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Coding and its uses

1.1 Messages

The first task is to set up a simple mathematical model of a message. We do
this by looking at some examples and extracting some common features from
them.

Example 1.1

Many messages are written in a natural language, such as English. These mes-
sages contain symbols, and the symbols form words, which in turn form sen-
tences, such as this one. The messages may be sent from one person to another
in several ways: in the form of a handwritten note or an email, for example. A
text message is essentially the same, but it is often expressed in an unnatural
language.

Example 1.2

Devices such as scanners and digital cameras produce messages in the form of
electronic impulses. These messages may be sent from one device to another
by wires or optic fibres, or by radio waves.

Formal definitions based on these examples will be given in Section 1.3. For
the time being, we shall think of a message as a sequence of symbols, noting
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that the order of the symbols is clearly important.

The function of a message is to convey information from a sender to a
receiver. In order to do this successfully, the sender and receiver must agree to
use the same set of symbols. This set is called an alphabet.

Example 1.3

We denote by A the alphabet which has 27 symbols, the letters A, B, C, ...,
Z, and a ‘space’, which we denote by L. We shall often use the alphabet A
to represent messages written in English. This is convenient for the sake of
exposition, but obviously some features are ignored. Thus we ignore the dis-
tinction between upper and lower case letters, and we omit punctuation marks.
Of course, there may be some loss in reducing an English message into a string
of symbols in this alphabet. For example the text

The word ‘hopefully’ is often misused.
is reduced to the following message in A.
THELWORDUHOPEFULLYUISLIOFTENLIMISUSED

Example 1.4

The alphabet B has 2 symbols, 0 and 1, which are called binary digits or bits.
Because the bits 0 and 1 can be implemented electronically as the states OFF
and ON, this is the underlying alphabet for all modern applications. In practice,
the bits are often combined into larger groups, such as ‘32-bit words’. But any
message that is transmitted electronically, whether it originates as an email
from me or as an image from a satellite orbiting the earth, is essentially a
sequence of bits.

EXERCISES

1.1. The following messages have been translated from ‘proper English’
into the alphabet A. Write down the original messages and comment
upon any ambiguity or loss of meaning that has occurred.

CANINEL/HASUSIXULETTERSUANDLIENDSUINLININE
ITSL/HOTLSAIDLIROBERTL/BROWNING

1.2. A 32-bit word is a sequence of 32 symbols from the alphabet B. How
many different 32-bit words are there? If my printer can print one
every second, how many years (approximately) will it take to print
them all?
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1.3. In the period 1967-86 the ASCII alphabet was widely used as a stan-
dard for electronic communication. It has 128 symbols, 95 of which
were printable. In this book we have already used some symbols that
were not in the ASCII alphabet. Which ones? [ASCII is an abbrevi-
ation for American Standard Code for Information Interchange, and
is pronounced ‘askey’. The ASCII alphabet is now part of a much
more comprehensive system known as Unicode.]

1.4. Not all natural languages use 26 letters. How many letters are there
in (i) the modern Greek alphabet and (ii) the Russian Cyrillic al-
phabet?

1.2 Coding

Roughly speaking, coding is a rule for replacing one message by another mes-
sage. The second message may or may not use the same alphabet as the first.

Example 1.5

A simple rule for coding messages in the 27-symbol alphabet A using the same
alphabet is: write each word backwards. So the message

SEELIYOULITOMORROW becomes EESLIUOYUWORROMOT

Example 1.6

A rule for coding messages in A using the binary alphabet B is: replace vowels
by 0, replace consonants by 1, and ignore the spaces. With this rule

SEELIYOULITOMORROW becomes 10010010101101

These two examples are very artificial, and the rules are of limited value.
For greater realism and utility we must look at the purposes for which coding
is used, and evaluate proposed coding rules in that context.

There are three major reasons for coding a message.

EcoNoMY  In many situations it is necessary or desirable to use an alphabet
smaller than those that occur in natural languages. It may also be desir-
able to make the message itself smaller: in recent times this has led to the
development of techniques for Data Compression.
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RELIABILITY  Messages may be altered by ‘noise’ in the process of transmis-
sion. Thus there is a need for codes that allow for Error Correction.

SECURITY  Some messages are sent with the requirement that only the right
person can understand them. Historically, secrecy was needed mainly in
diplomatic and military communications, but nowadays it plays an impor-
tant part in everyday commercial transactions. This area of coding is known
as Cryptography.

EXERCISES

1.5. The following messages are coded versions of meaningful English
sentences. Explain the coding rules used and find the original mes-

sages.
715154271221 311

00111011110111100100110110110010101 0001101011

1.6. Explain formally (as if you were writing a computer program) the
coding rule write each word backwards. [You must explain how
to convert a sequence of symbols such as TODAYUISLIMONDAY into
YADOTI_ISII_IYADNOM.]

1.3 Basic definitions

We are now ready to make some proper definitions.

Definition 1.7 (Alphabet)

An alphabet is a finite set S; we shall refer to the members of S as symbols.

Definition 1.8 (Message, string, word)
A message in the alphabet S is a finite sequence of members of S:
T1To - Ty (z; €5, 1<i<n).

