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3.3 Adding Symmetric Stabilizing Terms

When the residual-based stabilization methods of the previous section are
applied to systems of convection-diffusion-reaction problems, this engenders
couplings between the dependent variables but in general these couplings do
not have any physical counterpart. In optimal control problems, residual-based
stabilization methods lead to different discrete adjoint equations depending
on whether the discretization of the problem or the construction of the adjoint
is carried out first [BV07, BLO8]. It has been observed that the asymmetry of
the stabilizing term means that the computed control is significantly affected
by the way in which the discrete optimality condition is defined. Moreover,
in the case of transient problems, this asymmetric stabilization does not lead
to diagonal matrices for the reaction term when a lumping technique (nodal
quadrature) is applied; this is awkward for convection-dominated flows with
zones of strong reaction. In the next two subsections we consider symmetric
stabilization methods that avoid these failings.

3.3.1 Local Projection Stabilization

In residual-based stabilization methods with a given finite element space Y},
several terms are added to the standard Galerkin method. For example, the
streamline diffusion method adds

Z dp(—eAu+b-Vu+cu—f, b-Vou)r,
T€Th

but an inspection of how stabilization is achieved reveals that only the term

> br(b- Vu,b- Vo)r (3.84)
TeTy

is responsible for the increased stability and consequent improved convergence
properties. Thus it is natural to ask: in order to reduce the costs of assembling
the discrete system, it is enough to add only a term like (3.84)? But with such
a replacement, the consistency property of the method is lost. To retain the
stability properties of the SDFEM, in the convection-dominated case choose
d7 = O(hr) in (3.84); then

> 6r(b- Vu,b- Vo)r
TeT),

1/2
< Ch'?|uly <Z 5T||b'VU||g,T>

TeTy

shows that the consistency error is O(v/h ) and the method will be suboptimal.
The remedy presented here is to introduce a projection 7y, : La(£2) — Dy, into
a second finite element space Dy, then to replace b - Vu by its fluctuations
k(b - Vu), where k;, = id — m, with id : Ly(£2) — Lo(£2) the identity
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operator. The order of the consistency error can now be tuned by choosing an
appropriate projection space Dy. Indeed, if 7, is the Lo projection and Dy
the space of discontinuous, piecewise polynomials of degree k — 1 with £ > 1,
then

15a (b V)l < Ch|lullksr,rs

and for 67 = O(hr) it follows that

| S drnb- V), m (b To))r |
TeTn

1/2
< CRF Y2 || jgr ( Z or||kn(b- VU)”%,T) :
TeTy

Later we shall learn that the O(h*+1/2) estimation of the convection term for
an approximation space Y}, with piecewise polynomials of degree k (which is
already known for the SDFEM) can be preserved if there is an interpolant
jn : H*(£2) — Y}, such that w — jpw is orthogonal to Dy,.

This local projection stabilization (LPS) method is introduced for the
Stokes problem in [BB01], extended to the transport equation in [BB04], and
analysed for the lowest order (r < 2) discretizations of the Oseen equations
in [BBO6]. In all these papers a two-level approach is used where the projection
space Dy, lives on a mesh that is coarser than the mesh used by the approx-
imation space Yj. This has the disadvantage that the LPS scheme produces
a stencil that is less compact than for the SDFEM stabilization. To overcome
this difficulty, an alternative technique based on enrichment of the approxi-
mation space Y}, is proposed in [MSTO07]. We shall explain both approaches
in a unified framework.

In the following the notation a ~ (8 means that there exist positive con-
stants C7; and C5, which are independent of the meshsize h and of &, such
that

Cia < 3 < Caa

Let M}, be a shape-regular decomposition of {2 into d-dimensional sim-
plices, quadrilaterals or hexahedra. Each cell M € M, is called a macro-
element and its diameter is denoted by hjps. Each macro-element M will be
decomposed into one or more cells T' € 7}, such that 7; also is shape-regular
— one could for example generate 7; from M), by some refinement rule. Then
the projection space D;, will be a discontinuous finite element space defined
on the macro-decomposition M, while the approximation space Y, C H(2)
comprises continuous piecewise polynomial functions defined on 7;. The case
T, = My, is permitted. We assume that the partitions 7, and My, satisfy

hr ~ has VTCM, VM € M,,.

Let Dp(M) :={qnlm : qn € Dy} be the local projection space. Define the
global projection 7y, : La(§2) — Dy, by (mpw)|ar := mar(w|ar), where
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7 Lo(M) — Dy (M) is a local projection. Associate with the projection 7,
the fluctuation operator ky : Lo (§2) — Lo(§2) defined by kj, := id — 7p,, where
id : Lo(£2) — Lo(£2) is the identity.

Now we are ready to formulate the local projection stabilization (LPS)
method for the convection-diffusion-reaction problem

—eAu+b-Vu+cu=f imR2cRY uwu=0 onl, (3.85)

where I' = 02, d > 2, the data b, ¢, f are sufficiently smooth, and 0 < e < 1
is a given small positive parameter. Assume that

1
c—idivb2w>0

which guarantees the unique solvability of the problem. Let V,, = Y, N H{ (£2)
be the finite element space for approximating the weak solution u € Hg(£2)
of (3.85). The corresponding stabilized discrete problem is:

Find uy, € V}, such that for all v, € V}, one has
e(Vup, Vop) + (b - Vuy, + cup, vp) + Sy (un, vn) = (f, vn), (3.86a)

where the stabilizing term S}, is given by

Sh(uh, Uh) L= Z T™ (th(b : V)uh, Iih(b : vﬁ}h)M (3.86b)
MeMy

with user-chosen constants 75,. Define the mesh-dependent norm

1/2
Hvlllzps = <€|U|§+w||ﬂ||3+ > TM||f€h(b'V)v||3,M> (3.87)
MeMy,

associated with the discrete bilinear form implicitly defined by the left-hand
side of (3.86a).

Remark 3.68. There is a close relation to stabilization by subgrid modelling
[EG04, Gue99a], as we shall see in Section IV.4.5, but in subgrid modelling
the stabilizing term uses gradients of fluctuations instead of fluctuations of
gradients. &

The stability and convergence properties of the LPS method (3.86) will
now be studied under the following assumptions.

