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Linear Predic7. Linear Prediction

J. Benesty, J. Chen, Y. Huang

Linear prediction plays a fundamental role in
all aspects of speech. Its use seems natural and
obvious in this context since for a speech signal the
value of its current sample can be well modeled
as a linear combination of its past values. In
this chapter, we attempt to present the most
important ideas on linear prediction. We derive
the principal results, widely recognized by speech
experts, in a very intuitive way without sacrificing
mathematical rigor.
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7.1 Fundamentals

Linear prediction (LP) is a fundamental tool in many
diverse areas such as adaptive filtering, system identifi-
cation, economics, geophysics, spectral estimation, and
speech. Recently, a nice history of LP in the context of
speech coding was written by Atal [7.1]. Readers are
invited to consult this reference for more information
about this topic and how it has evolved.

Linear prediction is widely used in speech applica-
tions (recognition, compression, modeling, etc.) [7.2,3].
This is due to the fact that the speech production process
is well modeled with LP. Indeed, it is well recognized
that a speech signal can be written in the following
form [7.4, 5],

x(k) =
L∑

l=1

al x(k − l)+ Gu(k) , (7.1)

where k is the time index, L represents the number of
coefficients in the model (the order of the predictor),
al , l = 1, · · · , L , are defined as the linear prediction
coefficients, G is the gain of the system, and u(k) is
the excitation signal, which can be either a quasiperi-
odic train of impulses or a random noise source (also
a combination of both signals for voiced fricatives such
as ‘v’, ‘z’, and ‘zh’). The periodic source produces
voiced sounds such as vowels and nasals, and the noise

source produces unvoiced or fricated sounds such as
the fricatives. The parameters, al , determine the spec-
tral characteristics of the particular sound for each of
the two types of excitation and are widely used directly
in many speech coding schemes and automatic speech
recognition systems [7.4].

Equation (7.1) can be rewritten in the frequency do-
main, by using the z-transform. If H(z) is the transfer
function of the system, we have:

H(z) = G

1−∑L
l=1alz−l

= G

A(z)
, (7.2)

which is an all-pole transfer function. This filter [H(z)]
is a good model of the human vocal tract [7.2]. Our main
concern is to determine the predictor coefficients, al , l =
1, 2, · · · , L , and to study the properties of the filter A(z).

The applications of LP are numerous. Before ad-
dressing the estimation of LP coefficients, we give some
examples to show the importance of LP. In many aspects
of speech processing (noise reduction, speech separa-
tion, speech dereverberation, speech coding, etc.), it is
of great interest to compare the closeness of the spec-
tral envelope of two speech signals (the desired and
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122 Part B Signal Processing for Speech

the processed ones) [7.6, 7]. One way of doing this is
through comparing their LP coefficients. Consider the
two speech signals x(k) (desired) and x̂(k) (processed).
Without entering too much into the details, one possible
measure to evaluate the closeness of these two signals is
the Itakura distance:

IDxx̂ = ln
Ex

Ex̂
, (7.3)

where Ex and Ex̂ are the prediction-error powers of the
signals x(k) and x̂(k), respectively (see the following
sections for more details). Note that the Itakura distance
is not symmetric, i. e.,

IDxx̂ �= IDx̂x , (7.4)

therefore, it is not a distance metric. However, asym-
metry is usually not a problem for applications such as
speech quality evaluation.

A more-powerful distance was proposed by Itakura
and Saito in their formulation of linear prediction as
an approximate maximum-likelihood estimation [7.8].
This distance between the two signals x(k) and x̂(k) is
defined as,

ISDxx̂ = Ex̂

Ex
− ln

Ex̂

Ex
−1 . (7.5)

Like the Itakura distance, this measure is not symmetric
either; therefore, it is not a true metric.

The Itakura–Saito distance has many interesting
properties. It has been shown that this measure is highly
correlated with subjective quality judgements [7.6]. For
example, a recent report on speech codec evaluation re-
veals that, if the Itakura–Saito measure between two
speech signals is less than 0.5, the difference in their
mean opinion score would be less than 1.6 [7.9]. Many
other reported experiments also confirmed that when
the Itakura–Saito distance between two speech signals
is below 0.1, they would be perceived nearly identi-
cally by human ears. As a result, the Itakura–Saito
distance, which is based on LP, is often used as an
objective measure of speech quality. It is probably the
most widely used measure of similarity between speech
signals.

The two previous examples of the vocal-tract fil-
ter and the speech quality measure clearly show the
importance of LP in speech applications.

In this chapter, we study the theory of linear predic-
tion and derive the most important LP techniques that are
often encountered in many speech applications. We as-
sume here that all signals of interest are real, stationary,
and zero mean.

7.2 Forward Linear Prediction

Consider a stationary random signal x(k). The objective
of the forward linear prediction is to predict the value
of the sample x(k) from its past values, i. e., x(k −1),
x(k −2), etc. We define the forward prediction error
as [7.10, 11],

ef,L (k) = x(k)− x̂(k)

= x(k)−
L∑

l=1

aL,l x(k − l)

= x(k)−aT
L x(k −1) , (7.6)

where the superscript ‘T’ denotes transposition, x̂(k) is
the predicted sample,

aL = [aL,1 aL,2 · · · aL,L ]T

is the forward predictor of length L , and

x(k −1) = [x(k −1) x(k −2) · · · x(k − L)]T

is a vector containing the L most recent samples starting
with and including x(k −1).

