2

Failure Rate and Mean Remaining Lifetime

Reliability engineering, survival analysis and other disciplines mostly deal with
positive random variables, which are often called /ifetimes. As a random variable, a
lifetime is completely characterized by its distribution function. A realization of a
lifetime is usually manifested by a failure, death or some other ‘end event’. There-
fore, for example, information on the probability of failure of an operating item in
the next (usually sufficiently small) interval of time is really important in reliability
analysis. The failure (hazard) rate function A(#) defines this probability of interest.
If this function is increasing, then our object is usually degrading in some suitable
probabilistic sense, as the conditional probability of failure in the corresponding
infinitesimal interval of time increases with time. For example, it is well known
that the failure (mortality) rate of adult humans increases exponentially with time;
the failure rate of many mechanically wearing devices is also increasing. Thus,
understanding and analysing the shape of the failure rate is an essential part of
reliability and lifetime data analysis. Similar to the distribution function F(¢), the
failure rate also completely characterizes the corresponding random variable. It is
well known that there exists a simple, meaningful exponential representation for
the absolutely continuous distribution function in terms of the corresponding fail-
ure rate (Section 2.1).

The study of the failure rate function, the main topic of this book, is impossible
without considering other reliability measures. The mean remaining (residual)
lifetime function is probably first among these; it also plays a crucial role in the
aforementioned disciplines. These functions complement each other nicely: the
failure rate gives a description of the random variable in an infinitesimal interval of
time, whereas the mean remaining lifetime describes it in the whole remaining
interval of time. Moreover, these two functions are connected via the correspond-
ing differential equation and asymptotically, as time approaches infinity, one tends
to the reciprocal of the other (Section 2.4.3).

In this introductory chapter, we consider only some basic facts, definitions and
properties. We will use well-known results and approaches to the extent sufficient
for the presentation of other chapters. The topic of reversed failure rate, which has
attracted considerable interest recently, and the rather specific Section 2.4.3 on the
limiting behaviour of the mean remaining life function can be skipped at first read-
ing.
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This chapter is, in fact, a mathematically oriented introduction to some of the
main reliability notions and approaches. Recent books by Lai and Xie (2006), Mar-
shall and Olkin (2007), a classic monograph by Barlow and Proschan (1975) and a
useful textbook by Rausand and Hoyland (2004) can be used for further reading
and as sources of numerous reliability-related results and facts.

2.1 Failure Rate Basics

Let T >0 be a continuous lifetime random variable with a cumulative distribution
function (Cdf)

Pr[T <¢], t=0,
F(1)=
0, 1<0.

Unless stated specifically, we will implicitly assume that this distribution is
‘proper’, i.e., F'(1)=o0, and that F(0)=0. The support of F () will usually be
[0,0) , although other intervals of R, = [0,0) will also be used. We can view T
as some time to failure (death) of a technical device (organism), but other interpre-
tations and parameterizations are possible as well. Inter-arrival times in a sequence
of ordered events or the amount of monotonically accumulated damage on the
failure of a mechanical item are also relevant examples of lifetimes.

Denote the expectation of the lifetime variable E[7] by m and assume that it is
finite, i.e., m <. Assume also that F'(¢) is absolutely continuous, and therefore
the probability density function (pdf) f(¢r)=F'(r) exists (almost everywhere).
Recall that a function g(#) is absolutely continuous in some interval [a,b],
0<a<b<owo, if for every positive number &, no matter how small, there is a
positive number ¢ such that whenever a sequence of disjoint subintervals
[x, 3], k=12,...,n satisfies

z‘yk_xk|<5a
1

the following sum is bounded by ¢ :
e -gx)<e.
1

Owing to this definition, the uniform continuity in [a,b], and therefore the ‘ordi-
nary’ continuity of the function g(#) in this interval, immediately follows.
In accordance with the definition of E[T’] and integrating by parts:

m=lim, jxf(x)dx

0

= lim,_){tF(t) - ].F(x)dx}
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= lim,_m{—ﬂ?(t) + ]‘F(x)dx} ,

where
F(t)=1-F(t)=Pr[T > 1]

denotes the corresponding survival (reliability) function. As 0 <m <o, it is easy
to conclude that

m= O]F(x)dx , 2.1

which is a well-known fact for lifetime distributions. Thus, the area under the sur-
vival curve defines the mean of T .

Let an item with a lifetime 7 and a Cdf F(¢) start operating at # =0 and let it
be operable (alive) at time ¢ =x. The remaining (residual) lifetime is of significant
interest in reliability and survival analysis. Denote the corresponding random vari-
able by T, . The Cdf F (¢) is obtained using the law of conditional probability (on
the condition that an item is operable at 1 =x ), i.e.,

Prix<T < x+1]
Pr[T > x]
_F(x+t)-F(x)
- F

F.@)=PiT <t]=

(2.2)

The corresponding conditional survival probability is given by

F)=pir, >1=105D 2.3)

F(x)

Although the main focus of this book is on failure rate modelling, analysis of
the remaining lifetime, and especially of the mean remaining lifetime (MRL), is
often almost as important. We will use Equations (2.2) and (2.3) for definitions of
the next section.

Now we are able to define the notion of failure rate, which is crucial for reliabil-
ity analysis and other disciplines. Consider an interval of time (¢,7+ Af]. We are
interested in the probability of failure in this interval given that it did not occur
before in [0,¢]. This probability can be interpreted as the risk of failure (or of some
other harmful event) in (¢, + Ar] given the stated condition. Using a relationship
similar to (2.2), i.e.,

<
Pr[t<TSt+At|T>t]=M
Pr[T > 1]

_F+AN-F(2)
- F(n
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Consider the following quotient:

2= F(t+Ar)—F(7)
M Fae

and define the failure rate A(¢) asits limit when A7 — 0. As the pdf f(¢) exists,

Prt < T <t+At|T > t]
At
Fi+A)-F()  f(@)
Fiar  F@)

A1) = limy,

=lim,, 2.4

Therefore, when A(¢) is sufficiently small,
Pr[t < T <t+At|T > t]= A(t)At,

which gives a very popular and important interpretation of A(¢)As as an approxi-
mate conditional probability of a failure in (¢, + Af]. Note that f(£)At defines the
corresponding approximate unconditional probability of a failure in (¢,7+ At]. It is
very likely that, owing to this interpretation, failure rate plays a pivotal role in
reliability analysis, survival analysis and other fields. In actuarial and demographic
disciplines, it is usually called the force of mortality or the mortality rate. To be
precise, the force of mortality in demographic literature is usually the infinitesimal
version (Ar — 0), whereas the term mortality rate more often describes the dis-
crete version when Ar is set equal to a calendar year. For convenience, we will
always use the term mortality rate as an equivalent of failure rate when discussing
demographic applications. Chapter 10 will be devoted entirely to some aspects of
mortality rate modelling. Note that, when considering real populations, the mortal-
ity rate becomes a function of two variables: age ¢ and calendar time x . This cre-
ates many interesting problems in the corresponding stochastic analysis. We will
briefly discuss some of them in this chapter. For a general introduction to mathe-
matical demography, where the mortality rate also plays a pivotal role, the inter-
ested reader is referred to Keyfitz and Casewell (2005).

Definition 2.1. The failure rate A(#), which corresponds to the absolutely continu-
ous Cdf F(¢), is defined by Equation (2.4) and is approximately equal to the prob-
ability of a failure in a small unit interval of time (#,7+ A¢] given that no failure
has occurred in [0,7].

