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3.3 Adding Symmetric Stabilizing Terms

When the residual-based stabilization methods of the previous section are
applied to systems of convection-diffusion-reaction problems, this engenders
couplings between the dependent variables but in general these couplings do
not have any physical counterpart. In optimal control problems, residual-based
stabilization methods lead to different discrete adjoint equations depending
on whether the discretization of the problem or the construction of the adjoint
is carried out first [BV07, BL08]. It has been observed that the asymmetry of
the stabilizing term means that the computed control is significantly affected
by the way in which the discrete optimality condition is defined. Moreover,
in the case of transient problems, this asymmetric stabilization does not lead
to diagonal matrices for the reaction term when a lumping technique (nodal
quadrature) is applied; this is awkward for convection-dominated flows with
zones of strong reaction. In the next two subsections we consider symmetric
stabilization methods that avoid these failings.

3.3.1 Local Projection Stabilization

In residual-based stabilization methods with a given finite element space Yh,
several terms are added to the standard Galerkin method. For example, the
streamline diffusion method adds

∑
T∈Th

δT (−ε∆u + b · ∇u + cu − f, b · ∇v)T ,

but an inspection of how stabilization is achieved reveals that only the term
∑

T∈Th

δT (b · ∇u, b · ∇v)T (3.84)

is responsible for the increased stability and consequent improved convergence
properties. Thus it is natural to ask: in order to reduce the costs of assembling
the discrete system, it is enough to add only a term like (3.84)? But with such
a replacement, the consistency property of the method is lost. To retain the
stability properties of the SDFEM, in the convection-dominated case choose
δT = O(hT ) in (3.84); then

∣∣∣∣∣
∑

T∈Th

δT (b · ∇u, b · ∇v)T

∣∣∣∣∣ ≤ Ch1/2|u|1

( ∑
T∈Th

δT ‖b · ∇v‖2
0,T

)1/2

shows that the consistency error is O(
√

h ) and the method will be suboptimal.
The remedy presented here is to introduce a projection πh : L2(Ω) → Dh into
a second finite element space Dh, then to replace b · ∇u by its fluctuations
κh(b · ∇u), where κh := id − πh with id : L2(Ω) → L2(Ω) the identity
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operator. The order of the consistency error can now be tuned by choosing an
appropriate projection space Dh. Indeed, if πh is the L2 projection and Dh

the space of discontinuous, piecewise polynomials of degree k − 1 with k ≥ 1,
then

‖κh(b · ∇u)‖0,T ≤ Chk
T ‖u‖k+1,T ,

and for δT = O(hT ) it follows that
∣∣∣ ∑

T∈Th

δT (κh(b · ∇u), κh(b · ∇v))T

∣∣∣

≤ Chk+1/2‖u‖k+1

( ∑
T∈Th

δT ‖κh(b · ∇v)‖2
0,T

)1/2

.

Later we shall learn that the O(hk+1/2) estimation of the convection term for
an approximation space Yh with piecewise polynomials of degree k (which is
already known for the SDFEM) can be preserved if there is an interpolant
jh : H2(Ω) → Yh such that w − jhw is orthogonal to Dh.

This local projection stabilization (LPS) method is introduced for the
Stokes problem in [BB01], extended to the transport equation in [BB04], and
analysed for the lowest order (r ≤ 2) discretizations of the Oseen equations
in [BB06]. In all these papers a two-level approach is used where the projection
space Dh lives on a mesh that is coarser than the mesh used by the approx-
imation space Yh. This has the disadvantage that the LPS scheme produces
a stencil that is less compact than for the SDFEM stabilization. To overcome
this difficulty, an alternative technique based on enrichment of the approxi-
mation space Yh is proposed in [MST07]. We shall explain both approaches
in a unified framework.

In the following the notation α ∼ β means that there exist positive con-
stants C1 and C2, which are independent of the meshsize h and of ε, such
that

C1α ≤ β ≤ C2α.

Let Mh be a shape-regular decomposition of Ω into d-dimensional sim-
plices, quadrilaterals or hexahedra. Each cell M ∈ Mh is called a macro-
element and its diameter is denoted by hM . Each macro-element M will be
decomposed into one or more cells T ∈ Th, such that Th also is shape-regular
– one could for example generate Th from Mh by some refinement rule. Then
the projection space Dh will be a discontinuous finite element space defined
on the macro-decomposition Mh while the approximation space Yh ⊂ H1(Ω)
comprises continuous piecewise polynomial functions defined on Th. The case
Th = Mh is permitted. We assume that the partitions Th and Mh satisfy

hT ∼ hM ∀T ⊂ M, ∀M ∈ Mh.

Let Dh(M) := {qh|M : qh ∈ Dh} be the local projection space. Define the
global projection πh : L2(Ω) → Dh by (πhw)|M := πM (w|M ), where
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πM : L2(M) → Dh(M) is a local projection. Associate with the projection πh

the fluctuation operator κh : L2(Ω) → L2(Ω) defined by κh := id−πh, where
id : L2(Ω) → L2(Ω) is the identity.

Now we are ready to formulate the local projection stabilization (LPS)
method for the convection-diffusion-reaction problem

−ε∆u + b · ∇u + cu = f in Ω ⊂ R
d, u = 0 on Γ, (3.85)

where Γ = ∂Ω, d ≥ 2, the data b, c, f are sufficiently smooth, and 0 < ε � 1
is a given small positive parameter. Assume that

c − 1
2

div b ≥ ω > 0

which guarantees the unique solvability of the problem. Let Vh = Yh ∩H1
0 (Ω)

be the finite element space for approximating the weak solution u ∈ H1
0 (Ω)

of (3.85). The corresponding stabilized discrete problem is:
Find uh ∈ Vh such that for all vh ∈ Vh one has

ε(∇uh,∇vh) + (b · ∇uh + cuh, vh) + Sh(uh, vh) = (f, vh), (3.86a)

where the stabilizing term Sh is given by

Sh(uh, vh) : =
∑

M∈Mh

τM

(
κh(b · ∇)uh, κh(b · ∇)vh

)
M

(3.86b)

with user-chosen constants τM . Define the mesh-dependent norm

|||v|||LPS :=

(
ε|v|21 + ω‖v‖2

0 +
∑

M∈Mh

τM‖κh(b · ∇)v‖2
0,M

)1/2

(3.87)

associated with the discrete bilinear form implicitly defined by the left-hand
side of (3.86a).

Remark 3.68. There is a close relation to stabilization by subgrid modelling
[EG04, Gue99a], as we shall see in Section IV.4.5, but in subgrid modelling
the stabilizing term uses gradients of fluctuations instead of fluctuations of
gradients. ♣

The stability and convergence properties of the LPS method (3.86) will
now be studied under the following assumptions.
Assumption A1: The approximation space Yh is of order r ∈ N. That is,
there exists an interpolation operator ih : H2(Ω) → Yh with the properties
that ih : H1

0 (Ω) ∩ H2(Ω) → Vh and

‖w − ihw‖0,T + hT |w − ihw|1,T ≤ C hl
T ‖w‖l,T (3.88)
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for all w ∈ H l(T ), all T ∈ Th, and 2 ≤ l ≤ r + 1.