A message is often referred to as a string of members of S, or a word in S. The
number n is called the length of the message, string, or word.
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The set of all strings of length n is denoted by S™. For example, when S = B
and n = 3, the set B? consists of the strings

000 001 010 011 100 101 110 111
The set of all strings in S is denoted by S*:
S* = Sustus?iu -

Note that S° consists of the string with length zero; in other words, the string
with no symbols. We include it in the definition because sometimes it is con-
venient to use it.

Definition 1.9 (Code, codeword)

Let S and T be alphabets. A code ¢ for S using T is an injective function
¢: S — T*. For each symbol s € S the string ¢(s) € T* is called the codeword
for s. The set of all codewords,

C={c(s)|se S}

is also referred to as the code. When |T'| = 2 the code is said to be binary,
when |T'| = 3 it is ternary, and in general when |T'| = b, it is b-ary.

For example, let S = {z,y, 2}, T = B, and define
c(z) =0, c(y) = 10, c(z) = 11.

This is a binary code, and the set of codewords is C' = {0, 10, 11}.

According to the definition, a code ¢ assigns to each symbol in S a string
of symbols in T. The strings may vary in length. For example, suppose we
are trying to construct a code for the 27-symbol English alphabet A using
the binary alphabet B. We might begin by choosing codewords of length 4, as
follows:

A+ 0000 B+ 0001 C~ 0010

Now, the definition requires ¢ to be an injective function or (as we usually say)
an injection. This is the mathematical form of the very reasonable requirement
that ¢ does not assign the same codeword to two different symbols. In other
words, if ¢(s) = ¢(s’) then s = §'. Clearly, there are only 16 strings of length 4
in B, so the 27 symbols in A cannot all be assigned different ones.

Thus far we have considered only the coding of individual symbols. The
extension to messages (strings of symbols) is clear.
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Definition 1.10 (Concatenation)

Ifc: S — T*is a code, we extend ¢ to S* as follows. Given a string 12 - - -z,
in S*, define

c(xyme -+ xp) = c(x1)e(xa) - c(xn).
This process is known as concatenation. Note that we denote the extended

function S* — T by the same letter c.

It is not always possible to recover the original string uniquely from the
coded version. For example, let S = {z,y, 2z}, and define ¢: S — B* by

z—0, y~— 01, 2z~ 10.

Suppose we are given the string 010100 which, we are told, is the result of
coding a string in S* using c. By trial and error we find two possibilities (at
least):

zzzx — 010100, yyxx — 010100.

Clearly, this situation is to be avoided, if possible.

Definition 1.11 (Uniquely decodable)

The code ¢ : S — T* is uniquely decodable (or UD for short) if the extended
function ¢ : S* — T is an injection. This means that any string in T corre-
sponds to at most one message in S*.

In Chapter 2 we shall explain how the UD property can be guaranteed by
a simple construction.

EXERCISES

1.7. A binary code is defined by the rule
s1+— 10, s+ 010, s3+— 100.

Show by means of an example that this code is not uniquely decod-
able.

1.8. Suppose the code ¢ : S — T* is such that every codeword c¢(s) has
the same length n. Is this code uniquely decodable?

1.9. Express the coding rules used in Exercise 1.5 as functions ¢ : S — T,
for suitable alphabets S and T'.
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1.4 Coding for economy

When the electric telegraph was first introduced, it could transmit only simple
electrical impulses. Thus, in order to send messages in a natural language it
was necessary to code them into an alphabet with very few symbols. A suitable
code was invented by Samuel Morse (1791-1872).

The Morse Code uses an alphabet of three symbols: {e, —, @}. The o (dot,
pronounced di) is a short impulse, the — (dash, pronounced dah) is a long
impulse, and the ® is a pause. Every codeword comprises dots and dashes,
ending with a pause. (Strictly speaking, there are also symbols for the shorter
pause that separates the dots and dashes within a codeword, and for the longer
pause at the end of a message word, but we shall ignore them for the sake of
simplicity.) Here are the codewords for A, B,C,D,E,F, XY, Z.

Ar— e—0 Br+— —eee(® Cr— —e—0(
D — —ee® E — (O Fr— ee—e(
X ——e0—0 Y- —0——0 - ——e00(

In Chapters 2, 3, and 4 we shall look at the basic theory of economical coding
and explain how it can be applied to the compression of data. This subject has
become very important, because huge amounts of data are now being generated
and transmitted electronically.

EXERCISES

1.10. Search the internet to find the standard version of Morse Code,
known as the International Morse Code. If this code is defined for-
mally as a function S — T, what are the alphabets S and T?7

1.11. Decode the following Morse messages:
000 (H)— — —(Deee» ;

——Ce—O—ee—— O —e0eHe—(H —e——0©

1.12. Suppose we try to use a version of Morse code without the symbol ®
that indicates the end of each codeword. What is the code for BAD?
Find another English word with the same code, showing that this is
not a uniquely decodable code.
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1.13. The semaphore code enables messages to be exchanged between peo-
ple who can see each other. Each person has two flags, each of which
can be displayed in one of eight possible positions. The two flags
cannot occupy the same position. How many symbols can be en-
coded in this way, remembering that the coding function must be an
injection?