The following theorem shows that the failure rate uniquely defines the abso-
lutely continuous lifetime Cdf:

Theorem 2.1. Exponential Representation of F(#) by Means of the Failure Rate
Let T be a lifetime random variable with the Cdf F(¢) and the pdf f(¢).
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Then

F(t) = l—exp(— ]ﬁ(u)du} . 2.5)

Proof. As f(t)=F'(t), we can view Equation (2.4) as an elementary first-order
differential equation with the initial condition F'(0) =0 . Integration of this equa-
tion results in the main exponential formula of reliability and survival analysis
(2.5). [

The importance of this formula is hard to overestimate as it presents a simple
characterization of F(¢) via the failure rate. Therefore, along with the Cdf F(¢)
and the pdf f(¢), the failure rate A(¢#) uniquely describes a lifetime 7. At many
instances, however, this characterization is more convenient, which is often due to
the meaningful probabilistic interpretation of A(¢#)A¢ and the simplicity of Equa-
tion (2.5).

Equation (2.5) has been derived for an absolutely continuous Cdf. Does the
probability of failure in a small unit interval of time (which always exists) define
the corresponding distribution function of a random variable under weaker assump-
tions? This question will be addressed in the next chapter.

Remark 2.1 Equation (2.4) can be used for defining the simplest empirical estima-
tor for the failure rate. Assume that there are N >>1 independent, statistically
identical items (i.e., having the same Cdf) that started operating in a common envi-
ronment at £ =0. A population of this kind in the life sciences is often called a
cohort. Failure times of items are recorded, and therefore the number of operating
items N(¢), N(0)= N at each instant of time >0 is known. Thus, for N — «,
Equation (2.4) is equivalent to

N(t + Af) - N(f)

A0 =limyy o =

2.6)

which can be used as an estimate for the failure rate for finite N and A¢, whereas
(N({t+Ar)— N(¢))/ N(¢) is an estimate for the probability of failure in (z,7+ At].

2.2 Mean Remaining Lifetime Basics

How much longer will an item of age x live? This question is vital for reliability
analysis, survival analysis, actuarial applications and other disciplines. For exam-
ple, how much time does an average person aged 65 (which is the typical retire-
ment age in most countries) have left to live? The distribution of this remaining
lifetime 7., T, =T is given by Equation (2.2). Note that this equation defines a
conditional probability, i.e., the probability on condition that the item is operating
attime 7 =x.

Assume, as previously, that E[T]=m <. Denote E[T,]=m(t), m(0)=m,
where, for the sake of notation, the variable x in Equation (2.2) has been inter-
changed with the variable 7. The function m(¢) is called the mean remaining (re-
sidual) life (MRL) function. It defines the mean lifetime left for an item of age 7.
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Along with the failure rate, it plays a crucial role in reliability analysis, survival
analysis, demography and other disciplines. In demography, for example, this im-
portant population characteristic is called the “life expectancy at time ¢ and in
risk analysis the term “mean excess time” is often used.

Whereas the failure rate function at ¢ provides information on a random vari-
able 7 about a small interval after 7, the MRL function at ¢ considers informa-
tion about the whole remaining interval (¢,90) (Guess and Proschan, 1988). There-
fore, these two characteristics complement each other, and reliability analysis of,
e.g., engineering systems is often carried out with respect to both of them. It will
be shown in this section that, similar to the failure rate, the MRL function also
uniquely defines the Cdf of T' and that the corresponding exponential representa-
tion is also valid.

In accordance with Equations (2.1) and (2.3),

m(t)=E[T]=E[T—t|T > 1]

= F’,(u)du

wjf(u)du

Assuming that the failure rate exists and using Equation (2.5), Equation (2.7) can
be transformed into

m(t) = a]‘exp{— tTﬂ(x)dx}du .

0

It easily follows from these equations that the MRL function, which corresponds to
the constant failure rate A, is also constant and is equal to 1/ 4.

Definition 2.2. The MRL function m(¢) = E[T,], m(0)=m <o, is defined by
Equation (2.7), obtained by integrating the survival function of the remaining life-

time 7,.

Alternatively, integrating by parts, similar to (2.1),

© ©

juf(u)du - jﬁ(u)du +F (1) .

t

Therefore, the last integral in (2.7) can be obtained from this equation, which re-
sults in the equivalent expression

©

juf(u)du

m(t) = 'FT—I. 2.8)
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Equation (2.8) can be sometimes helpful in reliability analysis.
Assume that m(¢) is differentiable. Differentiation in (2.7) yields

A(t)wjﬁ(u)du —F(1)
m'(t) = —

F(1)
= A(O)m(t)-1. (2.9)

From Equation (2.9) the following relationship between the failure rate and the
MRL function is obtained:

_m@n+1

A(t) e

(2.10)

This simple but meaningful equation plays an important role in analysing the
shapes of the MRL and failure rate functions.
Consider now the following lifetime distribution function:

]f(u)du
E»(f)=OT, (2.11)

where, as usual, m(0) = m . The right-hand side of Equation (2.11) defines an equi-
librium distribution, which plays an important role in renewal theory (Ross, 1996).
This distribution will help us to prove the following simple but meaningful theo-
rem. An elegant idea of the proof belongs to Meilijson (1972).

Theorem 2.2. Exponential Representation of F(¢) by Means of the MRL Function
Let T be a lifetime random variable with the Cdf F(¢), the pdf f(#) and with
finite first moment: m = m(0) < .

Then

—= m 1
F(f) = e exp{— j e du}. (2.12)

Proof. It follows from Equation (2.11) that
t 0
IF(u)du jf(u)du
Fy=1-i =
JF (u)du
0
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and that f(¢) = F(t)/m . Therefore, the failure rate, which corresponds to the
equilibrium distribution F,(¢), is

lAt):&:L. (2.13)
F (1) m(1)
Applying Theorem 2.1 to Ii(t) results in

F(t)= exp[— ]#u)du] . (2.14)

Therefore, the corresponding pdf is

e oo ot

Finally, substitution of this density into the equation F (¢) = mf,(t) results in Equa-
tion (2.12). |

On differentiating Equation (2.12), we obtain the pdf f(¢#) that is also ex-
pressed in terms of the MRL function m(z) (Lai and Xie, 2006), i.e.,

m(m'(¢) +1) ol
f(l)—Te p[ jmduJ

Theorem 2.2 has meaningful implications. Firstly, it defines another useful ex-
ponential representation of the absolutely continuous distribution F(¢#). Whereas
(2.5) is obtained in terms of the failure rate A(¢), Equation (2.12) is expressed in
terms of the MRL function m(¢). Secondly, it shows that, under certain assump-
tions, A(¢) and 1/m(¢) could be close, at least in some sense to be properly de-
fined. This topic will be discussed in the next section, where the shapes of the
failure rate and the MRL functions will be studied.

Equation (2.12) can be used for ‘constructing’ distribution functions when
m(t) is specified. Zahedi (1991) shows that in this case, differentiable functions
m(t) should satisfy the following conditions:

o m(t)>0,¢te[0,0);
o m(0)<ow;
o m()>-1,te(0,0);

©

du =0

) j m(u)
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The first two conditions are obvious. The third condition is obtained from Equation
(2.10) and states that A(f)m(¢) 1is strictly positive for ¢>0. Note that,
m(0)A(0) =0 when A(0)=0. The last condition states that the cumulative failure
rate

! Tl
Jﬂe(u)duza[m du

(u)

of equilibrium distribution (2.11) should tend to infinity as ¢ — oo . This condition
ensures a proper Cdf, as lim, ,  F,(#) =0 in this case.

In accordance with Equation (2.3) and exponential representation (2.5), the sur-
vival function for 7, can be written as

F(x) Pr(7, > x] —exp{ tT}L(u)du} (2.15)

This equation means that the failure rate, which corresponds to the remaining life-
time 7,, is a shift of the baseline failure rate, namely

A,(x) = A(t+x). (2.16)

Assume that A(¢) is an increasing (decreasing) function. Note that, in this
book, as usual, by increasing (decreasing) we actually mean non-decreasing (non-
increasing). The first simple observation based on Equation (2.15) tells us that in
this case, for each fixed x>0, the function F(x) is decreasing (increasing), and
therefore, in accordance with (2.7), the MRL function m(¢) is decreasing (increas-
ing). The inverse is generally not true, i.e., a decreasing m(¢) does not necessarily
lead to an increasing A(¢) . This topic will be addressed in Section 2.4.