We would like to find the optimal Wiener predictor.
For that, we seek to minimize the mean-square error
(MSE):

Jf (aL ) = E
{
e2

f,L (k)
}

, (7.7)

where E{·} denotes mathematical expectation. Taking
the gradient of Jf (aL ) with respect to aL and equating to
0L×1 (a vector of length L containing only zeroes), we
easily find the Wiener–Hopf equations:

RLao,L = rf,L , (7.8)

where the subscript ‘o’ in ao,L stands for optimal,

RL = E{x(k −1)xT(k −1)}
= E{x(k)xT(k)}

=

⎛
⎜⎜⎜⎜⎝

r(0) r(1) · · · r(L −1)

r(1) r(0) · · · r(L −2)
...

...
. . .

...

r(L −1) r(L −2) · · · r(0)

⎞
⎟⎟⎟⎟⎠

(7.9)
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Linear Prediction 7.3 Backward Linear Prediction 123

is the correlation matrix, and

rf,L = E{x(k −1)x(k)}
= [r(1) r(2) · · · r(L)]T (7.10)

is the correlation vector. The matrix RL has a Toeplitz
structure (i. e., all the entries along the diagonals are the
same); assuming that it is nonsingular, we deduce the
optimal forward predictor:

ao,L = R−1
L rf,L . (7.11)

Expanding e2
f,L (k) in (7.7) and using (7.8) shows that

the minimum mean-square error (MMSE),

Jf,min = Jf (ao,L )

= r(0)−rT
f,Lao,L = Ef,L . (7.12)

This is also called the forward prediction-error power.
Define the augmented correlation matrix:

RL+1 =
(

r(0) rT
f,L

rf,L RL

)
, (7.13)

equations (7.8) and (7.12) may be combined in a con-
venient way:

RL+1

(
1

−ao,L

)
=

(
Ef,L

0L×1

)
. (7.14)

We refer to (7.14) as the augmented Wiener–Hopf equa-
tions of a forward predictor of order L . From (7.13) we
derive that,

det(RL+1) = Ef,L det(RL ) , (7.15)

where ‘det’ stands for determinant.
Let us now write the forward prediction errors for

the optimal predictors of orders L and L − i:

ef,o,L (k) = x(k)−
L∑

l=1

ao,L,l x(k − l) , (7.16)

ef,o,L−i (k) = x(k)−
L−i∑

l=1

ao,L−i,l x(k − l) . (7.17)

From the principle of orthogonality [7.11], we know
that:

E{ef,o,L (k)x(k −1)} = 0L×1 . (7.18)

For 1 ≤ i ≤ L , we can verify by using (7.18), that:

E{ef,o,L (k)ef,o,L−i (k − i)} = 0 . (7.19)

As a result,

lim
L→∞ E{ef,o,L (k)ef,o,L−i (k − i)}
= E{ef,o(k)ef,o(k − i)} = 0 . (7.20)

This indicates that the signal ef,o(k) is a white noise. So
the optimal forward predictor has this important property
of being able to whiten a stationary random process,
provided that the order of the predictor is high enough.

7.3 Backward Linear Prediction

The aim of the backward linear prediction is to predict
the value of the sample x(k − L) from its future val-
ues, i. e., x(k), x(k −1), · · · , x(k − L +1). We define the
backward prediction error as,

eb,L (k) = x(k − L)− x̂(k − L)

= x(k − L)−
L∑

l=1

bL,l x(k − l +1)

= x(k − L)−bT
L x(k) , (7.21)

where x̂(k − L) is the predicted sample,

bL = [bL,1 bL,2 · · · bL,L ]T

is the backward predictor of order L , and

x(k) = [x(k) x(k −1) · · · x(k − L +1)]T .

The minimization of the MSE,

Jb(bL ) = E
{
e2

b,L (k)
}

, (7.22)

leads to the Wiener–Hopf equations:

RL bo,L = rb,L , (7.23)

where

rb,L = E{x(k)x(k − L)} (7.24)

= [r(L) r(L −1) · · · r(1)]T .

Therefore, the optimal backward predictor is:

bo,L = R−1
L rb,L . (7.25)

The MMSE for backward prediction,

Jb,min = Jb(bo,L )

= r(0)−rT
b,Lbo,L = Eb,L , (7.26)

is also called the backward prediction-error power.
Define the augmented correlation matrix:

RL+1 =
(

RL rb,L

rT
b,L r(0)

)
, (7.27)
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124 Part B Signal Processing for Speech

equations (7.23) and (7.26) may be combined in a con-
venient way:

RL+1

(
−bo,L

1

)
=

(
0L×1

Eb,L

)
. (7.28)

We refer to this expression as the augmented Wiener–
Hopf equations of a backward predictor of order L .

One important property of backward predic-
tion is that the error signals of different orders
with the optimal predictors are uncorrelated, i. e.,
E{eb,o,i (k)eb,o,l(k)} = 0, i �= l, i, l = 0, 1, · · · , L −1. To
prove this, let us rewrite the error signal in vector form:

eb,o(k) = Lx(k) , (7.29)

where

eb,o(k) = [eb,o,0(k) eb,o,1(k) · · · eb,o,L−1(k)]T

(7.30)

and

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

−bT
o,1 1 0 · · · 0

−bT
o,2 1 · · · 0
...

