), if one samples the function when ¢ = nTy and one holds
the sampled value until the next sample comes, then the result of the sampling
procedure is the function §(t) defined by

g(t) =g(nTs), nTs<t<(n+1)T.

It is convenient to model the sample-and-hold operations as two separate
operations. The first operation is sampling the signal by multiplying the signal
by a train of delta functions

At) = i o(t — nTy).

n=—oo

A sampler that samples in this fashion—by multiplying the signal to be sam-
pled by a train of delta functions—is called an ideal sampler. The multiplica-
tion of g(t) by A(t) leaves us with a train of impulse functions. The areas of
the impulse functions are equal to the samples of g(t). After ideal sampling,

we are left with
oo

> g(nT)s(t — nTy).

n=—oo
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The information that we want about the function is here, but the extraneous
information—Iike the values the function takes between sampling times—is
gone.

Next, we would like to take this ideally sampled signal and hold the values
between samples. As we have a train of impulses with the correct areas, we
need a “block” that takes an impulse with area A, transforms it into a rectan-
gular pulse of height A that starts at the time at which the delta function is
input to the block, and persists for exactly Ty seconds. A little bit of thought
shows that what we need is a linear, time-invariant (LTT) filter whose impulse
response, h(t), is 1 between ¢t = 0 and ¢ = Ty and is zero elsewhere.

Let us define the Fourier transform of a function, y(t), to be

Y5 = Fu®)) = [ T ety dt.

It is easy enough to calculate the Fourier transform of h(¢)—the frequency
response of the filter—it is simply

1 — —2miTef

H(f) =5

(See Exercise 2.)

1.2 The Ideal Sampler in the Frequency Domain

We have seen how the “hold” part of the sample-and-hold operation behaves
in the frequency domain. How does the ideal sampler look? To answer this
question, we start by considering the Fourier series associated with the func-
tion A(t).

1.2.1 Representing the Ideal Sampler Using Complex
Exponentials: A Simple Approach

Proceeding formally and not considering what is meant by a delta function
too carefully!, let us consider A(t) to be a periodic function. Then its Fourier
series is [7]

A(t): Z CnQQﬂ—jnt/Ts7

n=-—oo

and

1 [Ts/2 . 1
e, = ?/ e 2N dt = — -1 = F, F, =1/T.

~T./2 T

! The reader interested in a careful presentation of this material is referred to [19].
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Fy, the reciprocal of T, is the frequency with which the samples are taken.
We find that

Alt)y=F, > e¥minhl,

n=—oo

1.2.2 Representing the Ideal Sampler Using Complex
Exponentials: A More Careful Approach

In this section, we consider the material of Section 1.2.1 in greater detail
and in a more rigorous fashion. (This section can be skipped without loss of
continuity.) Rather than proceeding formally, let us try to be more careful in
our approach to understanding A(t). Let us start by “building” A(t) out of
complex exponentials. Consider the sums

N
hy(t)y= Y eXrinfl, (1.1)
n=—N

We show that as N — oo the function hy () tends, in an interesting sense, to
a constant multiple of A(¢).

Rewriting (1.1) and making use of the properties of the geometric series,
we find that for ¢ # m/Fy,

h(t)

N
E e27TJTLFSt
n=—N

2N
_ e—27r]Nt § e27r]nF5t
n=0

_ o2mi(2N+1)Fut
_ efzijtl e :

1— e27erst
sin(m (2N + 1) Fyt)
sin(m Fyt)

When t = m/Fy, it is easy to see that hy(t) = 2N + 1. Considering the limits
of hy(t) as t — mTy, we find that hy(t) is a continuous function. (It is not
hard to show that hy(¢) is actually an analytic function. See Exercise 6.)