The operation of conditioning in the definition of the MRL function is per-
formed with respect to the event that states that an item is operating at time 7. In
this approach, an item is considered as a ‘black box’ without any additional infor-
mation on its state. Alternatively, we can define the information-based MRL func-
tion, which makes sense in many situations when this information is available. The
following example (Finkelstein, 2001) illustrates this approach.

Example 2.1 Information-based MRL

Consider a parallel system of two components with independent, identically dis-
tributed (i.i.d.) exponential lifetimes defined by the failure rate A . The survival
function of this structure is

F(t) = 2exp{—At} —exp{-2A1},
and therefore, the corresponding failure rate is defined by

2Aexp{—At} —2Aexp{-2¢t}
2exp{-At} —exp{-24t}

At) =
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It can easily be seen that A(¢) monotonically increases from A(0)=0 to A as
t = o . The corresponding MRL function, in accordance with (2.7), is

m(t) = 1 (4—exp{-4t}) .

A (4-2exp{-At})
This function decreases from 3/24 to 1/A as ¢t — oo . Therefore, the following
bounds are obvious for ¢ € (0,0):

%<m(t)<%=m(0). (2.17)

These inequalities can be interpreted in the following way. The left-hand side de-
fines the information-based MRL when observation of the system confirms that
only one component is operating at ¢ € (0,0), whereas the right-hand side is the
information-based MRL when observation confirms that both components are
operating. Thus the values of the information-based MRL are the bounds for m(¢)
in this simple case.

For the case of independent components with different failure rates
A, 4 (4, < 4,), the result of the comparison appears to be dependent on the time
of observation. The corresponding survival function is defined as

F(1) = exp{=At}+exp {2t} —exp{~(4 + L)1},
and the system’s failure rate is

20y = S EAD + Ty XDt~ Uy + Ay expi=th + Ao)i).
exp{-At} +exp{-A,t} —exp{—(4 + 4,)t}

It can be shown that the function A(#) (4(0) =0) is monotonically increasing
in [0,7,,. ] and monotonically decreasing in (¢, ,%) , asymptotically approaching
A, from above as ¢ — o, as stated in Barlow and Proschan (1975). It crosses the
line y=A4, at t=¢_<t,, . The value of 7, is uniquely obtained from the equa-
tion

X

Aexp{-Aty+ A exp{-A1} = (4 -4,)"; L #4,.

As in the previous case, the MRL function can be explicitly obtained, but we are
more interested in discussing the information-based bounds. When both compo-
nents are operating at ¢# > 0, then, similar to the right-hand inequality in (2.17), the
MRL function m(¢) is bounded from above by m(0) :

m(t) < A 1+ 4 1.
L+ Xy A+d A4
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Now, let only the second component be operating at the time of observation. As
this component is the worst one (A4, < 4,), the system’s MRL should be better:
m(t) >1/A,. On the other hand, if only the first component is operable at time ¢,
then

m(t)S%, telt,,o). (2.18)

This inequality immediately follows by combining the shape of the failure rate
(i.e., A(t) is larger than A, for 7>1¢.), Equation (2.15) and the definition of the
MRL function in (2.7). It is also clear that m(¢) >1/ 4, for sufficiently small val-
ues of 7, as two components are ‘better’ than one component in this case. This fact
suggests that there should be some equilibrium point 7 in (0,z,), where

m(1)=1/4,.

2.3 Lifetime Distributions and Their Failure Rates

There are many lifetime distributions used in reliability theory and in practice. In
this section, we briefly discuss the important properties of several important life-
time distributions that we will use in this book. Complete information on the sub-
ject can be found in Johnson ef al. (1994, 1995). A recent book by Marshall and
Olkin (2007) also presents a thorough analysis of statistical distributions with an
emphasis on reliability theory.

2.3.1 Exponential Distribution

The exponential distribution (or negative exponential), owing to its simplicity and
relevance in many applications, is still probably the most popular distribution in
practical reliability analysis. Many engineering devices (especially electronic) have
a constant failure rate 4 >0 during the usage period. The Cdf and the pdf of the
exponential distribution are given by

F(t)=P1[T <t]=1-exp{-A1t} (2.19)
and

()= Aexpi-At},
respectively.
The expected value and variance are respectively given by

1 1
E[T]=—, var(T)=—.
[T]=— var(l)=—

The MRL function is also a constant, i.e.,

m(t)=m=E[T].
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The exponential distribution is the only distribution that possesses the memoryless
property:
F(t|x)=F(@),Vx,t>0,
and therefore, it is the only non-trivial solution of the functional equation
F(t+x)=F()F(x).

As the failure rate A is constant, the items described by the exponential distri-
bution do not age in the sense to be defined in Section 2.4.1. The exponential dis-
tribution has many characterizations (Marshall and Olkin, 2007). The simplest is
via the constant failure rate. Another natural characterization is as follows: a distri-

bution is exponential if and only if its mean remaining lifetime is a constant. The
memoryless property can also be used as a characterization for this distribution.

2.3.2 Gamma Distribution
Consider the sum of » i.i.d. exponential random variables:
T=X+X,+..+X,.

The corresponding (n—1) -fold convolution of Cdf (2.19) with itself results in the
following Cdf for this sum:

F()=1- Z (A ) exp{-Ar) , (2.20)

whereas the pdf'is

n n—1

f()—(“ e

For n =1, this distribution reduces to the exponential one. Therefore, (2.20) can be
considered a generalization of the exponential distribution. The mean and variance
are respectively

n n
E[T]=~, T)=—,
(7] P var(T) pe

and the failure rate is given by the following equation:

ﬂ” n-1

(oS

i k!

At) = .21)

It can easily be seen from this formula that A(7) (A(0)=0) is an increasing func-
tion asymptotically approaching A from below, i.e.,
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lim, ,, A(t)=A.

This distribution, which is a special case of the gamma distribution for integer 7,
is often called the Erlangian distribution. It plays an important role in reliability
engineering. For example, the distribution function of the time to failure of a ‘cold’
standby system, where the lifetimes of components are exponentially distributed,
follows this rule. As A(#) increases, this system ages.

0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

t

Figure 2.1. The failure rate of the Erlangian distribution (4 =1)

We will use this graph for deterioration curve modelling in Chapter 5.
The probability density function for a non-integer », which for the sake of no-
tation is denoted by « , is

a o1

At
f()= @)

exp {—ﬂt}, (222)

where the gamma function is defined in the usual way as
(o) = Ju“" exp{—uldu
0

and the scale parameter A and the shape parameter « are positive. For non-
integer « , the corresponding Cdf does not have a ‘closed form’ as in the integer
case (2.20). Equation (2.22) defines a standard two-parameter gamma distribution
that is very popular in various applications. The gamma distribution naturally ap-
pears in statistical analyses as the distribution of the sum of squares of independent
normal variables.
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It can be shown (Lai and Xie, 2006) that the failure rate of the gamma distribu-
tion can be represented in the following way:

© a-1
J(l +1j exp {—Auldu .
t

A
It follows from this equation that A(¢) is an increasing function for ¢ >1 and is
decreasing for 0 < <1. When a =1, we arrive at the exponential distribution,
which has a failure rate ‘that is increasing and decreasing at the same time’.

As we stated in the previous section, it follows from Equations (2.15) and (2.7)
that for increasing (decreasing) A(¢), the MRL function m(¢) is decreasing (in-
creasing). This is a general fact, which means in the case of the gamma distribution
that m(¢) is a decreasing function for & >1 and is increasing for 0 < <1. Govil
and Agraval (1983) have shown that

a-1l,a _
:/1 t* exp{ /”Lt}+g_t

"= 2

5

where F(¢) is the survival function for the gamma distribution. It can be verified
by direct differentiation that the monotonicity properties of m(z) defined by this
equation comply with those obtained from general considerations. As the corre-
sponding integrals can usually be calculated explicitly, the gamma distribution is
often used in stochastic and statistical modelling. For example, it is a prime candi-
date for a mixing distribution in mixture models (Chapters 6 and 7).

