
2. Boundary Integral Equations

In Chapter 1 we presented basic ideas for the reduction of boundary value
problems of the Laplacian to various forms of boundary integral equations
based on the direct approach. This reduction can be easily extended to more
general partial differential equations. Here we will consider, in particular, the
Helmholtz equation, the Lamé system, the Stokes equations and the bihar-
monic equation.

For the Helmholtz equation, we also investigate the solution’s asymptotic
behavior for small wave numbers and the relation to solutions of the Laplace
equation by using the boundary integral equations.

For the Lamé system of elasticity, we first present the boundary integral
equations of the first kind as well as of the second kind. Furthermore, we
study the behavior of the solution and the boundary integral equations for
incompressible materials. As will be seen, this has a close relation to the
Stokes system and its boundary integral equations. In the two–dimensional
case, both the Stokes and the Lamé problems can be reduced to solutions of
biharmonic boundary value problems which, again, can be solved by using
boundary integral equations based on the direct approach.

In this chapter we consider these problems for domains whose bound-
aries are smooth enough, mostly Lyapounov boundaries, and the boundary
charges belonging to Hölder spaces. Later on we shall consider the boundary
integral equations again on Sobolev trace spaces which is more appropriate
for stability and convergence of corresponding discretization procedures.

2.1 The Helmholtz Equation

A slight generalization of the Laplace equation is the well–known Helmholtz
equation

−(∆ + k2)u = 0 in Ω (or Ωc) . (2.1.1)

This equation arises in connection with the propagation of waves, in partic-
ular in acoustics (Filippi [78], Kupradze [175] and Wilcox [321]) and elec-
tromagnetics (Ammari [6], Cessenat [38], Colton and Kress [47], Jones [152],
Müller [221] and Neledec [234]). In acoustics, k with Im k ≥ 0 denotes the
complex wave number and u corresponds to the acoustic pressure field.
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The reduction of boundary value problems for (2.1.1) to boundary integral
equations can be carried out in the same manner as for the Laplacian in
Chapter 1. For (2.1.1), in the exterior domain, one requires at infinity the
Sommerfeld radiation conditions,

u(x) = O(|x|−(n−1)/2) and
∂u

∂|x| (x) − iku(x) = o
(
|x|−(n−1)/2

)
(2.1.2)

where i is the imaginary unit. (See the book by Sommerfeld [287] and the
further references therein; see also Neittaanmäki and Roach [236] and Wilcox
[321]). These conditions select the outgoing waves; they are needed for unique-
ness of the exterior Dirichlet problem as well as for the Neumann problem.

The pointwise condition (2.1.2) can be replaced by a more appropriate
and weaker version of the radiation condition given by Rellich [261, 262],

lim
R→∞

∫

|x|=R

|∂u

∂n
(x) − iku(x)|2ds = 0 . (2.1.3)

This form is to be used in the variational formulation of exterior boundary
value problems.

The fundamental solution E(x, y) to (2.1.1), subject to the radiation con-
dition (2.1.2) for fixed y ∈ Rn is given by

Ek(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i

4
H

(1)
0 (kr) in IR2,

with r = |x − y|
eikr

4πr
in IR3,

(2.1.4)

where H
(1)
0 denotes the modified Bessel function of the first kind. We note,

that for n = 2, E(x, y) has a branch point for C 
 k → 0. Therefore, in
the following we confine ourselves first to the case k �= 0. In terms of these
fundamental solutions, which obviously are symmetric, the representation of
solutions to (2.1.1) in Ω or in Ωc with (2.1.2) assumes the same forms as
(1.1.7) and (1.4.5), namely

u(x) = ±
{ ∫

y∈Γ

Ek(x, y)
∂u

∂n
(y)dsy −

∫

y∈Γ

u(y)
∂Ek(x, y)

∂ny
dsy

}

= ±
{

Vk
∂u

∂n
(x) − Wku(x)

} (2.1.5)

for all x ∈ Ω or Ωc respectively, where the ±sign corresponds to the interior
and the exterior domain. Here, Vk is defined by

Vkσ(x) :=
∫

y∈Γ

Ek(x, y)σ(y)dsy

= V σ(x) + Skσ(x) + {δn3
ik
4π − δn2(log k + γ0)}

∫

Γ

σds ,

(2.1.6)
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where V is given by (1.2.1) with (1.1.2) and Sk is a k–dependent remainder
defined by

Skσ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

y∈Γ

{ i

4
H

(1)
0 (k|x − y|) +

1
2π

log |x − y|
}

σ(y)dsy,

− 1
4π

∫

y∈Γ

{ ∞∑

m=2

(m − 1)
m!

(ik|x − y|)m
} 1
|x − y|σ(y)dsy

(2.1.7)

for n = 2 or 3, respectively. The potential Wk is defined by

Wkϕ(x) :=
∫

y∈Γ

∂Ek(x, y)
∂ny

ϕ(y)dsy = Wϕ(x) + Rkϕ(x) (2.1.8)

where W is given by (1.2.2) with (1.1.2) and Rk is a k–dependent remainder
defined by

Rkϕ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

y∈Γ\{x}

∂

∂ny
{ i

4
H

(1)
0 (k|x − y|) +

1
2π

log |x − y|}ϕ(y)dsy ,

− 1
4π

∫

y∈Γ\{x}

{ ∞∑

m=2

(m − 1)
m!

(ik|x − y|)m
}( ∂

∂ny

1
|x − y|

)
ϕ(y)dsy

(2.1.9)

for n = 2 or 3, respectively. Note that Sk and Rk have bounded kernels for all
y ∈ Γ and x ∈ IRn and for k �= 0 in the case n = 2. Hence, Skσ(x) and Rkϕ(x)
are well defined for all x ∈ IRn. Moreover, the properties of the operators V
and W , as given by Lemmata 1.2.1, 1.2.2, 1.2.4 and Theorem 1.2.3 for the
Laplacian, remain valid for Vk and Wk. Since the kernels of Vk and Wk, Sk

and Vk depend analytically on k ∈ C \ {0} for n = 2 and k ∈ C for n = 3,
the solutions of the corresponding boundary integral equations will depend
analytically on the wave number k, as well.

Here again we consider the interior and exterior Dirichlet problem for
(2.1.1), where

u|Γ = ϕ on Γ is given. (2.1.10)

In acoustics, (2.1.10) models a “soft” boundary for the interior and a “soft
scatterer” for the exterior problem. As in Section 1.3.1, here the missing

Cauchy datum on Γ is
∂u

∂n |Γ
= σ.

The boundary integral equation for the interior Dirichlet problem reads

Vkσ(x) =
1
2
ϕ(x) + Kkϕ(x), x ∈ Γ , (2.1.11)
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where

Kkϕ(x) :=
∫

y∈Γ\{x}

∂Ek(x, y)
∂ny

ϕ(y)dsy = Kϕ(x) + Rkϕ(x) for x ∈ Γ

(2.1.12)
with K given by (1.2.8) with (1.2.12) or (1.2.13), respectively. As before,
(2.1.11) is a Fredholm boundary integral equation of the first kind for σ on
Γ . In the classical Hölder continuous function space Cα, 0 < α < 1, this
integral equation has been studied by Colton and Kress in [47, Chap.3].
In particular, for k �= 0 and ϕ ∈ C1+α(Γ ), (2.1.11) is uniquely solv-
able with σ ∈ Cα(Γ ), except for certain values of k ∈ C which are the
exceptional or irregular frequencies of the boundary integral operator Vk.
For any irregular frequency k0, the operator Vk0 has a nontrivial nullspace
ker Vk0 = span {σ0j}. The eigensolutions σ0j are related to the eigensolu-
tions ũ0j of the interior Dirichlet problem for the Laplacian,

−∆ũ0 = k2
0ũ0 in Ω ,

ũ0|Γ = 0 on Γ .
(2.1.13)

That is,

σ0j =
∂ũ0j

∂n|Γ
. (2.1.14)

Moreover, the solutions are real–valued and

dim kerVk0 = dimension of the eigenspace of (2.1.13) .

