
1. Introduction

This chapter serves as a basic introduction to the reduction of elliptic bound-
ary value problems to boundary integral equations. We begin with model
problems for the Laplace equation. Our approach is the direct formulation
based on Green’s formula, in contrast to the indirect approach based on a
layer ansatz. For ease of reading, we begin with the interior and exterior
Dirichlet and Neumann problems of the Laplacian and their reduction to
various forms of boundary integral equations, without detailed analysis. (For
the classical results see e.g. Günter [113] and Kellogg [155].) The Laplace
equation, and more generally, the Poisson equation,

−∆v = f in Ω or Ωc

already models many problems in engineering, physics and other disciplines
(Dautray and Lions [59] and Tychonoff and Samarski [308]). This equation
appears, for instance, in conformal mapping (Gaier [88, 89]), electrostatics
(Gauss [95], Martensen [199] and Stratton [298]), stationary heat conduction
(Günter [113]), in plane elasticity as the membrane state and the torsion
problem (Szabo [300]), in Darcy flow through porous media (Bear [12] and
Liggett and Liu [188]) and in potential flow (Glauert [102], Hess and Smith
[124], Jameson [147] and Lamb [181]), to mention a few.

The approach here is based on the relation between the Cauchy data
of solutions via the Calderón projector. As will be seen, the corresponding
boundary integral equations may have eigensolutions in spite of the unique-
ness of the solutions of the original boundary value problems. By appropriate
modifications of the boundary integral equations in terms of these eigenso-
lutions, the uniquness of the boundary integral equations can be achieved.
Although these simple, classical model problems are well known, the concepts
and procedures outlined here will be applied in the same manner for more
general cases.

1.1 The Green Representation Formula

For the sake of simplicity, let us first consider, as a model problem, the
Laplacian in two and three dimensions. As usual, we use x = (x1, . . . , xn) ∈
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IRn (n = 2 or 3) to denote the Cartesian co–ordinates of the points in the
Euclidean space IRn. Furthermore, for x, y ∈ IRn, we set

x · y =
n∑

j=1

xjyj and |x| = (x · x)
1
2

for the inner product and the Euclidean norm, respectively. We want to find
the solution u satisfying the differential equation

−∆v := −
n∑

j=1

∂2v

∂x2
j

= f in Ω. (1.1.1)

Here Ω ⊂ IRn is a bounded, simply connected domain, and its boundary
Γ is sufficiently smooth, say twice continuously differentiable, i.e. Γ ∈ C2.
(Later this assumption will be reduced.) As is known from classical analysis,
a classical solution v ∈ C2(Ω) ∩ C1(Ω) can be represented by boundary
potentials via the Green representation formula and the fundamental solution
E of (1.1.1). For the Laplacian, E(x, y) is given by

E(x, y) =

{
− 1

2π log |x − y| for n = 2,
1
4π

1
|x−y| for n = 3.

(1.1.2)

The presentation of the solution reads

v(x) =
∫

y∈Γ

E(x, y)
∂v

∂n
(y)dsy −

∫

y∈Γ

v(y)
∂E(x, y)

∂ny
dsy +

∫

Ω

E(x, y)f(y)dy

(1.1.3)
for x ∈ Ω ( see Mikhlin [213, p. 220ff.]) where ny denotes the exterior normal
to Γ at y ∈ Γ , dsy the surface element or the arclength element for n = 3
or 2, respectively, and

∂v

∂n
(y) := lim

ỹ→y∈Γ,ỹ∈Ω
gradv(ỹ) · ny . (1.1.4)

The notation ∂/∂ny will be used if there could be misunderstanding due to
more variables.

In the case when f �≡ 0 in (1.1.1), one may also use the decomposition in
the following form:

v(x) = vp(x) + u(x) :=
∫

Rn

E(x, y)f(y)dy + u(x) (1.1.5)

where u now solves the Laplace equation

−∆u = 0 in Ω . (1.1.6)
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Here vp denotes a particular solution of (1.1.1) in Ω or Ωc and f has been
extended from Ω (or Ωc) to the entire Rn. Moreover, for the extended f
we assume that the integral defined in (1.1.5) exists for all x ∈ Ω (or Ωc).
Clearly, with this particular solution, the boundary conditions for u are to
be modified accordingly.

Now, without loss of generality, we restrict our considerations to the so-
lution u of the Laplacian (1.1.6) which now can be represented in the form:

u(x) =
∫

y∈Γ

E(x, y)
∂u

∂n
(y) −

∫

y∈Γ

u(y)
∂E(x, y)

∂ny
dsy . (1.1.7)

For given boundary data u|Γ and ∂u
∂n |Γ , the representation formula (1.1.7)

defines the solution of (1.1.6) everywhere in Ω. Therefore, the pair of bound-
ary functions belonging to a solution u of (1.1.6) is called the Cauchy data,
namely

Cauchy data ofu :=
(

u|Γ
∂u
∂n |Γ

)
. (1.1.8)

In solid mechanics, the representation formula (1.1.7) can also be derived
by the principle of virtual work in terms of the so–called weighted resid-
ual formulation. The Laplacian (1.1.6) corresponds to the equation of the
equilibrium state of the membrane without external body forces and vertical
displacement u. Then, for fixed x ∈ Ω, the terms

u(x) +
∫

y∈Γ

u(y)
∂E(x, y)

∂ny
dsy

correspond to the virtual work of the point force at x and of the resulting
boundary forces ∂E(x, y)/∂ny against the displacement field u, which are
equal to the virtual work of the resulting boundary forces ∂u

∂n |Γ acting against
the displacement E(x, y), i.e.

∫

y∈Γ

E(x, y)
∂u

∂n
(y)dsy .

This equality is known as Betti’s principle (see e.g. Ciarlet [42], Fichera [75]
and Hartmann [121, p. 159]). Corresponding formulas can also be obtained
for more general elliptic partial differential equations than (1.1.6), as will be
discussed in Chapter 2.