2.3.3 Exponential Distribution with a Resilience Parameter

The two-parameter distribution obtained from the exponential distribution by in-
troducing a resilience parameter » has not received much attention in the literature
(Marshall and Olkin, 2007). However, when r is an integer, similar to the Erlan-
gian distribution, it plays an important role in reliability, as it defines the time-to-

failure distribution of a parallel system of » exponentially distributed components.
Therefore, the Cdf and the pdf are defined respectively as

F(6) = (1= expi=At}), 4,7 >0,
f(t) = Arexp{—At}(1 —exp{-At})"", A4,r >0.

The failure rate is

Arexp{-At}(1—-exp{-At})""

A = expoAn)

(2.23)
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It is easy to show by direct computation that A(¢) is increasing for » >1. There-
fore, the described parallel system is ageing. Using L’Hospital’s rule, it can also
be shown that for » >0,

lim, , A(#)=41,
which, similar to the case of the Erlangian distribution, also follows from the defi-

nition of the failure rate as a conditional characteristic. Also: A4(0)=0 for r>1
and A(f) > as t >0 for O<r<I1.

M)

t

Figure 2.2. The failure rate of the exponential distribution (A =1) with a resilience
parameter

2.3.4 Weibull Distribution

The Weibull distribution is one of the most popular distributions for modelling
stochastic deterioration. It has been widely used in reliability analysis of ball bear-
ings, engines, semiconductors, various mechanical devices and in modelling hu-
man mortality as well. It also appears as a limiting distribution for the smallest of a
large number of the i.i.d. positive random variables. If, for example, a series sys-
tem of » i.i.d. components is considered, then the time to failure of this system is
asymptotically distributed (# — o) as the Weibull distribution. The monograph by
Murthy et al. (2003) covers practically all topics on the theory and practical usage
of this distribution.

The standard two-parameter Weibull distribution is defined by the following
survival function:

F(t) =exp{—-(A)*}, A,a>0. (2.24)
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The failure rate is

A0) = ad (A (2.25)

For o >1, it is an increasing function and therefore is suitable for deterioration
modelling. When 0 < a <1, this function is decreasing and can be used, e.g., for
infant-mortality modelling. The corresponding expectation is given by

m(0) :%r[énj.

In general, m(¢) has a rather complex form, but for some specific cases (Lai and
Xie, 2006) it can be reasonably simple. On the other hand, as A(¢) is monotone,
m(t) is also monotone: it is increasing for 0 < & <1 and is decreasing for a >1.

2.3.5 Pareto Distribution

The Pareto distribution can be viewed as another interesting generalization of the
exponential distribution. We will derive it using mixtures of distributions, which is
a topic of Chapters 6 and 7 of this book. Therefore, the following can be consid-
ered as a meaningful example illustrating the operation of mixing.

Assume that the failure rate in (2.19) is random, i.e.,

1=Z,

where Z is a gamma-distributed random variable with parameters « (shape) and
P (scale). When considering mixing distributions, we will usually use the notation
p for the scale parameter and not A as in (2.23). Thus, if Z =z, the pdf of the
random variable 7' is given by

f@t|Z=2)= f(t,z) = zexp{—zt} .

Denote the pdf of Z by z(z). The marginal (or observed) pdf of T is

aff”

f()= Jf(f, 2)z(z)dz :W

and the corresponding survival function is given by
F(t):(uéj >0, (2.26)

Equation (2.26) defines the Pareto distribution of the second kind (the Lomax dis-
tribution) for 7 > 0. Note that the survival function of the Pareto distribution of the
first kind is usually given by F(¢#)=¢", where ¢ >0 is the corresponding shape
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parameter. Therefore, this distribution has a support in [1,0), whereas (2.26) is
defined in [0,00) , which is usually more convenient in applications.
The failure rate is given by a very simple relationship:

_JO__ @
l(t)—F(t) G’ (2.27)

which is a decreasing function. Therefore, the MRL function m(#) is increasing.
Oakes and Dasu (1990) show that it can be a linear function for some specific
values of parameters & and £ . The expectation is

B

m0)=—"—.

a>1.

Unlike exponentially decreasing functions, survival function (2.26) is a ‘slowly
decreasing’ function. This property makes the Pareto distribution useful for model-
ling of extreme events.

2.3.6 Lognormal Distribution

The most popular statistical distribution is the normal distribution. However, it is
not a lifetime distribution, as its support is (—o,+o0). Therefore, usually two
‘modifications’ of the normal distribution are considered in practice for positive
random variables: the lognormal distribution and the truncated normal distribution.

A random variable 7 >0 follows the lognormal distribution if ¥ =In7 is nor-
mally distributed. Therefore, we assume that Y is N(a,0°), where @ and o’
are the mean and the variance of Y, respectively. The Cdf in this case is given by

F() =q>{1“’_“},tzo, (2.28)
(e

where, as usual, @(-) denotes the standard normal distribution function. The pdf is

given by
o] 0-27)
£ = 2
(27 o)

and it can be shown (Lai and Xie, 2006) that the failure rate is

(Inat)’
XD —
1 p{ 20°

t\N2ro l_q){lnat}

(o2

A(t) = , a=exp{-a}. (2.29)
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The expected value of T is
O_2
m(0) = exp{a +7} .

The MRL function for this distribution will be discussed in the next section.
The shape of the failure rate for & =0 is illustrated by Figure 2.3. Sweet (1990)
showed that the failure rate has the upside-down bathtub shape (see the next sec-
tion) and that lim, , A(#) =0, lim, ,,A(r)=0.

It is worth noting that, along with the Weibull distribution, the lognormal dis-
tribution is often used for fatigue analysis, although it models different dynamics
of deterioration than the dynamics described by the Weibull law. It is also consid-
ered as a good candidate for modelling the repair time in engineering systems.

2 T T T T
15} c=05 ]
g 1t :
0 =0.75
0.5 i
o =1
0 1 1 1 1
0 1 2 3 4 5

Figure 2.3. The failure rate of the lognormal distribution

2.3.7 Truncated Normal Distribution

The density of the truncated normal distribution is given by

2
f(t):cexp{—(t2 ’L;) },0>O,—oo<,u<oo, 120,
o

where
1

1
V2ro? P(ulo) .

The corresponding failure rate then follows as

CcC=
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A1) = 21 2(1—@(%)) exp{— (’Z_G’j)z}.
\V LTTO

It can be shown that this failure rate is increasing and asymptotically approaches
the straight line, as defined by (Navarro and Hernandez, 2004):

lim, ,, A()=0"".
If u+30>>0, then the truncated normal distribution practically coincides for
¢t > 0 with the corresponding standard normal distribution, which is known to have
an increasing failure rate.
2.3.8 Inverse Gaussian Distribution
This distribution is popular in reliability, as it defines the first passage time prob-
ability for the Wiener process with drift. Although realizations of this process are

not monotone, it is widely used for modelling deterioration. The distribution func-
tion of the inverse Gaussian distribution is defined by the following equation:

ool it bl i ew

where A and g are parameters. The pdf of the inverse Gaussian distribution is

. A A )
r= 5= exp{—%a— ) }

The mean and the variance are respectively

3

E[T]=u, var(T) = ”7

We will show in Section 2.4 that its failure rate has an upside-down bathtub
shape. The MRL function will also be analysed.

2.3.9 Gompertz and Makeham—Gompertz Distributions
These distributions have their origin in demography and describe the mortality of
human populations.

Gompertz (1825) was the first to suggest the following exponential form for the
mortality (failure) rate of humans (see Chapter 10 for more details):

A(t) = aexpi{bt}, a,b>0. (2.31)
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The data on human mortality in various populations are in good agreement with
this curve. In Section 10.1, we will present a simple original ‘justification’ of this
model, but in fact, there is no suitable biological explanation of exponentiality in
(2.31) so far. Therefore, this distribution should only be considered as an empirical
law. Note that this is the first distribution in this section that is defined directly via
the failure (mortality) rate. The corresponding survival function is

F(t) = exp{— ]ﬂ(u)du} = exp{— %(exp (bt} — 1)} . (2.32)

The mortality rate (2.31) is increasing, therefore the corresponding MRL function
is decreasing.