Assumption A2: The fluctuation operator κh has the approximation prop-
erty

‖κhq‖0,M ≤ C hl
M |q|l,M ∀q ∈ H l(M), ∀M ∈ Mh, 0 ≤ l ≤ r. (3.89)

Remark 3.69. Let πh be the L2 projection in Dh and let the space Dh(M)
contain the space Pr−1(M) of polynomials of degree at most r − 1, where
r ≥ 1. Since Dh is allowed to be discontinuous across macro-element faces,
the projection πM : L2(M) → Dh(M) is defined locally by

(πMw − w,wh)M = 0 ∀wh ∈ Dh(M), w ∈ L2(M).

Then the L2 projection πM : L2(M) → Dh(M) reduces to the identity map-
ping on the subspace Pr−1(M) ⊂ H l(M), and the Bramble-Hilbert lemma
gives the approximation property of Assumption A2. ♣

Let Yh(M) := {wh|M : wh ∈ Yh} ∩ H1
0 (M).

Assumption A3: There exists a constant β1 > 0 such that for all h > 0 and
all M ∈ Mh one has

inf
qh∈Dh(M)

sup
vh∈Yh(M)

(vh, qh)M

‖vh‖0,M ‖qh‖0,M
≥ β1 > 0. (3.90)

Remark 3.70. To satisfy Assumption A3, clearly Yh(M) has to be sufficiently
rich compared with Dh(M). In particular, it is necessary that

dim Yh(M) ≥ dim Dh(M). (3.91)

On the other hand one cannot choose Dh(M) too small to satisfy Assump-
tion A3 since Assumption A2 should also be met. Later we try to fulfill both
requirements for a given approximation space Yh on Th by choosing the projec-
tion space Dh as a discontinuous finite element space on the coarser mesh Mh,
where the dimension of Dh(M) is small enough to satisfy Assumption A3 yet
big enough to fulfil Assumption A2. A different strategy is used in the one-
level approach where both spaces are defined on the same mesh: Dh(M) is
chosen such that Assumption A2 holds, then Yh(M) is enriched by additional
functions in order to verify Assumption A3. ♣
Theorem 3.71. Let Assumptions A1 and A3 be satisfied. Then there is an
interpolation operator jh : H2(Ω) → Yh, with jh : H1

0 (Ω)∩H2(Ω) → Vh, that
has the following orthogonality and approximation properties:

(w − jhw, qh) = 0 (3.92a)

for all qh ∈ Dh and all w ∈ H2(Ω), and

‖w − jhw‖0,M + hM |w − jhw|1,M ≤ C hl
M‖w‖l,M (3.92b)

for all w ∈ H l(Ω) with 2 ≤ l ≤ r + 1, and all M ∈ Mh.
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Proof. Let Dh(M)′ denote the dual space of Dh(M). Define the continuous
linear operator Bh : Yh(M) → Dh(M)′ by

〈Bhvh, qh〉Dh(M) := (vh, qh)M ∀vh ∈ Yh(M), qh ∈ Dh(M).

Set
Wh(M) := {vh ∈ Yh(M) : (vh, qh) = 0 ∀qh ∈ Dh(M)},

and let Wh(M)⊥ be the L2-orthogonal complement of Wh(M) in Yh(M). By
[GR86, Lemma I.4.1], Bh is an isomorphism from Wh(M)⊥ onto Dh(M)′ with

β1‖vh‖0,M ≤ ‖Bhvh‖Dh(M)′ ∀vh ∈ Wh(M)⊥

if and only if Assumption A3 holds true. Now, given w ∈ H2(Ω), the mapping

qh �→ (w − ihw, qh)M

is linear and continuous on Dh(M); hence for each w ∈ H2(Ω) there is a
unique zh(w) ∈ Wh(M)⊥ such that

〈Bhzh(w), qh〉Dh(M) = (w − ihw, qh)M ∀qh ∈ Dh(M),

‖zh(w)‖0,M ≤ 1
β1

sup
qh∈Dh(M)

〈Bh(zh(w)), qh〉Dh(M)

‖qh‖0,M
.

The definition of Bh : Yh(M) → Dh(M)′ yields

(zh(w), qh)M = (w − ihw, qh)M ∀w ∈ H2(Ω), ∀qh ∈ Dh(M), (3.93a)

‖zh(w)‖0,M ≤ 1
β1

‖w − ihw‖0,M ∀w ∈ H2(Ω). (3.93b)

Set jhw
∣∣
M

:= ihw
∣∣
M

+ zh(w) for all M ∈ Mh. Since
⊕

M∈Mh

Yh(M) ⊂ Yh, we

then have a global interpolation operator jh : H2(Ω) → Yh such that

‖w − jhw‖0,M ≤
(

1 +
1
β1

)
‖w − ihw‖0,M ≤ C hl

M‖w‖l,M

for all M ∈ Mh, for all w ∈ H l(Ω), 2 ≤ l ≤ r + 1. That is, the L2 approxi-
mation property of (3.92b) is verified.

The orthogonality property (3.92a) follows from (3.93a) and the definition
of jh. It remains to show the approximation property for the H1 seminorm.
To this end, apply an inverse inequality and (3.93b) to get

|zh(w)|1,M ≤ Ch−1
M ‖zh(w)‖0,M ≤ Ch−1

M ‖w − ihw‖0,M .

This inequality and the approximation property (3.88) then give

|w − jhw|1,M ≤ |w − ihw|1,M + |zh(w)|1,M ≤ C hl−1
M ‖w‖l,M .

��
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Remark 3.72. Following the analysis of [Ste99] and assuming a family of
macro-elements that are equivalent to a reference macro-element, Assump-
tion A3 reduces to showing that

NM := {qh ∈ Dh(M) : (qh, vh)M = 0 ∀vh ∈ Vh(M)} = {0}.

♣

Example 3.73. Consider the case Th = Mh. Let the approximation space Yh

comprise continuous piecewise linear functions enriched element by element
with the bubble function bT that is the product of the barycentric coordi-
nates. Let the projection space Dh be discontinuous piecewise constant func-
tions on Th. The usual piecewise linear nodal interpolation ih satisfies the
approximation property of Assumption A1 with r = 1, but it fails to sat-
isfy (3.92a). Since Dh(T ) = span (1) and Yh(T ) = span (bT ), Assumption A3
can be established by transforming the integrals in (3.90) to a reference cell.
Thus there does exist an interpolation operator jh : H2(Ω) → Yh with the
properties (3.92). It is given explicitly by a local definition on each cell T :

(jhw)|T (pi) = w(pi) for all vertices pi ∈ T, (jhw, 1)T = (w, 1)T ∀T ∈ Th.

♣

Theorem 3.74. Let the data of the problem be sufficiently smooth. Let As-
sumptions A1–A3 be fulfilled. If τM ∼ hM for all M ∈ Mh, then there is a
positive constant C, which is independent of ε and the mesh, such that

|||u − uh|||LPS ≤ C (ε1/2 + h1/2)hr‖u‖r+1 .

Proof. The argument is standard: one demonstrates coercivity of the under-
lying discrete bilinear form

ah(w, v) := ε(∇w,∇v) + (b · ∇w + cw, v) + Sh(w, v)

then estimates the approximation and consistency errors. Coercivity with re-
spect to the ||| · |||LPS norm, i.e.,

ah(vh, vh) ≥ |||vh|||2LPS ∀vh ∈ Vh,

follows by integration by parts for all nonnegative τM . (This differs from the
streamline diffusion method where an upper bound for δT is needed; compare
the proof of Lemma 3.25.) Then for the interpolant jhu of the weak solution u
of (3.85) and the solution uh of the discrete problem (3.86) we have

|||jhu − uh|||2LPS ≤ ah(jhu − u, jhu − uh) + ah(u − uh, jhu − uh)

whence
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|||jhu − uh|||LPS ≤ sup
wh∈Vh

ah(jhu − u,wh)
|||wh|||LPS

+ sup
wh∈Vh

ah(u − uh, wh)
|||wh|||LPS

.