1.2 Boundary Potentials and Calderón’s Projector

The representation formula (1.1.7) contains two boundary potentials, the
simple layer potential
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V σ(x) :=
∫

y∈Γ

E (x, y)σ(y) dsy, x ∈ Ω ∪ Ωc , (1.2.1)

and the double layer potential

Wϕ(x) :=
∫

y∈Γ

(
∂

∂ny
E(x, y))ϕ(y)dsy, x ∈ Ω ∪ Ωc . (1.2.2)

Here, σ and ϕ are referred to as the densities of the corresponding potentials.
In (1.1.7), for the solution of (1.1.6), these are the Cauchy data which are not
both given for boundary value problems. For their complete determination
we consider the Cauchy data of the left– and the right–hand sides of (1.1.7)
on Γ ; this requires the limits of the potentials for x approaching Γ and their
normal derivatives. This leads us to the following definitions of boundary
integral operators, provided the corresponding limits exist. For the potential
equation (1.1.6), this is well known from classical analysis (Mikhlin [213,
p. 360] and Günter [113, Chap. II]):

V σ(x) := lim
z→x∈Γ

V σ(z) for x ∈ Γ, (1.2.3)

Kϕ(x) := lim
z→x∈Γ,z∈Ω

Wϕ(z) + 1
2ϕ(x) for x ∈ Γ, (1.2.4)

K ′σ(x) := lim
z→x∈Γ,z∈Ω

gradzV σ(z) · nx − 1
2σ(x) for x ∈ Γ, (1.2.5)

Dϕ(x) := − lim
z→x∈Γ,z∈Ω

gradzWϕ(z) · nx for x ∈ Γ. (1.2.6)

To be more explicit, we quote the following standard results without proof.

Lemma 1.2.1. Let Γ ∈ C2 and let σ and ϕ be continuous. Then the limits
in (1.2.3)–(1.2.5) exist uniformly with respect to all x ∈ Γ and all σ and ϕ
with supx∈Γ |σ(x)| ≤ 1, supx∈Γ |ϕ(x)| ≤ 1. Furthermore, these limits can be
expressed by

V σ(x) =
∫

y∈Γ\{x}

E(x, y)σ(y)dsy for x ∈ Γ, (1.2.7)

Kϕ(x) =
∫

y∈Γ\{x}

∂E

∂ny
(x, y)ϕ(y)dsy for x ∈ Γ, (1.2.8)

K ′σ(x) =
∫

y∈Γ\{x}

∂E

∂nx
(x, y)σ(y)dsy for x ∈ Γ. (1.2.9)

We remark that here all of the above boundary integrals are improper with
weakly singular kernels in the following sense (see [213, p. 158]): The kernel
k(x, y) of an integral operator of the form

∫

Γ

k(x, y)ϕ(y)dsy
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is called weakly singular if there exist constants c and λ < n − 1 such that

|k(x, y)| ≤ c|x − y|−λ for all x, y ∈ Γ . (1.2.10)

For the Laplacian, for Γ ∈ C2 and E(x, y) given by (1.1.2), one even has

|E(x, y)| ≤ cλ|x − y|−λ for any λ > 0 for n = 2 andλ = 1 for n = 3 ,
(1.2.11)

∂E

∂ny
(x, y) =

1
2(n − 1)π

(x − y) · ny

|x − y|n , (1.2.12)

∂E

∂nx
(x, y) =

1
2(n − 1)π

(y − x) · nx

|x − y|n for x, y ∈ Γ . (1.2.13)

In case n = 2, both kernels in (1.2.12), (1.2.13) are continuously extendable
to a C0-function for y → x (see Mikhlin [213]), in case n = 3 they are weakly
singular with λ = 1 (see Günter [113, Sections II.3 and II.6]). For other
differential equations, as e.g. for elasticity problems, the boundary integrals
in (1.2.7)–(1.2.9) are strongly singular and need to be defined in terms of
Cauchy principal value integrals or even as finite part integrals in the sense
of Hadamard. In the classical approach, the corresponding function spaces
are the Hölder spaces which are defined as follows:

Cm+α(Γ ) := {ϕ ∈ Cm(Γ )
∣∣∣ ||ϕ||Cm+α(Γ ) < ∞}

where the norm is defined by

||ϕ||Cm+α(Γ ) :=
∑

|β|≤m

sup
x∈Γ

|∂βϕ(x)| +
∑

|β|=m

sup
x,y∈Γ

x�=y

|∂βϕ(x) − ∂βϕ(y)|
|x − y|α

for m ∈ IN0 and 0 < α < 1. Here, ∂β denotes the covariant derivatives

∂β := ∂β1
1 · · · ∂βn−1

n−1

on the (n− 1)–dimensional boundary surface Γ where β ∈ INn−1
0 is a multi–

index and |β| = β1 + . . . + βn−1 (see Millman and Parker [216]).

Lemma 1.2.2. Let Γ ∈ C2 and let ϕ be a Hölder continuously differentiable
function. Then the limit in (1.2.6) exists uniformly with respect to all x ∈ Γ
and all ϕ with ‖ ϕ ‖C1+α≤ 1. Moreover, the operator D can be expressed as
a composition of tangential derivatives and the simple layer potential opera-
tor V :

Dϕ(x) = − d

dsx
V (

dϕ

ds
) (x) for n = 2 (1.2.14)

and

Dϕ(x) = −(nx ×∇x) · V (ny ×∇yϕ)(x) for n = 3 . (1.2.15)
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For the classical proof see Maue [200] and Günter [113, p. 73ff].
Note that the differential operator (ny × ∇y)ϕ defines the tangential

derivatives of ϕ(y) within Γ which are Hölder–continuous functions on Γ .
Often this operator is also called the surface curl (see Giroire and Nedelec
[101, 232]). In the following, we give a brief derivation for these formulae
based on classical results of potential theory with Hölder continuous densi-
ties dϕ

ds (y) and (ny × ∇y)ϕ(y), respectively. Note that d
dsx

and (nx × ∇x)
in (1.2.14) and (1.2.15), respectively, are not interchanged with integration
over Γ . Later on we will discuss the connection of such an interchange with
the concept of Hadamard’s finite part integrals. For n = 2, note that, for
z ∈ Ω, z �= y ∈ Γ ,

−nx · ∇z

∫

Γ

(ny · ∇yE(z, y)) ϕ(y)dsy

= −
∫

Γ

nx · ∇z

(
ny · ∇yE(z, y)

)
ϕ(y)dsy,

=
∫

Γ

nx ·
(
∇y∇�

y E(z, y)
)
· nyϕ(y)ds .