As is known, see e.g. Hellwig [123, p.229], the eigenvalue problem (2.1.13)
admits denumerably infinitely many eigenvalues k2

0�. They are all real and
have at most finite multiplicity. Moreover, they can be ordered according to
size 0 < k2

01 < k2
02 < · · · and have +∞ as their only limit point. For any of

the corresponding eigensolutions ũ0j , (2.1.14) can be obtained from (2.1.5)
applied to ũ0j . In this case, when k0 is an eigenvalue, the interior Dirichlet
problem (2.1.1), (2.1.10) admits solutions in Cα(Γ ) if and only if the given
boundary values ϕ ∈ C1+α(Γ ) satisfy the orthogonality conditions

∫

Γ

ϕσ0ds =
∫

Γ

ϕ
∂ũ0

∂n
ds = 0 for all σ0 ∈ kerVk0 . (2.1.15)

Correspondingly, for ϕ ∈ C1+α(Γ ), the boundary integral equation (2.1.11)
has solutions σ ∈ Cα(Γ ) if and only if (2.1.15) is satisfied.

For the exterior Dirichlet problem, i.e. (2.1.1) in Ωc with the Sommerfeld
radiation conditions (2.1.2) and boundary condition (2.1.10), from (2.1.5)
again we obtain a boundary integral equation of the first kind,

Vkσ(x) = − 1
2ϕ(x) + Kkϕ(x) , x ∈ Γ , (2.1.16)
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which differs from (2.1.11) only by a sign in the right–hand side. Hence,
the exceptional values k0 are the same as for the interior Dirichlet problem,
namely the eigenvalues of (2.1.13). If k �= k0, (2.1.16) is always uniquely
solvable for σ ∈ Cα(Γ ) if ϕ ∈ C1+α(Γ ). For k = k0, in contrast to the
interior Dirichlet problem, the exterior Dirichlet problem remains uniquely
solvable. However, (2.1.16) now has eigensolutions, and the right–hand side
always satisfies the orthogonality conditions

∫

x∈Γ

(
− 1

2ϕ(x) + Kk0ϕ(x)
)
σ0(x)dsx

=
∫

x∈Γ

ϕ(x)
{
− 1

2σ0(x) + K ′
k0

σ0(x)
}
dsx = 0 for all σ0 ∈ ker Vk0 ,

since σ0 is real valued and the simple layer potential Vk0σ0(x) vanishes iden-
tically for x ∈ Ωc. The latter implies

∂

∂nx
Vk0σ0(x) = −1

2
σ0(x) + K ′

k0
σ0(x) = 0 for x ∈ Γ ,

where

K ′
kσ(x) :=

∫

y∈Γ\{x}

( ∂

∂nx
Ek(x, y)

)
σ(y)dsy = K ′σ(x) + R′

kσ(x)

with

R′
kσ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

y∈Γ\{x}

∂

∂nx

{ i

4
H

(1)
0 (k|x − y|) +

1
2π

log |x − y|
}
σ(y)dsy ,

− 1
4π

∫

y∈Γ\{x}

{ ∞∑

m=2

(m − 1)
m!

(ik|x − y|)m
}( ∂

∂nx

1
|x − y|

)
σ(y)dsy ,

for n = 2 and n = 3, respectively. Accordingly, the representation formula
(2.1.5) with u|Γ = ϕ and ∂u

∂n |Γ = σ will generate a unique solution for any σ

solving (2.1.16).
Alternatively, both, the interior and exterior Dirichlet problem can also

be solved by the Fredholm integral equations of the second kind as (1.3.7)
and (1.4.14) for the Laplacian. In order to avoid repetition we summarize
the different direct formulations of the interior and exterior Dirichlet and
Neumann problems which will be abbreviated by (IDP), (EDP), (INP) and
(ENP), accordingly, in Table 2.1.1. The Neumann data in (INP) and (ENP)
will be denoted by ψ.

In addition to the previously defined integral operators Vk,Kk,K ′
k we also

introduce the hypersingular integral operator, Dk for the Helmholtz equation,
namely
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Dkϕ(x) := − ∂

∂nx

∫

Γ\{x}

∂Ek(x, y)
∂ny

ϕ(y)dsy = Dϕ(x) +
∂

∂nx
Rkϕ(x) on Γ ,

(2.1.17)
where D is the hypersingular integral operator (1.4.10) of the Laplacian and
Rk is the remainder in (2.1.9).

Note that the relations between the eigensolutions of the BIEs and the
interior eigenvalue problems of the Laplacian are given explicitly in column
three of Table 2.1.1. We also observe that for the exterior boundary value
problems, the exceptional values k0 and k1 of the corresponding boundary
integral operators depend on the type of boundary integral equations derived
by the direct formulation. For instance, we see that for (EDP), k0 are the
exceptional values for Vk whereas k1 are those for (1

2I+K ′
k). Similar relations

hold for (ENP).
In Table 2.1.1, the second column contains all of the boundary integral

equations (BIE) obtained by the direct approach. As we mentioned earlier,
for the exterior boundary value problems, the solvability conditions of the
corresponding boundary integral equations at the exceptional values are al-
ways satisfied due to the special forms of the corresponding right-hand sides.
For the indirect approach, this is not the case anymore; see Colton and Kress
[47, Chap. 3]. There are various ways to modify the boundary integral equa-
tions so that some of the exceptional values will not belong to the spectrum
of the boundary integral operator anymore. In this connection, we refer to
the work by Brakhage and Werner [22] Colton and Kress [47], Jones [152],
Kleinman and Kress [158] and Ursell [309], to name a few.

2.1.1 Low Frequency Behaviour

Of particular interest is the case k → 0 which corresponds to the low–
frequency behaviour. This case also determines the large–time behaviour of
the solution to time–dependent problems if (2.1.1) is obtained from the wave
equation by the Fourier–Laplace transformation (see e.g. MacCamy [194, 195]
and Werner [319]). As will be seen, some of the boundary value problems will
exhibit a singular behaviour for k → 0. The main results are summarized in
the Table 2.1.2 below.

To illustrate the singular behaviour we begin with the explicit asymptotic
expansions of the boundary integral equations in Table 2.1.1. Our presenta-
tion here follows [140]. In particular, we begin with the fundamental solution
for small kr having the series expansions:

For n = 2:

Ek(x, y) =
i

4
H

(1)
0 (kr) = E(x, y) − 1

2π
(log k + γ0) + Sk(x, y) , (2.1.18)
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where

γ0 = c0 − log 2 − i
π

2
with c0 ≈ 0.5772 , Euler’s constant,

and

Sk(x, y) =
i

4
H

(1)
0 (kr) +

1
2π

(log(kr) + γ0)

= − 1
2π

{log(kr)
∞∑

m=1

am(kr)2m +
∞∑

m=1

bm(kr)2m} ,

am =
(−1)m

22m(m!)2
, bm = (γ0 − 1 − 1

2
− · · · − 1

m
)am .

For n = 3:

Ek(x, y) = E(x, y) +
ik

4π
+ Sk(x, y) ,

where

Sk(x, y) =
1

4πr
(eikr − 1 − ikr) =

1
4πr

∞∑

m=2

(ikr)m

m!
. (2.1.19)

Correspondingly, for the double layer potential kernel we obtain
∂

∂ny
Ek(x, y) =

∂

∂ny
E(x, y) + Rk(x, y) ,

where

Rk(x, y) =
{ ∞∑

m=1

(am(1 + 2m log(kr)) + 2mbm) (rk)2m
} ∂

∂ny
E(x, y)

for n = 2 , (2.1.20)
and

Rk(x, y) = −
{ ∞∑

m=2

(m − 1)
m!