The first term here is the approximation error, the second term the consistency
error. (The consistency error of a consistent method is zero.)

The tricky part in the estimation of the approximation error is the con-
vection term which is split into two terms:

(b · ∇(jhu − u), wh) = −(jhu − u, b · ∇wh) − (div b (jhu − u), wh)

using integration by parts. For the first term, use the orthogonality and ap-
proximation properties of the special interpolant and τM ∼ hM to get
∣∣(jhu − u, b · ∇wh)

∣∣ =
∣∣(jhu − u, κh(b · ∇)wh)

∣∣

≤ C

( ∑
M∈Mh

τ−1
M h2r+2

M |u|2r+1,M

)1/2 ( ∑
M∈Mh

τM‖κh(b · ∇)wh‖2
0,M

)1/2

≤ C hr+1/2|u|r+1 |||wh|||LPS .

The estimation of the second term uses the approximation properties and the
definition of the ||| · |||LPS norm:

∣∣(div b (jhu − u), wh)
∣∣ ≤ Chr+1|u|r+1‖wh‖0 ≤ Chr+1|u|r+1 |||wh|||LPS .

Using (3.89), τM ∼ hM , and ah(u−uh, wh) = Sh(u,wh), the consistency error
bound follows from

|Sh(u,wh)| ≤
∑

M∈Mh

τM‖κh(b · ∇u)‖0,M ‖κh(b · ∇wh)‖0,M

≤ C
∑

M∈Mh

τMhr
M |b · ∇u|r,M ‖κh(b · ∇wh)‖0,M

≤ Chr+1/2‖u‖r+1|||wh|||LPS .

It is now straightforward to finish the proof. ♣

Remark 3.75. An analogous theorem can be proved when the stabilizing term
(3.86b) and the norm (3.87) are replaced by

Sh(uh, vh) :=
∑

M∈Mh

τM

(
κh(∇uh), κh(∇vh)

)
M

and

|||v|||LPS :=

(
ε|v|21 + ω‖v‖2

0 +
∑

M∈Mh

τM‖κh(∇v)‖2
0,M

)1/2

respectively. ♣
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Fulfillment of Assumptions A1–A3 depends on the selections of the approx-
imation space Yh and the projection space Dh. Assumption A1 is satisfied for
common finite element spaces that contain continuous piecewise polynomials
of degree r. Assumption A2 can be easily satisfied by choosing the projection
space Dh sufficiently large but Assumption A3 restricts the size of Dh for a
given approximation space Yh. Below we discuss examples of pairs of finite
element spaces (Yh,Dh) that satisfy Assumptions A1–A3 of Theorem 3.74
while referring the reader to [MST07] for the proofs.

Local Projection as a Two-level Approach

Consider the case where the partition Th is formed by a suitable refinement
of a macro-mesh Mh. This is indicated by the notation Mh = T2h. First
we discuss simplicial elements in R

d. A macro-element M ∈ T2h is refined
into d + 1 elements T ∈ Th by connecting the d + 1 vertices of M with its
barycentre; see Figure 3.8 for the cases d = 2 and d = 3. For the approximation

Fig. 3.8. Refinement of a macro-simplex M ∈ T2h into cells T ∈ Th

space Yh we choose a finite element space of continuous piecewise polynomials
of degree r ≥ 1. Let the projection space Dh comprise discontinuous piecewise
polynomials of degree r−1 on T2h. This is summarized by writing (Yh,Dh) =
(Pr,h, P disc

r−1,2h). Here and in what follows the superscript ‘disc’ indicates that
the finite element space contains discontinuous functions. Then on shape-
regular meshes Assumptions A1–A3 are satisfied [MST07].

Consider now hexahedral elements such as bricks. Let M̂ = (−1, 1)d denote
the reference hyper-cube with 2d vertices. This is refined into 2d congruent
cubes T̂i, where i = 1, . . . , 2d. The multilinear mapping FM : M̂ → M maps
M̂ onto a macro-cell M ∈ T2h and induces a refinement of M into 2d cells
Ti = FM (T̂i); see Figure 3.9 for the two-dimensional case. Furthermore, there
is a bijective linear mapping Gi : T̂ → T̂i of the reference cell T̂ = (0, 1)d

onto T̂i for i = 1, . . . , 2d. Now for each T ∈ Th there are a unique M ∈ Mh

and a unique i ∈ {1, . . . , 4} such that T = Ti ⊂ M and T = (FM ◦ Gi)(T̂ ).
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Fig. 3.9. Refinement of a macro-cell M ∈ T2h (right) induced by a congruent

refinement of the reference hyper-cube M̂ (left)

We write the bijective multilinear mapping FM ◦ Gi as FT for brevity. For
the approximation space Yh choose the standard space of mapped continuous
piecewise polynomials of degree at most r in each variable, i.e., Yh = Qr,h.
The projection space Dh lives on the coarser mesh T2h and can be defined
in two different ways, namely as an image of a space living on the reference
macro-cell M̂ or directly on the macro-cell M . In general, this leads to two
different finite element spaces. The mapped version of Dh has the advantage
that the projection space defined locally on the reference macro-cell is always
the same when moving from one element to another, but the approximation
property of Assumption A2 is not satisfied on arbitrary families of shape-
regular meshes [ABF02, Mat01]. This is apparently a great disadvantage but
in practice the family of macro-element meshes is often generated by succes-
sively refining a given initial mesh, and for such a (restricted) mesh family
Assumption A2 does hold true [Mat01]. The unmapped version of Dh satisfies
Assumption A2 for any family of shape-regular meshes but the associated fi-
nite element spaces on the reference macro-cell differ from element to element.
To distinguish between these two spaces we shall use the superscript ‘unm’ for
the unmapped version of the finite element space Dh, with the understanding
that all spaces lacking this superscript are mapped spaces.

The finite element pair (Yh,Dh) = (Qr,h, Qdisc
r−1,2h) is our first example on

hexahedral meshes; here

Qr,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ Qr(T̂ ) ∀T ∈ Th} ,

Qdisc
r−1,2h : = {v ∈ L2(Ω) : v|M ◦ FM ∈ Qr−1(M̂) ∀M ∈ T2h} .

Assumption A1 is clearly satisfied [Ape99, Clé75, SZ90]. Furthermore, since
Pr−1(M) ⊂ Qdisc

r−1(M), one can verify Assumption A2 on arbitrary shape-
regular families of meshes. For the proof of Assumption A3 see [MST07].

Alternatively, one can choose a smaller projection space by taking Dh to
be

P disc
r−1,2h := {v ∈ L2(Ω) : v|M ◦ FM ∈ Pr−1(M̂) ∀M ∈ T2h} .

This produces more stabilization in the sense that the stabilizing term van-
ishes on the smaller subset P disc

r−1,2h ⊂ Qdisc
r−1,2h. Assumptions A1 and A3 are
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still valid but Assumption A2 can be guaranteed only on a restricted fam-
ily of shape-regular meshes, e.g., on uniformly-refined families of meshes; see
[ABF02] for quadrilateral meshes and [Mat01] for hexahedral meshes.