Here,

nx =

⎛

⎜⎝

dx2

ds

−dx1

ds

⎞

⎟⎠ ,

hence, with

tx =

⎛

⎜⎝

dx1

ds
dx2

ds

⎞

⎟⎠ = n⊥
x

where a⊥ :=
(−a2

a1

)
is defined as counterclockwise rotation by π

2 .
An elementary computation shows that

n�
x Any = −t�x A�ty + (trace A)tx · ty

for any 2 × 2–matrix A. Hence,

−nx · ∇zWϕ(z) =
∫

Γ

nx ·
(
∇y∇�

y E(z, y)
)
· nyϕ(y)dsy

=
∫

Γ

{tx · ∆yE(z, y)ty − (tx · ∇y)(ty · ∇yE(z, y))}ϕ(y)dsy .
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Since y �= z and ∆yE(z, y) = 0, the second term on the right takes the form

−nx · ∇zWϕ(z) =
∫

Γ

(tx · ∇z)(ty · ∇yE(z, y))ϕ(y)dsy

= (tx · ∇z)
∫

Γ

(
d

dsy
E(z, y))ϕ(y)dsy

and, after integration by parts,

= −tx · ∇z

∫

Γ

E(z, y)
dϕ

dsy
(y)dsy

= −tx · ∇z{V (
dϕ

ds
) (z)} .

First note that ∇zV (dϕ
ds )(z) is a Hölder continuous function for z ∈ Ω which

admits a Hölder continuous extension up to Γ (Günter [113, p. 68]). The
definition of derivatives at the boundary gives us

∇xV (
dϕ

ds
)(x) = lim

z→x
∇zV (

dϕ

ds
)(z)

which yields

d

dsx
V (

dϕ

ds
)(x) = tx · ∇xV (

dϕ

ds
)(x) = lim

z→x
tx · ∇zV (

dϕ

ds
)(z) ,

i.e. (1.2.14).
Similarly, for n = 3, we see that

−nx · ∇zWϕ(z) =
∫

Γ

nx · (∇y∇T
y E(z, y)) · nyϕ(y)dsy

and with the formulae of vector analysis

=
∫

Γ

{(ny · ∇y)(nx · ∇y)E(z, y)}ϕ(y)dsy

= −
∫

Γ

{(ny ×∇y) · (nx ×∇y)E(z, y)}ϕ(y)dsy

+
∫

Γ

{(nx · ny)∆yE(z, y)}ϕ(y)dsy ,

where the last term vanishes since z �∈ Γ . Now, with elementary vector
analysis,
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−nx · ∇zWϕ(z) = −
∫

Γ

{ny · (∇y × (nx ×∇y))E(z, y)}ϕ(y)dsy

= −
∫

Γ

ny · {∇y × ((nx ×∇y)E(z, y)ϕ(y))}dsy

−
∫

Γ

ny · {(nx ×∇y)E(z, y) ×∇yϕ(y)}dsy ,

where ϕ(y) denotes any C1+α–extension from Γ into IR3. The first term on
the right–hand side vanishes due to the Stokes theorem, whereas the second
term gives

−nx · ∇zWϕ(z) = −
∫

Γ

ny · {∇yϕ(y) × (nx ×∇z)E(z, y)}dsy

= −
∫

Γ

(nx ×∇zE(z, y)) · (ny ×∇yϕ(y))dsy

= −(nx ×∇z) ·
∫

Γ

E(z, y)(ny ×∇y)ϕ(y)dsy .

Since (ny ×∇y)ϕ(y) defines tangential derivatives of ϕ,

∇z · V ((ny ×∇y) ϕ)(z)

defines a Hölder continuous function for z ∈ Ω which admits a Hölder con-
tinuous limit for z → x ∈ Γ due to Günter [113, p. 68] implying (1.2.15).

From (1.2.15) we see that the hypersingular integral operator (1.2.6) can
be expressed in terms of a composition of differentiation and a weakly singular
operator. This, in fact, is a regularization of the hypersingular distribution,
which will also be useful for the variational formulation and related compu-
tational procedures.

A more elementary, but different regularization can be obtained as follows
(see Giroire and Nedelec [101]). From the definition (1.2.6), we see that

Dϕ(x) = lim
Ω�z→x∈Γ

{
− nx · ∇z

∫

Γ

∂E

∂ny
(z, y) (ϕ(y) − ϕ(x)) dsy

− nx · ∇z

∫

Γ

∂E

∂ny
(z, y)ϕ(x)dsy

}
.

If we apply the representation formula (1.1.7) to u ≡ 1, then we obtain Gauss’
well known formula

∫

Γ

∂E

∂ny
(z, y)dsy = −1 for all z ∈ Ω .
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This yields

∇z

∫

Γ

∂E

∂ny
(z, y)ϕ(x)dsy = 0 for all z ∈ Ω ,

hence, we find the simple regularization

Dϕ(x) = lim
Ω�z→x∈Γ

−nx ·
∫

Γ

∇z
∂E

∂ny
(z, y) (ϕ(y) − ϕ(x)) dsy . (1.2.16)

In fact, the limit in (1.2.16) can be expressed in terms of a Cauchy principal
value integral,

Dϕ(x) = − p.v.
∫

Γ

( ∂

∂nx

∂

∂ny
E(x, y)

)
(ϕ(y) − ϕ(x)) dsy

:= − lim
ε→0+

∫

y∈Γ∧|y−x|≥ε

( ∂

∂nx

∂

∂ny
E(x, y)

)
(ϕ(y) − ϕ(x)) dsy

= lim
ε→0+

∫

y∈Γ∧|y−x|≥ε

1
2(n − 1)π

{nx · ny

rn
+ n

(y − x) · ny(x − y) · nx

r2+n

}

×
(
ϕ(y) − ϕ(x)

)
dsy .