Assumption A1l: The approximation space Y} is of order r € N. That is,
there exists an interpolation operator 45 : H?({2) — Y}, with the properties
that i, : Hi(2) N H?(02) — V}, and

1,7 S CthHle,T (388)

||w — /L.hU)”O’T + hT|w — W
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for all w € H(T), all T € 7p,, and 2 < 1 < 7 + 1.

Assumption A2: The fluctuation operator xj; has the approximation prop-
erty

lknallonr < CRhyslglia Vge H (M), VM e My, 0<1<7. (3.89)

Remark 3.69. Let m, be the Ly projection in Dy, and let the space Dy (M)
contain the space P,._1(M) of polynomials of degree at most r — 1, where
r > 1. Since Dy, is allowed to be discontinuous across macro-element faces,
the projection 7y : La(M) — Dy (M) is defined locally by

(mprw — w,wp)pr =0 Ywyp, € Dp(M), w € Lo(M).

Then the Lo projection mps : Lo(M) — Dy (M) reduces to the identity map-
ping on the subspace P._1(M) C H'(M), and the Bramble-Hilbert lemma
gives the approximation property of Assumption A2. &

Let Y, (M) := {wp|ar : wp € Y} N HE(M).
Assumption A3: There exists a constant ;1 > 0 such that for all A > 0 and
all M € My, one has

inf  osup —m@M g (3.90)

an€DK(M) y, ey, (M) 1V llo,ar [ gnllo,a
Remark 3.70. To satisfy Assumption A3, clearly Y},(M) has to be sufficiently
rich compared with Dy (M). In particular, it is necessary that

dim Y3, (M) > dim Dy, (M). (3.91)

On the other hand one cannot choose Dp (M) too small to satisfy Assump-
tion A3 since Assumption A2 should also be met. Later we try to fulfill both
requirements for a given approximation space Y}, on 73 by choosing the projec-
tion space Dy, as a discontinuous finite element space on the coarser mesh My,
where the dimension of Dy, (M) is small enough to satisfy Assumption A3 yet
big enough to fulfil Assumption A2. A different strategy is used in the one-
level approach where both spaces are defined on the same mesh: Dy (M) is
chosen such that Assumption A2 holds, then Y}, (M) is enriched by additional
functions in order to verify Assumption A3. &

Theorem 3.71. Let Assumptions A1 and A3 be satisfied. Then there is an
interpolation operator jj, : H?(§2) — Yy, with jn : H3(2)NH?(Q2) — Vj,, that
has the following orthogonality and approzimation properties:

(w = jrw, qn) =0 (3.92a)
for all qi, € Dy, and all w € H*(£2), and
lw — jnwllon + harlw — jawlm < C Bhgllwllsnm (3.92b)

for all w € HZ(Q) with 2 <1 <r+1, and all M € My,
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Proof. Let Dp(M)’ denote the dual space of Dy, (M). Define the continuous
linear operator By, : Y3 (M) — Dp(M)" by

(Brvn, qn) Dy := (Vnsqn) v Yo € Y(M), qn € Dp(M).

Set
Wh(M) = {'Uh c Yh(M) : (’Uh,qh) =0 th c Dh(M)},

and let Wy, (M)* be the Lo-orthogonal complement of Wy, (M) in Yy, (M). By
[GR86, Lemma 1.4.1], By, is an isomorphism from Wj,(M )+ onto Dy (M)’ with

Bullonllons < I Bronllpuary  Von € Wa(M)*
if and only if Assumption A3 holds true. Now, given w € H2({2), the mapping
qn = (W — ipw, gn) M
is linear and continuous on Dy (M); hence for each w € H?({2) there is a
unique zp,(w) € Wi, (M)* such that
(Brzn(w), qn) p, () = (W —ipw,qn)nm - Vgn € Dp(M),

2 (@) loas < ~— (Bn(zn(w)), an) b, (ar)
" P1guenn(m) llanllo.ar

The definition of By, : Y3, (M) — Dp(M)’ yields

(zn(w), qn) v = (W —ipw, ) Yw € H?(2), Vgi € Dyp(M),  (3.93a)

1 .
lzn(w)|lom < EHw —ipwllo,m Yw € H?(0). (3.93b)
Set jhw‘M = ihw‘M + zp(w) for all M € M,,. Since @ Yi(M) C Yy, we

MeMy,
then have a global interpolation operator jj : H?(£2) — Y}, such that

. 1 .
[w — jrwlloar < (1 + 51) Jw —ipwllo,nr < Chhyllwlli,n

for all M € My, for all w € H'(£2), 2 <1 < r+ 1. That is, the Ly approxi-
mation property of (3.92b) is verified.

The orthogonality property (3.92a) follows from (3.93a) and the definition
of jp,. It remains to show the approximation property for the H! seminorm.
To this end, apply an inverse inequality and (3.93b) to get

lzn(w)1,00 < Chiyg llzn(w)lo,ar < Chiyflw — ipwllo,ar -
This inequality and the approximation property (3.88) then give

lw — jawlia < fw —ipwliar + |2n(w) |1 < ChhHlwllia -
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Remark 3.72. Following the analysis of [Ste99] and assuming a family of
macro-elements that are equivalent to a reference macro-element, Assump-
tion A3 reduces to showing that

Ny = {qh S Dh(M) : (Qh,’Uh)M =0 Vo, € Vh(M)} = {0}
&

Example 3.73. Consider the case 7;, = Mj,. Let the approximation space Y},
comprise continuous piecewise linear functions enriched element by element
with the bubble function by that is the product of the barycentric coordi-
nates. Let the projection space Dy, be discontinuous piecewise constant func-
tions on 7;. The usual piecewise linear nodal interpolation i satisfies the
approximation property of Assumption Al with » = 1, but it fails to sat-
isfy (3.92a). Since Dy, (T') = span (1) and Y3, (T) = span (br), Assumption A3
can be established by transforming the integrals in (3.90) to a reference cell.
Thus there does exist an interpolation operator jj, : H?(2) — Y}, with the
properties (3.92). It is given explicitly by a local definition on each cell T"