(ikr)m
} ∂

∂ny
E(x, y)

for n = 3 . (2.1.21)

The kernel of the adjoint operator R′
k can be obtained by interchanging the

variables x and y. Hence, R′
k has the same asymptotic behaviour as Rk for

k → 0.
Similarly, for the hypersingular kernel we have, for n = 2,

∂Rk

∂nx
(x, y) = −4π

∞∑

m=2

(m − 1)cm(k)(rk)2m ∂E

∂nx

∂E

∂ny
(x, y) (2.1.22)

+
1
2π

∞∑

m=1

cm(k)(rk)2m nx · ny

r2
,

+ log r

∞∑

m=1

2mam(rk)2m
{ 1

2π

nx · ny

r2
− 4π(m − 1)

∂E

∂nx

∂E

∂ny

}
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where
cm(k) = (1 + 2m log k)am + 2mbm ,

and, for n = 3,

∂Rk

∂nx
(x, y) = − 1

4π

∞∑

m=2

(m − 1)
m!

(ikr)m nx · ny

r3

− 4π
∞∑

m=2

(3 + m)
(m − 1)

m!
r(ikr)m ∂E

∂nx

∂E

∂ny
(x, y) .

(2.1.23)

Note that the kernel
∂Rk

∂nx
(x, y) is symmetric.

As can be seen from the above expansions, the term log k appears in
(2.1.18) explicitly which shows that Vk is a singular perturbation of V whereas
the other operators are regular perturbations of the corresponding operators
of the Laplacian as k → 0.

IDP: Let us consider first the simplest case, i.e. Equation (2) for (IDP) in
Table 2.1.1, (

1
2I − K ′ − R′

k

)
σ = Dkϕ on Γ . (2.1.24)

Since, for given ϕ ∈ C1+α(Γ ), the equation

( 1
2I − K ′)σ̃ = Dϕ

has a unique solution σ̃ ∈ Cα(Γ ), we may rewrite (2.1.24) as

σ = (
1
2
I − K ′)−1R′

kσ + (
1
2
I − K ′)−1Dkϕ ,

= σ̃ + (
1
2
I − K ′)−1R′

kσ + (
1
2
I − K ′)−1 ∂

∂nx
Rkϕ , (2.1.25)

= σ̃ +

{
O(k2log k) for n = 2,
O(k2) for n = 3,

where the last expressions can be obtained from the expansions (2.1.20) and
(2.1.22) in case n = 2 and from (2.1.21) and (2.1.23) in case n = 3 (see
MacCamy [194]).

The analysis for the integral equation of the first kind (1) for (IDP) in
Table 2.1.1 is more involved, depending on n = 2 or 3. For n = 2, from
(2.1.11) with the expansion (2.1.18) of (2.1.7) we have

V σ + ω + Skσ =
1
2
ϕ + Kϕ + Rkϕ (2.1.26)

where
ω = − 1

2π
(log k + γ0)

∫

Γ

σds . (2.1.27)
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Similar to (2.1.25), we seek the solution of (2.1.26) and (2.1.27) in the as-
ymptotic form,

σ = σ̃ + α1(k)σ̃1 + σR ,
ω = ω̃ + α1(k)ω̃1 + ωR ,

(2.1.28)

where σ̃, ω̃ correspond to the solution of the interior Dirichlet problem for
the Laplacian (1.1.6), (1.3.1). Hence, σ̃, ω̃ satisfy (1.3.3), namely

V σ̃ + ω̃ =
1
2
ϕ + Kϕ (2.1.29)

subject to the constraints
∫

Γ

σ̃ds = 0 and ω̃ = 0 .

The first perturbation terms σ̃1, ω̃1 are independent of k with the coefficient
α1(k) = o(1) for k → 0. The functions σR, ωR are the remainders which
are of order o(α1(k)). To construct σ̃1 and ω̃1, we employ equation (2.1.26)
inserting (2.1.28). For k → 0 we arrive at

V σ̃1 + ω̃1 = 0 ,∫

Γ

σ̃1ds = 1 , (2.1.30)

where we appended the last normalizing condition for σ̃1, since from the
previous results in Section 1.3 we know that

∫

Γ

σ̃1ds = 0 would yield the

trivial solution σ̃1 = 0, ω̃1 = 0. Inserting (2.1.28) into (2.1.27), it follows
from

∫

Γ

σ̃1ds = 1 with ω̃ = 0 that α1(k) = O(σR). Hence, without loss of

generality, we may set α1(k) = 0 in (2.2.28). Now (2.1.26) and (2.1.27) with
(2.1.28) imply that the remaining terms σR , ωR satisfy the equations

V σR + ωR + SkσR = Rkϕ − Skσ̃ ,
∫

Γ

σRds + ωR2π(log k + γ0)−1 = 0 ; (2.1.31)

which are regular perturbations of equations (1.3.5), (1.3.6) due to the expan-
sions for Sk in (2.1.18). The right–hand side of (2.1.31) is of order O(k2 log k)
because of the expansions of Sk and of Rk in (2.1.20). Therefore, σR and ωR

are, indeed, of order O(k2 log k) as in (2.1.25), which was already obtained
with the integral equations (2.1.24) of the second kind.

For n = 3, the integral equation of the first kind takes the form

V σ + ik
1
4π

∫

Γ

σds + Skσ =
1
2
ϕ + Kϕ + Rkϕ , (2.1.32)
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where the kernels of the integral operators Sk and Rk are given by (2.1.19)
and (2.1.21), respectively. Both are of order O(k2). Hence, (2.1.32) is a regular
perturbation of equation (1.3.3). If we insert (2.1.28) with α1(k) = k then
the function σ̃ is given by the solution of

V σ̃ = 1
2ϕ + Kϕ ,

which corresponds to the interior Dirichlet problem of the Laplacian. Hence,
∫

Γ

σ̃ds = 0 and σ̃1 ≡ 0

since it is the solution of

V σ̃1 +
i

4π

∫

Γ

σ̃ds = 0 .

Therefore, the solution of (2.1.32) is of the form σ = σ̃ + O(k2).

EDP: By using the indirect formulation of boundary integral equations, this
case was also analyzed by Hariharan and MacCamy in [120]. In case n = 2,
for the exterior Dirichlet problem (EDP), Equation (1) in Table 2.1.1 has
the form

V σ + ω + Skσ = − 1
2ϕ + Kϕ + Rkϕ (2.1.33)

with ω again defined by (2.1.27). Again, the solution admits the asymptotic
expansion (2.1.28) with σ̃, ω̃ being the solution of

V σ̃ + ω̃ = − 1
2ϕ + Kϕ ,

∫

Γ

σ̃ds = 0 . (2.1.34)

Hence, σ̃, ω̃ correspond to the exterior Dirichlet problem in Section 1.4.1.
Therefore, in contrast to the (IDP), here ω̃ �= 0, in general. Again, σ̃1, ω̃1 are
solutions of equations (2.1.30). In contrast to the (IDP), the coefficient α1(k)
is explicitly given by

α1(k) = −ω̃

{
1
π

(log k + γ0) + ω̃1

}−1

,

which is not identically equal to zero, in general. The remainders σR, ωR

satisfy equations similar to (2.1.31) and are of order O(k2 log k).
For the case n = 3, the integral equation(1) for (EDP) is of the form

V σ + ik
1
4π

∫

Γ

σds + Skσ = − 1
2ϕ + Kϕ + Rkϕ

and σ is of the form
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σ = σ̃ + kσ̃1 + σR .

This yields
V σ̃ = − 1

2ϕ + Kϕ

for σ̃ corresponding to the (EDP) for the Laplacian . For the next term σ̃1

we have

V σ̃1 = − i

4π

∫

Γ

σ̃ds .

Therefore, σ̃1 is proportional to the natural charge q which is the unique
eigensolution of

1
2q + K ′q = 0 on Γ with

∫

Γ

qds = 1 .

Note that the corresponding simple layer potential satisfies

V q(x) = c0 = const. for all x ∈ Ω . (2.1.35)

For n = 3, a simple contradiction argument shows c0 �= 0. Hence,

σ̃1(x) = −
( i

4πc0

∫

Γ

σ̃ds
)
q(x) .