The defining property of the delta function is that when one integrates a
delta function times a continuous function, the integration returns the value
of the function at the point at which the delta function tends to infinity. Let
us consider the integral of hy () times a continuous function ¢(t). Because
hn(t) is a combination of functions that are periodic with period Ty = 1/Fy,
so is hy(t). We consider the behavior of hy(t) on the interval [—Ty/2,Ty/2).
Because of the periodicity of hy(t), the behavior of hy(t) on all other such
intervals must be essentially the same.
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Let us break the integral of interest into three pieces. One piece will consist
of the points near t = 0—where we know that the sum becomes very large as
N becomes very large. The other pieces will consist of the rest of the points.
We consider

Ts/2 1/N?/° —1/N2/®
/ hn(t)g(t)dt = [ h(t)g(t) dt + / h (t)g(t) dt

—Ts/2 1/N2/5 —Ts/2

T,/2
+ / ha (t)g(t) dt.

/N2/5

Considering the value of the last integral, we find that

Ts/2 Ts/2
/ I (8)g(#) dt = / Sin(m(2N + 1)Ft) (g(t)/ sin(wFut)) dt.
1/N2/5 1/N2/5

We would like to show that this integral tends to zero as N — co. Note that
if g(t) is nicely behaved in the interval [1/N?/5 T, /2] then, since sin(rFyt) is
never zero in this interval, g(t)/ sin(7 Fst) is also nicely behaved in the interval.
Let us consider

Ts/2

lim sin(m(2N + 1) Fyt)r(t) dt
N—oo 1/N2/5

where r(t) is assumed to be once continuously differentiable. Making use of
integration by parts, we find that

T /2
lim / sin(m(2N + 1) Fst)r(t) dt
N—oo 1/N2/5
- IN + 1)E.t) |52
— Jim | [ r(p=eTEN + DED
N —o0 7T(2N + 1)Fs 1/N2/5

n /Ts/z cos(7r(2N+1)Fst)T,(t) dt
1/N2/5 7T(2N + ].)Fs

2 ma; r(t
< lim XI/N2/5§t§Ts/2| ( )\
N—o00 7T(2N + 1)Fs

n (T/2 - 1/N2/5) maxq /N2/5<t<T./2 7"/(75)|>

T(2N + 1)F,

Assuming that for small ¢ we know that |r(¢)| < K1 /[t| and |r'(t)| < Ka/|t|*—
as is the case for g(t)/sin(mFst)—we find that as N — oo, the value of the
integral tends to zero. By identical reasoning, we find that as N — oo,

—1/N2/5
/ hn(t)g(t)dt — 0.
—T./2
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Thus, everything hinges on the behavior of the integral
1/N2/5
[ gt
,1/N2/5

That is, everything hinges on the values of g(t) near ¢ = 0.
Let us assume that g(t) is four times continuously differentiable at ¢ = 0.
Then, we know that g(t) satisfies

9(t) = 9(0) + g'(0)t + g"(0)¢/2 + 6" (0)¢ /6 + g (€)¢" /24
for some & between 0 and ¢ [17]. This allows us to conclude that

. YN Gin(n(2N + 1) Eyt)
N—oo J_1/N2/5 sin(mw Fyt)

g(t)dt

. UN*® Gin(m(2N + 1) Fyt)
T NS —1/N2/5 Sin(?TFst)

x (9(0) + ¢/ ()t + g"(0)%/2 + g (0)¢*/6 + gD ()¢* /24) dt.
We claim that the contribution to the limit from the terms
g (0)t+ g"(0)t*/2+ " (0)£*/6 + gV (€)

is zero. Because the function multiplying g(¢) is even, the contribution made
by ¢’(0)t must be zero. The product of the two functions is odd, and the region
is symmetric. Similarly, the contribution from ¢’ (0)t3/6 must be zero.

Next consider

1/N2/3 sin(m(2N + 1) Fit) I 1/N2/5
g (©) 5 dt = / o (£)g™@ (€)(£*/24) dt.
/—1/N2/5 sin(mFgt) g9(8) 24 1N n ()9 (€)(£7/24)

Clearly ¢*(£)(¢*/24) is of order (1/N?/°)* for t € [-1/N?/°,1/N?/5]. Con-
sidering (1.1) and making use of the triangle inequality:

N
<
n—N

N

>

n=—N

it is clear that
N

Iy < Y 1=2N+1.
n=—N

As the interval over which we are integrating is of width 2/N?/5, it is clear
that the contribution of this integral tends to zero as N — oo. Let us consider
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UN*? Gin(r(2N + 1) Fit
/ Sm(ﬂ(, +DF )g"(O)t2/2dt.
—1/N?/5 sin(m Fyt)

It is clear that

g’ (0)t?/2dt

1/N2/5
< 202N + 1)/ 1" (0)]#2/2 dt
0

/1/N2/5 sin(m(2N + 1)Fyt) ,
—1/N2/5 sin(mw Fyt)

= 2(2N + 1)|¢" (0)|(1/N*/%)* /6.