The Makeham—Gompertz distribution is a slight generalization of (2.32). It
takes into account the initial period, where the mortality is approximately constant
and is mostly due to external causes (accidents, suicides, efc.). This distribution
was also defined in Makeham (1867) directly via the mortality rate, although the
equation-based explanation was also provided by this author (Chapter 10):

A(t) = A+aexp{bt}, A,a,b>0.

The corresponding survival function in this case is
F(t)= exp{— At + % (exp (bt} — 1} . (2.33)

Both of these distributions are still widely used in demography. Numerous gen-
eralizations and alterations have been suggested in the literature and applied in
practice.

2.4 Shape of the Failure Rate and the MRL Function

2.4.1 Some Definitions and Notation

Understanding the shape of the failure rate is important in reliability, risk analysis
and other disciplines. The conditional probability of failure in (¢, + df] describes
the ageing properties of the corresponding distributions, which are crucial for mod-
elling in many applications. A qualitative description of the monotonicity proper-
ties of the failure rate can be very helpful in the stochastic analysis of failures,
deaths, disasters, efc. As the failure rate of the exponential distribution is constant
(as is the corresponding MRL function), this distribution describes stochastically
non-ageing lifetimes.

Survival and failure data are frequently modelled by monotone failure rates.
This may be inappropriate when, e.g., the course of a disease is such that the mor-
tality reaches a peak after some finite interval of time and then declines (Gupta,
2001). In such a case, the failure rate has an wupside-down bathtub shape and the
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data should be analysed with the help of, e.g., lognormal or inverse Gaussian dis-
tributions. On the other hand, many engineering devices possess a period of ‘infant
mortality” when the failure rate declines in an initial time interval, reaches a mini-
mum and then increases. In such a case, the failure rate has a bathtub shape and
can be modelled, e.g., by mixtures of distributions. Navarro and Hernandez (2004)
show how to obtain the bathtub-shaped failure rates from the mixtures of truncated
normal distributions. Many other relevant examples can be found in Section 2.8 of
Lai and Xie (2006) and in references therein. We will consider in this section only
some basic facts, which will be helpful for obtaining and discussing the results in
the rest of this book.

Most often, the Cdf and the failure rate of a lifetime are modelled or estimated
only on the basis of the corresponding failures (deaths). However, one can also use
information (if available) on the process of a ‘failure development’. If, e.g., a fail-
ure occurs when the accumulated random damage or wear exceeds a predetermined
level, then the failure rate can be derived analytically for some simple stochastic
processes of wear. The shape of the failure rate in this case can also be analysed
using properties of underlying stochastic processes (Aalen and Gjeissing, 2001).
These underlying processes are largely unknown. However, this does not imply
that they should be ignored. Some simple models of this kind will be discussed in
Chapter 10.

As we saw in the previous section, many popular parametric lifetime models are
described by monotone failure rates. If A(¢) increases (decreases) in time, then we
say that the corresponding distribution belongs to the increasing (decreasing) fail-
ure rate (IFR (DFR)) class. These are the simplest nonparametric classes of ageing
distributions. A natural generalization on the non-monotone failure rates is when

]‘ﬂ(u)du

(2.34)
t

is increasing (decreasing) in ¢ . These classes are called [FRA (DFRA), where “A”
stands for “average”.

We say that the Cdf F'(x) belongs to the decreasing (increasing) mean remain-
ing lifetime (DMRL (IMRL)) class if the corresponding MRL function m(z) is
decreasing (increasing). These classes are in some way dual to IFR (DFR) classes.
See Section 3.3.2 for formal definitions of [FR (DFR) and DMRL (IMRL) classes.

The Cdf F(x) is said to be new better (worse) than used (NBU (NWU)) if

F(x|f) < (X)F(x), Vx,t>0. (2.35)

This definition means that an item of age ¢ has a stochastically smaller (larger)
remaining lifetime (Definition 3.4) than a new item atage 7 =0.

The described classes will usually be sufficient for presentation in this book.
Each of them has a clear, simple ‘physical’ meaning describing some kind of dete-
rioration. A variety of other ageing classes of distributions can be found in the
literature (Barlow and Proschan, 1975; Rausand and Hoyland, 2004; Lai and Xie,
2006; Marshall and Olkin, 2007, to name a few). Many of them do not have this
clear interpretation and are of mathematical interest only.
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Note that [FR (DFR) and DMRL (IMRL) classes are defined directly by the
shape of the failure rate and the MRL function, respectively. If A(¢) is monotoni-
cally (strictly) increasing (decreasing) in time, we say that it is I (D) shaped and for
brevity write A(¢) € I (D). A similar notation will be used for the DMRL (IMRL)
classes, i.e., m(t) € D (I).

Figure 1.1 of Chapter 1 gives an illustration of the bathtub shape of a failure
rate with a useful period, where it is approximately constant. This can be the case
in practical life-cycle applications, but formally we will define the bathtub shape
without a useful period plateau of this kind.

Definition 2.3. The differentiable failure rate A(¢) has a bathtub shape if
A'(t) <0 for 1 €[0,2)),A'(¢,) =0, A'(#)>0 for t € (¢,,0),
and it has an upside-down bathtub shape if

A'(t) >0 for t €[0,2,),A'(¢,) =0, A'(t) <0 for t € (¢,,) .

D)

t
Figure 2.4. The BT and the UBT shapes of the failure rate

We will use the notation A(¢) € BT and A(¢) € UBT, respectively. There can be
modifications and generalizations of these shapes (e.g., when there is more than
one minimum or maximum for the function A(¢) ), but for simplicity, only BT and
UBT shapes will be considered.

2.4.2 Glaser’s Approach

As we have already stated, the lognormal and the inverse Gaussian distributions
have a UBT failure rate. We will see in Chapter 6 that many mixing models with
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an increasing baseline failure rate result in a UBT shape of the mixture (observed)
failure rate. For example, mixing in a family of increasing (as a power function)
failure rates (the Weibull law) ‘produces’ the UBT shape of the observed failure
rate. From this point of view, the BT shape is ‘less natural’ and often results as a
combination of different standard distributions defined for different time intervals.
For example, infant mortality in [0,7, ] is usually described by some DFR distribu-
tion in this interval, whereas the wear-out in (7,,%0) is modelled by an IFR distri-
bution. However, mixing of specific distributions can also result in the BT shape of
the failure rate as, e.g., in Navarro and Fernandez (2004). Note that the infant mor-
tality curve can also be explained via the concept of mixing, as, e.g., mixtures of
exponential distributions are always DFR (Chapter 6).
The function

AU 236
n() 0 (2.36)

appears to be extremely helpful in the study of the shape of the failure rate
A= f(@)/ F(¢). This function contains useful information about A(f) and is
simpler because it does not involve F(¢). In particular, the shape of 7(r) often
defines the shape of A(#) (Gupta, 2001).

Assume that the pdf f(¢) is a twice differentiable, positive function in (0,0).
Define a function g(#) as the reciprocal of the failure rate, i.e.,

1 F@)
=——=—. 237
=70~ 70 (237)
Then
g =gn®-1, (2.38)

which means that the turning point of A(#) is the solution of the equation
A(t) =n(t) (compare with Equation (2.9)). It can also be verified that (Gupta,
2001)

im,_, A(f) =lim,_,,, 7(7) .

Using Equations (2.37) and (2.38):

gm-ﬂﬂ”}myl

/()
NASY) NASY)
dh
ﬂfo}mo WMy+ﬂf0}mwy

Taking into account that
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VASY) _ _
j{f(t)};(y) by = f()jﬂy) b =
we arrive eventually at
: S
= 2.39
2= f{f()}[n() n()ldy (2:39)

Using (2.39) as a supplementary result, we are now able to prove Glaser’s theorem,
which is crucial for the analysis of the shape of the failure rate function (Glaser,
1980).