...
...

...

−bT
o,L−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(7.31)

is a lower triangular matrix with 1s along its main diag-
onal. The covariance matrix corresponding to the vector
signal eb,o(k) is:

E
{
eb,o(k)eT

b,o(k)
} = LRL LT . (7.32)

By definition, the previous matrix is symmetric. The
matrix product RL LT is a lower triangular matrix be-
cause of (7.28) and the main diagonal contains the
backward prediction-error powers Eb,l (0 ≤ l ≤ L −1).
Since L is also a lower triangular matrix, the product
between the two matrices L and RL LT should have
the same structure and, since it has to be symmet-
ric, the only possibility is that this resulting matrix is
diagonal:

E
{
eb,o(k)eT

b,o(k)
} = diag[Eb,0, Eb,1, · · · , Eb,L−1] ,

(7.33)

and hence the prediction errors are uncorre-
lated.

Furthermore,

LRL LT = diag[Eb,0, Eb,1, · · · , Eb,L−1] , (7.34)

taking the inverse of the previous equation,

L−TR−1
L L−1 = diag

[
E−1

b,0, E−1
b,1, · · · , E−1

b,L−1

]
,

(7.35)

we finally get:

R−1
L = LTdiag

[
E−1

b,0, E−1
b,1, · · · , E−1

b,L−1

]
L . (7.36)

Expression (7.36) defines the Cholesky factorization of
the inverse matrix R−1

L [7.10, 12].

7.4 Levinson–Durbin Algorithm

The Levinson–Durbin algorithm is an efficient way to
solve the Wiener–Hopf equations for the forward and
backward prediction coefficients. This efficient method
can be derived thanks to the Toeplitz structure of
the correlation matrix RL . This algorithm was first
invented by Levinson [7.13] and independently refor-
mulated at a later date by Durbin [7.14, 15]. Burg gave
a more-elegant presentation [7.16]. Before describing
this algorithm, we first need to show some important
relations between the forward and backward predictors.

We define the co-identity matrix as:

JL =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0

1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We can easily check that:

RLJL = JLRL . (7.37)

The matrix RL is said to be persymmetric. We also
have, rf,L = JLrb,L . If we left-multiply both sides of the

Wiener–Hopf equations (7.23) by JL , we get:

JLRL bo,L = JLrb,L = rf,L

= RLJL bo,L = RLao,L , (7.38)

and, assuming that RL is nonsingular, we see that:

ao,L = JL bo,L . (7.39)

Part
B

7
.4



Linear Prediction 7.4 Levinson–Durbin Algorithm 125

Furthermore,

Eb,L = r(0)−rT
b,Lbo,L

= r(0)−rT
b,LJL JL bo,L

= r(0)−rT
f,Lao,L

= Ef,L = EL . (7.40)

Therefore, for a stationary process, the forward and
backward prediction-error powers are equal and the
coefficients of the optimal forward predictor are the
same as those of the optimal backward predictor, but
in a reverse order.

The Levinson–Durbin algorithm is based on recur-
sions of the orders of the prediction equations. Consider
the following expression,

(
RL rb,L

rT
b,L r(0)

)⎛
⎜⎝

1

−ao,L−1

0

⎞
⎟⎠ =

⎛
⎜⎝

EL−1

0(L−1)×1

KL

⎞
⎟⎠ , (7.41)

where

KL = r(L)−aT
o,L−1rb,L−1

= r(L)−aT
o,L−1JL−1rf,L−1 . (7.42)

We define the reflection coefficient as,

κL = KL

EL−1
. (7.43)

From backward linear prediction, we have:

(
r(0) rT

f,L

rf,L RL

)⎛
⎜⎝

0

−bo,L−1

1

⎞
⎟⎠ =

⎛
⎜⎝

KL

0(L−1)×1

EL−1

⎞
⎟⎠ . (7.44)

Multiplying both sides of the previous equation by κL ,
we get,

RL+1

⎛
⎜⎝

0

−κL bo,L−1

κL

⎞
⎟⎠ =

⎛
⎜⎝

κ2
L EL−1

0(L−1)×1

KL

⎞
⎟⎠ . (7.45)

If we now subtract (7.45) from (7.41), we obtain,

RL+1

⎛
⎜⎝

1

κL bo,L−1 −ao,L−1

−κL

⎞
⎟⎠ =

(
EL−1(1−κ2

L )

0L×1

)
.

(7.46)

Assuming that RL+1 is nonsingular and identifying
(7.46) with (7.14), we can deduce the recursive equa-

tions:

ao,L =
(

ao,L−1

0

)
−κL

(
bo,L−1

−1

)
, (7.47)

EL = EL−1(1−κ2
L ) , (7.48)

ao,L,L = κL . (7.49)

Iterating on the prediction-error power given in (7.48),
we find that,

EL = r(0)
L∏

l=1

(
1−κ2

l

)
, (7.50)

and since EL ≥ 0, this implies that,

|κl| ≤ 1, ∀l ≥ 1 . (7.51)

Also, from (7.48) we see that we have,

0 ≤ El ≤ El−1, ∀l ≥ 1 , (7.52)

so, as the order of the predictors increases, the
prediction-error power decreases.