(Jrw)|T(p;) = w(p;) for all vertices p; € T, (jrpw, )y = (w, )y VT € Tp,.
)
Theorem 3.74. Let the data of the problem be sufficiently smooth. Let As-

sumptions A1-A8 be fulfilled. If Tay ~ hpy for all M € My, then there is a
positive constant C', which is independent of € and the mesh, such that

llu = unlllzps < C (Y% + hY2)R" 41 -

Proof. The argument is standard: one demonstrates coercivity of the under-
lying discrete bilinear form

ap(w,v) :=e(Vw, Vv) + (b - Vw + cw,v) + Sp(w,v)

then estimates the approximation and consistency errors. Coercivity with re-
spect to the ||| - |||Lps norm, i.e.,

an(vn,vn) > lllonlllips — Von € Vi,

follows by integration by parts for all nonnegative 7ps. (This differs from the
streamline diffusion method where an upper bound for ér is needed; compare
the proof of Lemma 3.25.) Then for the interpolant jpu of the weak solution u
of (3.85) and the solution uy, of the discrete problem (3.86) we have

ldnw — un|||3ps < an(inu — u, jpu — up) + an(u — up, jau — up)

whence
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it — unll[ps < sup (it —wwn) | an W)
wneV  ||wnlllzps wnevin  |l|wnlllLps

The first term here is the approximation error, the second term the consistency
error. (The consistency error of a consistent method is zero.)

The tricky part in the estimation of the approximation error is the con-
vection term which is split into two terms:

(b V(jru —u),wp) = —(jru — u,b- Vwy) — (div b (jru — u), wp)

using integration by parts. For the first term, use the orthogonality and ap-
proximation properties of the special interpolant and 7 ~ hjs to get

‘(jhu —u,b- th)‘ = }(jhu —u, kp(b- V)wh)‘

1/2 1/2
s0< > Tﬁh%*zluﬁH,M) ( > 7M||nh<b-V>wh||3,M>

MeMy, MeMy;,
< Ch 2 |ulpgy [[[wnl||ps-

The estimation of the second term uses the approximation properties and the
definition of the ||| - |||z ps norm:

|(div b (jnu = w), wn)| < Ch"™ fulrsa|lwnllo < CH™ i [||wnll Lps.

Using (3.89), 7ar ~ has, and ap(u—wup, wp) = Sk (u, wy,), the consistency error
bound follows from

Sh(uw,wn)l <Y Tallrn(d - Vu)lloar 1kn (b - Vwn)llo.ar
MEM}L

<C Y mhiylb -Vl llrn(b - Veon)llo.
MeMy

< CH" Y2 ul| sl [wnl[| L s
It is now straightforward to finish the proof. &

Remark 3.75. An analogous theorem can be proved when the stabilizing term
(3.86b) and the norm (3.87) are replaced by

Sh(up,vp) = Z TM(”h(VUh)yfih(V'Uh)>M
MeMy,

and

1/2
olllzps == <6v|?+wv||3+ > TMIIHh(Vv)IIS,M>

MeMy,

respectively. &
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Fulfillment of Assumptions A1-A3 depends on the selections of the approx-
imation space Y} and the projection space Dj,. Assumption Al is satisfied for
common finite element spaces that contain continuous piecewise polynomials
of degree r. Assumption A2 can be easily satisfied by choosing the projection
space Dy, sufficiently large but Assumption A3 restricts the size of Dy for a
given approximation space Yj. Below we discuss examples of pairs of finite
element spaces (Y, Dp) that satisfy Assumptions A1-A3 of Theorem 3.74
while referring the reader to [MSTO07] for the proofs.

Local Projection as a Two-level Approach

Consider the case where the partition 7}, is formed by a suitable refinement
of a macro-mesh Mj. This is indicated by the notation Mj, = 75;,. First
we discuss simplicial elements in R¢. A macro-clement M € Ty, is refined
into d + 1 elements T' € 7, by connecting the d + 1 vertices of M with its
barycentre; see Figure 3.8 for the cases d = 2 and d = 3. For the approximation

Fig. 3.8. Refinement of a macro-simplex M € 75y, into cells T' € 7p,

space Y}, we choose a finite element space of continuous piecewise polynomials
of degree r > 1. Let the projection space D}, comprise discontinuous piecewise
polynomials of degree r — 1 on 7ay,. This is summarized by writing (Y}, Dy) =
(Prp, Prdisf,gh)- Here and in what follows the superscript ‘disc’ indicates that
the finite element space contains discontinuous functions. Then on shape-
regular meshes Assumptions A1-A3 are satisfied [MSTO07].

Consider now hexahedral elements such as bricks. Let M = (—1,1)¢ denote
the reference hyper-cube with 2¢ vertices. This is refined into/\?d congruent
cubes Tj, where i = 1,..., 2¢. The multilinear mapping Fas : M — M maps
M onto a macro-cell M € T3, and induces a refinement of M into 2¢ cells
T, = Fap(T;); see Figure 3.9 for the two-dimensional case. Furthermore, there
is a bijective linear mapping G; : T — T, of the reference cell T = (0,1)¢
onto ﬁ for i = 1,...,2% Now for each T' € 7T}, there are a unique M € My
and a unique i € {1,...,4} such that T =T; C M and T = (F o G;)(T).
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Fig. 3.9. Refinement of a macro-cell M € 7y, (right) induced by a congruent
refinement of the reference hyper-cube M (left)

We write the bijective multilinear mapping Fj; o G; as Fp for brevity. For
the approximation space Y} choose the standard space of mapped continuous
piecewise polynomials of degree at most r in each variable, i.e., Y}, = Q.
The projection space Dj, lives on the coarser mesh 73, and can be defined
in two different ways, namely as an image of a space living on the reference
macro-cell M or directly on the macro-cell M. In general, this leads to two
different finite element spaces. The mapped version of Dj has the advantage
that the projection space defined locally on the reference macro-cell is always
the same when moving from one element to another, but the approximation
property of Assumption A2 is not satisfied on arbitrary families of shape-
regular meshes [ABF02, Mat01]. This is apparently a great disadvantage but
in practice the family of macro-element meshes is often generated by succes-
sively refining a given initial mesh, and for such a (restricted) mesh family
Assumption A2 does hold true [Mat01]. The unmapped version of D}, satisfies
Assumption A2 for any family of shape-regular meshes but the associated fi-
nite element spaces on the reference macro-cell differ from element to element.
To distinguish between these two spaces we shall use the superscript ‘unm’ for
the unmapped version of the finite element space Dy, with the understanding
that all spaces lacking this superscript are mapped spaces.