Theorem 2.3.

o If n(¢) €1, then also A(¢) €1;

o If 7n(¢) e D, then also A(¢) € D;

e If 7(¢)eBT and there exists y, such that g'(y,)=0, then A(¢) € BT,
otherwise A(?) e I;

e If n(r) e UBT and there exists y, such that g'(y,) =0, then A(¢) € UBT,
otherwise A(f) € D.

Proof. 1If n(t) €l, then g'(¢), as follows from Equation (2.39), is negative for all
t > 0. Therefore, g(¢#) € D and A(¢) € I. The proof of the second statement is simi-
lar.

Let us prove the first part of the third statement. This proof follows the original
proof in Glaser (1980). Another proof, which is obtained using more general con-
siderations, can be found in Marshall and Olkin (2007). It follows from the defini-
tion of the BT shape that 7(¢) € BT if

n'(t) <0 for 1 €[0,1,),7'(¢,) =0, n'(¢) >0 for ¢ e(¢,,). (2.40)

Assume that g"(y,) <0. Since g'(y,) =0 in accordance with the conditions of the
theorem, it follows from the differentiation of (2.38) that

g" () =gn'(y,) -

Therefore,
" () <0 R () <0 y, <t.

Thus, if our assumption is true, then y, <t,. Suppose the opposite: y, > ¢, . From
Equations (2.39) and (2.40) it follows that g'(r)<0 for ¢>¢,. Therefore,
g'(y,) <0, which contradicts the condition of the theorem stating that g'(y,)=0.
Hence y, <1, and g"(y,) <0.On the other hand, it is clear that y = y, is the only
root of equation g'(y) =0 and that g(¢) attains its maximum at this point.

The proof of the second part is simpler: indeed, either g'(£) >0 forall >0 or
g'(t) < 0. It follows from Equation (2.39) that g'(r) <0 for all ¢>¢,. Therefore,
g'(®)<0 forall £>0 and A(¢) L.
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The proof of the last statement is similar. ]

This important theorem states that the monotonicity properties of A(¢) are de-
fined by those of 7(¢), and because 7(¢) is often much simpler than A(¢), its
analysis is more convenient. The simplest meaningful example is the standard
normal distribution. Although it is not a lifetime distribution, the application of
Glaser’s theorem is very impressive in this case. Indeed, the failure rate of the
normal distribution does not have an explicit expression, whereas the function
n(t) , as can be easily verified, is very simple:

nt)=(-ulo’.

Therefore, as 7(¢) €1, the failure rate is also increasing, which is a well-known fact
for the normal distribution.

Note that Gupta and Warren (2001) generalized Glaser’s theorem to the case
where A(#) has two or more turning points.

Example 2.2 Failure Rate Shape of the Truncated Normal Distribution

The function 7(¢) in this case is the same as for the normal distribution, and there-
fore the failure rate is also increasing. Navarro and Hernandez (2004) also show
that

At >(t—u)/c*,t>0.

Example 2.3 Failure Rate Shapes of Lognormal and Inverse Gaussian Distributions
The function 7(¢) for the lognormal distribution is

AG

"=

%(a2 +Int-a). 2.41)

It can be shown that »n(z) € UBT (Lai and Xie, 2006) and that the second condition
in the last statement of Theorem 2.3 is also satisfied, since, in accordance with
Equation (2.29),

lim

At)=0,1im,_,, A(f)=0.

t—0 t—0

Therefore, A(¢#) € UBT, and this is illustrated by Figure 2.2.
The 7(¢) function for the inverse Gaussian distribution (2.30) is

3Lt A - )
2% ’

n() (2.42)

Using arguments similar to those used in the case of the lognormal distribution, it
can be shown (Lai and Xie, 2006) that A(z) € UBT. The exact MRL function for
this distribution (Gupta, 2001) is very cumbersome to derive.
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Glaser’s approach was generalized by Block ef al. (2002) by considering the ra-
tio of two functions

G(1) = % , (2.43)

where the functions on the right-hand side are continuously differentiable and
D(t) is positive and strictly monotone. As with (2.36), where the numerator is the
derivative of f(¢#) and the denominator is the derivative of F(¢), we define the
function 7(¢) as

_N'®

nt) = DO (2.44)

These authors show that the monotonicity properties of G(¢) are ‘close’ to those of
n(t), as in the case where 7(¢) is defined by (2.36). Consider, for example, the
MRL function

jﬁ(u)du

(0 0

We can use it as G(¢). It is remarkable that 7(¢) in this case is simply the recipro-
cal of the failure rate, i.e.,

_Fo_ 1

"= T

Therefore, the functions m(¢) and 1/ A(f) can be close in some suitable sense; this
will be discussed in Section 2.4.3.

Glaser’s theorem defines sufficient conditions for monotonic or BT (UBT)
shapes of the failure rate. The next three theorems establish relationships between
the shapes of A(¢) and m(¢). The first one is obvious and in fact has already been
used several times.

Theorem 2.4. If A(¢) €1 (or (A(t)"' € D), then m(t)e D .

Proof. The result follows immediately from Equations (2.7) and (2.15). The sym-
metrical result is also evident: if A(f) € D, then m(z) € 1. u

Thus, a monotone failure rate always corresponds to a monotone MRL func-
tion. The inverse is true only under additional conditions.

Theorem 2.5. Let the MRL function m(¢) be twice differentiable and the failure
rate A(¢) be differentiable in (0,00). If m(f) €D (I) and is a convex (concave)
function, then A(¢) €I (D).
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Proof. Differentiation of both sides of Equation (2.9) gives
m"(t) =m'()A@) + m(@)A' (@) .

If m(¢) is strictly decreasing, then its derivative is negative for all ¢ € (0,00). Ow-
ing to convexity defined by m"(f) >0 and taking into account that the functions
A(t) and m(r) are positive in (0,), A'(¢) should be positive as well. This means
that A(¢) € I. The ‘symmetrical’ result is proved in a similar way. [

Gupta and Kirmani (2000) state that if A(¢) is concave, then m(¢) is a convex
function. Theorem 2.5 gives the sufficient conditions for the monotonicity of the
failure rate in terms of the monotonicity of m(¢). The following theorem general-
izes the foregoing results to a non-monotone case (Gupta and Akman, 1995; Mi,
1995; Finkelstein, 2002a). It states that the BT (UBT) failure rate under certain
assumptions can correspond to a monotone MRL function (compare with Theorem
2.4, which gives a simpler correspondence rule).

Theorem 2.6. Let A(¢z) be a differentiable BT failure rate in [0, 0).

[ ] If
m'(0) = 2(0)m(0)—-1<0, (2.45)
then m(?) € D;
o If m'(0)>0, then m(z) € UBT.
Let A(¢) be a differentiable UBT failure rate in[0,).
o If m'(0)>0,then m@)el;
o If m'(0) <0, then m(t) e BT.

Proof. We will prove only the first statement. Other results follow in the same
manner. Denote the numerator in (2.9) by d(¢), i.e.,

d(t) = A(t) j Fu)du—F(1). (2.46)
The sign of d(¢) in (2.9) defines the sign of m'(¢) . On the other hand,
d'@t)=2) Jl?(u)du , (2.47)
t

and the monotonicity properties of A(¢) are the same as for d(¢) . Recall that ¢, is
the change (turning) point for the BT failure rate. Therefore,

At)=d'(t,)=0; ) > At,) for t>1,

and
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d(t,) = z(zo)mjﬂu)du F(t,)

Iy

< wj/l(u)F(u)du —F(t,)=0. (2.48)

ty

Owing to the assumption 7'(0) <0 and to Equation (2.9), the function d(¢) is
negative at 7 =0. It then follows from (2.47) that d(¢) decreases to d(¢,) and then
increases in (f,,) , being negative. The latter can be seen from Inequality (2.48),
where 7, can be substituted by any 7>¢,. Therefore, in accordance with (2.9),
m'(t) <0 in (0,00), which completes the proof. (]

Corollary 2.1. Let 4(0)=0. If A(r) is a differentiable UBT failure rate, then
m(t) has a bathtub shape.