As N — o0, this term also tends to zero. Thus, to calculate the integral of
interest, all one needs to calculate is

. YN Gin(m(2N + 1) Fut)

0) dt.
N —oc0 —1/N2/5 sin(wFSt) g( )

Substituting u = w(2N + 1) Fyt, we find that we must calculate
(2N+1)/N?/? sin(u)

1
(2N + 1)F, /_ (2NA1) /N5 s 7170

Note that as N — oo, we find that u/(2N+1) is always small in the region over
which we are integrating. It is, therefore, easy to justify replacing sin[u/(2N +
1)] by u/(2N + 1). After making that substitution, we must calculate

1 (2N+1)/N?/5 . o
lim 7/ ﬂg(o) du — 9(0)/ sin(u) |-
N—oo 7T(2N =+ 1)Fs —(2N+1)/N2/5 U/(2N + ].) 7TFS oo u

This last integral is well known; its value is 7 [3, p. 193]. We find that
Ts/2

lim Iy (£)g(t) dt = Tug(0).
N—oo —Ts/2

Thus, as N — oo, the function hy(t) behaves like Td(¢) in the region
[—Ts/2,Ts/2]. By periodicity, we find that as N — oo,

hy(t) — T, i 5(t — nTy).

n=—oo

We have found that

A(t) = i 6(t—nTs) = Fs i 627TjnFst.

n=-—oo n=—oo
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1.2.3 The Action of the Ideal Sampler in the Frequency Domain

The ideal sampler takes a function, g(t), and multiplies it by another “func-
tion,” A(t). Thus, in the frequency domain it convolves the Fourier transform
of g(t), G(f), with the Fourier transform of A(t).

What is the Fourier transform of A(t)? Proceeding with impunity, we state
that

FAMIf) = F Y F@@ B (f) = F Y 6(f —nk).

n=—oo

It is (relatively) easy to see that when one convolves a function with a
shifted delta function one “moves” the center of the function to the location
of the “center” of the delta function. Thus, the convolution of G(f) with the
train of delta functions leaves us with copies of the Fourier transform of G(f)
that are spaced every Fy Hz. We find that the Fourier transform of the ideally
sampled function is

FlgOAWD)(f) = F Y G(f —nF). (1.2)

n=—oo

Let us assume that G(f) is band-limited:
G(f)=0, |fI>F

Consider, for example, G(f) as given in Figure 1.1. When considering the
sum of shifted versions of G(f), we find that two possibilities exist. If F is
sufficiently small, then the different copies of G(f) do not overlap, and we can
see each copy clearly. See Figure 1.2. If, on the other hand, F is too large,
then there is overlap between the different shifted versions of G(f), and it is
no longer possible to “see” G(f) by simply looking at the sum of the shifted
version of G(f).

G(f)

F F

Fig. 1.1. The spectrum of the band-limited function G(f)
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FYG(fF)
FsG(f+Fs) FsG(f) FsG(f'Fs)
f
FFOF FAE F 0 F FFF, FAF

Fig. 1.2. The spectrum of the ideally sampled function when there is no overlap
between copies

If the copies of G(f) do not overlap, then by low-pass filtering the signal
one can recover the original signal. When will the Fourier transforms not
overlap? Considering Figure 1.2, it is clear that in order to prevent overlap,
we must require that F' < Fy — F. That is, we must require that

F < F,/2.

That is, we must require that the highest frequency in the signal be less than
half of the sampling frequency. This is the content of the celebrated Nyquist
sampling theorem, and one half the sampling rate is known as the Nyquist
frequency?.

1.3 Necessity of the Condition

We have shown that if the highest frequency in a signal is less than half the
sampling rate, then it is possible to reconstruct the signal from its samples.
It is easy to show that if the highest frequency in a signal is greater than or
equal to the half the sampling frequency, then it is not generally possible to
reconstruct the signal.

