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Elliptic curve cryptography

15.1 Calculations in finite groups

In this chapter we continue to adopt the cryptographic perspective developed in
the earlier chapters. This means that we stress the link between mathematical
theory and practical calculation which, as we have seen, is fundamental in
modern cryptography. The specific system that we consider is based on groups
that arise in the theory of elliptic curves, a topic that fascinated mathematicians
for over a century before it first found practical application in the 1980s.

From the cryptographic perspective, it is worth stressing that a group con-
sists of two things: a set of elements G, and an operation ∗ defined on pairs of
elements (h, k) in G. When we say that a group (G, ∗) is ‘given’, we mean that
we know how to represent h and k in a definite way, and how to calculate h ∗ k

using this representation. Ultimately, it must be possible to reduce these calcu-
lations to operations on strings of bits, although it is usually convenient to use
a more familiar notation, such as the standard decimal notation for integers.

For example, suppose we are working in F
×
p , the group of nonzero elements of

Fp, under multiplication. Then the elements of F
×
p are represented by natural

numbers 1, 2, . . . , p − 1 in decimal notation, and h × k can be calculated by
applying the familiar ‘long multiplication’ algorithm, followed by ‘long division’
to find the remainder when the result is divided by p.
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Definition 15.1 (Cyclic group, generator)

The group (G, ∗) is a cyclic group of order n, with generator g if |G| = n and
there is an element g ∈ G such that the elements of the group are equal to

g, g2, g3, . . . , gn,

in some order. (It follows that the group is abelian, and gn is the identity
element.)

The powers of any element h ∈ G are defined recursively by the rule

h1 = h, hi = h ∗ hi−1 (i ≥ 2).

Although the definition suggests that i − 1 applications of the ∗ operation
are needed in order to calculate hi, the repeated squaring algorithm (Section
13.3) allows hi to be calculated much more efficiently. Furthermore, if G has
n elements, every h ∈ G is such that hn is equal to the identity element.
Thus calculating the inverse of h can, if necessary, be done by using the rule
h−1 = hn−1.

The fact that F
×
p is a cyclic group of order p − 1 is a consequence of the

famous result that there is a primitive root r (a generator of F
×
p ) for every prime

p. However, there are two problems. Finding a primitive root r for a given p is
not trivial, and the correspondence between the powers of r and the elements of
F
×
p is complicated. The latter problem is just the Discrete Logarithm Problem

discussed in the previous chapter. As we shall see, both these problems occur
more generally in elliptic curve cryptography.

The following example illustrates the fact that, without some additional
information, finding a generator for a cyclic group may require ‘brute force’
methods.

Example 15.2

Let ∗ denote multiplication of 2 × 2 matrices. Find g such that the following
set of six matrices forms a cyclic group (G, ∗) with generator g.
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Solution If we are unaware of the geometrical significance of the matrices, we
must proceed by working out the orders of the matrices. The first two matrices
have orders 1 and 2 respectively, and clearly they are not generators. However,
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if we take the third matrix to be g, then it turns out that the six given matrices
are equal to g, g2, g3, g4, g5, g6 (but obviously not in the given order). Thus g

is a generator.

Suppose the problem of finding a generator g in a cyclic group G has been
solved. Then we might hope to use the correspondence between the elements
of G and the powers of g to simplify calculations in the group. Thus in order to
calculate h ∗ k we can write h = gi, and k = gj, calculate i + j using ordinary
addition, and set h ∗ k = gi+j . But this method assumes that we can find i

and j, the ‘logarithms’ of h and k. That is precisely the Discrete Log Problem
(DLP) for (G, ∗):

given a generator g ∈ G and any h ∈ G, find i ∈ N such that gi = h.

In some cases this problem may be easy (Exercise 15.3), but in general it is
hard.

EXERCISES

15.1. Show that the operation of multiplying complex numbers makes the
following set of numbers into a cyclic group, and find a generator.

1, −1, i, −i,
1√
2
(1 + i),

1√
2
(1 − i),

1√
2
(−1 + i),

1√
2
(−1 − i).

