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has, on taking g(y) := y’ for i = 0, 1, ..., infinitely many linearly independent
solutions vg. Each of these solutions generates its own necessary condition, but
it should not be possible to satisfy infinitely many conditions with the finite
number of parameters available in a scheme with a fixed number of nodes (see
[ADO1, Shi97b] for further details).

2.2 Layer-Adapted Meshes

2.2.1 Exponential Boundary Layers

This subsection examines a model problem with exponential layers at x = 0
and y = 0, namely

Lu:=—-eAu—b-Vu+cu=f on2:=(0,1)x(0,1), (2.9a)

u=20 on 02, (2.9b)

where b = (by(z,y),b2(x,y)) > (B1,52) > (0,0) on 2 and b, ¢, f are smooth.

If the differential equation were —eAu + b - Vu + cu = f, whose solution has

layers at x = 1 and y = 1, then the change of variables x — 1—x and y — 1—y

converts this problem to (2.9).
First consider the simple upwind scheme

L*Pup = f,
which, written out in full, is

2 (ui+1,j —Uij Ui — Uz‘Lj)

© hi+hig hit1 hi
2% (Ui7j+1 — Ui Ui — Ui,j—1>
kj + kit kjt1 k;
Uiyl — Ui Uijr1 — Ui
- (bl)ij% - (52)@;‘% +cig =i (2.10a)
7 J

fori=1,.... M—1land j=1,...,N — 1, with

u;; =0 when (l‘i,yj) € of. (2.10b)

We shall study this scheme on a tensor-product mesh w, X w,, where w,
and w, are one-dimensional Shishkin-type meshes (see Section 1.2.4) having
the same number of mesh points. Thus w, is obtained from the continuous
mesh-generating function A, where
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AE) = Z-AE) for €€ [0,1/2].
b1
The function A is monotone with A(0) = 0 and A(1/2) = InN; on [1/2,1]
the function A is linear with A(1) = 1. Recall that the mesh-characterizing
function v is defined by 1) = exp(—\). Figure 2.1 shows the typical structure
of a tensor-product Shishkin-mesh for a problem with two exponential layers
at © = 1 and y = 1; in this diagram (see Section 1.2.4) \; = Cpeln N and
Ay = CyeIln N, where N mesh intervals are used in each coordinate direction.

1-X

Fig. 2.1. Shishkin mesh for convection-diffusion with two outflow exponential layers

Theorem 2.7. Assume that the solution of (2.9) can be decomposed similarly
to Theorem 1.26 with « = 1 and n = 3. Let the mesh-generating function be
piecewise differentiable and satisfy

- 12
max \' () < CN, / N(€)%de < CN.
0

Then for o > 2, the error of the simple upwind scheme satisfies

CN71 fori7j:N/27...,N,
\U(xmyj) - “ij| < { CN-1 max [¢’| otherwise.

For a piecewise-equidistant Shishkin mesh the mesh-characterizing function ¢
introduces a factor In N into the error estimate. On the other hand, the
Bakhvalov-Shishkin mesh, for which ¢(§) = 1—(1—1/N)2¢, yields the optimal
error estimate CN~! because [¢'| is uniformly bounded.

Proof. Recalling the decomposition of Theorem 1.26, split the numerical so-
lution in a similar manner: define the mesh function SV as the solution of

[LPSN] = [LS);; for alli and j, SV =S8 on e,

j
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and define EY¥, EY and E?, analogously. For the smooth component S, stan-
dard classical arguments give

1S(xi,y;) — S| < CN~! for all i and j.

For the layer term at £ = 0 we have, like the proof of Lemma 1.2.94,

i -1
hy, .
0<EN SWLi::CH(l—l—ﬁ;E) fori,j=0,...,N.

1,5
v=1

The smallness of E; on the coarse mesh leads to
|Ey(2i,y;) — EYy| <CN™' fori=N/2,...,N, j=0,...,N.
A Taylor expansion gives
|L¥P(Ey — EY)| < (N~ + 7 'Wy; max [¢)).

Appealing to a discrete comparison principle and using the barrier function
C(N~!+ W, ;N~!max |¢/]) yields

‘El(mi,yj)—E{\;j‘ <CN 'max|y/| fori=0,...,N/2—1, j=0,...,N.

Similar arguments are used for the terms E5 and Ej5 corresponding to the
boundary layer at y = 0 and the corner layer. 0O

When the solution is less regular, one can nevertheless prove some positive
rate of convergence; see [Shi00].