Table 7.1 summarizes the Levinson–Durbin algo-
rithm, whose arithmetic complexity is proportional to
L2. This algorithm is much more efficient than stand-
ard methods such as the Gauss elimination technique,
whose complexity is on the order of L3. The saving in
number of operations to find the optimal Wiener predic-
tor can be very important, especially when L is large.
The other advantage of the Levinson–Durbin algorithm
is that it gives the predictors of all orders and the al-
gorithm can be stopped if the prediction-error power is
under a threshold, which can be very useful in practice
when the choice of the predictor order is not easy to get in
advance. A slightly more-efficient approach, called the
split Levinson algorithm, can be found in [7.17]. This
algorithm requires roughly half the number of multipli-
cations and the same number of additions as the classical
Levison–Durbin algorithm. Even more-efficient algo-
rithms have been proposed (see, for example, [7.18]) but
they are numerically unstable, which is not acceptable
in most speech applications.

Table 7.1 Levinson–Durbin algorithm

Initialization: E0 = r(0)

For 1 ≤ l ≤ L

κl = 1

El−1

[
r(l)−aT

o,l−1Jl−1rf,l−1
]

ao,l =
(

ao,l−1

0

)
−κlJl

(
−1

ao,l−1

)

El = El−1
(
1−κ2

l

)
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7.5 Lattice Predictor

In this section, we will show that the order-recursive
structure of the forward and backward prediction er-
rors has the form of a ladder, which is called a lattice
predictor.

Inserting (7.47) into the forward prediction error for
the optimal predictor of order L ,

ef,o,L (k) = x(k)−aT
o,L x(k −1) , (7.53)

we obtain,

ef,o,L (k) = ef,o,L−1(k)

−κL

(
−bT

o,L−1 1
)

x(k −1) . (7.54)

The second term (without the reflection coefficient) on
the right-hand side of (7.54) is the backward prediction
error, at time k −1, for the optimal predictor of order
L −1. Therefore, (7.54) can be rewritten

ef,o,L (k) = ef,o,L−1(k)−κL eb,o,L−1(k −1) . (7.55)

If we insert (7.47) again into the backward prediction
error for the optimal predictor of order L ,

eb,o,L (k) = x(k − L)−bT
o,L x(k)

= x(k − L)−aT
o,L JL x(k) , (7.56)

we get,

eb,o,L (k) = eb,o,L−1(k −1)−κL ef,o,L−1(k) . (7.57)

If we put (7.55) and (7.57) into a matrix form, we have,
(

ef,o,L (k)

eb,o,L (k)

)
=

(
1 −κL

−κL 1

)(
ef,o,L−1(k)

eb,o,L−1(k −1)

)

=
L∏

l=1

(
1 −κl

−κl 1

)(
x(k)

x(k −1)

)
, (7.58)

where we have taken for initial conditions (order 0),
ef,o,0(k) = x(k) and eb,o,0(k −1) = x(k −1). Figure 7.1

�����������	 ���������	

�
���������	 �
�������	���

��

Fig. 7.1 Stage l of a lattice predictor

depicts the l-th stage of a lattice predictor. For the whole
lattice predictor, L of these stages are needed and are
connected in cascade, one to each other, starting from
order 0 to order L .

Now let us compute the variance of eb,o,L (k) from
(7.57),

E
{
e2

b,o,L (k)
} = EL

= EL−1 +κ2
L EL−1

−2κL E{ef,o,L−1(k)eb,o,L−1(k −1)}
= EL−1

(
1−κ2

L

)
. (7.59)

Developing the previous expression, we obtain,

κL = E{ef,o,L−1(k)eb,o,L−1(k −1)}
EL−1

= E{ef,o,L−1(k)eb,o,L−1(k −1)}√
E

{
e2

f,o,L−1(k)
}

E
{
e2

b,o,L−1(k −1)
} . (7.60)

We see from (7.60) that the reflection coefficients are
also the normalized cross-correlation coefficients be-
tween the forward and backward prediction errors,
which is why they are also often called partial correlation
(PARCOR) coefficients [7.3, 19, 20]. These coefficients
are linked to the zeroes of the forward prediction-error
FIR filter of order L , whose transfer function is

Ao,L (z) = 1−
L∑

l=1

ao,L,l z
−l =

L∏

l=1

(
1− zo, lz−1) ,

(7.61)

where zo,l are the roots of Ao,L (z). Since κL = ao,L,L ,
we have,

κL = (−1)L+1
L∏

l=1

zo,l . (7.62)

The filter Ao,L (z) can be shown to be minimum phase,
i. e.,

∣∣zo,l
∣∣ ≤ 1, ∀l. As a result [because of the relation

(7.39)], the filter Bo,L (z) corresponding to the backward
predictor is maximum phase. We will now show this
very important property that the forward predictor is
minimum phase. As far as we know, this simple and
elegant proof was first shown by M. Mohan Sondhi but
was never been published. A similar proof can be found
in [7.21] and [7.22].

To avoid cumbersome notation, redefine the coeffi-
cients wl = −ao,L,l , with w0 = 1, so that the polynomial
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becomes,

Ao,L (z) =
L∑

l=0

wl z
−l . (7.63)

Also, define the vector,

w = [w0 w1 · · · wL ]T .

We know that,

RL+1w =
(

EL

0L×1

)
. (7.64)

If λ is a root of the polynomial, it follows that,

Ao,L (z) = (1−λz−1)
L−1∑

l=0

glz
−l, with g0 = 1 .