15.2. In Example 14.5 we constructed a table of logarithms to base 2 in
the cyclic group F

×
11. Explain how the table can be used to show that

5 × 10 = 6 in this group.

15.3. Show that, for any positive integer n, the group (Zn, +) (the integers
mod n under addition) is cyclic, and find a generator. Explain why
the DLP is trivial in this case, however large n may be.

15.2 The general ElGamal cryptosystem

The ElGamal systems described in Chapter 14 can be extended to any given
cyclic group (G, ∗). Users of the general system are assumed to know that G

is cyclic, and that a certain specified element g ∈ G is a generator. It is also
assumed that they express plaintext and ciphertext messages as elements of G

in some standard way.
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In the general ElGamal cryptosystem, each user, such as Bob, chooses a
private key b′ ∈ N, and computes his public key b ∈ G by the rule b = gb′ .
When Alice wishes to send Bob a message m ∈ G she chooses a token t ∈ N,
and applies the encryption function

Eb(m, t) = (gt, m ∗ bt).

Bob receives ciphertext in two parts: the first part is the ‘leader’ � = gt, and
the other part is the encrypted message c = m ∗ bt. Bob’s decryption function
is

Db′(�, c) = c ∗ (�−1)b′ .

Using essentially the same algebra as in Lemma 14.7, it is easy to check that
Db′(Eb(m, t)) = m for all m ∈ G, and all t ∈ N:

Db′(Eb(m, t)) = Db′(gt, m ∗ bt) = (m ∗ bt) ∗ ((gt)−1)b′

= m ∗ bt ∗ ((gb′)−1)t

= m ∗ bt ∗ (b−1)t

= m.

EXERCISES

15.4. Let (G, ∗) be a cyclic group of order 43, with generator g, and
suppose Bob’s private key is 10. What is Bob’s public key, and
what is his decryption function? If Alice wishes to send the mes-
sage m ∈ G to Bob, and chooses t = 7, what ciphertext does Bob
receive? Check that his decryption function correctly recovers m.
(All working should be expressed in terms of the ‘variables’ g and
m.)

15.5. Alice and Bob are experimenting with an ElGamal system based on
the multiplicative group G = F

×
17, with generator g = 3. Bob’s public

key is 13. Alice wishes to send the message m ∈ F
×
17 to Bob. What

encryption function should she use? Find Bob’s private key, write
down his decryption function, and verify that it correctly recovers
the message m.

15.6. In Exercise 15.3 we noted that (Zn, +) is cyclic group with generator
1. Show that in the corresponding ElGamal system b′ = b, and verify
that the decryption function Db′ is the left-inverse of Eb.
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15.3 Elliptic curves

In the rest of the book we shall consider fields F with the property that 2x = 0
only if x = 0 (so that F 	= F2, for example). This condition is expressed by
the statement that F does not have characteristic 2. The reason for excluding
fields with characteristic 2 is that the algebra takes a slightly different form in
that case.

Definition 15.3 (Elliptic curve)

Let F be a field which does not have characteristic 2. An elliptic curve over F

is a set of ‘points’ (x, y) ∈ F 2 that satisfy an equation of the form

y2 = x3 + αx + β (α, β ∈ F ),

together with one additional ‘point’, which is denoted by I and called the point

at infinity.

For cryptographic purposes we shall require that the field F is finite, but
the same constructions can be used over any field F which does not have
characteristic 2, and it is helpful to begin by looking at an example with F = R,
the field of real numbers. In this case the ‘points’ that form the curve belong
to the Euclidean plane R

2, and we can sketch the curve in the usual way. The
resulting geometrical picture is very useful.

Example 15.4

Sketch the curve y2 = x3 − x over R.

Solution The standard method of curve-sketching is to find points on the
curve by choosing x ∈ R and calculating the value(s) of y such that y2 = x3−x.

When x < −1 and when 0 < x < 1 the expression x3 − x is negative, and
there are no corresponding values of y, since y2 ≥ 0.

When x = −1, 0, 1, x3 − x = 0 and y = 0 is the only possibility. Hence the
points (−1, 0), (0, 0), and (1, 0) belong to the curve.