The finite element pair (Y, Dy) = (Qy.n, QU5 ;) is our first example on
hexahedral meshes; here ’

Qrpn:={ve H(R) : vlroFreQ.(T) VT €T},
dise n:={v€ La(R) : vlaroFar € Qur(M) VM € Top}

Assumption Al is clearly satisfied [Ape99, Clé75, SZ90]. Furthermore, since

P._1(M) C Q¥$(M), one can verify Assumption A2 on arbitrary shape-

regular families of meshes. For the proof of Assumption A3 see [MSTO07].
Alternatively, one can choose a smaller projection space by taking Dy, to

be

P gy = {v € Lo(2) : w|aro Far € Peoa(M) VM € Top}

s

This produces more stabilization in the sense that the stabilizing term van-
ishes on the smaller subset Prdfi% C Qﬂ‘fﬁ’%. Assumptions Al and A3 are
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still valid but Assumption A2 can be guaranteed only on a restricted fam-
ily of shape-regular meshes, e.g., on uniformly-refined families of meshes; see
[ABF02] for quadrilateral meshes and [Mat01] for hexahedral meshes.

One could also investigate a choice of projection space Dj that is larger
than in_s‘i% in order to minimize the stabilizing effect. Indeed, a dimen-
sional analysis indicates that the inequality (3.91) is still satisfied for larger
spaces Dy. For the choice (Yy, Dp) = (Qrn, Q5 ;) one has

dim Yy, (M) = (2r — 1)4 > r¢ = dim D, (M)

and only for » = 1 do the dimensions of both spaces coincide. In the case

r > 2 a possible choice might be D), = Q255 since

dimY, (M) = (2r — 1)¢ > (r + 1) = dim D, (M),  r>2.

Now Assumption A1 still holds true without any change and Assumption A2
would be satisfied with a higher order of approximation than necessary. It is
unclear however whether the inf-sup condition of Assumption A3 is valid.

Unmapped finite element spaces satisfy Assumption A2 on arbitrary
shape-regular meshes. For example, take the approximation space to be again
the space Y3, = @5 but for the projection space D}, select the space of discon-
tinuous, piecewise polynomials of degree r—1 posed directly on the macro-cells
M € Mj,. That is, we choose

(Yi, Dn) = (Qrn, PETH™)
where

Qrn:={veH' () : vlpoFreQ.(T) VI €T},
PSP s = {v € Ly(R) : vy € Py (M) VM € Ty}

Then Assumptions A1-A3 are satisfied on families of shape-regular meshes
[MSTO7].

Local Projection by Enrichment of Approximation Spaces

One disadvantage of the local projection onto coarser meshes is that the sup-
port of the projected gradient k(b - V) of a basis function ¢ is in general
larger than the support of Vi, which leads to an increase in the stencil size
that might not suit the data structure of an existing computer code. Bearing in
mind that the key ingredient of the local projection method is the existence
of an interpolation with the additional orthogonality property (3.92a), one
can try to define the approximation and projection space on the same mesh
My, = T;, and to satisfy Assumption A3 by an enrichment of the approxima-
tion space Y}. This approach has been developed successfully in [MSTO07], as
we now describe.
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Use simplicial elements and set

d+1

b(&) == (d+ 1) [ Ai(#)

i=1

where /\l7 i = 1,...,d 4+ 1, are barycentric coordinates on T. This _bubble
function b takes the value 1 at the barycentre of the reference simplex T. Then
define the enriched space of continuous piecewise polynomials of degree r by

pPubble( Ty .= p (T 4+ b Po_y(T).
We choose the approximation and projection spaces
(Vi Dy) 1= (PRE, P )

to be the pair of finite element spaces defined via reference mappings by

PPble s — fy € HY(Q) : vlp o Pr € PP"™(T) VT € T,},
PYse, i ={ve Ly(R) : vlpoFre Poy(T) VT €T}

Clearly Assumptions Al and A2 are fulfilled. At first sight the enriched space
seems large, but in fact

P(T)+b-Py(T) = P(T) @ (6 > P,._xf))

where

Pr(f) span{Hif”, ZO” =r, (21,...,2q) EIA(}

The enrichment is minimal with respect to the required inequality (3.91). For,
since the bubble part of the space P.(T) is b+ P._(q41)(T), we have

i (1) ()

=1

-(7";1) ()~ ()

= dim Dy, (7).

When (Y3, Dp) := (Pb“]Dble PTd‘th) Assumption A3 is satisfied [MSTO07].

If the mesh is quadrilateral or hexahedral, then the reference mapping
Fr: T —Tisin general no longer affine. Thus one has two different options
for the projection space, the mapped version
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Plse, = {ve Ly(2) : vlpoPre Py(T) VT €T}

T

and the unmapped version
P = fv € Ly(R) : vlp € Py (T) VT € Tp}.

To ensure the approximation property of Assumption A2 for the mapped ver-
sion of the projection space, only families of uniformly-refined meshes will
be considered [ABF02, Mat01]. For the unmapped version, Assumption A2
holds true on general shape-regular meshes. Choosing as approximation space
Yy = Qrp, i.e., the usual space of continuous piecewise mapped polynomials
of degree at most r in each variable, one obtains the approximation prop-
erty Assumption A1l but not the local inf-sup condition of Assumption A3.
Therefore we search for suitable enrichments of the approximation space Y.
Let

d
b(a) =] —3?) € QaT), &= (dr,....0a) €T, d=2,3,
=1

be a bubble function associated with the reference cell T' := (—=1,1)4. Our first
enriched finite element space is
QPPN (T = Q. (T) @span {bil ' :i=1,...,d}.
Select the finite element spaces
(Ya, Dn) s = (@23 P )

where

Q?;Lbble,l - {U c Hl(.Q) . 'U‘T oFr e Qkubble,l(f) VT e ,Th}

Note that in general inbble’l and PTdisf ,, are not polynomial spaces. Since

Q. (T) C QPUPPlel(T) Assumption Al is clearly satisfied. Assumption A2
holds on uniformly refined meshes — see [ABF02, Mat01]. For the proof of
Assumption A3 we refer to [MSTO07].

Comparing the dimensions of the spaces Y, (T") and Dy (T'), one has

dimY(T)=(r—1)%+d> (r B ZJF d) = dim P,_y(T) for allr,d € N.

In particular the enrichment is minimal with respect to (3.91) for biquadratic
and bicubic elements on quadrilaterals and for triquadratic elements on hexa-
hedra.