In [LS99] a modified hybrid scheme on a tensor-product Shishkin mesh is
considered. It is based on simple upwinding, but employs central differencing
whenever the mesh allows one to do this without losing inverse-monotonicity.
For this scheme the above proof avoids the factor In NV and gives the optimal
error bound

||7.L — uhHooyd < CN~ L.

Liseikin [Lis83] uses a tensor product of one-dimensional Bakhvalov-type
meshes (see Section 1.2.4). He assumes the validity of the estimates
oF :
Gk )| < Ol ke

and

O"u —k,—Bs(1-y)/e
Biyk(x’y) SC’[l—I—E e }

on {2 for 0 < k < 3. Such an assumption implies, as was seen in Chapter 1, that
the data of the problem are smooth and satisfy strong compatibility conditions
at the corners of 2. The logarithmically graded mesh then controls the local
truncation error of the simple upwind scheme. The computed solution satisfies
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||u - uhHoo@ < CN— L.

The proof of Theorem 2.7 used the discrete comparison principle and care-
fully chosen barrier functions. Alternatively, as we saw in Section 1.2.4.2, one
can use an improved stability result for the upwind scheme. Thus [And01] one
has the following discrete stability analogue of the continuous stability bound
of Theorem 1.22. Set h; = (h; + hiy1)/2 and k; = (k; + k;11)/2 for each i.
Define the discrete Green’s function G4 by

Lqud(xiv Yjs é-'ma nn) = 5d(mi7 gm) 6d(yja nn)v Gd =0on aQ,
with o
5z €)= (hl) for i = m,
(@i &m) { 0 otherwise;

the mesh function §%(y;,n,) is defined analogously.

Lemma 2.8. The discrete Green’s function Gy is nonnegative. One has the
estimates

1

max [|Ga(@i, yj; 1) L0 < =

Ti,Yj5Mn Bo

and .
max || Ga(zi, yj; &m, )lr,a < =

wi:yj’gvn /61
where || - ||L,,4 s the one-dimensional discrete L1 norm.

Proof. Tt suffices to prove the statement for ¢ = 0 because its Green’s function
G satisfies 0 < Gy < Gy owing to the inverse-monotonicity of the discrete
problem. Thus assume that ¢ = 0 in (2.9). Fix (z;,y;). Define the function of
one variable G¥(z;,y;; ) by

Gz(xiayj;gm) = Z Gd(x17y]7§m777n)kn

As G4 > 0, this sum is simply the discrete Ly norm of Gg4(z;,y;;Em, -). Analo-
gously to the continuous Green’s function, the function G4 satisfies the adjoint
problem associated with (&,,,7,) — for the simple upwind scheme, the term
—b; DY u; has adjoint D~ (b;u;). Multiplying the adjoint equation by k,, then
summing over n, we obtain a difference equation for G¥ in its third argument:

—e0%(G*) + D™ (0;G%)n = Uiy ) — F (4,5, Em)- (2.11)

Here b7 > 31 is derived from b; via a mean value theorem while

€
F(xi,yj,&m) : = bam N—1Ga(xi, Y53 EmsN—1) + 2 Ga(xi,yj;:&m,MN-1)
N—1

E
+ ?Gd(xi,yj;ém,m).
1
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Denoting by G}; the Green’s function associated with the one-dimensional
operator on the left-hand side of (2.11), one then has

0<G; < 1
-

Now the solution representation

Gz(xhyjagm) = GZ(mhyjagmvgm) - ZGZ(J:Z"yj7§m7zn)F(miayj7zn)hn

n

gives us immediately the second estimate of the lemma because F' > 0. The
other inequality is proved similarly. O

Consider now the discrete boundary value problem
L"uy, = fp, in £2, up = 0 on Of2.

The solution representation

uh(xi; y]) = Z EmEnGd(xla Yjs 57717 nn)fh(fma 7771)

m,n
yields

Theorem 2.9. Assume that by > (1 > 0. Then the simple upwind operator
enjoys the anisotropic stability estimate

VA lloo,a < ClIL*Pvall1900,d-

The notation here is analogous to Theorem 1.22: first apply the maximum
norm in the y-direction and therl the discrete L1 norm with respect to x.
When b; > 0 and b2 > 0 on {2, Theorem 2.9 gives an alternative proof of

I — | <C N1 for a Bakhvalov mesh,
U= Unllco,d = N~1In N for a Shishkin mesh.