One could also investigate a choice of projection space Dh that is larger
than Qdisc

r−1,2h in order to minimize the stabilizing effect. Indeed, a dimen-
sional analysis indicates that the inequality (3.91) is still satisfied for larger
spaces Dh. For the choice (Yh,Dh) = (Qr,h, Qdisc

r−1,2h) one has

dim Yh(M) = (2r − 1)d ≥ rd = dimDh(M)

and only for r = 1 do the dimensions of both spaces coincide. In the case
r ≥ 2 a possible choice might be Dh = Qdisc

r,2h since

dim Yh(M) = (2r − 1)d ≥ (r + 1)d = dimDh(M), r ≥ 2.

Now Assumption A1 still holds true without any change and Assumption A2
would be satisfied with a higher order of approximation than necessary. It is
unclear however whether the inf-sup condition of Assumption A3 is valid.

Unmapped finite element spaces satisfy Assumption A2 on arbitrary
shape-regular meshes. For example, take the approximation space to be again
the space Yh = Qr,h but for the projection space Dh select the space of discon-
tinuous, piecewise polynomials of degree r−1 posed directly on the macro-cells
M ∈ Mh. That is, we choose

(Yh,Dh) = (Qr,h, P disc,unm
r−1,2h )

where

Qr,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ Qr(T̂ ) ∀T ∈ Th} ,

P disc,unm
r−1,2h : = {v ∈ L2(Ω) : v|M ∈ Pr−1(M) ∀M ∈ T2h} .

Then Assumptions A1–A3 are satisfied on families of shape-regular meshes
[MST07].

Local Projection by Enrichment of Approximation Spaces

One disadvantage of the local projection onto coarser meshes is that the sup-
port of the projected gradient κh(b · ∇ϕ) of a basis function ϕ is in general
larger than the support of ∇ϕ, which leads to an increase in the stencil size
that might not suit the data structure of an existing computer code. Bearing in
mind that the key ingredient of the local projection method is the existence
of an interpolation with the additional orthogonality property (3.92a), one
can try to define the approximation and projection space on the same mesh
Mh = Th and to satisfy Assumption A3 by an enrichment of the approxima-
tion space Yh. This approach has been developed successfully in [MST07], as
we now describe.
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Use simplicial elements and set

b̂(x̂) := (d + 1)d+1
d+1∏
i=1

λ̂i(x̂),

where λ̂i, i = 1, . . . , d + 1, are barycentric coordinates on T̂ . This bubble
function b̂ takes the value 1 at the barycentre of the reference simplex T̂ . Then
define the enriched space of continuous piecewise polynomials of degree r by

P bubble
r (T̂ ) := Pr(T̂ ) + b̂ · Pr−1(T̂ ) .

We choose the approximation and projection spaces

(Yh,Dh) := (P bubble
r,h , P disc

r−1,h)

to be the pair of finite element spaces defined via reference mappings by

P bubble
r,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ P bubble

r (T̂ ) ∀T ∈ Th} ,

P disc
r−1,h : = {v ∈ L2(Ω) : v|T ◦ FT ∈ Pr−1(T̂ ) ∀T ∈ Th} .

Clearly Assumptions A1 and A2 are fulfilled. At first sight the enriched space
seems large, but in fact

Pr(T̂ ) + b̂ · Pr−1(T̂ ) = Pr(T̂ ) ⊕
(

b̂ ·
d∑

i=1

P̃r−i(T̂ )

)

where

P̃r(T̂ ) = span

{
d∏

i=1

x̂αi
i ,

d∑
i=1

αi = r , (x̂1, . . . , x̂d) ∈ K̂

}
.

The enrichment is minimal with respect to the required inequality (3.91). For,
since the bubble part of the space Pr(T̂ ) is b̂ · Pr−(d+1)(T̂ ), we have

dim Ŷ (T̂ ) =
(

r − (d + 1) + d

d

)
+

d∑
i=1

[(
r − i + d

d

)
−

(
r − i + d − 1

d

)]

=
(

r − 1
d

)
+

(
r − 1 + d

d

)
−

(
r − 1

d

)

= dimDh(T̂ ).

When (Yh,Dh) := (P bubble
r,h , P disc

r−1,h), Assumption A3 is satisfied [MST07].

If the mesh is quadrilateral or hexahedral, then the reference mapping
FT : T̂ → T is in general no longer affine. Thus one has two different options
for the projection space, the mapped version
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P disc
r−1,h := {v ∈ L2(Ω) : v|T ◦ FT ∈ Pr−1(T̂ ) ∀T ∈ Th}

and the unmapped version

P disc,unm
r−1,h := {v ∈ L2(Ω) : v|T ∈ Pr−1(T ) ∀T ∈ Th}.

To ensure the approximation property of Assumption A2 for the mapped ver-
sion of the projection space, only families of uniformly-refined meshes will
be considered [ABF02, Mat01]. For the unmapped version, Assumption A2
holds true on general shape-regular meshes. Choosing as approximation space
Yh = Qr,h, i.e., the usual space of continuous piecewise mapped polynomials
of degree at most r in each variable, one obtains the approximation prop-
erty Assumption A1 but not the local inf-sup condition of Assumption A3.
Therefore we search for suitable enrichments of the approximation space Yh.
Let

b̂(x̂) =
d∏

i=1

(1 − x̂2
i ) ∈ Q2(T̂ ) , x̂ = (x̂1, . . . , x̂d) ∈ T̂ , d = 2, 3 ,

be a bubble function associated with the reference cell T̂ := (−1, 1)d. Our first
enriched finite element space is

Qbubble,1
r (T̂ ) := Qr(T̂ ) ⊕ span

{
b̂ x̂r−1

i : i = 1, . . . , d
}

.

Select the finite element spaces

(Yh,Dh) : = (Qbubble,1
r,h , P disc

r−1,h)

where

Qbubble,1
r,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ Qbubble,1

r (T̂ ) ∀T ∈ Th}.

Note that in general Qbubble,1
r,h and P disc

r−1,h are not polynomial spaces. Since
Qr(T̂ ) ⊂ Qbubble,1

r (T̂ ), Assumption A1 is clearly satisfied. Assumption A2
holds on uniformly refined meshes – see [ABF02, Mat01]. For the proof of
Assumption A3 we refer to [MST07].

Comparing the dimensions of the spaces Yh(T ) and Dh(T ), one has

dim Ŷ (T̂ ) = (r − 1)d + d ≥
(

r − 1 + d

d

)
= dimPr−1(T̂ ) for all r, d ∈ N.

In particular the enrichment is minimal with respect to (3.91) for biquadratic
and bicubic elements on quadrilaterals and for triquadratic elements on hexa-
hedra.

Remark 3.76. It is remarkable that the space Qbubble,1
r (T̂ ) has, for all r ≥ 2,

precisely d basis functions more than Qr(T̂ ). That is, the amount of enrich-
ment is independent of the polynomial degree r. ♣
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To satisfy Assumption A2 on arbitrary families of shape-regular (non-
simplicial) meshes, we propose a second version of the enriched finite element
space: set

Qbubble,2
r (T̂ ) := Qr(T̂ ) + b̂ · Qr−1(T̂ )

with the bubble function b̂ ∈ Q2(T̂ ) and use the mapped enriched space

Qbubble,2
r,h := {v ∈ H1(Ω) : v|T ◦ FT ∈ Qbubble,2

r (T̂ ) ∀T ∈ Th} .

Thus
(Yh,Dh) := (Qbubble,2

r,h , P disc,unm
r−1,h ).

and Assumptions A1–A3 are fulfilled [MST07].