Remark 3.76. 1t is remarkable that the space Q'ﬁubble>1(f) has, for all r > 2,
precisely d basis functions more than @,.(T"). That is, the amount of enrich-
ment is independent of the polynomial degree r. '
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To satisfy Assumption A2 on arbitrary families of shape-regular (non-
simplicial) meshes, we propose a second version of the enriched finite element
space: set R R . R

QYT = Qr(T) +b- Qra(T)

with the bubble function b € QQ(T) and use the mapped enriched space
QE;;Lbble,Q = {1} c Hl(Q) . 'U|T oFrc QEubble,Q(f) VT € ’Th} )

Thus
bubble,2 disc,unm
(Yh’Dh) = (Qr,h o 7Pr71C:h )

and Assumptions A1-A3 are fulfilled [MSTO7].

bubble,2 . . . bubble,1
Remark 5.77. The space Q,, is more enriched than the space @, ), .

Comparing the dimensions of the spaces Y3, (T) and Dy(T), one can surmise
that the enriched space could be made smaller, but the validity of the local
inf-sup condition Assumption A3 is then unresolved. '

Relationship to the Streamline Diffusion Method (SDFEM)

In Section 3.2.3 we started from the standard Galerkin finite element method
with piecewise linears enriched by bubble functions on simplices and showed
that elimination of the bubble part yields the streamline diffusion finite ele-
ment method [BBF93, BR94|. Moreover, the shape of the bubble defined the
SD parameter uniquely, but the symmetric version of the bubble

d+1
br = H A A barycentric coordinates of T,
i=1

as we saw in Remark 3.65, generated the SD parameter for the diffusion-
dominated instead of the convection-dominated case. Several ideas have been
developed to overcome this problem, ranging from the pseudo-residual-free
bubble to the residual-free bubble method, where the bubbles are local solu-
tions of the problem under consideration.

Here we shall examine the idea of eliminating the bubble part from the
local projection method (3.86) for enriched approximation spaces. In problem
(3.85) assume that one has piecewise constant functions b and f, and ¢ = 0.
As in Section 3.2.3 suppose that V}, consists of piecewise linear functions and
enrich this space by a bubble space Bj, defined by

By :=span{by : T €7}, }.

Consider the local projection method on the enriched space V}, @ B, where the
projection space Dy, is the space of discontinuous piecewise constant functions
on a triangulation 7p:
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Find uy, € V), ® By, such that for all v, € V}, & Bj, one has
e(Vup, Vop) + (b Vup,vp) + Sk(up, vn) = (f,vn). (3.94)

Here the stabilizing term Sy, is given by (3.86b) with Mj, = 7},. The dimension
of the corresponding algebraic system of equations can be reduced by static
condensation of the bubble part of the solution. To do this, write the solution
as up = ur, + upg, with ur, € Vj, and ug € By, and use the test functions
v, = vy € Vi and v, = vg € Bp. As Vo is piecewise constant, we get
kn(b-V)vr =0 for all vg, € V},. Moreover, element-by-element integration by
parts shows that (Vuvp, Vug) =0 for all vy € Vj,, vg € Vi. Hence (3.94) can
be reformulated as:

Find uy, € V}, and upg € By, such that for all vy, € V}, and all vg € By,

e(Vur,Vur) + (b V(ur +up),vr) = (f,vr), (3.95a)
€(VUB, VUB) + (b . V(UL =+ UB),’UB) + Sh(uB,vB) = (f, ’UB). (395b)

Now from the representation ug = ZTeTh drbr, where the dr, T € Ty,
are unknown constants, (3.95b) becomes:
Given uy, € Vi, find {dr € R : T € 73} such that for each T € Ty,

E(VdTbT, VbT)T + (b . V(UL + dTbT>7 bT)T
+ Sn(drbr, br) = (f,br)r- (3.96)

An integration by parts gives, using (-,-,) to denote the Lo(I") inner product,
d
dp(b-Vbp,bp)p = ?T (b-n,b%), . =0,

1 1
7r(b- V)b :—b~/Vb dx:—b~/ brndy =0
r(b-V)br = g b- | Vordo=prrb. | brndy

and (3.96) reduces to:
Given uy, € Vp,, find {dr € R : T € 7} such that for each T,

dr (elbr|i o + 7rllb- Vbr|§ ) = (f = b Vur,br)r.
This has the solution

dy = (L,br)r
€|bT|%,T + TTHb . VbT”%),T

(f —=b-Vur)|,. (3.97)

Then (3.95a) can be rewritten as

E(VU[”VUL) + (b . V’U,LJ)L) + Z dT(b . VbTﬂ)L)T = (f7 ’UL).
TeT),

The term ZTeTh -+- does not appear in the standard Galerkin finite element
method applied on the space Vj. One can rearrange it as
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Z dr(b-Vbr,vp)r = — Z dr(b-Vor,br)r
TeT, TeT,

= Z yr(b-Vur — f,b-Vur)r,

TeT,

where, using (3.97), one sees that

_ 1 |(1,b7)7?
IT| elbor |3+ rllb- Vbr|§ 1

VT (3.98)

We have now eliminated the bubble component from (3.94), arriving at

e(Vur,Vur) + (b Vug,vr) + Z vr(b-Vur,b-Vour)r
TeTh

= (f, UL) + Z ’}/T(f,b . V’UL)T for all vy, € V.
TeT,

This is the streamline diffusion method (3.36) with the SD parameter é7 = vr
given by (3.98). A scaling argument shows that (1,br) ~ |T}, |br|3 7 ~ |T|/h7,
and [|b- Vor|[§ - ~ [T||[b]I*/h7, so yr ~ h7./(e + 77||b]|?). For 77 = 0 one
has yr ~ h2/e which corresponds to the diffusion-dominated case. Clearly
~r is decreasing for increasing 7. The choice v ~ hp/||b|| in the convection-
dominated case ||b|| hp/e > 1 corresponds to 7 ~ hr/||b||. Letting 70 — o0,
we obtain the standard Galerkin method that corresponds to vy = 0.

Comparing the residual-free bubble method with the local projection
methods applied to the model problem (piecewise constant b and f, ¢ = 0), we
see that via static condensation both methods recover the streamline diffusion
method. But to generate the correct SD parameter, the RFB method needs
to solve (at least approximately) local subproblems to find the correct bubble
functions whereas for LPS the use of the simple bubble function by = Hfill ¥
suffices.