Proof. This statement immediately follows from Theorem 2.6, as Equation (2.45)
reads m'(0) = 1(0)m(0)—1=-1<0 in this case. [

Example 2.4 (Gupta and Akman, 1995)
Consider a lifetime distribution with A(¢) € BT, ¢ €[0,%) of the following specific
form:

(1+2.3t*)— 4.6t

A) =
® 1+2.3¢2

It can easily be obtained using Equation (2.22) that the corresponding MRL is

1
m(t) =——,
® 1+2.3¢

which is a decreasing function. Obviously, the condition A(0) <1/m(0) is satis-
fied.

2.4.3 Limiting Behaviour of the Failure Rate and the MRL Function

In this section, we will discuss and compare the simplest asymptotic (as ¢ — o)
properties of A(¢) and 1/m(¢). When a lifetime 7 has an exponential distribution,
these functions are equal to the same constant. It has already been mentioned that
Block ef al. (2001) stated that the monotonicity properties of the function G(¢)
defined by Equation (2.43) are ‘close’ to those of the function 7(¢) defined by
Equation (2.44). When we choose G(f) =m(t), the function 7(¢) is equal to
1/ A(t), and therefore the monotonicity properties of these functions are similar.
Moreover, we will show now that they are asymptotically equivalent.

Denote r(t) =1/m(t) and, as in Finkelstein (2002a), rewrite Equation (2.10) in
form that connects the failure rate and the reciprocal of the MRL function

At) = —%+ r(t). (2.49)
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The following obvious result is a direct consequence of Equation (2.49).

Theorem 2.7. Let lim, , r(t)=c,0<c< .
Then r(¢) is asymptotically equivalent to A(¢) in the following sense:

lim, | A(t) - r(t)| =0, (2.50)
if and only if
M:M—w as t—> . (2.51)
r(0)| | m()

Let, e.g., r(t)=t"; B>0. Then Theorem 2.7 holds and the reciprocal of the
MRL function for the Weibull distribution with an increasing failure rate can be
approximated as ¢ — oo by this failure rate. The exact formula for the MRL func-
tion in this case is rather cumbersome, and thus this result can be helpful for as-
ymptotic analysis. Note that Relationship (2.51) does not hold for sharply increas-
ing functions (¢) , such as, e.g., 7(t) =exp{t} or r(t) =exp{t’}.

Remark 2.2 Applying L’Hopital’s rule to the right-hand side of (2.7), the following
asymptotic relation can be obtained (Calabra and Pulchini, 1987; Bradley and
Gupta, 2003):

lim, , m(f) = lim

>

L
>0 A(t)

provided the latter limit exists and is finite. It is clear that this statement differs
from the stronger one (2.50) only when lim, , A(¢) = .

The asymptotic equivalence in (2.50) is a very strong one, especially when
lim, , r(f)=c and lim, , A(¢f) = . Therefore, it is reasonable to consider the
following relative distance between A(¢) and r(7) :

A -r@| _
0 =m'(t).

This distance tends to zero when

r'(1)
(1)

lim, , | m'(f) = lim, =0, (2.52)

which, in fact, is equivalent to the following asymptotic relationship:
A@)=r(t)1+0()) as t > o0, (2.53)

where, as usual, the notation o(l1) means lim, ,_ o(1) = 0. Asymptotic relationships
of this kind are also often written as A(¢) ~ r(¢) , meaning that



38  Failure Rate Modelling for Reliability and Risk

lim, % =1. (2.54)

We will use both types of asymptotic notation.

It can easily be verified that |m'(z)|—> 0, e.g., for functions r(¢) = exp{t} or
r(t) = exp{t*} , for which (2.51) does not hold.

When lim, , r(¢) =0 (lim, ,, m(t) =), which corresponds to A(f) >0 as
t — oo, the reasoning should be slightly different. Relationships (2.50) and (2.52)
do not make much sense in this case. Therefore, the corresponding reciprocal val-
ues should be considered. From Equation (2.10):

L m®
Al) m'(t)+1
and
R () = — m'(t)m(t) .
() m'(t) +1

The relative distance in this case is
1 le- m'(t)
AO)ym(r) m'()+1"

Therefore, Relationship (2.52) is also valid if

lim, _,,, | m'(t)[=0.

Example 2.5 (Bradley and Gupta, 2003)
Consider the linear MRL function

m(t)=a+bt,a,b>0.

The corresponding failure rate is
1+b

a+bt’

At) =

Thus, Condition (2.52) is not satisfied, and therefore (2.53) does not hold.

Remark 2.3 Assume that r(¢) is ultimately (i.e., for large ¢) increasing. It is easy
to see from (2.49) that A(¢) is also ultimately increasing if #'(¢)/r(¢) is ultimately
decreasing, which holds, e.g., for the power law.

Many of the standard distributions have failure rates that are polynomials or ra-
tios of polynomials. The same is true for the MRL function. Theorem 2.7 can be
generalized to these rather general classes of functions by assuming that r(¢) is a
regularly varying function (Bingham et al., 1987). A regularly varying function is
defined as a function with the following structure:



Failure Rate and Mean Remaining Lifetime 39

r(t) =tP1(H)(1+0()), t >0 ;—0< f<o, f#0,

where /(¢) is a slowly varying function: /(kt)//(t) — 1 for all k> 0. Therefore, as
t — oo, it is asymptotically equivalent to the product of a power function and a
function, which, e.g., increases slower than any increasing power function (for
example, In?) .

Theorem 2.8. Let the function r(#) in Theorem 2.7 be a regularly varying function
with £ > 0. Assume that #'(¢) is ultimately monotone.
Then Relationship (2.51) holds, and therefore (2.50) is also true.

Proof (Finkelstein, 2002a). In accordance with the Monotone Density Theorem
(Bingham et al., 1987), the ultimately monotone 7'(z) can be written in the follow-
ing way:

¥(@#) =" T @) 1+0(1)) as t — o,

where IN(t) is a slowly varying function. Using expressions for regularly varying
r(t) and r'(¢) :

r'(1)

=111 +0(1)) as t > o,
r(1)

where [ (#) is another slowly varying function. Owing to the definition of the
slowly varying function, ¢'/(f) > 0 as ¢ — oo, and therefore Relationship (2.51)
holds.

2.5 Reversed Failure Rate
2.5.1 Definitions

As stated earlier, the failure rate plays a crucial role in reliability and survival
analysis. The interpretation of A(¢)df as the conditional probability of failure of an
item in (¢,¢+dt] given that it did not fail before in [0,7] is meaningful. It de-
scribes the chances of failure of an operable object in the next infinitesimal interval
of time.

The reversed failure (hazard) rate (RFR) function was introduced by von Mises
in 1936 (von Mises, 1964). It has been largely ignored in the literature primarily
because it was believed that this function did not have the strong intuitive probabil-
istic content of the failure rate (Marshall and Olkin, 2007). In the next section, we
will show that it still has an interesting probabilistic meaning, although not similar
to that of the ‘ordinary’ failure rate. Most likely owing to this meaning, the proper-
ties of the reversed failure rate have attracted considerable interest among re-
searchers (Block ef al., 1998; Chandra, and Roy, 2001; Gupta and Nanda, 2001;
Finkelstein, 2002, to name a few). Here we will only consider definitions and some
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of the simplest general properties. For more details, the reader is referred to the
above-mentioned papers and references therein.

Definition 2.4. The RFR p(¢) is defined by the following equation:

_JO
o(t) = O (2.55)

Thus, p(f)dt can be interpreted as an approximate probability of a failure in
(¢t —dt,t] given that the failure had occurred in [0,7].