Remark 3.77. The space Qbubble,2
r,h is more enriched than the space Qbubble,1

r,h .
Comparing the dimensions of the spaces Yh(T ) and Dh(T ), one can surmise
that the enriched space could be made smaller, but the validity of the local
inf-sup condition Assumption A3 is then unresolved. ♣

Relationship to the Streamline Diffusion Method (SDFEM)

In Section 3.2.3 we started from the standard Galerkin finite element method
with piecewise linears enriched by bubble functions on simplices and showed
that elimination of the bubble part yields the streamline diffusion finite ele-
ment method [BBF93, BR94]. Moreover, the shape of the bubble defined the
SD parameter uniquely, but the symmetric version of the bubble

bT :=
d+1∏
i=1

λT
i , λT

i barycentric coordinates of T,

as we saw in Remark 3.65, generated the SD parameter for the diffusion-
dominated instead of the convection-dominated case. Several ideas have been
developed to overcome this problem, ranging from the pseudo-residual-free
bubble to the residual-free bubble method, where the bubbles are local solu-
tions of the problem under consideration.

Here we shall examine the idea of eliminating the bubble part from the
local projection method (3.86) for enriched approximation spaces. In problem
(3.85) assume that one has piecewise constant functions b and f , and c ≡ 0.
As in Section 3.2.3 suppose that Vh consists of piecewise linear functions and
enrich this space by a bubble space Bh defined by

Bh := span {bT : T ∈ Th }.

Consider the local projection method on the enriched space Vh⊕Bh where the
projection space Dh is the space of discontinuous piecewise constant functions
on a triangulation Th:
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Find uh ∈ Vh ⊕ Bh such that for all vh ∈ Vh ⊕ Bh one has

ε(∇uh,∇vh) + (b · ∇uh, vh) + Sh(uh, vh) = (f, vh). (3.94)

Here the stabilizing term Sh is given by (3.86b) with Mh = Th. The dimension
of the corresponding algebraic system of equations can be reduced by static
condensation of the bubble part of the solution. To do this, write the solution
as uh = uL + uB , with uL ∈ Vh and uB ∈ Bh, and use the test functions
vh = vL ∈ Vh and vh = vB ∈ Bh. As ∇vL is piecewise constant, we get
κh(b · ∇)vL = 0 for all vL ∈ Vh. Moreover, element-by-element integration by
parts shows that (∇vL,∇vB) = 0 for all vL ∈ Vh, vB ∈ VB . Hence (3.94) can
be reformulated as:

Find uL ∈ Vh and uB ∈ Bh such that for all vL ∈ Vh and all vB ∈ Bh,

ε(∇uL,∇vL) + (b · ∇(uL + uB), vL) = (f, vL), (3.95a)
ε(∇uB ,∇vB) + (b · ∇(uL + uB), vB) + Sh(uB , vB) = (f, vB). (3.95b)

Now from the representation uB =
∑

T∈Th
dT bT , where the dT , T ∈ Th,

are unknown constants, (3.95b) becomes:
Given uL ∈ Vh, find {dT ∈ R : T ∈ Th} such that for each T ∈ Th,

ε(∇dT bT ,∇bT )T + (b · ∇(uL + dT bT ), bT )T

+ Sh(dT bT , bT ) = (f, bT )T . (3.96)

An integration by parts gives, using 〈·, ·, 〉 to denote the L2(Γ ) inner product,

dT (b · ∇bT , bT )T =
dT

2
〈
b · n, b2

T

〉
∂T

= 0,

πT (b · ∇)bT =
1
|T | b ·

∫
T

∇bT dx =
1
|T | b ·

∫
∂T

bT ndγ = 0

and (3.96) reduces to:
Given uL ∈ Vh, find {dT ∈ R : T ∈ Th} such that for each T ,

dT

(
ε|bT |21,T + τT ‖b · ∇bT ‖2

0,T

)
= (f − b · ∇uL, bT )T .

This has the solution

dT =
(1, bT )T

ε|bT |21,T + τT ‖b · ∇bT ‖2
0,T

(f − b · ∇uL)
∣∣
T
. (3.97)

Then (3.95a) can be rewritten as

ε(∇uL,∇vL) + (b · ∇uL, vL) +
∑

T∈Th

dT (b · ∇bT , vL)T = (f, vL).

The term
∑

T∈Th
· · · does not appear in the standard Galerkin finite element

method applied on the space Vh. One can rearrange it as
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∑
T∈Th

dT (b · ∇bT , vL)T = −
∑

T∈Th

dT (b · ∇vL, bT )T

=
∑

T∈Th

γT (b · ∇uL − f, b · ∇vL)T ,

where, using (3.97), one sees that

γT =
1
|T |

|(1, bT )T |2
ε|bT |21,T + τT ‖b · ∇bT ‖2

0,T

. (3.98)

We have now eliminated the bubble component from (3.94), arriving at

ε(∇uL,∇vL) + (b · ∇uL, vL) +
∑

T∈Th

γT (b · ∇uL, b · ∇vL)T

= (f, vL) +
∑

T∈Th

γT (f, b · ∇vL)T for all vL ∈ Vh.

This is the streamline diffusion method (3.36) with the SD parameter δT ≡ γT

given by (3.98). A scaling argument shows that (1, bT ) ∼ |T |, |bT |21,T ∼ |T |/h2
T ,

and ‖b · ∇bT ‖2
0,T ∼ |T | ‖b‖2/h2

T , so γT ∼ h2
T /(ε + τT ‖b‖2). For τT = 0 one

has γT ∼ h2
T /ε which corresponds to the diffusion-dominated case. Clearly

γT is decreasing for increasing τT . The choice γT ∼ hT /‖b‖ in the convection-
dominated case ‖b‖hT /ε � 1 corresponds to τT ∼ hT /‖b‖. Letting τT → ∞,
we obtain the standard Galerkin method that corresponds to γT = 0.

Comparing the residual-free bubble method with the local projection
methods applied to the model problem (piecewise constant b and f , c ≡ 0), we
see that via static condensation both methods recover the streamline diffusion
method. But to generate the correct SD parameter, the RFB method needs
to solve (at least approximately) local subproblems to find the correct bubble
functions whereas for LPS the use of the simple bubble function bT =

∏d+1
i=1 λT

i

suffices.

3.3.2 Continuous Interior Penalty Stabilization

Now we move on to the continuous interior penalty (CIP) stabilization method
for the convection-diffusion problem

−ε∆u + b · ∇u + cu = f in Ω, u = 0 on Γ, (3.99)

where Γ = ∂Ω, Ω ⊂ R
d with d = 2 or 3, the data b, c, f are sufficiently

smooth, and 0 < ε � 1 is a given small positive parameter. Assume as usual
that

c − 1
2

div b ≥ ω > 0,

which guarantees existence and uniqueness of a solution to (3.99). Let Th be
a shape-regular triangulation of the domain Ω into cells T ∈ Th with Eh the
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set of all inner edges (faces in the three-dimensional case). Let Yh ⊂ H1(Ω)
be a finite element space of piecewise polynomials of degree r ≥ 1.

In the continuous interior penalty stabilization method, a symmetric term
will be added to the Galerkin finite element discretization. Unlike other stabi-
lization methods the Dirichlet boundary conditions are not incorporated into
the finite element space Yh but are imposed weakly on the discrete problem.
We first discuss how Dirichlet-type boundary condition are implemented in a
weak sense and address the CIP stabilization later.