(1.2.17)

The derivation of (1.2.17) from (1.2.16), however, requires detailed analy-
sis (see Günter [113, Section II, 10]).

Since the boundary values for the various potentials are now characterized,
we are in a position to discuss the relations between the Cauchy data on Γ by
taking the limit x → Γ and the normal derivative of the left– and right–hand
sides in the representation formula (1.1.7). For any solution of (1.1.6), this
leads to the following relations between the Cauchy data:

u(x) = (
1
2
I − K)u(x) + V

∂u

∂n
(x) (1.2.18)

and
∂u

∂n
(x) = Du(x) + (

1
2
I + K ′)

∂u

∂n
(x) . (1.2.19)

Consequently, for any solution of (1.1.6), the Cauchy data (u, ∂u
∂n )� on Γ

are reproduced by the operators on the right–hand side of (1.2.18), (1.2.19),
namely by

CΩ :=
(

1
2I − K, V

D, 1
2I + K ′

)
(1.2.20)

This operator is called the Calderón projector (with respect to Ω) (Calderón
[34]). The operators in CΩ have mapping properties in the classical Hölder
function spaces as follows:
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Theorem 1.2.3. Let Γ ∈ C2 and 0 < α < 1, a fixed constant. Then the
boundary potentials V,K,K ′,D define continuous mappings in the following
spaces,

V : Cα(Γ ) → C1+α(Γ ) , (1.2.21)
K,K ′ : Cα(Γ ) → Cα(Γ ), C1+α(Γ ) → C1+α(Γ ) , (1.2.22)

D : C1+α(Γ ) → Cα(Γ ) . (1.2.23)

For the proofs see Mikhlin and Prössdorf [215, Sections IX, 4 and 7].

Remark 1.2.1: The double layer potential operator K and its adjoint K ′ for
the Laplacian have even stronger continuity properties than those in (1.2.22),
namely K, K ′ map continuously Cα(Γ ) → C1+α(Γ ) and C1+α(Γ ) →
C1+β(Γ ) for any α ≤ β < 1 (Mikhlin and Prössdorf [215, Sections IX, 4 and 7]
and Colton and Kress [47, Chap. 2]). Because of the compact imbeddings
C1+α(Γ ) ↪→ Cα(Γ ) and C1+β(Γ ) ↪→ C1+α(Γ ),K and K ′ are compact. These
smoothing properties of K and K ′ do not hold anymore, if K and K ′ corre-
spond to more general elliptic partial differential equations than (1.1.6). This
is e.g. the case in linear elasticity. However, the continuity properties (1.2.22)
remain valid.

With Theorem 1.2.3, we now are in a position to show that CΩ indeed is
a projection. More precisely, there holds:

Lemma 1.2.4. Let Γ ∈ C2. Then CΩ maps C1+α(Γ ) × Cα(Γ ) into itself
continuously. Moreover,

C2
Ω = CΩ . (1.2.24)

Consequently, we have the following identities:

V D = 1
4I − K2, (1.2.25)

DV = 1
4I − K ′2 , (1.2.26)

KV = V K ′, (1.2.27)
DK = K ′D. (1.2.28)

These relations will show their usefulness in our variational formulation later
on, and as will be seen in the next section, the Calderón projector leads in a
direct manner to boundary integral equations for boundary value problems.

1.3 Boundary Integral Equations

As we have seen from (1.2.18) and (1.2.19), the Cauchy data of a solution of
the differential equation in Ω are related to each other by these two equa-
tions. As is well known, for regular elliptic boundary value problems, only
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half of the Cauchy data on Γ is given. For the remaining part, the equations
(1.2.18), (1.2.19) define an overdetermined system of boundary integral equa-
tions which may be used for determining the complete Cauchy data. In gen-
eral, any combination of (1.2.18) and (1.2.19) can serve as a boundary integral
equation for the missing part of the Cauchy data. Hence, the boundary inte-
gral equations associated with one particular boundary condition are by no
means uniquely determined. The ‘direct’ approach for formulating boundary
integral equations becomes particularly simple if one considers the Dirichlet
problem or the Neumann problem. In what follows, we will always prefer the
direct formulation.

1.3.1 The Dirichlet Problem

In the Dirichlet problem for (1.1.6), the boundary values

u|Γ = ϕ on Γ (1.3.1)

are given. Hence,

σ =
∂u

∂n
|Γ (1.3.2)

is the missing Cauchy datum required to satisfy (1.2.18) and (1.2.19) for
any solution u of (1.1.6). In the direct formulation, if we take the first equa-
tion (1.2.18) of the Calderón projection then σ is to be determined by the
boundary integral equation

V σ(x) = 1
2ϕ(x) + Kϕ(x) , x ∈ Γ . (1.3.3)

Explicitly, we have
∫

y∈Γ

E(x, y)σ(y)dsy = f(x) , x ∈ Γ (1.3.4)

where f is given by the right–hand side of (1.3.3) and E is given by (1.1.2), a
weakly singular kernel. Hence, (1.3.4) is a Fredholm integral equation of the
first kind. In the case n = 2 and a boundary curve Γ with conformal radius
equal to 1, the integral equation (1.3.4) has exactly one eigensolution, the so–
called natural charge e(y) (Plemelj [248]). However, the modified equation

∫

y∈Γ

E(x, y)σ(y)dsy − ω = f(x) , x ∈ Γ (1.3.5)

together with the normalizing condition
∫

y∈Γ

σds = Σ (1.3.6)
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is always solvable for σ and the constant ω for given f and given constant Σ
[136]. Later on we will come back to this modification.

For Σ = 0 it can be shown that ω = 0. Hence, with Σ = 0, this modified
formulation can also be used for solving the interior Dirichlet problem.