Similar to exponential representation (2.5), it can be easily shown solving, for
instance, the elementary differential equation F'(¢) = p(¢)F(¢) with the initial
condition F(0)=0 that the following analogue of (2.5) holds:

F(f) = exp{— j p(u)du} (2.56)
and that the corresponding pdf is given by
/()= p(r)exp{— ) p(u)du} :

Therefore, p(f) defines another characterization for the absolutely continuous Cdf
F(?). Note that for proper lifetime distributions,

j (u)du = o, j o(u)du % o,V >0, (2.57)
0 t

which means that
1imt—>0 p(t) =0,

and F(0) =0 should also be understood as the corresponding limit.

Unlike A(¢), the RFR p(f) cannot be a constant or an increasing function in
(a,0),a>0. It is easy to verify that (2.57) holds, e.g., for the power function
p)=t"" a>1.

After a simple transformation, the following relationship between p(f) and
A(t) can be obtained:

CAMOF @) 1
p() = —F() A(?) Foy 1 (2.58)
At

exp{ ]xl(u)du} -1

Let, e.g., A(¢) be a constant: A(¢) = A . In accordance with Equation (2.58),




Failure Rate and Mean Remaining Lifetime 41

A
P = expide}-1’

and therefore, p(¢) decreases exponentially as 7 — oo, whereas its behaviour for
t — 0 is defined by the function ¢'.

It follows from Equation (2.58) that if A(¢) is decreasing, then p(¢) is also
decreasing. For 1 — o , Equation (2.55) can be written asymptotically as

p®) = fBO)A+o(1).

Thus p(¢) and f(¢) are asymptotically equivalent, which means that the study of
the RFR function is relevant only for finite time.

Example 2.6 Consider a series system of two independent components with sur-
vival functions F(¢), F,(¢), failure rates A,(¢),4,(#) and RFRs p,(¥), p,(?), re-
spectively. As the survival function of the system in this case is the product of the
components’ survival functions F,(¢)=F (t)F,(¢), it follows from (2.5) that
A.()=4(#)+ A, (t), where A (¢) denotes the failure rate of the system. On the
other hand, F,(¢) can be written in terms of the RFRs as

F,(t) =1-F(nF,(1)

=1- [l - exp{— O].pl (u)du}}[l - exp{— O]pz (u)du}j R (2.59)

and the system’s RFR can be obtained using Definition 2.4. This will be a much
more cumbersome expression than the self-explanatory A, (¢) + 4,(¢).

Using the same notation, consider now a parallel system of two independent
components. The failure rate of this system is defined by the distribution
F.(#)F,(¢) which, similar to (2.59), does not give a ‘nice’ expression for A (7).
The RFR for this system, however, is simply the sum of individual reversed failure
rates, i.e.,

ps(t) :pl(t)+p2(t)a

which can be seen by substituting (2.56) into the product F(¢)F,(?) . A similar
result is obviously valid for more than two independent components in parallel.

Remark 2.4 1t is well known that the probability that the ith component is the
cause of the failure of the series system described in Example 2.6 (given that this
failure had occurred in (¢,#+dt]) is A,(t)/A,(t), i=12. It can easily be seen,
however (Cha and Mi, 2008), that a similar relationship holds for the probability
that the i th component is the last to fail in the described parallel system (given that
the failure of a system had occurred in (¢,f+dt]) and that probability is

o) p, (1), i=12.

The foregoing reasoning indicates that some characteristics of parallel systems
can be better described via the RFR than via the ‘ordinary’ failure rate.
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2.5.2 Waiting Time

It turns out that the RFR is closely related to another important lifetime characteris-
tic: the waiting time since failure. Indeed, as the condition of a failure in [0,¢] is
already imposed in the definition of the RFR, it is of interest in different applica-
tions (reliability, actuarial science, survival analysis) to describe the time that has
elapsed since the failure time 7' to the current time ¢ . Denote this random variable
by 7,,,. Similar to (2.3), the corresponding survival function with support in [0,]
(Finkelstein, 2002b) is

F, (x)=P{t-T>x|T <t}

_ F(t-x)

) 0,7], 2.60
FO) x€[0,7] (2.60)
and the corresponding pdf is
ft—x)
= b O’Z b
Si (%) FO) x€[0,7]

which, taking into account (2.55), leads to an intuitively evident relationship

p0)=£,,0).
Similar to Equation (2.7):

Definition 2.5. The mean waiting time (MWT) function m, (¢) for an item that had
failed in the interval [0,7] is

m, (6= EIT,,1= [F, ,(u)du

]F(u)du

Assume that m (¢) is differentiable. Differentiating (2.61) and similar to (2.9), the
following equation is obtained:

ml (t)=1-p()m, (7). (2.62)
Equivalently,
_1=-m,()
pt)= () (2.63)

Substituting the RFR defined by Equation (2.63) into the right-hand side of Equa-
tion (2.56), we arrive at the exponential representation for the Cdf F(¢), which can
also be considered as another characterization of the absolutely continuous distri-
bution function via the MWT function m, () :
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m,, (u)

F(t)= exp{— O].mdu} . (2.64)

Remark 2.5 Sufficient conditions for the function m, (¢) to be a MWT function for
some proper lifetime distribution are similar to the corresponding conditions for
the MRL function in Section 2.2.

Note that the properties of m, (x) and m(x) differ significantly, which can be
illustrated by the following example.

Example 2.7 Let A(t)=A.Then m(t)= A", whereas

]‘F (u)du

m, (1) = 0 _ t+ 27! (exp{-At} —1) .

F(t) 1—exp{-At}

It can be shown that
sign(m. (1)) = sign(exp{-At} —1- 1) >0,

and therefore m,,(¢) is increasing in ¢ €[0,0) .
Transform (2.61) in the following way:

]F(u)du - ]F(u)du

m,(t) = TR T (2.65)

and, as usual, assume that E[T]=m(0) <. Then (2.65) results in the following
asymptotic relationship:

m, () = (t—m(0)(1+0(1)), t—>o0.

As m(0)=m is the mean time to failure, this relationship means that for ¢ suffi-
ciently large, m,(¢) is approximately equal to the corresponding unconditional
mean waiting time, when the condition that the failure had occurred in [0,#] is not
imposed. This result is intuitively evident.

2.6 Chapter Summary

In this chapter, we have discussed the definitions and basic properties of the failure
rate, the mean remaining lifetime function and of the reversed failure rate. These
facts are essential for our presentation in the following chapters. Exponential repre-
sentation (2.5) for an absolutely continuous Cdf via the corresponding failure rate
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plays an important role in understanding, interpreting and applying reliability con-
cepts.

We have considered a number of lifetime distributions which are most popular
in applications. Complete information on the subject can be found in Johnson ef al.
(1994, 1995).

The classical Glaser result (Theorem 2.3) helps to analyse the shape of the fail-
ure rate, which is important for understanding the ageing properties of distribu-
tions. Various generalizations and extensions can be found, e.g., in Lai and Xie
(2006). The shape of the failure rate can also be analysed using properties of un-
derlying stochastic processes (Aalen and Gjeissing, 2001). Some examples of this
approach are considered in Chapter 10.

In Section 2.4.1, several of the simplest, most popular classes of ageing distri-
butions were defined. It is clear that the IFR ( A(¢) € I) property is the simplest and
the most natural one for describing deterioration. On the other hand, the decreasing
in time mean remaining lifetime also shows a monotone deterioration of an item.
Note that Theorem 2.5 states that the decreasing MRL defines a more general type
of ageing than the increasing failure rate.

The properties of the reversed failure (hazard) rate have recently attracted con-
siderable interest. Although the corresponding definition seems to be rather artifi-
cial, the concept of the waiting time described in Section 2.5.2 makes it relevant
for reliability applications. Another possible advantage of the reversed failure rate
is that the analysis of parallel systems can usually be simpler using this characteris-
tic than using the ‘ordinary’ failure rate.
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