Remark 2.10. (Reaction-diffusion problem) For the reaction-diffusion problem
discussed in Remark 1.27 with £2 = (0, 1)? one expects uniform convergence on
a Shishkin mesh for the standard finite difference method obtained by setting
by = by = 0in (2.10). With sufficient compatibility to ensure that u € C**(£2)
and that one has a suitable decomposition of wu, it is straightforward to prove

u = unllsog < C(N~1n N)2, (2.12)

This was shown in [CGOO05] using a barrier function technique; alternatively,
one could use an improved stability estimate based on the Green’s function
as in the one-dimensional problem considered by Savin [Sav95].
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Remarkably, Andreev [And06] was able to avoid the use of compatibility
conditions (see the discussion on solution decomposition in Remark 1.27) when
proving

lu—up|| < CN~2(nN)*

for this scheme. Subsequently Andreev [And] and Andreev and Kopteva
[AKO8] extended these results to problems with stronger corner singularities.
In the first of these papers, Dirichlet and Neumann boundary conditions meet
at a corner of the unit square, while in the second an L-shaped domain with
Dirichlet boundary conditions is treated. In both cases the solution lies only
in C%(£2) with 0 < a < 1. The analysis combines layer-adapted meshes with
geometrically graded meshes near the corner singularity; for related work, see
[Mel02].
Kopteva [Kop07a, Kop07b] studies semilinear problems of the type

Lu:=—eAu+b(z,u) =0 in £,
u=g onl,

in a domain with a smooth boundary while assuming some standard stability
property of the reduced solution. The discretization combines features of finite
differences and finite elements. In a strip “parallel” to the boundary, whose
thickness corresponds to the construction of a Bakhvalov or a Shishkin mesh, a
finite difference method is used, and in the interior of (2 the difference scheme
is generated via linear finite elements on a Delaunay triangulation. Optimal
error bounds in the maximum norm are derived.

Systems of reaction-diffusion problems in two-dimensional domains are
solved in [KLS, KMS08, Shi07b] using standard schemes on Bakhvalov and
Shishkin meshes and error bounds like (2.12) are proved. &

Are there second-order schemes for convection-diffusion problems? In
[Kop03] Kopteva derives an error expansion for the simple upwind scheme on
a piecewise equidistant mesh. This expansion is used to show that Richard-
son extrapolation generates a robust almost (i.e., up to a logarithmic factor)
second-order method.

Comparing numerical results for simple upwinding, a hybrid scheme, cen-
tral differencing and defect correction on a Shishkin mesh, it is concluded in
[LSO1b] that defect correction is the most efficient of these because it com-
bines the accuracy of central differencing with the good stability properties
of upwinding. But up to now, no complete analysis of defect correction for
two-dimensional convection-diffusion problems has been given.

We do not know of any theoretical result for central differencing on layer-
adapted meshes for (2.9), but there are some results for related schemes gen-
erated by finite element methods; see Chapter 3.
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2.2.2 Parabolic Layers

Compared with exponential layers, satisfactory convergence results for differ-
ence schemes for parabolic boundary layers are thin on the ground. Let us
consider the model problem

Lu:=—cAu+uy +cu=f in 2:=(0,1) x (0,1), (2.13a)
u=0 on 0f2. (2.13b)

The problem has an exponential layer of width O(g|lne|) at the outflow
boundary x = 1 and parabolic layers of width O(y/¢|lng|) at the charac-
teristic boundaries y = 0 and y = 1.

We know already that on standard meshes it is impossible to construct
difference schemes that are uniformly convergent pointwise for problems with
parabolic boundary layers. Thus for (2.13) one could combine fitted schemes
in the z-direction with a layer-adapted scheme in the y-direction, or use layer-
adapted meshes in both directions to try to achieve uniform convergence. In
a finite difference framework, we know of only one paper that avails itself
of the former strategy: Shishkin [Shi86] uses the one-dimensional II'in-Allen-
Southwell scheme to approximate —eu,, — u, and central differencing to ap-
proximate —eu,,. He proves the following result, where the mesh uses N
points in each coordinate direction — equidistant in = but layer-adapted in y.

Theorem 2.11. (II'in-Allen-Southwell scheme and a Bahkvalov mesh) As-
sume that c, f € C3(02), that u € C*(2), and £(1,0) = f(1,1) = 0. Then

||u — uh||oo7d < CN~YV4,

If more smoothness and compatibility of the data are assumed, then the con-
clusion of the Theorem becomes |[u — up|l0o.qa < CN~Y/2.