The remainder term σR is of order k2 which follows easily from

V σR + SkσR = −Sk(σ̃ + kσ̃1) − k2 i

4π

∫

Γ

σ̃1ds − Rkϕ ,

which is a regular perturbation of (1.4.12).
For the integral equation of the second kind (2) of the (EDP) and k = 0,

the homogeneous reduced integral equation reads

1
2
q + K ′q = 0 (2.1.36)

with the natural charge q as an eigensolution. We therefore modify boundary
integral equation (2) by using a method by Wielandt [320] (see also Werner
[318]). Using Equation (1), we obtain a normalization condition for σ,

∫

Γ

σds = lk(ϕ) + l̃k(σ) ,
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where the linear functionals lk and l̃k are given by

lk(ϕ) =

⎧
⎪⎨

⎪⎩

(
1
2π (log k + γ0) − c0

)−1
{∫

Γ

ϕqds +
∫

Γ

(Rkϕ)qds
}

for n = 2,

(c0 + k i
4π )−1

{∫

Γ

ϕqds +
∫

Γ

(Rkϕ)qds
}

for n = 3;

and

l̃k(σ) =

⎧
⎪⎨

⎪⎩

(
1
2π (log k + γ0) − c0

)−1 ∫

Γ

(Skσ)qds for n = 2,
(
c0 + k i

4π

)−1 ∫

Γ

(Skσ)qds for n = 3.

The modified boundary integral equation of the second kind reads

( 1
2I + K ′)σ + q

∫

Γ

σds + R′
kσ − ql̃k(σ) = −Dkϕ + qlk(ϕ) , (2.1.37)

which is a regular perturbation of the equation

(1
2I + K ′)σ̃ + q

∫

Γ

σ̃ds = −Dϕ + ql0(ϕ) .

The latter is uniquely solvable. The next term σ̃1 satisfies the equation

( 1
2I + K ′)σ̃1 + q

∫

Γ

σ̃1ds =
∫

Γ

ϕqds.

It is not difficult to see that both boundary integral equations (2.1.33) and
(2.1.37) provide the same asymptotic solutions

σ =

{
σ̃ + α1(k)σ̃1 + O(k2 log k) for n = 2,
σ̃ + kσ̃1 + O(k2) for n = 3.

INP: Since the boundary integral equation of the second kind (see (2) in
Table 2.1.1) for the (INP) and k = 0 has the constant functions as eigensolu-
tions, we need an appropriate modification of (2). This modification can be
derived from the Helmholtz equation (2.1.1) in Ω together with the Neumann
boundary condition

∂u

∂n
|Γ = ψ on Γ , (2.1.38)

namely from the solvability condition (Green’s formula for the Laplacian)
∫

Ω

u(x)dx = − 1
k2

∫

Γ

ψds . (2.1.39)
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This condition can be rewritten in terms of the representation formula (2.1.5),
∫

Ω

Wku(x)dx =
∫

Ω

Vkψ(x)dx +
1
k2

∫

Γ

ψds , (2.1.40)

the left–hand side of which actually depends on the boundary values u|Γ .
It is not difficult to replace the domain integration on the left–hand side
by appropriate boundary integrals. With the help of (2.1.40), the boundary
integral equation of the second kind (see (2) in Table 2.1.1) for (INP) can be
modified,

1
2
u + Ku − 1

|Ω|

∫

Ω

Wu(x)dx + Rku − 1
|Ω|

∫

Ω

Rku(x)dx

= − 1
|Ω|k2

∫

Γ

ψds + V ψ − 1
|Ω|

∫

Ω

V ψ(x)dx (2.1.41)

+ Skψ − 1
|Ω|

∫

Ω

Skψ(x)dx on Γ

where |Ω| = meas(Ω). Note, that the constant term of order log k in Vk for
n = 2 and of order k for n = 3, respectively, has been canceled in (2.1.41)
due to (2.1.40).

The boundary integral operator on the left–hand side in (2.1.41) is a
regular perturbation of the reduced modified operator

A := 1
2I + K − 1

|Ω|

∫

Ω

W • dx on Γ

due to (2.1.20) and (2.1.21). Moreover, we will see that the reduced homoge-
neous equation

Av0 = 0 on Γ

admits only the trivial solution v0 = 0, since for the equivalent equation,

1
2v0 + Kv0 =

1
|Ω|

∫

Ω

Wv0dx = κ = const, (2.1.42)

the orthogonality condition for the original reduced operator on the left–hand
side reads ∫

Γ

qκds = κ = 0 .

This implies from (2.1.42) that v0 = const as the eigensolution discussed in
Section 1.3.2. Hence, with (1.1.7), we have

0 = κ =
1
|Ω|

∫

Ω

Wv0dx = −v0 .
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Consequently, A−1 exists in the classical function space Cα(Γ ) due to the
Fredholm alternative.

As for the asymptotic behaviour of u, it is suggested from (2.1.40) or
(2.1.41) that u admits the form

u =
1
k2

α + ũ + uR . (2.1.43)

The first term α satisfies the equation

Aα = 1
2α + Kα − 1

|Ω|

∫

Ω

Wαdx = − 1
|Ω|

∫

Γ

ψds

which has the unique solution

α = − 1
|Ω|

∫

Γ

ψds = const. (2.1.44)

The second term ũ is the unique solution of the equation

Aũ = V ψ − 1
|Ω|

∫

Ω

V ψdx − α lim
k→0

1
k2

{
Rk1 − 1

|Ω|

∫

Ω

Rk1dx
}

. (2.1.45)

Now we investigate the last term in (2.1.45).
For n = 2, we have

Rk1 =
|Ω|
2π

(log k + γ0)k2 +
k2

2π

∫

Ω

log |x − y|dy + O(k4 log k).

This implies

1
k2

{
Rk1 − 1

|Ω|

∫

Ω

Rk1dx
}

,

=
1
2π

{∫

Ω

log |x − y|dy − 1
|Ω|

∫

Ω

∫

Ω

log |x − y|dydx
}

+ O(k2 log k) .

Hence, the limit on the right–hand side in (2.1.45) exists.
For n = 3, the limit is a well defined function in Cα(Γ ) due to (2.1.21).

The remainder uR satisfies the equation

AuR + RkuR − 1
|Ω|

∫

Ω

RkuR(x)dx = fR on Γ (2.1.46)

where
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fR =

{
O(k2 log k) for n = 2,
O(k2) for n = 3.

Hence, uR is uniquely determined by (2.1.46) and is of the same order as fR.
For the first kind hypersingular equation (1) in (INP) we use the same

normalization condition (2.1.40) by subtracting it from the equation and
obtain the modified hypersingular equation

Du −
∫

Ω

Wu(z)dz − ∂

∂nx
Rku −

∫

Ω

Rkudz

= (1
2 − K ′)ψ − R′

kψ −
∫

Ω

V ψdz −
∫

Γ

Skψdz (2.1.47)

+ |Ω|
(
δn2

1
2π

(log k + γ0) − δn3
ik

4π

)∫

Γ

ψds − 1
k2

∫

Γ

ψds .

Again, the operator on the left-hand side is a regular perturbation of the
reduced operator

Bu := Du −
∫

Ω

Wu(z)dz,

which can be shown to be invertible, in the same manner as for A. From the
previous analysis, we write the solution in the form (2.1.43), namely

u =
α

k2
+ ũ + uR .

We note that
B1 = |Ω|,

and therefore (2.1.47) for k → 0 again yields (2.1.44) for α. We further note
that for n = 2, it can be verified from (2.1.20) that

∫

Ω

Rk

( α

k2

)
dz =

1
2π

|Ω|2α log k + O(1) for k → 0 ,

which shows that the choice of α from (2.1.44) cancels the term
1
2π

|Ω| log k

∫

Γ

ψds on the right–hand side of (2.1.47).

Consequently in both cases n = 2 and n = 3, ũ can be obtained as the
unique solution of the equation

Bũ =
1
2
ψ − K ′ψ −

∫

Ω

V ψdz + αχn ,

where
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χn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− γ0

2π
|Ω|2 + lim

k→0

{ 1
k2

∫

Ω

Rk1dz − |Ω|2
2π

log k
}

, n = 2,

lim
k→0

1
k2

{ ∂

∂nx
Rk1 +

∫

Ω

Rk1dz} , n = 3.