Finally, for each remaining value of x (that is −1 < x < 0 and x > 1) the
expression x3 − x is positive and there are two corresponding values of y. This
means that the curve is symmetrical with respect to the x-axis: if (x, y) is on
the curve, then (x,−y) is also on the curve. A sketch is shown in Figure 15.1.

It must be remembered that I, the ‘point at infinity’, must also be consid-
ered. Geometrically, it is helpful to think of I as a point where all vertical lines
meet; that is, an infinitely remote point in the vertical direction.



242 15. Elliptic curve cryptography

Figure 15.1 A sketch of the curve y2 = x3 − x in R
2

Similar calculations can be used when the field is finite, but of course there
is no sensible way of ‘sketching’ the curve.

Example 15.5

Find all the points on the curve y2 = x3 + x over F17.

Solution As in the previous example, we consider each value of x and solve
the resulting equation for y. For example, when x = 1 we require y2 = 2, and
in F17 this has two solutions, y = ±6. (Note that −6 = 11 here.)

For each x ∈ F17 there are 0, 1, or 2 possible values of y:

x = 0 1 2 3 4 5 6 7 8 9
y = 0 ±6 − ±9 0 − ±1 − − −

x = 10 11 12 13 14 15 16
y = − ±4 − 0 ±2 − ±7

.

The calculation gives 15 points which, together with I, the point at infinity,
comprise the curve.

We shall now explain how an operation ∗ can be defined so that the points
of an elliptic curve over a field F form an abelian group. The definition is based
on a geometrical construction and is easy to visualize in the case when F = R.
But the rules of algebra are the same in any field, so we can translate the
construction into familiar coordinate geometry and apply it quite generally.
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We begin by specifying that the point at infinity I is the identity element,
so P ∗ I = I ∗ P = P for all points P . The inverse of a point P = (x, y) is
P−1 = (x,−y): geometrically speaking, P−1 is the reflection of P in the x-axis.
Note that if P is on the curve, so is P−1. Also, if Q is a point of the form (x, 0)
then Q−1 = Q, so Q ∗ Q = I.

The crucial part of the construction is the definition of P1 ∗ P2, which
depends on the fact that the right-hand side of the equation is a polynomial
of degree 3. It follows that a straight line y = λx + μ will generally meet the
curve in three points. We define

P1 ∗ P2 = S if and only if the points P1, P2 and S−1 are collinear.

Figure 15.2 shows three collinear points P1, P2, S−1 and the point S = P1 ∗P2.

P1

P2

S−1

S

Figure 15.2 Illustrating the group operation

We now translate this construction into coordinate geometry. That is, we
find equations for the coordinates of S = P1 ∗ P2, given the coordinates of P1

and P2.

Theorem 15.6

Suppose the points P1 = (x1, y1) and P2 = (x2, y2) belong to an elliptic curve
y2 = x3 +αx + β over a field F which does not have characteristic 2. Then the
point S = P1 ∗ P2 is determined by the following rules:

(i) if x1 = x2 and y1 = −y2 then S = I;
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(ii) in all other cases the coordinates (xS , yS) of the point S are given by

xS = λ2 − x1 − x2 yS = λ(x1 − xS) − y1,

where λ is defined by

λ = (y2 − y1)(x2 − x1)−1 if x1 	= x2;

λ = (3x2
1 + α)(2y1)−1 if x1 = x2, y1 = y2.

Proof

(i) This is the situation when P2 = P−1
1 , as defined above.

(ii) Suppose that x1 	= x2 and the line through P1 and P2 is given by the
equation y = λx + μ. Then

y1 = λx1 + μ and y2 = λx2 + μ,

so that
λ = (y2 − y1)(x2 − x1)−1, μ = λx1 − y1.

This line meets the curve y2 = x3 + αx + β at the points where x satisfies

(λx + μ)2 = x3 + αx + β, or x3 − λ2x2 + (α − 2λμ)x + (β − μ2) = 0.

We know that two of the roots of this equation are x1 and x2, and since the
sum of the roots is λ2, there is a third root xS given by

xS = λ2 − x1 − x2.