Consider, for example, the function g(t) = sin[27 F't]. Let us take 2F sam-
ples per second at the times ¢ = k/(2F). The sampling frequency is ezactly
twice the frequency of the signal being sampled. We find that the samples of
the signal are g[k/(2F)] = sin(wk) = 0. That is, all of our samples are zeros.
As these samples are the same as those of the function h(t) = 0, there is no
way to distinguish the samples of the signal sin(27 F't) from those of the signal
h(t) = 0. There is, therefore, no way to reconstruct g(¢) from its samples.

2 The sampling theorem was published by H. Nyquist in 1928, and was proved by
C.E. Shannon in 1949. See [18] for more information about the history of the
Nyquist sampling theorem.



1.6 The Net Effect 11

1.4 An Interesting Example

Suppose that g(t) = cos(2nFyt) and that one is sampling Fy times per second.
As we are violating the Nyquist criterion—we are sampling at the same fre-
quency as the highest frequency present—we should not find that the sampled-
and-held signal looks similar to the original signal.

Let us use Fourier analysis (which is certainly not the easy way here)
to see what the output of the sample-and-hold element will be. The Fourier
transform of our signal is two delta functions, each of strength 1/2, located
at +F;. After sampling, these become a train of delta functions located at
nkFy each with strength Fy. After passing this signal through the “hold block”
we find that all the delta functions at nFy,n # 0 are multiplied by zero and
are removed. The delta function at f = 0 is multiplied by Ty, and we are left
with FLTi0(f) = 6(f). This is the transform of g(¢) = 1. Thus, we find that
after the sample-and-hold operation the cosine becomes a “one.” See Figure
1.3. (Show that the output of the sample-and-hold element is one in a second
way. Consider only the sample-and-hold operation, and do not use Fourier
transforms at all.)

1.5 Aliasing

Suppose that one samples a cosine of frequency F' at the sampling rate Fj
where Fy > F > F;/2 and then “reconstructs” the signal using an ideal low-
pass filter that passes all frequencies up to Fy/2. What frequency will one see
at the output of the filter?

In Figure 1.4, we see the spectrum of the unsampled cosine and of the
ideally sampled cosine. If we low-pass filter the sampled cosine using a low-
pass filter whose cut-off frequency is Fy/2 (and that amplifies by a factor of
T;) then at the output of the filter we will have two impulses of strength 1/2.
They will be located at Fy — F and at —F; + F'. This is the Fourier transform
of cos(2m(Fy — F)t). We find that the reconstructed signal appears at the
wrong frequency. This phenomenon is known as aliasing. In order to avoid
this problem, one must place an analog low-pass filter whose cut-off frequency
is less than or equal to the Nyquist frequency before the input to the sampling
circuitry. Such a filter is known as an anti-aliasing filter.

1.6 The Net Effect

Consider what happens when one has an ideal sampler followed by a hold
“circuit” of the type described previously. The ideal sampler makes copies of
the spectrum of the signal every Fy Hz. The hold circuit then filters this new
signal. How does the filtering work? Let us consider H(f) again:
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Unsampled Signal

172 172

Signal Sampled by Ideal Sampler

FS FS FS FS FS
-2F, -F, 0 Fe 2F,
Sampled Signal after Being "Held"
1
-2F -F 0 F 2F

S S

Fig. 1.3. A simple example of aliasing



1.6 The Net Effect 13

Before Sampling

| |

i !

5 |

| i

| |

| |

| |
172 : 1 172

| |

| |

| ;

| |

i 1 f
2 FJ2i F

1 |

| |

i |

i |

After Sampling
| |
i |
|

! i

| |

i |
FJj2 | FJ2 FJ2 | Fy2

| |

i A !

|

|

| |

i ! f
F 1 FF F-F | F

| |

i !

| |

-F. /2 F./2

Fig. 1.4. A more general example of aliasing

1 — o 2miTef
2nj f

A simple application of the triangle inequality, |a + b| < |a| 4 |b|, shows that

H(f) =

1

U<

This is a low-pass filter of sorts.
The spectrum at the output of the sample-and-hold element is

1— e—27rjfT

V;)ut(f) = Z‘/;n - s

o sin(m f/Fs)
= va

S .
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For relatively small values of f we find that e=™/7s and sin(n f/F,) /(7 f/Fy)
are both near 1. When f is small we see that

Vout (f) = Vin(f),  [f] << F.