Similarly, again we can show that uR is the unique solution of the equation

BuR − ∂

∂nx
RkuR −

∫

Ω

RkuR(z)dz = fR

with

fR = −R′
kψ −

∫

Ω

Skψdx +
∂

∂nx
Rkũ +

∫

Ω

Rkũdx

+
α

k2

{ ∂

∂nx
Rk1 +

∫

Ω

Rk1dx − δn2
|Ω|2
2π

k2 log k + δn3
|Ω|2
4π

ik3
}

−α lim
k→0

1
k2

{ ∂

∂nx
Rk1 +

∫

Ω

Rk1dx − δn2
|Ω|2
2π

k2 log k
}

.

For n = 2, the above relations show that fR = O(k2 log k), which implies
that uR = O(k2 log k), as well.

In case n = 3, by using the Gaussian theorem for the first two terms from
(2.1.21) we obtain explicitly

Rk1 =
∫

Γ

Rk(x, y)dsy = − 1
4π

k2

∫

Ω

1
|x − y|dy − i

4π
k3|Ω| + O(k4) .

Hence,

∂

∂nx
Rk1 = − 1

4π
k2

∫

Ω

∂

∂nx

1
|x − y|dy + O(k4) ,

∫

Ω

Rk1dx = − 1
4π

k2

∫

Ω

∫

Ω

1
|x − y|dydx − i

4π
k3|Ω|2 + O(k4) .

Together with (2.1.44) this yields

fR = O(k2)

which implies that uR is of the same order as k → 0.

ENP: Finally, let us consider the boundary integral equations of (ENP) and
begin with the simplest case, i.e. the integral equation of the second kind (see
(2) in Table 2.1.1),
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1
2
u − Ku − Rku = −V ψ +

{
δn2

(
1
2π

log k + γ0

)
− δn3

ik

4π

}∫

Γ

ψds − Skψ .

(2.1.48)
The operator on the left–hand side is a regular perturbation of the reduced
invertible operator 1

2I − K (see Section 1.4.2).

For n = 2, Skψ is of order O(k2 log k) in view of (2.1.19). Hence, for u|Γ we
use the expansion

u =
1
2π

(log k + γ0)α + ũ + uR .

The highest order term
α =

∫

Γ

ψds

is the unique solution of the reduced equation

1
2α − Kα =

∫

Γ

ψds ;

the second term ũ is the unique solution of the reduced equation
1
2 ũ − Kũ = −V ψ . (2.1.49)

For the remainder uR we obtain the equation

1
2uR − KuR − RkuR =

α

2π
(log k + γ0)Rk1 + Rkũ − Skψ .

The dominating term on the right–hand side is defined by

Rk1 =
1
2π

|Ω|k2 log k + O(k2) ,

therefore uR is of order O((k log k)2).

For n = 3, Skψ in (2.1.48) is of order O(k2) in view of (2.1.19). Hence, now
u is of the form

u = ũ − α
ik

4π
+ uR

where ũ is the unique solution of the reduced equation (2.1.49) and α =∫
Γ

ψds. The remainder uR satisfies the equation

1
2uR − KuR − RkuR = Rkũ − Skψ − ik

4π
Rkα ,

and, therefore, is of the order O(k2).
The hypersingular boundary integral equation (1) of the first kind in

Table 2.1.2 reads

Du − ∂

∂nx
Rku = −

(1
2
I + K ′

)
ψ − R′

kψ , (2.1.50)

where D has the constant functions as eigensolutions.
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Multiplying (2.1.48) by the natural charge q, integrating over Γ and using
(2.1.36) and Vq = c0, we obtain the relation

∫

Γ

uqds −
∫

Γ

q(Rku)ds

= −
{

c0 − δn2
1
2π

(log k + γ0) + δn3
ik

4π

}∫

Γ

ψds −
∫

Γ

q(Skψ)ds

(2.1.51)

with c0 given by (2.1.35). Now (2.1.51) can be used as a normalizing condition
by combining (2.1.50) and (2.1.51); we arrive at the modified equation

Du +
∫

Γ

uqds −
∫

Γ

(Rku)qds − ∂

∂nx
Rku

=
(
−c0 + δn2

1
2π

(log k + γ0) − δn3
ik

π

)∫

Γ

ψds (2.1.52)

−
(

1
2I + K ′)ψ − R′

kψ −
∫

Γ

q(Skψ)ds .

Again, we assume u in the form

u = δn2
1
2π

(log k + γ0 − 2πc0)α − δn3
ik

4π
α + ũ + uR ,

where k → 0 yields

α =
∫

Γ

ψds .

The term ũ is the unique solution of

Dũ +
∫

Γ

ũqds = −δn3c0

∫

Γ

ψds − ( 1
2I + K ′)ψ .

The remainder uR satisfies the equation

DuR +
∫

Γ

uRqds −
∫

Γ

q(RkuR)ds − ∂

∂nx
RkuR = fR ,

where

fR = α
{

δn2(log k + γ0 − 2πc0) − δn3
ik

4π

}{ ∂

∂nx
Rk1 +

∫

Γ

q(Rk1)ds
}

+
∂

∂nx
Rkũ +

∫

Γ

q(Rkũ)ds − R′
kψ −

∫

Γ

q(Skψ)ds
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is of order O
(
(k log k)2

)
for n = 2 and of order O(k2) for n = 3, which is in

agreement with the result from the previous analysis of the boundary integral
equation of the second kind.

With the solutions of the BIEs available, we now summarize the asymp-
totic behaviour of the solutions of the BVPs for small k by substituting the
boundary densities into the representation formula (2.1.5). In all the cases
we arrive at the following asymptotic expression

u(x) = ±[V σ̃(x) − Wũ(x)] + C(k;x) + R(k;x) (2.1.53)

where the ± sign corresponds to the interior and exterior domain and x ∈ Ω
or Ωc as in (2.1.5). For the Dirichlet problems, ũ|Γ = ϕ, and for the Neumann
problems, σ̃|Γ = ψ on Γ , are the given boundary data, respectively, whereas
the missing densities are the solutions of the corresponding BIEs presented
above. In Formula (2.1.53), C(k;x) denotes the highest order terms of the
perturbations in Ω or Ωc; whereas R(k;x) denotes the remaining boundary
potentials. The behaviour of C and R for k → 0 is summarized in Table 2.1.2
below.

The remainders R(x; k) are of the orders as given in the table, uniformly
in x ∈ Ω for the interior problems and in compact subsets of Ωc only, for the
exterior problems.

Table 2.1.2. Low frequency characteristics

BVP C(k; x) R(k; x) n

O((k log k)2) n = 2
IDP 0

O(k2) n = 3

−ω̃ O((k log k)2) 1 n = 2

EDP −k{V σ̃1(x) + i
4π

∫
Γ

σ̃ds} O(k2) n = 3

−{ 1
k2 − 1

2π

∫
Ω

log |x − y|dy} 1
|Ω|

∫
Γ

ψds O(k2 log k) n = 2

INP −{ 1
k2 + 1

4π

∫
Ω

1
|x−y|dy} 1

|Ω|
∫
Γ

ψds O(k2) n = 3

1
2π

(log k + γ0)
∫
Γ

ψds O((k log k)2) n = 2

ENP − ik
4π

∫
Γ

ψds O(k2) n = 3

1For this case a sharper result with O(k2) is given by MacCamy [194]
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2.2 The Lamé System

In linear elasticity for isotropic materials, the governing equations are

−∆∗v := −µ∆v − (µ + λ) graddiv v = f in Ω ( or Ωc) , (2.2.1)

where v is the desired displacement field and f is a given body force. The
parameters µ and λ are the Lamé constants which characterize the elastic
material. (See e.g. Ciarlet [42], Fichera [75], Gurtin [115], Kupradze et al
[177] and Leis [184]).