Let yS = −(λxS+μ) so that the point S−1 = (xS ,−yS) is on the line y = λx+μ,
and S = (xS , yS) is the required point P1 ∗ P2. Eliminating μ gives

yS = λ(x1 − xS) − y1.

If x1 = x2 the definition of λ will not work, because x2 − x1 = 0 has no
inverse. In fact if x1 = x2 then y2

1 = y2
2 , so there are two possibilities, y1 = y2

or y1 = −y2. The second possibility has already been dealt with (case (i)).

If x1 = x2 and y1 = y2 then P1 = P2. In this case, we must determine the
line y = λx + μ that meets the curve in two coincident points. In coordinate
geometry over R we call this a tangent to the curve, and determine its slope λ

by calculus. Because the curve has an algebraic equation, the same results hold
in any field F , and the relevant value of λ is as given in the statement of the
theorem. The rest of the algebra is as before, with this new value of λ.
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Example 15.7

In Example 15.5 we found that the points P1 = (1, 6) and P2 = (11, 4) belong
to the curve y2 = x3 + x over F17. Calculate the coordinates of S = P1 ∗ P2

and T = P1 ∗ P1.

Solution Taking P1 = (1, 6) and P2 = (11, 4), the coordinates of S = P1 ∗ P2

are given by

λ = (4 − 6) × (11 − 1)−1 = (−2) × (10)−1 = −2 × 12 = −24 = 10,

xS = 102 − 1 − 11 = 88 = 3, yS = 10(1 − 3) − 6 = −26 = 8.

Thus S = (3, 8). To find T = P1 ∗ P1 we use the alternative form of λ:

λ = (3 × 12 + 1) × (2 × 6)−1 = 4 × 10 = 40 = 6,

xT = 62 − 1 − 1 = 34 = 0, yT = 6(1 − 0) − 6 = 0.

Thus T = (0, 0).

EXERCISES

15.7. Consider the curve y2 = x3 + x over F17 discussed in Examples 15.5
and 15.7. Show that (1, 6) generates a subgroup of order 4.

15.8. Find explicitly all the points on the elliptic curve y2 = x3 + x over
F13. (There are 20 of them.) Calculate the coordinates of the points

(3, 2) ∗ (5, 0), (2, 6) ∗ (2, 6).

15.9. Show that a point P = (x, y) on an elliptic curve has order 2 (that
is, P ∗ P = I) if and only if y = 0.

15.10. Taking F = R, derive the formula for λ given in Theorem 15.6 for
the case P1 = P2.

15.4 The group of an elliptic curve

The ∗ operation endows an elliptic curve with the structure of an abelian group.
The relevant properties are almost self-evident, with the exception of the asso-
ciative law: (A∗B)∗C = A∗ (B ∗C). Since we have obtained explicit formulae
for the group operation, the associative law can, if necessary, be checked by
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some rather tedious algebra. (The reader who wants to ‘really’ understand why
it is true is advised to study a more theoretical account of elliptic curves.)

Our aim here is to explain how the group of an elliptic curve can be used
in practice, specifically as the basis for an ElGamal cryptosystem. In order to
do this, we need to identify a suitable cyclic group, which may be a proper
subgroup of the full group, and a generator for it. A very simple example
follows.

Example 15.8

For the curve y2 = x3 + 2x + 4 over F5, find a cyclic subgroup and a generator
of it.
Solution We can tabulate the points on the curve in the usual way:

x = 0 1 2 3 4
y = ±2 − ±1 − ±1

Thus, remembering I, there are seven points. Since 7 is a prime number, the
full group must be cyclic, and any element except I is a generator.

More generally, it would be very useful if we could determine the size and
structure of the group of any elliptic curve over a finite field. Sadly, this re-
quires a substantial amount of theory and some nontrivial calculations. But
mathematicians have succeed in finding many examples that are suitable for
use in practice, and the basic principles are easy to understand.

Lemma 15.9

Let GE be the group of points on an elliptic curve E : y2 = x3 + αx + β over
a finite field F . Define

m1 = the number of roots of x3 + αx + β = 0 in F ;

m2 = the number of x ∈ F for which x3 + αx+ β is a non-zero square in F .

Then
|GE | = m1 + 2m2 + 1.