3.3.2 Continuous Interior Penalty Stabilization

Now we move on to the continuous interior penalty (CIP) stabilization method
for the convection-diffusion problem

—cAu+b-Vu+tcu=f inf2, u=0 onl, (3.99)

where I' = 912, 2 C R? with d = 2 or 3, the data b, ¢, f are sufficiently
smooth, and 0 < ¢ < 1 is a given small positive parameter. Assume as usual
that

1
c—édivb2w>0,

which guarantees existence and uniqueness of a solution to (3.99). Let 75 be
a shape-regular triangulation of the domain (2 into cells T' € 7;, with &, the
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set of all inner edges (faces in the three-dimensional case). Let Y}, C H'(£2)
be a finite element space of piecewise polynomials of degree r > 1.

In the continuous interior penalty stabilization method, a symmetric term
will be added to the Galerkin finite element discretization. Unlike other stabi-
lization methods the Dirichlet boundary conditions are not incorporated into
the finite element space Y} but are imposed weakly on the discrete problem.
We first discuss how Dirichlet-type boundary condition are implemented in a
weak sense and address the CIP stabilization later.

Multiplying the differential equation —eAu + b - Vu + cu = f by a test
function v, integrating over {2 and integrating by parts, we get

e(Vu, Vo) + (b- Vu + cu,v) — ¢ <8u’v> = (f,v)
on’ /r

where (-, -)r denotes the inner product in Lo (I"). To obtain a lower bound like
(b- Vv + cv,v) > w||v||2 Yo € Hi ()

on the larger space H!({2), subtract the term (b-nwu,v)r_, which vanishes for
u € HL(£2) but not for u € HY(£2). Here I'_ = {x € I' : (b-n)(x) < 0} is the
inflow part of the boundary. Then

(b-Vv+cv,v) —(b-nv,v)p_
1 1
= (c—2 div b,v2> +§<b-n71}2>['— (b-n,v*)

1
> wlollg + S - n ' vlE .

Furthermore, we add the term e(u, g—:ﬁ to preserve the symmetry on H'(£2)

of the diffusion term contribution and also add a penalty term to ensure
coercivity. Then the statement of the standard Galerkin method with weakly
imposed boundary conditions is:

Find uj € Y}, such that for all v, € Y, one has
an(un,vn) = (f,vn)

where

ap(u,v) = e(Vu, Vo) + (b- Vu + cu,v) — ¢ <8u >
r

"

v ey
—€<u,an>r—(b-nu7v>F_ + Z E(u7v>E. (3.100)

ECI

Lemma 3.78. For all v, € Yy, the bilinear form ap given in (3.100) satisfies

3

1
an(vh, vh) 2 5 <6|th? +wllonllg + Il 1b-n 2 ollg p + > LG (2),E>
ECI

provided that v > o where g is sufficiently large (independently of € and h).
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Proof. 1t is already clear that

6’Uh
ap(vp,vp) > 5|vh|% + w||vh|\(2) — 2 <a,vh>
n r

1 1
+5l b-nl 20§ p+ev > Tllvh||%,E'
ecr F

For F C 9T, the Cauchy-Schwarz inequality and a trace inequality yield

2¢e %v
anah .

Summing over all edges (faces) E C I' and taking v > 1/2 + 2C? gives the
desired result. O

2:C?

iT + K”UhH(Q),E'

_ g
<2 Chi Plop|irlvnllo.r < 5lon

The above derivation of the bilinear form aj; shows that the standard
Galerkin method with weakly imposed boundary condition is consistent, i.e.,
for a solution u € H}(£2) N H2(£2) of (3.99) one has

a’h(ua Uh) = (f7 Uh) \V/Uh €y;.

The CIP stabilized discrete problem is now defined to be:
Find w;, € Y}, such that for all vy, € Y}, one has

an(un,vn) + Jn(un, vn) = (f, vn), (3.101a)

where the stabilizing term J, has the form

Jh(u, 'U) = Z TE <bh . [V’LL]E, bh . [V'U]E>E . (3101b)
Eeé&p

Here for each FE € &, the Ty are user-chosen parameters, [w]g is the jump
of w across F € &, in a fixed direction ng, i.e.,

([wg)(z) = tl_i)r_r:(){w(x +itng) —w(r —tng)} forxze E,

and by is a continuous piecewise linear approximation of b that satisfies

16— ballo,00,r < Chr|lb

|1,oo,T-

The form of the stabilizing term means that CIP stabilization is also called
edge stabilization. For uw € H?({2) one has [u]g = 0 for all E € &, so CIP
stabilization is consistent and enjoys the Galerkin orthogonality property.

Remark 3.79. Modifications of the stabilizing term are possible; see [BH04,
Bur05, BFHOG] L)
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A discrete bilinear form is associated with the left-hand side of (3.101a) in
the usual way. To analyse this bilinear form we introduce the mesh-dependent
norm

1/2
3
Illlerr : = <ev|%+w||v|3+Jh<v,v>+|||b~n|1/%||%,p+ > gl E> ~
ECr

Let
H*(Tp) ={v: 2 =R :vjr € H(T) VT €T}
be the space of piecewise H? functions. Then the key step in analysing the

CIP stabilization is the following lemma.

Lemma 3.80. There exists an interpolation operator . : H*(7,) — Y), and
a positive constant C' (independent of the mesh size) such that for all v, € Yy,
and all T € T}, one has

h ||by - Vo = 7, (bn - Vou)[[§ 2 < C Y /hQE\bh~[Vvh]E|2d% (3.102)
Eeen(T) ' E

where E,(T) :={E €&, : ENT #0}.

Proof. Let N be the set of all nodes, i.e., those points p; that are associated
with the degrees of freedom vy (p;) of Y. Thus each v, € Y} is uniquely
defined by prescribing its values vy (p;) for all p; € N. For each node p; € N,
let m; be the number of cells that contain p; as a node. If m; = 1 we call p;
an inner node — so a point p; € I' N A that does not lie on an intersection of
mesh lines is an ‘inner’ node. As in [Osw91, Sch00, Bur05, BFHO06] introduce
the quasi-interpolant m;v € Y}, defined by
(mo)p) = — 3 ol ve HAT).