For n = 3, one also has the relation λ = 2µν/(1−2ν) with 0 ≤ ν < 1
2 , the

Poisson ratio. The latter relation is also valid for the plane strain problem
in two dimensions, where (2.2.1) is considered with n = 2. In the special
case of so–called generalized plane stress problems one still has (2.2.1) with
n = 2 for the first two displacement components (v1, v2)� but with a modified
λ = 2µν/(1 − 2ν) and a modified Poisson ratio ν = ν/(1 + ν). In this case
and in what follows, we will keep the same notation for λ.

For the Lamé system, the fundamental solution is given by

E(x, y) = λ+3µ
4π(n−1)µ(λ+2µ)

{
γn(x, y)I + λ+µ

λ+3µ
1

rn (x − y)(x − y)�
}

, (2.2.2)

a matrix–valued function, where I is the identity matrix, r = |x − y| and

γn(x, y) =

{
− log r for n = 2,
1
r for n = 3.

(2.2.3)

The boundary integral equations for the so–called fundamental boundary
value problems are based on the Green representation formula, which in elas-
ticity also is termed the Betti–Somigliana representation formula. For interior
problems, we have the representation

v(x) =
∫

Γ

E(x, y)Tv(y)dsy −
∫

Γ

(TyE(x, y))� v(y)dsy +
∫

Ω

E(x, y)f(y)dy

(2.2.4)
for x ∈ Ω. Here the traction on Γ is defined by

Tv|Γ =
(

λ(div v)n + 2µ
∂v

∂n
+ µn × curlv

) ∣∣∣
Γ

(2.2.5)

for n = 3 which reduces to the case n = 2 by setting u3 = 0 and the third
component of the normal n3 = 0. The subscript y in TyE(x, y) again denotes
differentiations in (2.2.4) with respect to the variable y.

The last term in the representation (2.2.4) is the volume potential (or
Newton potential) due to the body force f defining a particular solution vp

of (2.2.1). As in Section 2.1, we decompose the solution in the form
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v = vp + u

where u now satisfies the homogeneous Equation (2.2.1) with f = 0 and has
a representation (2.2.4) with f = 0, i.e.

u(x) = V σ(x) − Wϕ(x) . (2.2.6)

Here V and W are the simple and double layer potentials, now defined by

V σ(x) :=
∫

Γ

E(x, y)σ(y)dsy , (2.2.7)

Wϕ(x) :=
∫

Γ

(Ty(x, y)E(x, y))� ϕ(y)dsy ; (2.2.8)

and where in (2.2.6) the boundary charges are the Cauchy data ϕ(x) = u(x)|Γ ,
σ(x) = Tu(x)|Γ of the solution to

−∆∗u = 0 in Ω . (2.2.9)

For linear problems, because of the above decomposition, in the following, we
shall consider, without loss of generality, only the case of the homogeneous
equation (2.2.9), i.e., f = 0.

For the exterior problems, the representation formula for v needs to be
modified by taking into account growth conditions at infinity. For f = 0, the
growth conditions are

u(x) = −E(x, 0)Σ + ω(x) + O(|x|1−n) as |x| → ∞ , (2.2.10)

where ω(x) is a rigid motion defined by

ω(x) =

{
a + b(−x2, x1)� for n = 2,
a + b × x for n = 3.

(2.2.11)

Here, a, b and Σ are constant vectors; the former denote translation and
rotation, respectively. The representation formula for solutions of

−∆∗u = 0 in Ωc (2.2.12)

with the growth condition (2.2.10) has the form

u(x) = −V σ(x) + Wϕ(x) + ω(x) (2.2.13)

with the Cauchy data ϕ = u|Γ and σ = Tu|Γ and with

Σ =
∫

Γ

σds . (2.2.14)
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2.2.1 The Interior Displacement Problem

The Dirichlet problem for the Lamé equations (2.2.9) in Ω is called the dis-
placement problem since here the boundary displacement

u|Γ = ϕ on Γ (2.2.15)

is prescribed. The missing Cauchy datum on Γ is the boundary traction
σ = Tu|Γ . Applying the trace and the traction operator T (2.2.5) to both
sides of the representation formula (2.2.4), we obtain the overdetermined
system of boundary integral equations

ϕ(x) = (1
2I − K)ϕ(x) + V σ(x) , (2.2.16)

σ(x) = Dϕ + (1
2I + K ′)σ(x) on Γ . (2.2.17)

Here, the boundary integral operators are defined as in (1.2.3)–(1.2.6), how-
ever, it is understood that the fundamental solution now is given by (2.2.2)
and the differentiation ∂

∂n|Γ
(1.2.4)–(1.2.6) is to be replaced by the traction

operator T|Γ (2.2.5). Explicitly, we also have:

Lemma 2.2.1. Let Γ ∈ C2 and let ϕ ∈ Cα(Γ ),σ ∈ Cα(Γ ) with 0 < α < 1.
Then, for the case of elasticity, the limits (1.2.3)–(1.2.5) exist uniformly with
respect to all x ∈ Γ and all ϕ and σ with ||ϕ||Cα ≤ 1, ||σ||Cα ≤ 1. Further-
more, these limits can be expressed by

V σ(x) =
∫

y∈Γ\{x}

E(x, y)σ(y)dsy, x ∈ Γ , (2.2.18)

Kϕ(x) = p.v.

∫

y∈Γ\{x}

(TyE(x, y))� ϕ(y)dsy , x ∈ Γ , (2.2.19)

K ′σ(x) = p.v.

∫

y∈Γ\{x}

(TxE(x, y)) σ(y)dsy , x ∈ Γ . (2.2.20)

These results are originally due to Giraud [99], see also Kupradze [176, 177]
and the references therein. We remark that the integral in (2.2.18) is a weakly
singular improper integral, whereas the integrals in (2.2.19) and (2.2.20) are
to be defined as Cauchy principal value integrals, i.e.

p.v.

∫

y∈Γ\{x}

(TyE(x, y))� ϕ(y)dsy = lim
ε→0

∫

|y−x|≥ε>0∧y∈Γ

(TyE(x, y))� ϕ(y)dsy ,

since the operators K and K ′ have Cauchy singular kernels:
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(TyE(x, y))�

=
µ

2(n − 1)π(λ + 2µ)

{(
I +

n(λ + µ)
µ|x − y|2 (x − y)(x − y)�

)∂γn

∂ny
(x, y)

+
1

|x − y|n
(
(x − y)n�

y − ny(x − y)�
)}�

, (2.2.21)

(TxE(x, y))

=
µ

2(n − 1)π(λ + 2µ)

{(
I +

n(λ + µ)
µ|x − y|2 (x − y)(x − y)�

)∂γn

∂nx
(x, y)

− 1
|x − y|n

(
(x − y)n�

x − nx(x − y)�
)}

. (2.2.22)

We note that in case n = 2, the last term in (2.2.21) can also be written in
the form

1
|x − y|2

(
(x − y)n�

y − ny(x − y)�
)

=
(

0 , 1
−1 , 0

)
d

dsy
log |x− y| . (2.2.23)

The last terms in the kernels (2.2.21) and (2.2.22) are of the order O(r−n) as
r = |x − y| → 0 and, in addition, satisfy the Mikhlin condition (see Mikhlin
[213, Chap. 5] or [215, Chap. IX]) which is necessary and sufficient for the
existence of the above Cauchy principal value integrals for any x ∈ Γ . We
shall return to this condition later on. The proof of Lemma 2.2.1 can be found
in [213, Chap. 45 p. 210 ff].