Proof

For each x ∈ F we count how many points (x, y) belong to E. Since F is a
field, the equation y2 = x3 + αx + β has at most two solutions. If y = θ is a
solution then y = −θ is also a solution, so the number of distinct solutions is 0
or 2 unless θ = 0, when there is just one solution.
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In other words there are two solutions when x3+αx+β is a non-zero square
in F , one solution when x3+αx+β = 0 in F , and no solutions when x3+αx+β

is not a square in F . Adding 1 for the point at infinity, we have the result.

The lemma shows that when F = Fp, the largest possible value of |GE | is
2p+1, which would occur if m2 = p. In fact, one would expect that only about
half the values of x ∈ Fp are such that x3 + αx + β is a square, so that |GE |
will be approximately equal to p. Using this idea, Hasse proved in 1933 (long
before elliptic curves became part of cryptography) that

p + 1 − 2
√

p ≤ |GE | ≤ p + 1 + 2
√

p.

In the most favourable situation, |GE | itself is a prime. Then the entire
group is a cyclic group, and can be used as framework for systems based on
the ElGamal formulae. For example, this happens when E is the curve

y2 = x3 + 10x + β over Fp,

where

p = 2160 + 7
= 14615016373309029118203684832716283019655932542983

β = 1343632762150092499701637438970764818528075565078.

It has been shown that

|GE | = 14615016373309029118203683518218126812711137002561
= p − 13144981562069447795540422,

and it is easy to check (with MAPLE) that |GE | is a prime number. It follows
that GE is a cyclic group, and any non-identity element is a generator. So if
we follow the prescription described above, we have the basis for cryptosystem.
(Note that |GE | differs from p by a number with 26 digits, whereas p has 53
digits, in accordance with Hasse’s theorem.)

Although this favourable situation cannot be expected to occur very often,
in practice it is just as useful to be able to find a large prime dividing |GE |. In
that case we have a large cyclic subgroup of GE .

EXERCISES

15.11. Verify explicitly that (2, 1) is a generator for the group obtained in
Example 15.8.
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15.12. Consider elliptic curves of the form y2 = x3 + x + β over F11. Find
three values of β for which m1 (Lemma 15.9) is 0, 1, 3, respectively.

15.13. Taking β = 6 in the previous exercise, show that the group of the
curve is cyclic, and find a generator for it.

15.14. Let p be an odd prime. Show that the group of the elliptic curve
y2 = x3 + x over the field Fp has even order. Find the number m1

for this group, distinguishing the cases p = 4s + 1 and p = 4s + 3.

15.15. Any group of order 20 has a cyclic subgroup of order 5. [You are not
asked to prove this, but if you are familiar with elementary group
theory you may wish to do so.] Determine this subgroup explicitly
for the curve described in Exercise 15.8.

15.5 Improving the efficiency of exponentiation

From the cryptographic perspective, it remains to consider the problems that
arise when we try to implement a cryptosystem based on an elliptic curve.

The most costly operations in the ElGamal scheme are the exponentiations
– calculating the powers such as gt and (�−1)b′ that occur in the encryption and
decryption functions. In order to ensure confidentiality the exponents must be
numbers with many digits, and the exponentiations, although feasible by the
repeated squaring algorithm, are by no means trivial. In fact, that is the main
reason why the ElGamal system is commonly used only to distribute keys for
a symmetric key system such as AES, in which the calculations are less costly.
(Similar remarks apply to RSA, where exponentiation is also a major part of
the system.)

The problem of finding good algorithms for exponentiation is therefore sig-
nificant. It is easy to see that the repeated squaring algorithm is not optimal:
for example, it finds g15 by calculating

g2 = g ∗ g, g4 = g2 ∗ g2, g8 = g4 ∗ g4,

g12 = g4 ∗ g8, g14 = g2 ∗ g12, g15 = g ∗ g14.