(7.65)

(Note that since λ can be complex, the coefficients gl are,
in general, complex.) Thus the vector w can be written

w = g −λg̃ , (7.66)

where

g = [1 g1 g2 · · · gL−1 0]T = [g′T 0]T ,

g̃ = [0 1 g1 g2 · · · gL−1]T = [0 g′T]T .

Substituting (7.66) in (7.64), we obtain,

RL+1g = λRL+1g̃+
(

EL

0L×1

)
. (7.67)

Now, premultiplying by g̃H (where the superscript H

denotes conjugate transpose) gives,

g̃HRL+1g = λg̃HRL+1g̃ . (7.68)

Thus,
∣∣∣g̃HRL+1g

∣∣∣
2 = |λ|2 (

g̃HRL+1g̃
)2

. (7.69)

Using the Schwartz inequality,
∣∣∣g̃HRL+1g

∣∣∣
2 ≤ (

g̃HRL+1g̃
)(

gHRL+1g
)
. (7.70)

However,

g̃HRL+1g̃ =
(

0 g′H
)(

r(0) rT
f,L

rf,L RL

)(
0

g′

)

= g′HRL g′ , (7.71)

Similarly,

gHRL+1g =
(

g′H 0
)(

RL rb,L

rT
b,L r(0)

)(
g′

0

)

= g′HRL g′ . (7.72)

Therefore, g̃HRL+1g̃ = gHRL+1g, and the Schwartz in-
equality becomes,

∣∣∣g̃HRL+1g
∣∣∣
2 ≤ (

g̃HRL+1g̃
)2

. (7.73)

From (7.69) we see that |λ|2 ≤ 1. This completes the
proof.

This property allows one easily to ensure that the
all-pole system in (7.2) is stable (when the correlation
matrix is positive definite) by simply imposing the con-
straint that the PARCOR coefficients are less than 1 in
magnitude. As a result, in speech communication, trans-
mitting PARCOR coefficients is more advantageous than
directly transmitting linear predication coefficients.

7.6 Spectral Representation

It is important to understand the link between the spec-
trum of a speech signal and its prediction coefficients.
Let us again take the speech model given in Sect. 7.1,

x(k) =
L∑

l=1

al x(k − l)+ Gu(k) , (7.74)

where we now assume that u(k) is a white random signal
with variance σ2

u = 1. Since x(k) is the output of the filter
H(z) (see Sect. 7.1), whose input is u(k), its spectrum
is [7.11],

Sx(ω) = ∣∣H(eiω)
∣∣2

Su(ω) , (7.75)

where ω is the angular frequency, H(eiω) is the fre-
quency response of the filter H(z), and Su(ω) is the
spectrum of u. We have Su(ω) = 1 (u is white). Using
(7.2), we deduce the spectrum of x,

Sx(ω) = G2

|A(eiω)|2

= G2

∣∣∣1−∑L
l=1 al e−ilω

∣∣∣
2 . (7.76)

Therefore, the spectrum of a speech signal can be mod-
eled by the frequency response of an all-pole filter,

Part
B

7
.6



128 Part B Signal Processing for Speech

whose elements are the prediction coefficients [7.23–
25].

Consider the prediction error signal,

eL (k) = x(k)−aT
L x(k −1) . (7.77)

Taking the z-transform of (7.77) and setting z = eiω, we
obtain:

Sx,L (ω) = |EL (eiω)|2
|AL (eiω)|2 , (7.78)

where |EL (eiω)|2 is the spectrum of eL (k). From
Sect. 7.2, we know that, for a large order L , linear pre-
diction tends to whiten the signal, so the power spectrum

|EL (eiω)|2 of the error signal, eL (k), will tend to be flat.
Hence,

lim
L→∞

∣∣EL (eiω)
∣∣2 = G2 . (7.79)

As a result,

lim
L→∞ Sx,L (ω) = G2

∣∣1−∑∞
l=1 al e−ilω

∣∣2
. (7.80)

This confirms that (7.76) can be a very good approxi-
mation of the spectrum of a speech signal, as long as the
order of the predictor is large enough.

7.7 Linear Interpolation

Linear interpolation can be seen as a straightforward
generalization of forward and backward linear predic-
tions. Indeed, in linear interpolation, we try to predict
the value of the sample x(k − i) from its past and future
values [7.26, 27]. We define the interpolation error as

ei (k) = x(k − i)− x̂(k − i)

= x(k − i)−
L∑

l=0,l �=i

ci,l x(k − l)

= cT
i xL+1(k), i = 0, 1, · · · , L, (7.81)

where x̂(k − i) is the interpolated sample,

ci = [−ci,0 −ci,1 · · · ci,i · · · −ci,L ]T

is a vector of length L +1 containing the interpolation
coefficients, with ci,i = 1, and

xL+1(k) = [x(k) x(k −1) · · · x(k − L)]T .

The special cases i = 0 and i = L are the forward and
backward prediction errors, respectively.