It turns out that there exists a close relation between the single and double
layer operators of the Laplacian and the Lamé system based on the following
lemma and the Günter derivatives

mjk

(
∂y,n(y)

)
:= nk(y)

∂

∂yj
− nj(y)

∂

∂yk
= −mkj

(
∂y,n(y)

)
(2.2.24)

(see Kupradze et al [177, (4.7), p. 99]) which are particular tangential deriv-
atives; in matrix form

M
(
∂y,n(y)

)
:=

((
mjk

(
∂y,n(y)

)))
3×3

. (2.2.25)

Lemma 2.2.2. For the Günter derivatives there hold the identities

mj�

(
∂y,n(y)

)
γn =

nj(y� − x�) − n�(yj − xj)
|x − y|n , (2.2.26)

n∑

�=1

mj�

(
∂y,n(y)

) (y� − x�)(yk − xk)
|x − y|n

= −
(
δjk − n(yj − xj)(yk − xk)

|x − y|2
) ∂

∂ny
γn. (2.2.27)
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The proof is straight forward by direct computation.
Inserting the identities (2.2.26) and (2.2.27) into (2.2.21) we arrive at

(
TyE(x, y)

)� =
1

2(n − 1)π

{ ∂

∂ny
γn(x, y) + M

(
∂y, (n(y)

)
γn(x, y)

}

+2µ
(
M

(
∂y,n(y)

)
E(x, y)

)�
. (2.2.28)

In the same manner we find
(
TxE(x, y)

)
=

1
2(n − 1)π

{ ∂

∂nx
γn(x, y) −M

(
∂x, (n(x)

)
γn(x, y)

}

+2µ
(
M

(
∂x,n(x)

)
E(x, y)

)
. (2.2.29)

As a consequence, we may write the double layer potential operator in (2.2.19)
after integration by parts in the form of the Stokes theorem as

Kϕ(x) =
1

2(n − 1)π

{∫

Γ

( ∂

∂ny
γn(x, y)

)
ϕ(y)dsy

−
∫

Γ

γn(x, y)M
(
∂y,n(y)

)
ϕ(y)dsy

}
(2.2.30)

+ 2µ

∫

Γ

E(x, y)M
(
∂y,n(y)

)
ϕ(y)dsy ,

see Kupradze et al [177, Chap. V Theorem 6.1].
Finally, the hypersingular operator D in (2.2.17) is defined by

Dϕ(x) = −TxWϕ(x)

:= − lim
z→x∈Γ,z �∈Γ

(
λ
(
divzWϕ(z)) + 2µ(gradzWϕ(z)

)
· nx

+ µnx × curlzWϕ(z)
)

. (2.2.31)

Lemma 2.2.3. Let Γ ∈ C2 and let ϕ be a Hölder continuously differentiable
function. Then in the case of elasticity, the limits (1.2.6) exist uniformly with
respect to all x ∈ Γ and all ϕ with ‖ϕ‖C1+α ≤ 1. Moreover, the operator D
can be expressed as a composition of tangential differential operators and the
simple layer operators of the Laplacian and the Lamé system:

For n = 2:

Dϕ(x) = − d

dsx
Ṽ

(
dϕ

ds

)
(x) (2.2.32)

where

Ṽ χ(x) :=
µ(λ + µ)
π(λ + 2µ)

∫

Γ

(
− log |x − y| + (x − y)(x − y)�

|x − y|2
)

χ(y)dsy .

(2.2.33)
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For n = 3:

Dϕ(x) = − µ

4π
(nx ×∇x) ·

∫

Γ

1
|x − y| (ny ×∇y)ϕ(y)dsy

−M
(
∂x,n(x)

) ∫

Γ

{
4µ2E(x, y) − µ

2π

1
|x − y|I

}
M

(
∂y,n(y)

)
ϕ(y)dsy

+
µ

4π

( 3∑

�,k=1

m�k

(
∂x,n(x)

) ∫

Γ

1
|x − y|

(
mkj

(
∂y,n(y)

)
ϕ�

)
(y)dsy

)

j=1,2,3
.

(2.2.34)

Proof: The proof for n = 2 was given by Bonnemay [17] and Nedelec [233];
here we follow the proof given by Houde Han [118, 119] for n = 3. The proof
is based on a different representation of the traction operator T by employing
Günter’s derivatives M; more precisely we have:

T
(
∂x,n(x)

)
u(x) = (λ + µ)(divu)n(x) + µ

(∂u

∂n
+ Mu

)
. (2.2.35)

We note
Mu =

∂u

∂n
− (divu)n(x) + n(x) × curlu . (2.2.36)

Now we apply T in the form (2.2.35) to the three individual terms in the
double layer potential K in (2.2.30) successively, and begin with

T
(
∂z,n(x)

) ∂

∂ny
γn(z, y)I

= µ(n(x) · ∇z)
∂

∂ny
γn(z, y)I + µM

(
∂z,n(x)

) ∂

∂ny
γn(z, y)I

+ (λ + µ)n(x)
(
gradz

∂

∂ny
γn(z, y)

)�
.

Next we apply T to the remaining two terms by using (2.2.29) to obtain

T
(
∂z,n(x)

)(
2µE(z, y) − 1

2(n − 1)π
γn(z, y)I

)

= M
(
∂z,n(x)

){
4µ2E(x, y) − 2µ

2(n − 1)π
γn(x, y)I

}

+
2µ

2(n − 1)π
n(x) · ∇zγn(z, y)I − T

(
∂z,n(x)

) 1
4π

γn(z, y)I .

Now we apply (2.2.35) to the last term in this expression and find
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T
(
∂z,n(x)

) 1
2(n − 1)π

γn(z, y)I

=
1

2(n − 1)π
(λ + µ)n(x)

(
∇zγn(z, y)

)� +
µ

2(n − 1)π
n(x) · ∇zγn(z, y)I

+
µ

2(n − 1)π
M

(
∂z,n(x)

)
γn(z, y)I .

Hence,

T
(
∂z, n(x)

)(
2µE(z, y) − 1

2(n − 1)π
γn(z, y)I

)

= M
(
z, n(x)

){
4µ2E(z, y) − 3µ

2(n − 1)π
γnI

}
− λ + µ

2(n − 1)π
n(x)

(
∇zγn(x, z)

)�

+
µ

2(n − 1)π
n(x) · ∇z(z, y)I .

Collecting these results we obtain

T
(
∂z,n(x)

)
(Kϕ)(z)

=
µ

2(n − 1)π
n(x) · ∇z

∫

Γ

∂

∂ny
γn(z, y)ϕ(y)dsy

+ M
(
∂z,n(x)

) ∫

Γ

{
4µ2E(z, y) − 3µ

2(n − 1)π
γn(z, y)

}
M

(
∂y,n(y)

)
ϕ(y)dsy

+
λ + µ

2(n − 1)π

{
n(x)

∫

Γ

(
∇z

∂

∂ny
γn(z, y)

)
· ϕ(y)dsy

− n(x)
(
∇z

∫

Γ

γn(z, y) ·
(
M

(
∂y,n(y)

)
ϕ(y)

)
dsy

}

+
µ

2(n − 1)π

{
M

(
∂z,n(x)

) ∫

Γ

∂

∂ny
γn(z, y)ϕ(y)dsy

+ n(x) · ∇z

∫

Γ

γn(z, y)M
(
∂y,n(y)

)
ϕ(y)dsy

}

=
µ

2(n − 1)π
n(x) · ∇z

∫

Γ

( ∂

∂ny
γn(z, y)

)
ϕ(y)dsy

+ M
(
∂z,n(x)

) ∫

Γ

{
4µ2E(z, y) − 3µ

2(n − 1)π
γn(z, y)

}
M

(
∂y,n(y)

)
ϕ(y)dsy

+
(λ + µ)

2(n − 1)π
J1ϕ(x) +

µ

2(n − 1)π
J2ϕ(x)
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where

J1ϕ(x) :=
∫

Γ

{
n(x)

(
∇z

∂

∂ny
γn(z, y) · ϕ(y)

)

− n(x)
(
∇zγn(z, y)

)
·
(
M

(
∂y,n(y)

)
ϕ(y)

)}
dsy

and

J2ϕ(x) :=
∫

Γ

{
M

(
∂z,n(x)

) ∂

∂ny
γn(z, y)

+
(
n(x) · ∇zγn(z, y)

)
M

(
∂y,n(y)

)}
ϕ(y)dsy .