This procedure involves the sequence of powers 1, 2, 4, 8, 12, 14, 15, which has
the property that each term in the sequence except the first is the sum of two
(possibly the same) terms that come before it. Any sequence with this property
that ends in 15 will produce the the required result.
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Definition 15.10 (Addition chain)

An addition chain of length r for the positive integer n is a sequence of positive
integers x0 = 1, x1, x2, . . . , xr = n such that, for i = 1, 2, . . . , r there exist
xj and xk such that

xi = xj + xk (0 ≤ j ≤ k < i).

Clearly, shorter addition chains for n lead to better methods for calculating
gn. For example, the repeated squaring method for g15 corresponds to the
addition chain of length 6 given above, but there is a shorter addition chain,
with length 5: 1, 2, 3, 6, 12, 15. This corresponds to the multiplications

g2 = g ∗ g, g3 = g ∗ g2, g6 = g3 ∗ g3,

g12 = g6 ∗ g6, g15 = g3 ∗ g12.

A further improvement can be made when inversion is a trivial operation.
As we shall explain in the next section, this holds true when G is the group of
an elliptic curve. In such cases division (multiplication by a power of g−1) is no
more costly than multiplication by g, which motivates the following definition.

Definition 15.11 (Addition-subtraction chain)

An addition-subtraction chain of length r for the positive integer n is a sequence
of positive integers x0 = 1, x1, x2, . . . , xr = n such that, for i = 1, 2, . . . , r

there are xj and xk such that

xi = ±xj ± xk (0 ≤ j ≤ k < i).

In other words, each term in the sequence except the first is the sum or differ-
ence of two terms that come before it.

The technique of exponentiation using an addition-subtraction chain is best
illustrated by an example.

Example 15.12

Find the optimum method of calculating g31.

Solution The repeated squaring algorithm uses the addition chain 1,2,4,8,16,
24,28,30,31, which has length 8. It is fairly easy to spot an addition chain of
length 7: 1, 2, 3, 5, 10, 11, 21, 31, and some rather tedious analysis will confirm
that it is the shortest possible.
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However, if subtractions are allowed there is an obvious chain of length 6:
1, 2, 4, 8, 16, 32, 31, and this is optimal. The corresponding method of calculating
g31 is

g2 = g ∗ g, g4 = g2 ∗ g2, g8 = g4 ∗ g4,

g16 = g8 ∗ g8, g32 = g16 ∗ g16, g31 = g−1 ∗ g32.

A useful technique for finding a good addition-subtraction chain is based on the
non-adjacent form of an integer (Exercise 15.18). It leads to an algorithm for
exponentiation that is about 10% better than repeated squaring, on average.

EXERCISES

15.16. Write down the addition chain for 127 used in the repeated squaring
algorithm. This is a chain with length 12. Show that it is not optimal
by finding an addition chain with length 10 for 127.

15.17. Show that the computation of g127 can be shortened further if
addition-subtraction chains are allowed.

15.18. Consider representations of an integer in the form
∑

ci2i ci ∈ {−1, 0, 1}.

Such a representation is said to be a non-adjacent form or NAF if
cici+1 = 0 for all i ≥ 0. Find a NAF for 55 and explain how it can
be used to calculate g55.

15.19. Show that every integer has a NAF. [Hint: start from the standard
binary representation.] Show also that the NAF is unique.

15.20. Why are addition-subtraction chains not useful for the calculation
of gn when g is an element of F

×
p ?

15.6 A final word

Elliptic curve cryptography is a rapidly growing area of research, and it is
possible that future developments will change the picture quite dramatically.
Here is a summary of the current state of the art.
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• The group of an elliptic curve can be used as the basis for a cryptosystem
of the ElGamal type. By making suitable adjustments, elliptic curves can
also be used in many other areas of cryptography.

• The ElGamal functions can be calculated fairly efficiently, but the cost of
exponentiation (in particular) imposes some constraints in practice.

• It is possible to break an elliptic curve system if there is a method of
solving the DLP on the group of the curve but, in general, no such method
is known. Other forms of attack may be possible.