Alternatively to (1.3.4), if we take the second equation (1.2.19) of the
Calderón projector, we arrive at

1
2σ(x) − K ′σ(x) = Dϕ(x) for x ∈ Γ . (1.3.7)

In view of (1.2.9) and (1.2.11), the explicit form of (1.3.7) reads

σ(x) − 2
∫

y∈Γ\{x}

∂E

∂nx
(x, y)σ(y)dsy = g(x) for x ∈ Γ , (1.3.8)

where ∂E
∂nx

(x, y) is weakly singular due to (1.2.13), provided Γ is smooth.
g = 2Dϕ is defined by the right–hand side of (1.3.7). Therefore, in contrast
to (1.3.4), this is a Fredholm integral equation of the second kind.

This simple example shows that for the same problem we may employ
different boundary integral equations. In fact, (1.3.8) is one of the cele-
brated integral equations of classical potential theory — the adjoint to the
Neumann–Fredholm integral equation of the second kind with the double
layer potential — which can be obtained by using the double layer ansatz
in the indirect approach. In the classical framework, the analysis of inte-
gral equation (1.3.8) has been studied intensively for centuries, including
its numerical solution. For more details and references, see, e.g., Atkinson
[8], Bruhn et al. [26], Dautray and Lions [59, 60], Jeggle [149, 150], Kellogg
[155], Kral et al [167, 168, 169, 170, 171], Martensen [198, 199], Maz‘ya [202],
Neumann [238, 239, 240], Radon [259] and [316]. In recent years, increasing
efforts have also been devoted to the integral equation of the first kind (1.3.4)
which — contrary to conventional belief — became a very rewarding and fun-
damental formulation theoretically as well as computationally. It will be seen
that this equation is particularly suitable for the variational analysis.

1.3.2 The Neumann Problem

In the Neumann problem for (1.1.6), the boundary condition reads as

∂u

∂n
|Γ = ψ on Γ (1.3.9)

with given ψ. For the interior problem (1.1.6) in Ω, the normal derivative ψ
needs to satisfy the necessary compatibility condition

∫

Γ

ψds = 0 (1.3.10)
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for any solution of (1.1.6), (1.3.9) to exist. Here, u|Γ is the missing Cauchy
datum required to satisfy (1.2.18) and (1.2.19) for any solution u of the
Neumann problem (1.1.6), (1.3.9). If we take the first equation (1.2.18) of the
Calderón projector, then u|Γ is determined by the solution of the boundary
integral equation

1
2u(x) + Ku(x) = V ψ(x), x ∈ Γ . (1.3.11)

This is a classical Fredholm integral equation of the second kind on Γ , namely

u(x) + 2
∫

y∈Γ\{x}

∂E

∂ny
(x, y)u(y)dsy = 2

∫

y∈Γ\{x}

E(x, y)ψ(y)dsy =: f(x).

(1.3.12)
For the Laplacian we have (1.2.12), which shows that the kernel of the integral
operator in (1.3.12) is continuous for n = 2 and weakly singular for n = 3.
It is easily shown that u0 = 1 defines an eigensolution of the homogeneous
equation corresponding to (1.3.12); and that f(x) in (1.3.12) satisfies the
classical orthogonality condition if and only if ψ satisfies (1.3.10). Classical
potential theory provides that (1.3.12) is always solvable if (1.3.10) holds
and that the null–space of (1.3.12) is one–dimensional, see e.g. Mikhlin [212,
Chap. 17, 11].

Alternatively, if we take the second equation (1.2.19) of the Calderón
projector, we arrive at the equation

Du(x) = 1
2ψ(x) − K ′ψ(x) for x ∈ Γ . (1.3.13)

This is a hypersingular boundary integral equation of the first kind for u|Γ
which also has the one–dimensional null–space spanned by u0|Γ = 1, as can
easily be seen from (1.2.14) and (1.2.15) for n = 2 and n = 3, respectively.
Although this integral equation (1.3.13) is not one of the standard types, we
will see that, nevertheless, it has advantages for the variational formulation
and corresponding numerical treatment.

1.4 Exterior Problems

In many applications such as electrostatics and potential flow, one often deals
with exterior problems which we will now consider for our simple model
equation.

1.4.1 The Exterior Dirichlet Problem

For boundary value problems exterior to Ω, i.e. in Ωc = IRn \ Ω, infinity
belongs to the boundary of Ωc and, therefore, we need additional growth or
radiation conditions for u at infinity. Moreover, in electrostatic problems, for
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instance, the total charge Σ on Γ will be given. This leads to the following
exterior Dirichlet problem, defined by the differential equation

−∆u = 0 in Ωc , (1.4.1)

the boundary condition
u|Γ = ϕ on Γ (1.4.2)

and the additional growth condition

u(x) =
1
2π

Σ log |x| + ω + o(1) as |x| → ∞ for n = 2 (1.4.3)
or

u(x) = − 1
4π

Σ
1
|x| + ω + O(|x|−2) as |x| → ∞ for n = 3 . (1.4.4)

The Green representation formula now reads

u(x) = Wu(x) −
(

V
∂u

∂n

)
(x) + ω for x ∈ Ωc , (1.4.5)

where the direction of n is defined as before and the normal derivative is now
defined as in (1.1.7) but with z ∈ Ωc. In the case ω = 0, we may consider the
Cauchy data from Ωc on Γ , which leads with the boundary data of (1.4.5)
on Γ to the equations

(
u
∂u
∂n

)
=

(
1
2I + K, −V
−D, 1

2I − K ′

)(
u
∂u
∂n

)
on Γ. (1.4.6)

Here, the boundary integral operators V, K, K ′, D are related to the limits
of the boundary potentials from Ωc similar to (1.2.3)–(1.2.6), namely

V σ(x) = lim
z→x

V σ(z) x ∈ Γ, (1.4.7)

Kϕ(x) = lim
z→x,z∈Ωc

Wϕ(z) − 1
2ϕ(x) , x ∈ Γ, (1.4.8)

K ′σ(x) = lim
z→x,z∈Ωc

gradzV (z) · nx + 1
2σ(x) , x ∈ Γ, (1.4.9)

Dϕ(x) = − lim
z→x,z∈Ωc

gradzWϕ(z) · nx , x ∈ Γ. (1.4.10)

Note that in (1.4.8) and (1.4.9) the signs at 1
2ϕ(x) and 1

2σ(x) are different
from those in (1.2.4) and (1.2.5), respectively.