1.5 Coding for reliability

It is frequently necessary to send messages through unreliable channels, and in
such circumstances we should like to use a method of coding that will reduce the
likelihood of a mistake. An obvious technique is simply to repeat the message.

For example, suppose an investor communicates with a broker by sending
the symbols B and S (B = Buy and S = Sell). With this code, if any symbol
is received incorrectly, the broker will make a mistake, and perform the wrong
action.

However, suppose the investor uses the code Buy — BB and Sell — SS.
Now if any one symbol is received incorrectly the broker will know that some-
thing is wrong, because B:S and SB are not codewords, and will be able to ask
for further instructions.

If the investor uses more repetitions the broker may be able to make a
reasonable decision about the intention, even when it is not possible to ask for
further instructions. Suppose the investor uses the codewords BBB and SSS.
Then, if SSB is received, it is more likely that the message was 5SS, because
that would imply that only one error had occurred, whereas BB B would imply
that two errors had occurred.

In Chapters 6-9 we shall describe more efficient methods of coding messages
so that the probability of a mistake due to errors in transmission is reduced.

EXERCISES

1.14. Suppose an investor uses the 5-fold repetition code, that is, Buy —
BBBBB, Sell — SS5S55S5. If the following messages are received,
which instruction is more likely to have been sent in each case?

BBBSB SBSBS SSSSB

1.15. Suppose we wish to send the numbers 1,2, 3,4, 5, 6, representing the
outcomes of a throw of a die, using binary codewords, all of the
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same length. What is the smallest possible length of the codewords?
Suppose it is required that the receiver will notice whenever one bit
in any codeword is in error. Find a set of codewords with length four
which has this property.

1.6 Coding for security

One of the oldest codes is said to have been used by Julius Caesar over two
thousand years ago, with the intention of communicating secretly with his army
commanders. For a message in the 27-symbol alphabet A, the rule is:

choose a number k between 1 and 25 and replace each letter by the one
that is k places later, in alphabetical order.

The rule is extended in an obvious way to the letters at the end of the alphabet,
as in the example below. The space U is not changed. Thus if £ = 5 the symbols
are replaced according to the rule:

ABCDEFGHIJKLMNOPQRSTUVWIXYZLU
FGHIJKLMNOPQRSTUVWXYZABCDELU

For example, the message
SEELIYOULITOMORROW becomes XJJLUDTZUYTRTWWTB

In mathematical terms the coding rule is a function ¢; : A — A, which
depends on the key k: in the example given above, k = 5. It is a basic assumption
of cryptography that, although the value of k£ may be kept secret, the general
form of the coding rule cannot. In other words, it will become known that the
rule is ¢; (apply a shift of &k to the letters) for some k.

When a coded message such as
XJJLUDTZUYTRTWWTB

is sent, it is presumed that the intended recipient knows the key — the value
k =5 in our example. In that case it is easy to decode the message. On the
other hand, if someone who does not know the key intercepts the message,
decoding is not necessarily so easy. In cryptography, decoding by finding the
value of the key k (or otherwise) is said to be breaking the system, and any
method which may achieve this is an attack.

In fact, Caesar’s system is not very secure, because there is a simple attack
by the method known as exhaustive search. The only possible values of k are
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1,2,3,...,25, and it is easy to try each of them in turn, until a meaningful
message is found.

Example 1.12

Suppose we have intercepted the message

SGZNYLIOYLMUUJULUXLIEUA
We suspect that Caesar’s system is being used. How do we find the key?
Solution  Trying the possible keys, beginning with £ = 1 and k = 2 produces
the following possibilities. Remember that if the key is k, we must go back k
places to find the original message.

k=1: RFYMXLINXLJ

k=2: QEXLWLIMWLJ
Thus the key is not 1 or 2, because if it were, the original message would not
make sense. There is no need to ‘decode’ the whole message in order to establish
this fact. So we must continue to work through the keys k = 3,4, ...,25, until
a meaningful message is found.

EXERCISES

1.16. Find the original message in Example 1.12.

1.17. Could the following message have been sent by Julius Caesar him-
self?

ZLJBULKUBKDIXKA

1.18. Caesar’s system is an example of a substitution code, because each
letter in the message is replaced by a substitute letter, according to a
fixed rule. Suggest other substitution rules, with a view to defending
against the attack by exhaustive search.

Further reading for Chapter 1

The internet is a treasury of information about Morse code, semaphore,
and other historically important coding systems. The pioneering work of
Claude Shannon on the theory of information and communication is also well-
represented.
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Internet sites relating to cryptography are very variable in quality, and it
is better to rely on good books such as those by Kahn [1.2] and Singh [1.3].
Older books on cryptography can also provide an important perspective for
understanding the modern approach. The books by d’Agapeyeff [1.1] and Sacco
[1.4] are recommended.

Books about the so-called ‘Bible Codes’ and similar matters should be re-
garded as entertainment. They are more entertaining (often unintentionally)
when considered from the viewpoint of an informed reader, such as someone
who has studied this book.
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