Multiplying the differential equation −ε∆u + b · ∇u + cu = f by a test
function v, integrating over Ω and integrating by parts, we get

ε(∇u,∇v) + (b · ∇u + cu, v) − ε

〈
∂u

∂n
, v

〉
Γ

= (f, v)

where 〈·, ·〉Γ denotes the inner product in L2(Γ ). To obtain a lower bound like

(b · ∇v + cv, v) ≥ ω‖v‖2
0 ∀v ∈ H1

0 (Ω)

on the larger space H1(Ω), subtract the term 〈b ·nu, v〉Γ− , which vanishes for
u ∈ H1

0 (Ω) but not for u ∈ H1(Ω). Here Γ− = {x ∈ Γ : (b · n)(x) < 0} is the
inflow part of the boundary. Then

(b · ∇v + cv, v) − 〈b · n v, v〉Γ−

=
(

c − 1
2

div b, v2

)
+

1
2
〈b · n, v2〉Γ − 〈b · n, v2〉Γ−

≥ ω‖v‖2
0 +

1
2
‖ |b · n|1/2 v‖2

0,Γ .

Furthermore, we add the term ε〈u, ∂v
∂n 〉Γ to preserve the symmetry on H1(Ω)

of the diffusion term contribution and also add a penalty term to ensure
coercivity. Then the statement of the standard Galerkin method with weakly
imposed boundary conditions is:

Find uh ∈ Yh such that for all vh ∈ Yh one has

ah(uh, vh) = (f, vh)

where

ah(u, v) = ε(∇u,∇v) + (b · ∇u + cu, v) − ε

〈
∂u

∂n
, v

〉
Γ

− ε

〈
u,

∂v

∂n

〉
Γ

− 〈b · nu, v〉Γ−
+

∑
E⊂Γ

εγ

hE
〈u, v〉E . (3.100)

Lemma 3.78. For all vh ∈ Yh, the bilinear form ah given in (3.100) satisfies

ah(vh, vh) ≥ 1
2

(
ε|vh|21 + ω‖vh‖2

0 + ‖ |b · n|1/2 v‖2
0,Γ +

∑
E⊂Γ

ε

hE
‖vh‖2

0,E

)

provided that γ ≥ γ0 where γ0 is sufficiently large (independently of ε and h).
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Proof. It is already clear that

ah(vh, vh) ≥ ε|vh|21 + ω‖vh‖2
0 − 2ε

〈
∂vh

∂n
, vh

〉
Γ

+
1
2
‖ |b · n|1/2 v‖2

0,Γ + εγ
∑
E⊂Γ

1
hE

‖vh‖2
0,E .

For E ⊂ ∂T , the Cauchy-Schwarz inequality and a trace inequality yield

2ε

∣∣∣∣
〈

∂vh

∂n
, vh

〉
E

∣∣∣∣ ≤ 2εCh
−1/2
E |vh|1,T ‖vh‖0,E ≤ ε

2
|vh|21,T +

2εC2

hE
‖vh‖2

0,E .

Summing over all edges (faces) E ⊂ Γ and taking γ ≥ 1/2 + 2C2 gives the
desired result. ��

The above derivation of the bilinear form ah shows that the standard
Galerkin method with weakly imposed boundary condition is consistent, i.e.,
for a solution u ∈ H1

0 (Ω) ∩ H2(Ω) of (3.99) one has

ah(u, vh) = (f, vh) ∀vh ∈ Yh.

The CIP stabilized discrete problem is now defined to be:
Find uh ∈ Yh such that for all vh ∈ Yh one has

ah(uh, vh) + Jh(uh, vh) = (f, vh), (3.101a)

where the stabilizing term Jh has the form

Jh(u, v) :=
∑

E∈Eh

τE 〈bh · [∇u]E , bh · [∇v]E〉E . (3.101b)

Here for each E ∈ Eh the τE are user-chosen parameters, [w]E is the jump
of w across E ∈ Eh in a fixed direction nE , i.e.,

([w]E)(x) = lim
t→+0

{w(x + tnE) − w(x − tnE)} for x ∈ E,

and bh is a continuous piecewise linear approximation of b that satisfies

‖b − bh‖0,∞,T ≤ ChT ‖b‖1,∞,T .

The form of the stabilizing term means that CIP stabilization is also called
edge stabilization. For u ∈ H2(Ω) one has [u]E = 0 for all E ∈ Eh so CIP
stabilization is consistent and enjoys the Galerkin orthogonality property.

Remark 3.79. Modifications of the stabilizing term are possible; see [BH04,
Bur05, BFH06] ♣
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A discrete bilinear form is associated with the left-hand side of (3.101a) in
the usual way. To analyse this bilinear form we introduce the mesh-dependent
norm

|||v|||CIP : =

(
ε|v|21+ω‖v‖2

0+Jh(v, v)+‖|b · n|1/2v‖2
0,Γ +

∑
E⊂Γ

ε

hE
‖v‖2

0,E

)1/2

.

Let
H2(Th) := {v : Ω → R : v|T ∈ H2(T ) ∀T ∈ Th}

be the space of piecewise H2 functions. Then the key step in analysing the
CIP stabilization is the following lemma.

Lemma 3.80. There exists an interpolation operator π∗
h : H2(Th) → Yh and

a positive constant C (independent of the mesh size) such that for all vh ∈ Yh

and all T ∈ Th one has

hT ‖bh · ∇vh − π∗
h(bh · ∇vh)‖2

0,T ≤ C
∑

E∈Eh(T )

∫
E

h2
E |bh · [∇vh]E |2 dγ, (3.102)

where Eh(T ) := {E ∈ Eh : E ∩ T �= ∅}.

Proof. Let N be the set of all nodes, i.e., those points pi that are associated
with the degrees of freedom vh(pi) of Yh. Thus each vh ∈ Yh is uniquely
defined by prescribing its values vh(pi) for all pi ∈ N . For each node pi ∈ N ,
let mi be the number of cells that contain pi as a node. If mi = 1 we call pi

an inner node – so a point pi ∈ Γ ∩N that does not lie on an intersection of
mesh lines is an ‘inner’ node. As in [Osw91, Sch00, Bur05, BFH06] introduce
the quasi-interpolant π∗

hv ∈ Yh defined by

(π∗
hv)(pi) :=

1
mi

∑
{T :pi∈T}

v|T (pi) v ∈ H2(Th).

Choose a discontinuous piecewise polynomial function Φ by setting

Φ|T := ΦT = (bh · ∇vh − π∗
h(bh · ∇vh))

∣∣∣
T
∈ Pr(T ).

Then ΦT (pj) = 0 at all inner nodes pj of T , owing to the definition of π∗
h.

Hence, applying the norm equivalence of finite-dimensional spaces on the ref-
erence cell and using the scaling property, for shape-regular meshes one gets

‖ΦT ‖0,T ≤ C h
1/2
T ‖ΦT ‖0,∂T ∀T ∈ Th.

Next, define the (scaled) �1 norm of each qh ∈ Pr(E) by

‖qh‖
1,E := |E|1/2
∑

{j:pj∈E}
|qh(pj)|.
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Appealing to norm equivalence on a reference edge (face), we find that there
are positive constants C1 and C2 such that

C1‖qh‖0,E ≤ ‖qh‖
1,E ≤ C2‖qh‖0,E ∀qh ∈ Pr(E), ∀E ∈ Eh.