As tensor products of layer-adapted meshes were quite successful for ex-
ponential layers, we now introduce a mesh of this type for (2.13), using the
mesh transition parameters (see Section 1.2.4)

)\m:min{l/Q, amslnN}, /\yzmin{l/47 UyﬁlnN}

where N mesh intervals are used in each coordinate direction and the mesh
is fine at x = 0 and at y = 0, y = 1. Note that the ¢ of the exponential layer
transition point becomes 4/ for the parabolic layer; this is due to the different
asymptotic structure of these layers. Figure 2.2 shows the typical structure of
such a mesh for (2.13); in each coordinate direction, half the mesh intervals are
in the coarse mesh and half in the fine mesh. For simplicity, only the standard
Shishkin mesh is discussed here but Shishkin-type and Bakhvalov-type meshes
are also possible.

Numerical results in several papers [CMOS01, FHS96a, FHS96b, FHS96c,
HMOS95] and the monograph [FHM*00] demonstrate numerically the almost
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1— )y

Ay

1-X

Fig. 2.2. Shishkin mesh for one exponential and two parabolic layers

first-order uniform convergence of the simple upwind scheme, but a rigorous
proof of this convergence under minimal regularity assumptions is not easy.
Using the decomposition (1.29) and the estimates (1.30), Shishkin [Shi90b]
proved that

|lw — uhHOQd < C(N_l In N)P

with p = 1/18 or p = 1/14 depending on the precise assumptions on the
problem data. If we assume the validity of the decomposition

U:S+E1+E2+E12

and of bounds like (1.32) for the third-order derivatives needed in the analysis
of the simple upwind scheme, then it should be possible to prove that

lu — uplloo.g < CN"'In N.
In fact [OS07a] derives the error estimate ||u — up|/oo,a < CN~(In N)2.

Remark 2.12. (The A-mesh) In [Wes96] Wesseling implicitly assumes the ex-
istence of a decomposition of the solution (by ignoring higher-order terms in
an asymptotic expansion) for a problem with parabolic boundary layers and a
weak exponential layer. He proves first-order uniform convergence for an up-
wind scheme with a refined piecewise equidistant mesh near the characteristic
boundaries but his choice of transition point is

Ay = min{1/4,0,vc|Inel},

i.e., the factor In N of the Shishkin mesh is replaced by |lne|. This mesh is
sometimes called the A-mesh. Numerical experiments in [HMOS97] demon-
strate however that this choice of transition point for a piecewise equidistant
mesh is not as good as Shishkin’s if one wants also to approximate scaled
derivatives of the solution. &
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Remark 2.15. The authors of [CGLS02] study a problem with Robin boundary
conditions on the characteristic boundary, so the parabolic boundary layer is
weak. Assuming the existence of a decomposition of the type (1.31) with
estimates similar to (1.32) for the fourth-order derivatives, it is shown that

[ = uplloo,a < C[(N"'InN)? +eN~ ' In N]

for a scheme which in the z-direction is related to the midpoint upwind
scheme. &

Remark 2.14. (Interior parabolic layers) In [HS94], Hemker and Shishkin
study a singularly perturbed parabolic equation with a discontinuous initial
condition that generates an interior parabolic layer and construct a uniformly
convergent (fitted) scheme on an equidistant mesh. Unlike the situation with
parabolic boundary layers, the equation determining the layer correction now
has only one solution (the classical error function).

One would expect a similar result for an elliptic problem of type (2.13)
with constant coefficients, if a discontinuous boundary condition generates an
interior parabolic layer at the subcharacteristic through the point of discon-
tinuity. For nonconstant coefficients (curved subcharacteristics) the situation
is more complicated and is unclear. &

Remark 2.15. (Hemker’s problem) In [Hem97] Hemker proposes the following
benchmark problem: solve

—eAu+u, =0
in the plane region exterior to the unit circle with the boundary conditions
u(z,y) =1 for 2% + 9% = 1, u(z,y) — 0 as 22 + y? — oo.

This is a complicated problem: the solution has an exponential layer and
two interior parabolic layers — in particular the asymptotic situation is quite
complicated at the points (0, £1) where the parabolic layers are “born” from
the exponential layer. (The unboundedness of the domain is unimportant.)
Numerical results for this problem can be found in [HHHO00] (here the so-
called over-set grid technique is used) and [NHO0], where an adaptive sparse-
grid technique is developed. &
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