Let us consider how the rest of the copies of the spectrum are affected by
this filtering. At f = nFj, the sine term is zero. Thus, near multiples of the
sampling frequency the contribution of the copies is small. In fact, as long as
the sampling frequency is much greater than the largest frequency in the signal,
the contribution that the copies of the spectrum will make to the spectrum of
the output of the sample-and-hold element will be small. If the sampling rate
is not high enough, this is not true. See Exercise 7.

1.7 Undersampling

Suppose that one has a real signal all of whose energy is located between the
frequencies Fy and F» (and —F5 and —Fy) where Fy > Fj. A naive application
of the Nyquist sampling theorem would lead one to conclude that in order to
preserve the information in the signal, one must sample the signal at a rate
exceeding 2F5 samples per second. This, however, need not be so.

Consider the following example. Suppose that one has a signal whose en-
ergy lies between 2 and 4 kHz (exclusive of the endpoints). If one samples the
signal at a rate of 4,000 sample per second, then one finds that the spectrum
is copied into non-overlapping regions. Thus, after such sampling it is still
possible to recover the signal. Sampling at a frequency that is less than the
Nyquist frequency is called undersampling. Generally speaking, in order to be
able to reconstruct a signal from its samples, one must sample the signal at a
frequency that exceeds twice the signal’s bandwidth.

1.8 The Experiment

1. Write a program for the ADuC841 that causes the microcontroller to
sample a signal 1,000 times each second. Use channel 0 of the ADC for
the sampling operation.

2. Have the program move the samples from the ADC’s registers to the
registers that “feed” DAC 0. This will cause the samples to be output by
DAC 0.

3. Connect a signal generator to the ADC and an oscilloscope to the DAC.

4. Use a variety of inputs to the ADC. Make sure that some of the inputs
are well below the Nyquist frequency, that some are near the Nyquist
frequency, and that some exceed the Nyquist frequency. Record the oscil-
loscope’s output.
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1.9 The Report

Make sure that your report includes the program you wrote, the plots that
you captured, and an explanation of the extent to which your plots agree with
the theory described in this chapter.

1.10 Exercises

1.

Suppose g(t) = sin(27Fst) and one uses a sample-and-hold element that
samples at the times

t=nTy,n=0,1,..., F,=1/T,.

Using Fourier transforms, calculate what the sampled-and-held waveform
will be.

. Show that the frequency response of a filter whose impulse response is

_J10<t< T
h(t) = {0 otherwise

is

1 2mj fTs
_ ) SSgr A0
H(f)—{ 170

Show that H(f)—the frequency response of the “hold element”—can be

written as
e —jnTy fsm(ﬂ'T f) f 7& 0

H(f)z{ A

Let H(f) be given by the function

12200<|f|<2800
0 otherwise

mn={

If one uses an ideal sampler to sample h(t) every Ty = 0.5ms, what will
the spectrum of the resulting signal be?

Show that the spectrum of an ideally sampled signal as given in (1.2) is
periodic in f and has period Fj.

Show that the function

sin(w(2N+1)t)
f(t) — sin(7t) t # k
2N +1 t=k

is
a) Periodic with period 1.
b) Continuous on the whole real line.
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Note that as both the numerator and the denominator are analytic func-
tions and the quotient is continuous, the quotient must be analytic. (This
can be proved using Morera’s theorem [3, p. 133], for example.)
Construct a Simulink® model that samples a signal 100 times per sec-
ond and outputs the samples to an oscilloscope. Input a sinewave of fre-
quency 5Hz and one of frequency 49 Hz. You may use the “zero-order
hold” block to perform the sample-and-hold operation. Can you iden-
tify the 5 Hz sinewave from its sampled version? What about the 49 Hz
sinewave? Explain why the oscilloscope traces look the way they do.
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