The continuity of bh and the definition of the quasi-interpolant π∗
h imply that

for all nodes pj ∈ E ⊂ ∂T we have

ΦT (pj) =
1

mj

∑
{T ′:pj∈T ′}

bh(pj) ·
(
∇vh

∣∣
T
(pj) −∇vh

∣∣
T ′(pj)

)
,

so

|ΦT (pj)| ≤
1

mj

∑
{T ′:pj∈T ′}

∑
E′∈P (T,T ′)

|bh(pj) · [∇vh]E′(pj)|,

where P (T, T ′) denotes the set of all edges (faces) between T and T ′ (the
shortest path); see Figure 3.10. If there are two paths with the same number
of edges, choose one of them to make the definition of P (T, T ′) unique. On

T

T ′

pj

E1

E2

E3

Fig. 3.10. Set of all edges E belonging to the shortest path P (T, T ′) = {E1, E2, E3}

the skeleton Eh define the piecewise polynomial function

ΨE := bh · [∇vh]E ∈ Pr(E) ∀E ∈ Eh

and denote the subset of edges containing the node pj by

Eh,j := {E ∈ Eh : pj ∈ E}.
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The assumption that the family of meshes is shape-regular ensures that the
sets Eh,j and Eh(T ) each contain a bounded number of edges (faces). Moreover,
hE ∼ hT for all E ∈ Eh(T ) and |E′| ∼ |E| for all E′, E ∈ Eh(T ). Since

|ΦT (pj)| ≤ C
∑

E′∈Eh,j

|ΨE′(pj)|

one obtains the estimate

‖ΦT ‖
1,E ≤ C
∑

E′∈Eh(T )

‖ΨE′‖
1,E′ ∀E ⊂ ∂T.

Collecting the various inequalities, for each T ∈ Th we deduce that

hT ‖ΦT ‖2
0,T ≤ Ch2

T

∑
E⊂∂T

‖ΦT ‖2
0,E ≤ Ch2

T

∑
E⊂∂T

‖ΦT ‖2

1,E

≤ Ch2
T

( ∑
E′∈Eh(T )

‖ΨE′‖
1,E′

)2

≤ C
∑

E′∈Eh(T )

h2
E′‖ΨE′‖2


1,E′ ≤ C
∑

E′∈Eh(T )

h2
E′‖ΨE′‖2

0,E′

where the inequality (
∑

ai)2 ≤ C
∑

a2
i – valid for a bounded number of

summands – was used. Recalling the definitions of ΦT and ΨE′ , the proof is
complete. ��

Remark 3.81. It can be shown (see for example [BFH06]) that a positive con-
stant C∗ exists such that the lower bound

C∗
∑

E∈Eh(T )

∫
E

h2
E |bh · [∇vh]E |2 dγ ≤ hT ‖bh∇ · vh − π∗

h(bh∇ · vh)‖2
0,T

also holds true. Summing this inequality and (3.102) over T we get

C1Jh(vh, vh) ≤
∑

T∈Th

hT ‖bh∇ · vh − π∗
h(bh∇ · vh)‖2

0,T ≤ C2Jh(vh, vh)

when the parameter in (3.101b) is chosen so that τE ∼ h2
E . ♣

Remark 3.82. In local projection stabilization we added a stabilizing term of
the form

Sh(uh, vh) =
∑

T∈Th

τT (κh(bh · ∇uh), κh(bh · ∇vh))T

where κh = id − πh is the fluctuation operator and πh a local projection
onto the (discontinuous) projection space Dh. If πh is replaced by the quasi-
interpolant π∗

h : H2(Th) → Yh, then Lemma 3.80 enables us to replace the
stabilizing term Sh(·, ·) on the discrete space Yh by the stabilizing term
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Jh(uh, vh) =
∑

E∈Eh

τE 〈bh · [∇uh]E , bh · [∇vh]E〉E .

The advantage of this replacement is the consistency of the CIP stabilization
method; the LPS method is not consistent. ♣

Before investigating the convergence properties of the CIP stabilization
method we describe the approximation properties of the global L2 projection
ih : L2(Ω) → Yh.

Lemma 3.83. The L2 projection ih : L2(Ω) → Yh satisfies the global approx-
imation properties

∑
T∈Th

h2m
T |u − ihu|2m,T ≤ C

∑
T∈Th

h2r+2
T |u|2r+1,T ∀u ∈ Hr+1(Ω),

∑
E⊂Γ

hE |u − ihu|20,E ≤ C
∑

T∈Th

h2r+2
T |u|2r+1,T ∀u ∈ Hr+1(Ω),

on shape-regular meshes Th where 0 ≤ m ≤ r + 1 with r ≥ 1.

Proof. Let uI ∈ Yh, u ∈ H2(Ω), be the usual nodal interpolant that satisfies

hm
T |u − uI |m,T ≤ Chr+1

T |u|r+1,T ∀u ∈ Hr+1(T )

where 0 ≤ m ≤ r + 1 and r ≥ 1. Applying the Cauchy-Schwarz inequality to
(u − ihu, u − ihu) = (u − ihu, u − uI) yields the L2(Ω) estimate

‖u − ihu‖0 ≤ ‖u − uI‖0 ≤ C
∑

T∈Th

h2r+2
T |u|2r+1,T .

Estimates for the derivatives can then be deduced via a triangle inequality
and an inverse estimate:

hm
T |u − ihu|m,T ≤ hm

T |u − uI |m,T + hm
T |uI − ihu|m,T

≤ Chr+1
T |u|r+1,T + C‖uI − u‖0,T + C‖u − ihu‖0,T

≤ Chr+1
T |u|r+1,T + C‖u − ihu‖0,T .

Squaring, summing and applying the above L2 bound, we get the first of the
desired estimates. For the second, a scaled version of a trace theorem gives

h
1/2
E ‖v‖0,E ≤ C(‖v‖0,T + hT |v|1,T ) for all v ∈ H1(T ). (3.103)

Again square, sum, and apply the global L2 and H1 bounds. �
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Remark 3.84. Lemma 3.83 does not imply that

‖u − ihu‖2
m ≤ C

∑
T∈Th

h
2(r−m+1)
T |u|2r+1,T ∀u ∈ Hr+1(Ω) (3.104a)

‖u − ihu‖2
0,Γ ≤ C

∑
T∈Th

h2r+1
T |u|2r+1,T ∀u ∈ Hr+1(Ω) (3.104b)

for m = 1, . . . , r + 1, but on quasi-uniform meshes where ch ≤ hT ≤ h these
inequalities are valid. ♣

Remark 3.85. Assume that the L2 projection ih is Hm stable, i.e.,

‖ihu‖m ≤ CS‖u‖m ∀u ∈ Hm(Ω).

Then for the nodal interpolant uI one has

‖u − ihu‖m ≤ ‖u − uI‖m + ‖ih(uI) − ihu‖m ≤ (1 + CS)‖u − uI‖m

and (3.104a) follows. The L2 projection is H1 stable on quasi-uniform meshes
and in [BPS01] this stability has been proved for the more general case of
shape-regular meshes that satisfy a certain mesh condition. ♣

Theorem 3.86. Let the data of the problem be sufficiently smooth, let γ be
sufficiently large and assume that τE ∼ h2

E. Then there is a positive con-
stant C, which is independent of ε and the mesh, such that on quasi-uniform
meshes one has

|||u − uh|||CIP ≤ C (ε1/2 + h1/2)hr‖u‖r+1 .