' {T:pieT}

Choose a discontinuous piecewise polynomial function @ by setting
¢|T = dp = (bh -V, — W;(bh . V’Uh)) T S PT(T)

Then &r(p;) = 0 at all inner nodes p; of T, owing to the definition of =}.
Hence, applying the norm equivalence of finite-dimensional spaces on the ref-
erence cell and using the scaling property, for shape-regular meshes one gets

|Drllor < Chyl*|Drlloor VT € T,

Next, define the (scaled) ¢ norm of each g;, € P.(E) by

lanlle, & = |E|1/2 Z |Qh(Pj)|-
{j:p;€E}



356 3 Finite Element Methods

Appealing to norm equivalence on a reference edge (face), we find that there
are positive constants C'; and Cs such that

Cillgnllo.z < llgnlley.e < Callgnllo.z Van € Pr(E), VE € &.

The continuity of b;, and the definition of the quasi-interpolant 7 imply that
for all nodes p; € E C 01 we have

dr(pj) = L Z bu(p;) - (Von|,(pj) — Vn

J {T":p; €T’}

T (pj)) )

|Pr(p;)| < mi > > 1bupy) - [Vonle (0))];

T {T":p; €T’} E'eP(T,T")

where P(T,T') denotes the set of all edges (faces) between T and T (the
shortest path); see Figure 3.10. If there are two paths with the same number
of edges, choose one of them to make the definition of P(T,T") unique. On

FEs

En

Fig. 3.10. Set of all edges E belonging to the shortest path P(T,T') = {E1, E2, E3}

the skeleton &, define the piecewise polynomial function
Up :=by - [Vvh]E € PT(E) VE € &,
and denote the subset of edges containing the node p; by

gh,j = {E €&y 1pj € E}
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The assumption that the family of meshes is shape-regular ensures that the
sets &, j and &, (T) each contain a bounded number of edges (faces). Moreover,
hg ~ hp for all E € &,(T) and |E'| ~ |E| for all E', E € &,(T). Since

@r(p)| <C Y |[We(p))]

E’th,j
one obtains the estimate

D7l e <C Y el VECOT.
E’ES;,,(T)

Collecting the various inequalities, for each T' € 7;, we deduce that

hrllor|r < Chg Y 19rl5 e < Chy Y 197l p
EcoT Ecor

2
<Ch2T< > WE’HZLE’)

E'e&n(T)

<C Y Wplelie < C Y hpl¥elde
B/ €E),(T) B/€&(T)

where the inequality (3" a;)? < C> a? — valid for a bounded number of
summands — was used. Recalling the definitions of @1 and ¥g, the proof is
complete. O

Remark 3.81. Tt can be shown (see for example [BFH06]) that a positive con-
stant C* exists such that the lower bound

Y [ Bl (VouleP < b [0 = w00 )
Eegn(1)”F

also holds true. Summing this inequality and (3.102) over T" we get

Cth(vh, ”Uh) § Z hT ||th - Up — W;(bhv . 'Uh)”(2)7T S CQJh(’Uh,”Uh)
TeT),

when the parameter in (3.101b) is chosen so that 7 ~ h%,. )

Remark 3.82. In local projection stabilization we added a stabilizing term of
the form
Sn(un,vn) = > 7r(kn(bn - Vun), 54 (bn - Vou))r
TeT,

where k;, = id — 7y, is the fluctuation operator and 7, a local projection
onto the (discontinuous) projection space Dy,. If 7, is replaced by the quasi-
interpolant 7 : H*(7;) — Y}, then Lemma 3.80 enables us to replace the
stabilizing term Sy (-, ) on the discrete space Y} by the stabilizing term
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Tn(un,on) = D 7 (bn - [Vunle, by - [Von]e) g
Ee&y

The advantage of this replacement is the consistency of the CIP stabilization

method; the LPS method is not consistent. &

Before investigating the convergence properties of the CIP stabilization
method we describe the approximation properties of the global Ly projection
ih : LQ(Q) — Yh.

Lemma 3.83. The Lo projection iy, : Lo(£2) — Y}, satisfies the global approz-
imation properties

Z hi™u —ipuly, » < C Z WP lulZpy e Yue HHH(),

TeT, TeT,
Z hplu— ih“%ﬂ <C Z h?ﬁ“lUlfﬂ,T Vue H™ (),
ECr TeTy

on shape-reqular meshes T, where 0 < m <r+ 1 with r > 1.
Proof. Let u! €Y}, u € H?(£2), be the usual nodal interpolant that satisfies
P |u — ul\m’T < ChTT+1|u|T+17T Yu € H™H(T)

where 0 < m < r+ 1 and r > 1. Applying the Cauchy-Schwarz inequality to
(u —ipu,u — ipu) = (u — ipu, u — ul) yields the Lo(£2) estimate

lu—inullo < llu—u'llo < C Y BF*2ully 1
TeTy

Estimates for the derivatives can then be deduced via a triangle inequality
and an inverse estimate:
W u — inulm,r < B —ul | + W7 0! = gl
< Chipulrsr,r + Cllu’ = wllo,r + Cllu = inullor
< Chip fulvsr,r + Cllu — inulo,r-

Squaring, summing and applying the above Ly bound, we get the first of the
desired estimates. For the second, a scaled version of a trace theorem gives

hil2vllo.e < Clwllor + hrlvlrr)  for all v € HY(T). (3.103)

Again square, sum, and apply the global Ly and H' bounds. O
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Remark 3.84. Lemma 3.83 does not imply that

lu —inull2, < 3" R V0 Yue HPHR)  (3.104a)

TETH
lu—inull§ p < C Y R ully p Vue HH(2)  (3.104b)
Te,]'jl
form =1,...,r 4+ 1, but on quasi-uniform meshes where ch < hr < h these
inequalities are valid. &

Remark 3.85. Assume that the Lo projection iy is H™ stable, i.e.,
lintllm < Csllullm ~— Yu e H™(2).
Then for the nodal interpolant u! one has

= intlln < lu = flan + llin (@) = il < (1 + Cs) = |

and (3.104a) follows. The Ly projection is H! stable on quasi-uniform meshes
and in [BPSO01] this stability has been proved for the more general case of
shape-regular meshes that satisfy a certain mesh condition. '