To find the optimal Wiener interpolator, we need to
minimize the cost function,

Ji (ci ) = E
{
e2

i (k)
}

= cT
i RL+1ci , (7.82)

subject to the constraint

cT
i vi = ci,i = 1 , (7.83)

where

vi = [0 0 · · · 0 1 0 · · · 0]T

is a vector of length L +1 with its i-th component equal
to one and all others equal to zero. By using a La-
grange multiplier, it is easy to see that the solution to
this optimization problem is

RL+1co,i = Eivi , (7.84)

where

Ei = cT
o,iRL+1co,i

= 1

vT
i R−1

L+1vi
(7.85)

is the interpolation-error power.
From (7.84) we find,

co,i

Ei
= R−1

L+1vi , (7.86)

hence the i-th column of R−1
L+1 is co,i/Ei . We can now

see that R−1
L+1 can be factorized as follows [7.28]:

R−1
L+1 =

⎛
⎜⎜⎜⎜⎝

1 −co,1,0 · · · −co,L,0

−co,0,1 1 · · · −co,L,1
...

...
. . .

...

−co,0,L −co,1,L · · · 1

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

1/E0 0 · · · 0

0 1/E1 · · · 0
...

...
. . .

...

0 0 · · · 1/EL−1

⎞
⎟⎟⎟⎟⎠

= CT
o D−1

e . (7.87)
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Furthermore, since R−1
L+1 is a symmetric matrix, (7.87)

can be written as,

R−1
L+1 =

⎛
⎜⎜⎜⎜⎝

1/E0 0 · · · 0

0 1/E1 · · · 0
...

...
. . .

...

0 0 · · · 1/EL−1

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

1 −co,0,1 · · · −co,0,L

−co,1,0 1 · · · −co,1,L
...

...
. . .

...

−co,L,0 −co,L,1 · · · 1

⎞
⎟⎟⎟⎟⎠

= D−1
e Co . (7.88)

Therefore, we deduce that,
co,i,l

Ei
= co,l,i

El
, i, l = 0, 1, · · · , L . (7.89)

The first and last columns of R−1
L+1 contain, respec-

tively, the normalized forward and backward predictors
and all the columns between contain the normalized
interpolators.

We are now going to show how the condition number
of the correlation matrix depends on the interpolators.
The condition number of the matrix RL+1 is defined
as [7.29]:

χ(RL+1) = ‖RL+1‖
∥∥R−1

L+1

∥∥ , (7.90)

where ‖ · ‖ can be any matrix norm. Note that χ(R) de-
pends on the underlying norm. Let us compute χ(RL+1)
using the Frobenius norm:

‖RL+1‖F = [
tr
(
RT

L+1RL+1
)]1/2

= [
tr
(
R2

L+1

)]1/2
(7.91)

and
∥∥R−1

L+1

∥∥F = [
tr
(
R−2

L+1

)]1/2
. (7.92)

From (7.86), we have,

cT
o,ico,i

E2
i

= vT
i R−2

L+1vi , (7.93)

which implies that,
L∑

i=0

cT
o,ico,i

E2
i

=
L∑

i=0

vT
i R−2

L+1vi

= tr
(
R−2

L+1

)
. (7.94)

Also, we can easily check that,

tr
(
R2

L+1

) = (L +1)r2(0)+2
L∑

l=1

(L +1− l)r2(l) .

(7.95)

Therefore, the square of the condition number of the
correlation matrix associated with the Frobenius norm
is

χ2
F(RL+1) =

[
(L +1)r2(0)+2

L∑

l=1

(L +1− l)r2(l)

]

×
L∑

i=0

cT
o,ico,i

E2
i

. (7.96)

Some other interesting relations between the forward
predictors and the condition number can be found
in [7.30].

To conclude this section, we would like to let read-
ers know that several algorithms exist to compute the
optimal predictors efficiently, see for example, [7.31]
and [7.32]. All these algorithms are based on Levinson–
Durbin recursions.

7.8 Line Spectrum Pair Representation

Line spectrum pair (LSP) representation, first introduced
by Itakura [7.33], is a more-robust way to represent the
coefficients of linear predictive models. The LSP poly-
nomials have some very interesting properties shown
in [7.34].

A polynomial P(z) of order L is said to be symmetric
if

P(z) = z−L P(z−1) (7.97)

and a polynomial Q(z) is antisymmetric if

Q(z) = −z−L Q(z−1) . (7.98)

Let

A(z) = 1−a1z−1 −a2z−2 −· · ·−aL z−L (7.99)

be the optimal polynomial predictor of order L . It is well
known that in speech compression the coefficients of this
polynomial are inappropriate for quantization because
of their relatively large dynamic range and also because,
as stated earlier, quantization can change a stable LPC
filter into an unstable one [7.35]. From (7.99), we can
construct two artificial (L +1)-th-order (symmetric and
antisymmetric) polynomials by setting the (L +1)-th
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reflection coefficient, κL+1, to be +1 and −1. These
two cases correspond, respectively, to an entirely closed
or to an entirely open end at the last section of an acoustic
tube of L +1 piecewise-uniform sections [7.35],

P(z) = A(z)+ z−L A(z−1) , (7.100)

Q(z) = A(z)− z−L A(z−1) . (7.101)

The polynomial A(z) can be easily reconstructed from
P(z) and Q(z) by

A(z) = 1

2
[P(z)+ Q(z)] . (7.102)

It was proved in [7.36] and [7.34] that the LSP poly-
nomials, P(z) and Q(z), have the following important
properties:

• all zeros of LSP polynomials are on the unit circle,• the zeros of P(z) and Q(z) are interlaced, and• the minimum-phase property of A(z) can be easily
preserved if the first two properties are intact after
quantization.