Proof. The proof follows a familiar pattern: demonstrate the coercivity of the
underlying discrete bilinear form on Yh with respect to the norm ||| · |||CIP

then estimate the approximation error. By Lemma 3.78 one has

ah(vh, vh) + Jh(vh, vh) ≥ 1
2
|||vh|||2CIP ∀vh ∈ Yh,

for all nonnegative τE and γ large enough. Then, for any interpolant ihu ∈ Yh

of the weak solution u, with uh the solution of the discrete problem, we get

1
2
|||uh − ihu|||2CIP ≤ ah(u − ihu, uh − ihu) + Jh(u − ihu, uh − ihu)

whence

|||uh − ihu|||CIP ≤ 2 sup
wh∈Yh

ah(u − ihu,wh)
|||wh|||CIP

+ 2 sup
wh∈Yh

Jh(u − ihu,wh)
|||wh|||CIP

.

Consider the individual terms in ah(u− ihu,wh) for all wh ∈ Yh. Integration
by parts of the convection term gives
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ah(u − ihu,wh) = ε (∇(u − ihu),∇wh) + ((c − div b)(u − ihu), wh)
+ 〈b · n (u − ihu), wh〉Γ+ − (u − ihu, b · ∇wh)

− ε

〈
∂(u − ihu)

∂n
,wh

〉
Γ

− ε

〈
u − ihu,

∂wh

∂n

〉
Γ

+
∑
E⊂Γ

εγ

hE
〈u − ihu,wh〉E . (3.105)

Here the fourth term is the most troublesome and we estimate it first. Adding
and subtracting bh · ∇wh gives

(u − ihu, b · ∇wh) = (u − ihu, (b − bh) · ∇wh) + (u − ihu, bh · ∇wh);

for the first term here an inverse inequality gives

|(u − ihu, (b − bh) · ∇wh)| ≤ C
∑

T∈Th

‖u − ihu‖0,T hT |wh|1,T

≤ Chr+1‖u‖r+1 |||wh|||CIP ,

while for the second term choose ih to be the global L2 projection in Yh, and
then the orthogonality of u − ihu with respect to Yh and Lemma 3.80 imply
that

|(u − ihu, bh · ∇wh)| = | (u − ihu, bh · ∇wh − π∗
h(bh · ∇wh)) |

≤ C

( ∑
T∈Th

h−1
T ‖u − ihu‖2

0,T

)1/2

|||wh|||CIP

≤ Chr+1/2‖u‖r+1 |||wh|||CIP .

The other terms in (3.105) are bounded by means of standard arguments:

ε|(∇(u − ihu),∇wh)| ≤ Cε1/2hr‖u‖r+1 |||wh|||CIP ,

|((c −∇ · b)(u − ihu), wh)| ≤ Chr+1‖u‖r+1 |||wh|||CIP ,

|〈|b · n|(u − ihu), wh〉Γ+ | ≤ Chr+1/2‖u‖r+1 |||wh|||CIP ,

where the scaled trace inequality (3.103) was used in deriving the last estimate.
The Cauchy-Schwarz inequality shows that

∣∣∣∣ε
〈

∂(u − ihu)
∂n

,wh

〉
Γ

∣∣∣∣ ≤ Cε1/2

( ∑
E⊂Γ

hE

∥∥∥∥∂(u − ihu)
∂n

∥∥∥∥
2

0,E

)1/2

|||wh|||CIP .

An invocation of the scaled trace inequality (3.103) gives

h
1/2
E

∥∥∥∥∂(u − ihu)
∂n

∥∥∥∥
0,E

≤ C (|u − ihu|1,T + hT |u − ihu|2,T ) ∀E ⊂ ∂T ;
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squaring then summing, we get∣∣∣∣ε
〈

∂(u − ihu)
∂n

,wh

〉
Γ

∣∣∣∣ ≤ Cε1/2hr‖u‖r+1 |||wh|||CIP .

For the penultimate term in (3.105) one proceeds similarly, using an inverse
inequality:

h
1/2
E

∥∥∥∥∂wh

∂n

∥∥∥∥
0,E

≤ C (|wh|1,T + hT |wh|2,T ) ≤ C|wh|1,T ∀E ⊂ ∂T.

It follows that∣∣∣∣ε
〈

(u − ihu),
∂wh

∂n

〉
Γ

∣∣∣∣ ≤
∑
E⊂Γ

(
ε

hE

)1/2

‖u − ihu‖0,E (εhE)1/2

∥∥∥∥∂wh

∂n

∥∥∥∥
0,E

≤
( ∑

E⊂Γ

ε

hE
‖u − ihu‖2

0,E

)1/2 (
ε

∑
T∈Th

|wh|21,T

)1/2

≤ Cε1/2hr‖u‖r+1 |||wh|||CIP .

The final term in (3.105) is handled by a Cauchy-Schwarz inequality, obtaining
∣∣∣∣∣
∑
E⊂Γ

εγ

hE
〈(u − ihu,wh〉E

∣∣∣∣∣ ≤ γ

( ∑
E⊂Γ

ε

hE
‖u − ihu‖2

0,E

)1/2

|||wh|||CIP

≤ Cε1/2hr‖u‖r+1 |||wh|||CIP .

Finally, using similar arguments to estimate the stabilizing term from the
start of the proof, we get

|Jh(u − ihu,wh)| ≤ Chr+1/2‖u‖r+1 |Jh(wh, wh)|1/2

≤ Chr+1/2‖u‖r+1 |||wh|||CIP .

Combining the above estimates produces the desired error estimate. ��

Remark 3.87. The proof of Theorem 3.86 assumed that the meshes were quasi-
uniform. This assumption can be relaxed slightly [BFH06]. An alternative
way of avoiding the assumption of quasi-uniformity is to replace the L2 pro-
jection ih by the standard nodal interpolation uI . Although one cannot then
appeal to an orthogonality property when estimating the convection term,
nevertheless an O(hr) error estimate (instead of the above O(hr+1/2)) can be
established; see [Sch07]. ♣

Remark 3.88. The continuous interior penalty approach is generalized to the
hp version of the finite element method in [BE07]. In [BH04] the question of
a discrete maximum principle is discussed. Local error estimates similar to
those stated for the streamline diffusion method in Theorem 3.41 have been
established in [BGL07]. ♣
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Finally, we wish to point out the close relationship between the LPS and
CIP analyses. The essential point in the error estimation of both methods is
a special treatment of the convection term.

For the LPS method, after integrating by parts, the orthogonality property
of a special interpolant jh with respect to the projection space Dh is used:

(u − jhu, b · ∇wh) = (u − jhu, b · ∇wh − πh(b · ∇wh))

where πh : L2(Ω) → Dh is a local projection into the discontinuous projection
space Dh. Control over κh(b · ∇wh) = b · ∇wh − πh(b · ∇wh) is achieved by
adding a stabilizing term like (3.86b) which causes a consistency error, but
this is sufficiently small provided that the projection space Dh is sufficiently
large.

In the CIP stabilization method, the special interpolant jh is replaced by
the standard (global) L2 projection ih : L2(Ω) → Vh into the continuous finite
element space Yh and the L2 projection πh of LPS is replaced by the quasi-
interpolant π∗

h into Yh. The special construction of the quasi-interpolant π∗
h

permits an L2 control of bh · ∇wh − π∗
h(bh · ∇wh) by (appropriately scaled)

jumps in the gradient of wh – see Lemma 3.80 above.
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