We conclude with an explicit example of how the ElGamal formulae can
be applied to the group of an elliptic curve. First, we must decide how to
represent the elements of the group. For a curve E defined over a prime field
Fp, an element of GE is a pair (x, y) with x, y ∈ Fp. So we can regard x and
y as integers in the range 0 ≤ x, y ≤ p − 1. Furthermore, when the right-
hand side of the equation is a non-zero square there are exactly two values of
y that satisfy the equation, and they can be written uniquely as ±θ, where
θ satisfies 1 ≤ θ ≤ 1

2 (p − 1). Since θ is determined by E, in order to store
(x, y) it is only necessary to store x as an element of Fp, together with a single
bit that determines whether the relevant sign is + or −. Incidentally, this
observation justifies the use of addition-subtraction chains for exponentiation,
since inversion in GE is a trivially easy operation, the inverse of (x, y) being
(x,−y).

Let E denote the curve

y2 = x3 + x + 4 (x, y ∈ F23).

We shall use the notation x+ and x− for the points (x, y) with y = ±θ,
1 ≤ θ ≤ 11: for example, 0+ stands for (0, 2) and 0− stands for (0,−2).
Substituting x = 0, 1, 2, . . . , 22 in turn, we find that x3 + x + 4 is never zero,
so that m1 = 0, and it is a square when

x = 0, 1, 4, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 22,

so that m2 = 14. Hence the order of the group GE is 2×14+1 = 29. Since this
number is prime, the group is cyclic, and any element except I can be taken as
the generator g.

Conveniently, the group GE has the right number of symbols to represent
the english alphabet, extended to include the comma and full stop. Although
this number is far too small to provide security in serious applications, it can
be used to send messages that are unintelligible to the vast majority of people.
To do this, we need to establish a ‘standard’ correspondence between the 29
elements of the group and the symbols of the extended english alphabet. Here
is a suitable correspondence.
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I 0+ 0− 1+ 1− 4+ 4− 7+ 7− 8+
� A B C D E F G H I

8− 9+ 9− 10+ 10− 11+ 11− 13+ 13− 14+
J K L M N O P Q R S

14− 15+ 15− 17+ 17− 18+ 18− 22+ 22−
T U V W X Y Z , .

Suppose I am using GE with generator g = 0+, and my public key is b = 7−.
If you have read this book carefully, you will be able to construct a table of
powers of g.

i 2 3 4 5 6 7 8 9 10 11 12 13 14
gi 13− 11+ 1− 7− 9+ 15+ 14+ 4+ 22+ 10+ 17+ 8− 18+

Since g29−i is the inverse of gi, and the group is cyclic, this table is sufficient
for all calculations in GE . In particular, you will quickly see that my private
key is b′ = 5. Then, if you intercept some ciphertext intended for me, say

(9+, 15−) (11+, 4−) (0+, 18+) (7−, 1+) (14+, 4−)

(15+, 7+) (13−, 18+) (1−, 22+)

you can apply my decryption function (�, c) �→ c ∗ �−5 and obtain

14 − 7 − 4 + I 4 + 10 − 1 − 22−

which is definitely

THE�END.

EXERCISES

15.21. The message above was encrypted using a different value of the token
t for each symbol. Find these values.

15.22. Karen has agreed to use ElGamal cryptosystem based on the group
GE defined above, with the ‘standard’ representation of extended
english. She has chosen the generator h = 4−, and her public key
is k = 9+. I have sent her the message

(7−, 7+) (8−, 9+) (18−, 4−) (10+, 0+) (1−, 8−)

(15−, 7+) (8−, 18−) (17−, 10+) (7+, 4−) (8−, 4−) .

What does it say?



15.6 A final word 253

Further reading for Chapter 15

There are several books on the mathematical theory of elliptic curves, at vari-
ous levels of sophistication. From the cryptographic perspective there are two
fundamental results: Hasse’s theorem on the order of GE (Section 15.4), and a
theorem that says GE can be expressed as the product of at most two cyclic
groups. These results are discussed in the books by Silverman [15.5] and Wash-
ington [15.6], among others.

The rapidly developing field of elliptic curve cryptography is surveyed in two
books by Blake, Seroussi, and Smart [15.1, 15.2]. These books cover many of
the implementation issues including the cost of exponentiation (Section 15.5).
Further details on addition chains, the NAF, and so on, can be found in the
survey by Gordon [15.3], and the famous tome by Knuth [15.4].
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