Now, define the two prediction error signals:

e+(k) = x(n)− 1

2
[x(n −1)+ x(n)]Ta+, (7.103)

e−(k) = x(n)− 1

2
[x(n −1)− x(n)]Ta− . (7.104)

It is shown in [7.37] and [7.38] that the LSP polynomials,
whose trivial zeroes have been removed, are equivalent

to the two optimal Wiener predictors a+
o and a−

o . This is
easy to see if we rewrite, e+(k) for example as

e+(k) =
[

1 − a+T

2

]
xL+1(n)

+
[
−a+T

2
0

]
xL+1(n)

= gTIT
d xL+1(n) , (7.105)

where

Id =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0

0 1 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 1

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.106)

and

g =
⎛

⎝
1

−a+

2

⎞

⎠ . (7.107)

By minimizing the MSE, E{e+2(k)}, with respect to
g, with the constraint gTv1 = 1, one can find the most
important results. For readers who are interested in
more details on the properties of LSP polynomials, we
recommend the paper by Bäckström and Magi [7.39].

7.9 Multichannel Linear Prediction

Multichannel linear prediction can be very useful in
stereo or multichannel speech compression. In an in-
creasing number of speech or audio applications, we
have at least two channels available, which are often
highly correlated with each other. Therefore, it makes
sense to take this interchannel correlation into account
in order to obtain more-efficient compression schemes.
Multichannel linear prediction is the best way to do
this.

Let

χ(k) =
[
x1(k) x2(k) · · · xM(k)

]T

be a real, zero-mean, stationary M-channel time series.
We define the multichannel forward prediction error
vector as,

ef,L (k) = χ(k)− χ̂(k)

= χ(k)−
L∑

l=1

AL,lχ(k − l)

= χ(k)−AT
L x(k −1) , (7.108)

where

AL = [AL,1 AL,2 · · · AL,L ]T

is the forward predictor matrix of size ML× M, each one
of the square matrices AL,l is of size M × M, and

x(k −1) = [χT(k −1) χT(k −2) · · · χT(k − L)]T

is a vector of length ML. (For convenience, some of the
notation used in this section is the same as that in the
previous sections.)
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To derive the optimal Wiener forward predictors, we
need to minimize the MSE,

Jf (AL ) = E
{
eT

f,L (k)ef,L (k)
}

. (7.109)

We find the multichannel Wiener–Hopf equations:

RLAo,L = Rf (1/L) , (7.110)

where

RL = E{x(k −1)xT(k −1)} (7.111)

= E{x(k)xT(k)}

=

⎛
⎜⎜⎜⎜⎝

R(0) R(1) · · · R(L −1)

RT(1) R(0) · · · R(L −2)
...

...
. . .

...

RT(L −1) RT(L −2) · · · R(0)

⎞
⎟⎟⎟⎟⎠

(7.112)

is the block-Toeplitz covariance matrix of size ML×ML,

R(l) = E{χ(k)χT(k − l)}, l = 0, 1, · · · , L −1 ,

R(−l) = E{χ(k − l)χT(k)} = RT(l) ,

and

Rf (1/L) = [R(1) R(2) · · · R(L)]T

= E{x(k −1)χT(k)}
is the intercorrelation matrix of size ML × M.

Using the augmented block-Toeplitz covariance ma-
trix of size (ML+ M) × (ML+ M):

RL+1 =
(

R(0) RT
f (1/L)

Rf (1/L) RL

)
, (7.113)

we deduce the augmented multichannel Wiener–Hopf
equations:

RL+1

(
IM×M

−Ao,L

)
=

(
Ef,L

0ML×M

)
, (7.114)

where IM×M is the identity matrix of size M × M and

Ef,L = E
{
ef,o,L (k)eT

f,o,L (k)
}

= R(0)−RT
f (1/L)Ao,L (7.115)

is the forward error covariance matrix of size M × M,
with

ef,o,L (k) = χ(k)−AT
o,L x(k −1) . (7.116)

We will proceed with the same philosophy to derive
important equations for the multichannel backward pre-
diction. We define the multichannel backward prediction
error vector as

eb,L (k) = χ(k − L)− χ̂(k − L)

= χ(k − L)−
L∑

l=1

BL,lχ(k − l +1)

= χ(k − L)−BT
L x(k) , (7.117)

where

BL = [BL,1 BL,2 · · · BL,L ]T

is the backward predictor matrix of size ML × M with
each one of the square submatrices BL,l being of size
M × M.

The minimization of the MSE,

Jb(BL ) = E
{
eT

b,L (k)eb,L (k)
}

, (7.118)

leads to the multichannel Wiener–Hopf equations for the
backward prediction:

RL Bo,L = Rb(1/L) , (7.119)

where

Rb(1/L) = E{x(k)χT(k − L)} (7.120)

= [RT(L) RT(L −1) · · · RT(1)]T .