For any solution u of (1.4.1) in Ωc with ω = 0, the Cauchy data on Γ
are reproduced by the right–hand side of (1.4.6), which therefore defines the
Calderón projector CΩc for the Laplacian with respect to the exterior domain
Ωc. Clearly,

CΩc = I − CΩ , (1.4.11)

where I denotes the identity matrix operator.



1.4 Exterior Problems 15

For the solution of (1.4.1), (1.4.2) and (1.4.3), we obtain from (1.4.5) a
modified boundary integral equation,

V σ(x) − ω = − 1
2ϕ(x) + Kϕ(x) for x ∈ Γ . (1.4.12)

This, again, is a first kind integral equation for σ = ∂u
∂n |Γ , the unknown

Cauchy datum. However, in addition, the constant ω is also unknown. Hence,
we need an additional constraint, which here is given by

∫

Γ

σds = Σ . (1.4.13)

This is the same modified system as (1.3.5), (1.3.6), which is always uniquely
solvable for (σ, ω).

If we take the normal derivative at Γ on both sides of (1.4.5), we arrive
at the following Fredholm integral equation of the second kind for σ, namely

1
2σ(x) + K ′σ(x) = −Dϕ(x) for x ∈ Γ . (1.4.14)

This is the classical integral equation associated with the exterior Dirichlet
problem which has a one–dimensional space of eigensolutions. Here, the spe-
cial right–hand side of (1.4.14) always satisfies the orthogonality condition
in the classical Fredholm alternative. Hence, (1.4.14) always has a solution,
which becomes unique if the additional constraint of (1.4.13) is included.

1.4.2 The Exterior Neumann Problem

Here, in addition to (1.4.1), we require the Neumann condition

∂u

∂n
|Γ = ψ on Γ (1.4.15)

where ψ is given. Moreover, we again need a condition at infinity. We choose
the growth condition (1.4.3) or (1.4.4), respectively, where the constant Σ is
given by

Σ =
∫

Γ

ψds

from (1.4.15), where ω is now an additional parameter, which can be pre-
scribed arbitrarily according to the special situation. The representation for-
mula (1.4.5) remains valid. Often ω = 0 is chosen in (1.4.3), (1.4.4) and
(1.4.5). The direct approach with x → Γ in (1.4.5) now leads to the bound-
ary integral equation

− 1
2u(x) + Ku(x) = V ψ(x) − ω for x ∈ Γ . (1.4.16)

For any given ψ and ω, this is the classical Fredholm integral equation of
the second kind which has been studied intensively (Günter [113]). (See also
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Atkinson [8], Dieudonné [61], Kral [168, 169], Maz‘ya [202], Mikhlin [211,
212]) (1.4.16) is uniquely solvable for u|Γ .

If we apply the normal derivative to both sides of (1.4.5), we find the
hypersingular integral equation of the first kind,

Du(x) = − 1
2ψ(x) − K ′ψ(x) for x ∈ Γ . (1.4.17)

This equation has the constants as an one–dimensional eigenspace. The spe-
cial right–hand side in (1.4.17) satisfies an orthogonality condition in the
classical Fredholm alternative, which is also valid for (1.4.17), e.g., in the
space of Hölder continuous functions on Γ , as will be shown later. Therefore,
(1.4.17) always has solutions u|Γ . Any solution of (1.4.17) inserted into the
right hand side of (1.4.5) together with any choice of ω will give the desired
unique solution of the exterior Neumann problem.

For further illustration, we now consider the historical example of the
two–dimensional potential flow of an inviscid incompressible fluid around an
airfoil. Let q∞ denote the given traveling velocity of the profile defining a
uniform velocity at infinity and let q denote the velocity field. Then we have
the following exterior boundary value problem for q = (q1, q2)�:

(∇× q)3 =
∂q2

∂x1
− ∂q1

∂x2
= 0 inΩc , (1.4.18)

divq =
∂q1

∂x1
+

∂q2

∂x2
= 0 in Ωc , (1.4.19)

q · n|Γ = 0 on Γ , (1.4.20)

lim
Ωc∈x→TE

|q(x)| = |q||TE exists at the trailing edge TE , (1.4.21)

q − q∞ = o(1) as |x| → ∞ . (1.4.22)

Here, the airfoil’s profile Γ is given by a simply closed curve with one corner
point at the trailing edge TE. Moreover, Γ has a C∞– parametrization x(s)
for the arc length 0 ≤ s ≤ L with x(0) = x(L) = TE, whose periodic
extension is only piecewise C∞. With Bernoulli’s law, the condition (1.4.21)
is equivalent to the Kutta–Joukowski condition, which requires bounded and
equal pressure at the trailing edge. (See also Ciavaldini et al [44]). The origin 0
of the co–ordinate system is chosen within the airfoil with TE on the x1–axis
and the line 0 TE within Ω, as shown in Figure 1.4.1.
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Γ
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ρ
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TE

q∞

x1

x2
x3

Figure 1.4.1: Airfoil in two dimensions

As before, the exterior domain is denoted by Ωc := IR2\Ω. Since the
flow is irrotational and divergence–free, q has a potential which allows the
reformulation of (1.4.18)–(1.4.22) as

q = q∞ +
ω

2π

1
|x|2

(
−x2

x1

)
+ ∇u (1.4.23)

where u is the solution of the exterior Neumann boundary value problem

−∆u = 0 in Ωc , (1.4.24)
∂u

∂n |Γ
= −q∞ · n|Γ − ω0

2π

1
|x|2

(
−x2

x1

)
· n on Γ , (1.4.25)

u(x) = o(1) as |x| → ∞ . (1.4.26)

In this formulation, u ∈ C2(Ωc) ∩ C0(Ωc) is the unknown disturbance po-
tential, ω0 is the unknown circulation around Γ which will be determined by
the additional Kutta–Joukowski condition, that is

lim
Ωc�x→TE

|∇u(x)| = |∇u||TE exists . (1.4.27)

We remark that condition (1.4.27) is a direct consequence of condition
(1.4.21). By using conformal mapping, the solution u was constructed by
Kirchhoff [157], see also Goldstein [105].