Theorem 3.86. Let the data of the problem be sufficiently smooth, let v be
sufficiently large and assume that g ~ h%. Then there is a positive con-
stant C, which is independent of € and the mesh, such that on quasi-uniform
meshes one has

llu = unlllerp < C (2 + )7 [l rt1 -

Proof. The proof follows a familiar pattern: demonstrate the coercivity of the
underlying discrete bilinear form on Y} with respect to the norm ||| - |||crp
then estimate the approximation error. By Lemma 3.78 one has

1
an(vn, vn) + Jn(vn, vn) = §|\|vh|||201p Vo € Yy,

for all nonnegative 75 and y large enough. Then, for any interpolant i,u € Y}
of the weak solution u, with uj, the solution of the discrete problem, we get

1 ) . . . )
§|||uh — zhu|||2CIP < ap(u—ipu,up — ipu) + Jp(u — ipu, up — ipu)

whence

. ap(u — 1pu, wp Jn(u — ipu, wp
[llun — inulllcrp < 2 sup Q—FQ sup I = intt, wn)

whey,  |lwnlllcrp whev,  |wnlllcrp

Consider the individual terms in ap(u — ipu, wy) for all wy, € Y. Integration
by parts of the convection term gives
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ap(u —ipu,wp) =€ (V(u —ipu), Vup,) + ((c — div b)(u — ipu), wy)
+(b-n(u—ipu),wn)r, — (u—1ipu,b- Vwy)

—€ 78(u—ihu) w —€ u—iu%
on y Wh . h't, on .

&

+ 3 lu—iu, wp) g (3.105)
hg

ECI

Here the fourth term is the most troublesome and we estimate it first. Adding
and subtracting by, - Vwy, gives

(u—ipu,b- Vwg) = (u—ipu, (b —bp) - Vwg) + (u — ipu, by - Vwp,);
for the first term here an inverse inequality gives

|(u - ihu, (b - bh) . th)| S C Z Hu - ihu||0,T hT |wh
TeT),

< Ch Hullpsa [[fwnlllcrp,

1,T

while for the second term choose ij to be the global Ly projection in Y, and
then the orthogonality of u — ipu with respect to Y}, and Lemma 3.80 imply
that

|(u - ihu,bh . th)| = | (u - ihu,bh . th - W;(bh . th)) |
1/2
<C <Z h%lHU_ihM (2)T> l[lwnlllcrp
TeT),

< Ch™ Y2 [ullrr [llwnlllere.
The other terms in (3.105) are bounded by means of standard arguments:

el(V(u — inu), Vup)| < C'20" ullora |||wlllcrp
(e = V- b)(u—inu), wn)| < CR"ullpir [[Jwnlllorp,

[[b - n|(w = ipw), wp)r, | < CR™ Y2 g |[Jwn ]l crp,

where the scaled trace inequality (3.103) was used in deriving the last estimate.
The Cauchy-Schwarz inequality shows that
5 N\ 1/2
> wnlllcrp.
0,E

O(u — inu) 1/2
€<8n’wh>r < eV ZhE

ECI
An invocation of the scaled trace inequality (3.103) gives

O(u —ipu)
on

O(u — ipu)

1/2
hE/ on

< C(Ju—ipu
0.E

1,7+ hT\u - ihu|2,T) VE C 0T
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squaring then summing, we get

‘ <8(u —ipu) >
e{ ————>,wp
on r

For the penultimate term in (3.105) one proceeds similarly, using an inverse
inequality:

< 21 [[ull g1 [Jwnlllerp-

6wh

on

}5/2 < C(|lwp|i,r + hrlwplo,r) < Clwpl,r VE C OT.

0,E

It follows that

5<(u—z’ w) 8wh> <y (5>1/2 lu — inullo.s (ehe)/? Own
W) o )| S 2\ nullo,e (ehe on ||y
1/2 1/2
€ 2 2
< <Z h|“_1hu”o,E> <5 Z |wh|1,T>
gcr P TET,

< CeV2R [[ullr11 |l|walllcre.
The final term in (3.105) is handled by a Cauchy-Schwarz inequality, obtaining

1/2
g .
<7 (Z Ellu - Wﬂl%,z;) [[walllcrp

ECI
< G20 |[ull 41 [l|wnlllcrp.

Z E—7<(u — IR U, Wh) B
hg

ECI

Finally, using similar arguments to estimate the stabilizing term from the
start of the proof, we get

| Tn(uw = inu, wp)| < O3 g1 [T (wh, wp)[?
< CH Y2 ull s [[[wnl[|crp-
Combining the above estimates produces the desired error estimate. 0O

Remark 3.87. The proof of Theorem 3.86 assumed that the meshes were quasi-
uniform. This assumption can be relaxed slightly [BFHO06]. An alternative
way of avoiding the assumption of quasi-uniformity is to replace the Lo pro-
jection i;, by the standard nodal interpolation u!. Although one cannot then
appeal to an orthogonality property when estimating the convection term,
nevertheless an O(h") error estimate (instead of the above O(h"+1/2)) can be
established; see [Sch07].

Remark 3.88. The continuous interior penalty approach is generalized to the
hp version of the finite element method in [BEOT7]. In [BHO04] the question of
a discrete maximum principle is discussed. Local error estimates similar to
those stated for the streamline diffusion method in Theorem 3.41 have been
established in [BGLOT]. &
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Finally, we wish to point out the close relationship between the LPS and
CIP analyses. The essential point in the error estimation of both methods is
a special treatment of the convection term.

For the LPS method, after integrating by parts, the orthogonality property
of a special interpolant j, with respect to the projection space Dy, is used:

(u— jpu,b- Vwy) = (u — jpu,b- Vwy, — (b Vwy,))

where 7, : Ly(£2) — Dy, is a local projection into the discontinuous projection
space Dy,. Control over k(b Vwy) = b Vwy, — mp(b - Vwy,) is achieved by
adding a stabilizing term like (3.86b) which causes a consistency error, but
this is sufficiently small provided that the projection space Dy, is sufficiently
large.

In the CIP stabilization method, the special interpolant j; is replaced by
the standard (global) Ls projection iy : L2 (§2) — V}, into the continuous finite
element space Y, and the Ly projection 7, of LPS is replaced by the quasi-
interpolant 7} into Y},. The special construction of the quasi-interpolant }
permits an Ly control of by, - Vwy, — 7} (by, - Vwy) by (appropriately scaled)
jumps in the gradient of w;, — see Lemma 3.80 above.
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