By using the augmented block-Toeplitz covariance
matrix:

RL+1 =
(

RL Rb(1/L)

RT
b (1/L) R(0)

)
, (7.121)

we find the augmented multichannel Wiener–Hopf equa-
tions:

RL+1

(
−Bo,L

IM×M

)
=

(
0ML×M

Eb,L

)
, (7.122)

where

Eb,L = E
{
eb,o,L (k)eT

b,o,L (k)
}

= R(0)−RT
b (1/L)Bo,L (7.123)

is the backward error covariance matrix of size M × M,
with

eb,o,L (k) = χ(k − L)−BT
o,L x(k) . (7.124)
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To solve the multichannel Wiener–Hopf equations
efficiently, we need to derive some important rela-
tions [7.40]. Consider the following system,

(
RL Rb(1/L)

RT
b (1/L) R(0)

)⎛
⎜⎝

IM×M

−Ao,L−1

0M×M

⎞
⎟⎠

=
⎛
⎜⎝

Ef,L−1

0(ML−M)×M

Kf,L

⎞
⎟⎠ , (7.125)

where

Kf,L = RT(L)−RT
b (1/L −1)Ao,L−1 . (7.126)

Consider the other system,

(
R(0) RT

f (1/L)

Rf (1/L) RL

)⎛
⎜⎝

0M×M

−Bo,L−1

IM×M

⎞
⎟⎠

=
⎛
⎜⎝

Kb,L

0(ML−M)×M

Eb,L−1

⎞
⎟⎠ , (7.127)

where

Kb,L = R(L)−RT
f (1/L −1)Bo,L−1 . (7.128)

If we post-multiply both sides of (7.127) by
E−1

b,L−1Kf,L , we get:

RL+1

⎛
⎜⎝

0M×M

−Bo,L−1

IM×M

⎞
⎟⎠ E−1

b,L−1Kf,L

=
⎛
⎜⎝

Kb,L E−1
b,L−1Kf,L

0(ML−M)×M

Kf,L

⎞
⎟⎠ . (7.129)

Subtracting (7.129) from (7.125) and identifying the
resulting system with the augmented multichannel
Wiener–Hopf equations for forward prediction [eq.
(7.114)], we deduce the two recursions:

Ef,L = Ef,L−1 −Kb,L E−1
b,L−1Kf,L , (7.130)

Ao,L =
(

Ao,L−1

0M×M

)

−
(

Bo,L−1

−IM×M

)
E−1

b,L−1Kf,L . (7.131)

Similarly, if we post-multiply both sides of (7.125)
by E−1

f,L−1Kb,L , we obtain:

RL+1

⎛
⎜⎝

IM×M

−Ao,L−1

0M×M

⎞
⎟⎠ E−1

f,L−1Kb,L

=
⎛
⎜⎝

Kb,L

0(ML−M)×M

Kf,L E−1
f,L−1Kb,L

⎞
⎟⎠ . (7.132)

Subtracting (7.132) from (7.127) and identifying
the resulting system with the augmented multichan-
nel Wiener–Hopf equations for backward prediction
(7.122), we deduce the two recursions:

Eb,L = Eb,L−1 −Kf,L E−1
f,L−1Kb,L , (7.133)

Bo,L =
(

0M×M

Bo,L−1

)

−
(

−IM×M

Ao,L−1

)
E−1

f,L−1Kb,L . (7.134)

Relations (7.130), (7.131), (7.133), and (7.134) were
independently discovered by Whittle [7.41] and Wiggins
and Robinson [7.42].

Another important relation needs to be found. In-
deed, using (7.116) and (7.124), we can easily verify,

E
{
ef,o,L−1(k)eT

b,o,L−1(k −1)
} = Kb,L , (7.135)

E
{
eb,o,L−1(k −1)eT

f,o,L−1(k)
} = Kf,L , (7.136)

which implies that,

Kb,L = KT
f,L . (7.137)

Table 7.2 summarizes the Levinson–Wiggins–
Robinson algorithm [7.42–44], which is a generalization
of the Levinson–Durbin algorithm to the multichannel
case.

Table 7.2 Levinson–Wiggins–Robinson algorithm

Initialization:Ef,0 = Eb,0 = R(0)

For1 ≤ l ≤ L

Kb,l = R(l)−RT
f (1 : l −1)Bo,l−1

Ao,l =
[

Ao,l−1

0M×M

]
−

[
Bo,l−1

−IM×M

]
E−1

b,l−1KT
b,l

Bo,l =
[

0M×M

Bo,l−1

]
−

[
−IM×M

Ao,l−1

]
E−1

f,l−1Kb,l

Ef,l = Ef,l−1 −Kb,lE
−1
b,l−1KT

b,l

Eb,l = Eb,l−1 −KT
b,lE

−1
f,l−1Kb,l
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7.10 Conclusions

In this chapter, we have tried to present the most im-
portant results in linear prediction for speech. We have
explained the principle of forward linear prediction and
have shown that the optimal prediction error signal tends
to be a white signal. We have extended the principle
of forward linear prediction to backward linear pre-
diction and derived the Cholesky factorization of the
inverse correlation matrix. We have developed the classi-
cal Levinson–Durbin algorithm, which is a very efficient
way to solve the Wiener–Hopf equations for the forward

and backward prediction coefficients. We have explained
the idea behind the lattice predictor. We have shown how
the spectrum of a speech signal can easily be estimated
thanks to the prediction coefficients. We have given some
notions of linear interpolation and have demonstrated
how the condition number of the correlation matrix is
related to the optimal interpolators. We have also pre-
sented some notions of line spectrum pair polynomials.
Finally, in the last section, we have generalized some of
these ideas to the multichannel case.
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