We now reduce this problem to a boundary integral equation. As in (1.4.5)
and in view of (1.4.26), the solution admits the representation

u(x) = Wu(x) + V

(
q∞ · n +

ω0

2π|y|2
(
−y2

y1

)
· n

)
(x) for x ∈ Ωc . (1.4.28)
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Since ∫

Γ

q∞ · n(y)dsy =
∫

Ω

(divq∞)dx = 0 ,

and, by Green’s theorem for
∫

Γ

1
|y|2

(
−y2

y1

)
· n(y)dsy =

∫

|y|=R

1
|y|2

(
−y2

y1

)
· n(y)dsy = 0 ,

it follows that every solution u represented by (1.4.28) satisfies (1.4.26) for
any choice of ω0. We now set

u = u0 + ω0u1, (1.4.29)

where the potentials u0 and u1 are solutions of the exterior Neumann prob-
lems

−∆ui = 0 in Ωc with i = 0, 1, and

∂u0

∂n
|Γ = −q∞ · n|Γ ,

∂u1

∂n
|Γ = − 1

2π
|x|−2

(
−x2

x1

)
· n|Γ ,

respectively, and
ui = o(1) as |x| → ∞, i = 0, 1.

Hence, these functions admit the representations

u0(x) = Wu0(x) + V (q∞ · n)(x) , (1.4.30)

u1(x) = Wu1(x) + V

(
1
2π

1
|y|2

(
−y2

y1

)
· n

)
(x) (1.4.31)

for x ∈ Ωc, whose boundary traces are the unique solutions of the boundary
integral equations

1
2
u0(x) − Ku0(x) = V (q∞ · n)(x) , x ∈ Γ, (1.4.32)

1
2
u1(x) − Ku1(x) = V

(
1
2π

1
|y|2

(
−y2

y1

)
· n

)
(x) , x ∈ Γ . (1.4.33)

Note that K is defined by (1.5.2) which is valid at TE, too. The right–hand
sides of (1.4.32) and (1.4.33) are both Hölder continuous functions on Γ . Due
to the classical results by Carleman [37] and Radon [259], there exist unique
solutions u0 and u1 in the class of continuous functions. A more detailed
analysis shows that the derivatives of these solutions possess singularities at
the trailing edge TE. More precisely, one finds (e.g. in the book by Grisvard
[108, Theorem 5.1.1.4 p.255]) that the solutions admit local singular expan-
sions of the form

ui(x) = αi�
π
Θ cos

( π

Θ
ϑ
)

+ O
(
�

2π
Θ −ε

)
, i = 0, 1 , (1.4.34)
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where Θ is the exterior angle of the two tangents at the trailing edge, �
denotes the distance from the trailing edge to x, ϑ is the angle from the
lower trailing edge tangent to the vector (x − TE), where ε is any positive
number. Consequently, the gradients are of the form

∇ui(x) = αi
π

Θ
�

π
Θ −1eϑ + O

(
�

2π
Θ −1−ε

)
, i = 0, 1 , (1.4.35)

where eϑ is a unit vector with angle (1 − π
Θ )ϑ from the lower trailing edge

tangent, for both cases, i = 0, 1.
Hence, from equations (1.4.27) and (1.4.29) we obtain, for � → 0, the

condition for ω0,
α0 + ω0α1 = 0 . (1.4.36)

The solution u1 corresponds to q∞ = 0, i.e. the pure circulation flow, which
can easily be found by mapping Ω conformally onto the unit circle in the
complex plane. The mapping has the local behavior as in (1.4.34) with α1 �= 0
since TE is mapped onto a point on the unit circle (see Lehman [183]).
Consequently, ω0 is uniquely determined from (1.4.36). We remark that this
choice of ω0 shows that

∇u = O
(
�

2π
Θ −1−ε

)

due to (1.4.35) and, hence, the singularity vanishes for Θ < 2π at the trailing
edge TE; which indeed is then a stagnation point for the disturbance velocity
∇u. This approach can be generalized to two–dimensional transonic flow
problems (Coclici et al [46]).

1.5 Remarks

For applications in engineering, the strong smoothness assumptions for the
boundary Γ need to be relaxed allowing corners and edges. Moreover, for
crack and screen problems as in elasticity and acoustics, respectively, Γ is
not closed but only a part of a curve or a surface. To handle these types of
problems, the approach in the previous sections needs to be modified accord-
ingly.

To be more specific, we first consider Lyapounov boundaries. Following
Mikhlin [212, Chap. 18], a Lyapounov curve in IR2 or Lyapunov surface Γ in
IR3 (Günter [113]) satisfies the following two conditions:

1. There exists a normal nx at any point x on Γ .
2. There exist positive constants a and κ ≤ 1 such that for any two points

x and ξ on Γ with corresponding vectors nx and nξ the angle ϑ between
them satisfies

|ϑ| ≤ arκ where r = |x − ξ| .
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In fact, it can be shown that for 0 < κ < 1, a Lyapounov boundary coincides
with a C1,κ boundary curve or surface [212, Chap. 18].

For a Lyapounov boundary, all results in Sections 1.1–1.4 remain valid
if C2 is replaced by C1,κ accordingly. These non–trivial generalizations can
be found in the classical books on potential theory. See, e.g., Günter [113],
Mikhlin [211, 212, 213] and Smirnov [284].

In applications, one often has to deal with boundary curves with corners,
or with boundary surfaces with corners and edges. The simplest generaliza-
tion of the previous approach can be obtained for piecewise Lyapounov curves
in IR2 with finitely many corners where Γ = ∪N

j=1Γ j and each Γj being an
open arc of a particular closed Lyapounov curve. The intersections Γ j ∩Γ j+1

are the corner points where ΓN+1 := Γ1. In this case it easily follows that
there exists a constant C such that

∫

Γ\{x}

| ∂E

∂ny
(x, y)|ds ≤ C for all x ∈ IR2 . (1.5.1)

This property already ensures that for continuous ϕ on Γ , the operator K
is well defined by (1.2.4) and that it is a continuous mapping in C0(Γ ).
However, (1.2.8) needs to be modified and becomes

Kϕ(x) :=
∫

Γ\{x}

ϕ(y)
∂E

∂ny
(x, y)dsy

−
(1

2
+

∫

Γ\{x}

∂E

∂ny
(x, y)dsy

)
ϕ(x) ,

(1.5.2)

where the last expression takes care of the corner points and vanishes if x is
not a corner point. Here K is not compact anymore as in the case of a Lya-
pounov boundary, however, it can be shown that K can be decomposed into
a sum of a compact operator and a contraction, provided the corner angles
are not 0 or 2π. This decomposition is sufficient for the classical Fredholm
alternative to hold for (1.3.11) with continuous u, as was shown by Radon
[259]. For the most general two–dimensional case we refer to Kral [168].

For the Neumann problem, one needs a generalization of the normal deriv-
ative in terms of the so–called boundary flow, which originally was introduced
by Plemelj [248] and has been generalized by Kral [169]. It should be men-
tioned that in this case the adjoint operator K ′ to K is no longer a bounded
operator on the space of continuous functions (Netuka [237]). The simple layer
potential V σ is still Hölder continuous in IR2 for continuous σ. However, its
normal derivative needs to be interpreted in the sense of boundary flow.

This situation is even more complicated in the three–dimensional case
because of the presence of edges and corners. Here, for continuous ϕ it is still
not clear whether the Fredholm alternative for equation (1.3.11) remains valid
even for general piecewise Lyapounov surfaces with finitely many corners and
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Fig. 1.5.1. Configuration of an arc Γ in IR2

edges; see, e.g., Angell et al [7], Burago et al [31, 32], Kral et al [170, 171],
Maz‘ya [202] and [316].

On the other hand, as we will see, in the variational formulation of
the boundary integral equations, many of these difficulties can be circum-
vented for even more general boundaries such as Lipschitz boundaries (see
Section 5.6).

To conclude these remarks, we consider Γ to be an oriented, open part of
a closed curve or surface Γ̃ (see Figure 1.5.1). The Dirichlet problem here is
to find the solution u of (1.4.1) in the domain Ωc = IRn \ Γ subject to the
boundary conditions

u+ = ϕ+ on Γ+ and u− = ϕ− on Γ− (1.5.3)

where Γ+ and Γ− are the respective sides of Γ and u+ and u− the corre-
sponding traces of u. The functions ϕ+ and ϕ− are given with the additional
requirement that

ϕ+ − ϕ− = 0

at the endpoints of Γ for n = 2, or at the boundary edge of Γ for n = 3.
In the latter case we require ∂Γ to be a C∞– smooth curve. Similar to the
regular exterior problem, we again require the growth condition (1.4.3) for
n = 2 and (1.4.4) for n = 3. For a sufficiently smooth solution, the Green
representation formula has the form

u(x) = WΓ [u](x) − VΓ

[
∂u

∂n

]
(x) + ω for x ∈ Ωc , (1.5.4)

where WΓ , VΓ are the corresponding boundary potentials with integration
over Γ only,
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WΓ ϕ(x) :=
∫

y∈Γ

(
∂

∂ny
E(x, y)

)
ϕ(y)dsy , x �∈ Γ ; (1.5.5)

VΓ σ(x) :=
∫

y∈Γ

E(x, y)σ(y)dsy , x �∈ Γ . (1.5.6)

[u] = u+ − u− , σ :=
[
∂u

∂n

]
=

∂u+

∂n
− ∂u−

∂n
on Γ (1.5.7)

with n the normal to Γ pointing in the direction of the side Γ+. If we sub-
stitute the given boundary values ϕ+, ϕ− into (1.5.4), the missing Cauchy
datum σ is now the jump of the normal derivative across Γ . Between this
unknown datum and the behaviour of u at infinity viz.(1.4.3) we arrive at

∫

Γ

σds = Σ . (1.5.8)

By taking x to Γ+ (or Γ−) we obtain (in both cases) the boundary integral
equation of the first kind for σ on Γ ,

VΓ σ(x) − ω = − 1
2

(
ϕ+(x) + ϕ−(x)

)
+ KΓ (ϕ+ − ϕ−)(x) =: f(x) (1.5.9)

where KΓ is defined by

KΓ ϕ(x) =
∫

y∈Γ\{x}

( ∂

∂ny
E(x, y)

)
ϕ(y)dsy for x ∈ Γ . (1.5.10)

As for the previous case of a closed curve or surface Γ , respectively, the system
(1.5.8), (1.5.9) admits a unique solution pair (σ, ω) for any given ϕ+, ϕ−
and Σ. Here, however, σ will have singularities at the endpoints of Γ or the
boundary edge of Γ for n = 2 or 3, respectively, and our classical approach,
presented here, requires a more careful justification in terms of appropriate
function spaces and variational setting.

In a similar manner, one can consider the Neumann problem: Find u
satisfying (1.4.1) in Ωc subject to the boundary conditions

∂u+

∂n
= ψ+ on Γ+ and

∂u−
∂n

= ψ− on Γ− (1.5.11)

where ψ+ and ψ− are given smooth functions. By applying the normal deriv-
atives ∂/∂nx to the representation formula (1.5.4) from both sides of Γ , it is
not difficult to see that the missing Cauchy datum ϕ =: [u] = u+ − u− on Γ
satisfies the hypersingular boundary integral equation of the first kind for ϕ,

DΓ ϕ = − 1
2 (ψ+ + ψ−) − K ′

Γ [ψ] on Γ , (1.5.12)

where the operators DΓ and K ′
Γ again are given by (1.2.6) and (1.2.5) with

W and V replaced by WΓ and VΓ , respectively. As we will see later on
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in the framework of variational problems, this integral equation (1.5.12) is
uniquely solvable for ϕ with ϕ = 0 at the endpoints of Γ for n = 2 or at the
boundary edge ∂Γ of Γ for n = 3, respectively. Here, Σ in (1.4.3) or (1.4.4) is
already given by (1.5.8) and ω can be chosen arbitrarily. For further analysis
of these problems see [146], Stephan et al [294, 297], Costabel et al [49, 52].
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