The product rule gives
(
M

(
∂y,n(y)

)
∇zγn(z, y)

)
· ϕ(y)

=
n∑

k,�=1

(
mk�

(
∂y,n(y)

) ∂

∂z�
γn(z, y)

)
ϕk(y)

=
n∑

k,�=1

(
mk�

(
∂y,n(y)

)( ∂

∂z�
γn(z, y)ϕk(y)

)

−
(
mk�

(
∂y,n(y)

)
ϕk(y)

) ∂

∂z�
γn(z, y)

)

=
n∑

k,�=1

(
− m�k

(
∂y,n(y)

)( ∂

∂z�
γn(z, y)ϕk(y)

)

+
( ∂

∂z�
γn(z, y)

)(
m�k

(
∂y,n(y)

))
ϕk(y)

)
. (2.2.37)

The symmetry of γn(z, y) and ∆yγn(z, y) = 0 for z �= y implies

n∑

k=1

mjk(y)
∂γn(z, y)

∂zk
=

n∑

k=1

nk(y)
∂2

∂yj∂zk
γn(z, y) − nj(y)

n∑

k=1

∂2

∂yk∂zk
γn(z, y)

=
n∑

k=1

nk(y)
∂2

∂yk∂zj
γn(z, y) + nj(y)∆yγn(z, y)

=
∂

∂zj

∂γn(z, y)
∂ny

,

i.e.,

∇z
∂γn(z, y)

∂ny
= M

(
∂y(y)

)
∇zγn(z, y) . (2.2.38)

Using (2.2.37) and (2.2.38) for the first term of the integrand of J1, we find
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J1ϕ(x) = n(x)
∫

Γ

{(
M

(
∂y,n(y)

)
∇zγn(z, y)

)
· ϕ(y)

−∇zγn(z, y) ·
(
M

(
∂y(y)

)
ϕ(y)

)}
dsy

= −n(x)
∫

Γ

n∑

�,k=1

m�k

(
∂y,n(y)

)( ∂

∂zk
γn(z, y)ϕk(y)

)
dsy = 0

for x �∈ Γ due to the Stokes theorem.
For the integral J2 we use

M
(
∂z,n(x)

) ∂

∂ny
γn(z, y) −M

(
∂y,n(y)

)(
∇z · n(x)

)
γn(z, y)I

=
{
M

(
∂y,n(y)

)
M

(
∂z,n(x)

)
−M

(
∂z,n(x)

)
M

(
∂y,n(y)

)}
γn(z, y)I

to obtain

J2ϕ(x) =
∫

Γ

(
M

(
∂z,n(x)

)
γn(z, y)IM

(
∂y,n(y)

)�
ϕ(y)dsy

+ M
(
∂z,n(x)

) ∫

Γ

γn(z, y)M
(
∂y,n(y)

)
ϕ(y)dsy .

The final result is then with (2.2.36):

−T
(
∂z,n(x)

) ∫

Γ

K(z, y)ϕ(y)dsy

= − µ

2(n − 1)π
(
n(x) ×∇z

)
·
∫

Γ

γn(z, y)
(
n(y) ×∇y

)
ϕ(y)dsy

−M
(
∂z,n(x)

) ∫

Γ

{
4µ2E(z, y) − 2µ

2(n − 1)π
γn(z, y)I

}
M

(
∂y,n(y)

)
ϕdsy

+
µ

2(n − 1)π

∫

Γ

(
M

(
∂z,n(x)

)
γn(z, y)M

(
∂y,n(y)

))�
ϕ(y)dsy ,

where z �∈ Γ .
As can be seen, this is a combination of applications of tangential deriv-

atives to weakly singular operators operating on tangential derivatives of ϕ.
Therefore, the limits z → x ∈ Γ with z ∈ Ω or z ∈ Ωc exist, which leads
to the desired result involving Cauchy singular integrals (see Hellwig [123,
p. 197]). Note that for n = 2 we have

(
n(x) ×∇x

)
|Γ = d

dsx
. �

The singular behaviour of the hypersingular operator now can be regular-
ized as above. This facilitates the computational algorithm for the Galerkin
method (Of et al [243]).
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As for the hypersingular integral operator associated with the Laplacian in
Section 1.2, here we can apply a more elementary, but different regularization.
Based on (2.2.31), we get

Dϕ(x) = − lim
Ω�z→x∈Γ

{Tz

∫

Γ

(TyE(x, y)�(ϕ(y) − ϕ(x))dsy

+ Tz

∫

Γ

(TyE(x, y))�ϕ(x)dsy} .

Here, in the neighborhood of Γ , the operator Tz is defined by (2.2.22) where
we identify nz = nx for z �∈ Γ . If we apply the representation formula (2.2.4)
to any constant vector field a, representing a rigid displacement, then we
obtain

a = −
∫

Γ

(TyE(z, y))�adsy for z ∈ Ω,

which yields for z ∈ Ω in the neighborhood of Γ

Tz

∫

Γ

(TyE(z, y))�dsyϕ(x) = 0 .

Hence,

Dϕ(x) = − lim
Ω�z→x∈Γ

Tz

∫

Γ

(TyE(z, y))� (ϕ(y) − ϕ(x))dsy ,

from which it can finally be shown that

Dϕ(x) = −p.v.

∫

Γ

Tx (TyE(x, y))� (ϕ(y) − ϕ(x)) dsy , (2.2.39)

(see Kupradze et al [177, p.294], Schwab et al [274]).
If the boundary potential operators in (1.2.18) and (1.2.19) are replaced

by the corresponding elastic potential operators, then the Calderón projector
CΩ for solutions u of (2.2.9) in Ω again is given in the form of (1.2.20) with
the corresponding elastic potential operators.
Also, Theorem 1.2.3. and Lemma 1.2.4. remain valid for the corre-
sponding elastic potentials V,K,K ′ and D.

For the solution of the interior displacement problem we now may solve
the Fredholm boundary integral equation of the first kind

V σ = 1
2ϕ + Kϕ on Γ , (2.2.40)

or the Cauchy singular integral equation of the second kind
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1
2σ − K ′ϕ = Dϕ on Γ , (2.2.41)

which both are equations for σ.
The first kind integral equation (2.2.40) may have eigensolutions for spe-

cial Γ similar to (1.3.4) for the Laplacian (see Steinbach [291]). Again we
can modify (2.2.40) by including rigid motions (2.2.11). More precisely, we
consider the system

V σ − ω0 = 1
2ϕ + Kϕ on Γ ,

∫

Γ

σds = 0 (2.2.42)

together with
∫

Γ

(−σ1x2 + σ2x1)ds = 0 for n = 2 or

∫

Γ

(σ × x)ds = 0 for n = 3 ,
(2.2.43)

where σ and the unknown constant vector ω0 are to be determined. As was
shown in [142], the rotation b in (2.2.11) can be prescribed as b = 0; in this
case the side conditions (2.2.43) will not be needed. For n = 3, many more
choices in ω0 can be made (see [142] and Mikhlin et al [214]). The modified
system (2.2.42) and (2.2.43) is always uniquely solvable in the Hölder space,
σ ∈ Cα(Γ ) for given ϕ ∈ C1+α(Γ ).

For the special Cauchy singular integral equation of the second kind
(2.2.41), Mikhlin showed in [210] that the Fredholm alternative, originally
designed for compact operators K, remains valid here. Therefore, (2.2.41)
admits a unique classical solution σ ∈ Cα(Γ ) provided ϕ ∈ C1+α(Γ ), 0 <
α < 1. (See Kupradze et al [177, Chap. VI], Mikhlin et al [215, p. 382 ff]).

2.2.2 The Interior Traction Problem

The Neumann problem for the Lamé system (2.2.9) in Ω is called the traction
problem, since here the boundary traction

Tu|Γ = ψ on Γ (2.2.44)

is given, whereas the missing Cauchy datum u|Γ needs to be determined.
Corresponding to (2.2.16) and (2.2.17), we have the overdetermined system

(
1
2I + K

)
u = V ψ , (2.2.45)

Du =
(

1
2I − K ′)ψ on Γ (2.2.46)

for the unknown boundary displacemant u|Γ .
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As for the Neumann Problem for the Laplacian, here ψ needs to satisfy
certain equilibrium conditions for a solution to exist. These can be obtained
from the Betti formula, which for u and any rigid motion ω(x) reads

0 =
∫

Ω

(ω · ∆∗u) − (u · ∆∗ω)dx

=
∫

Γ

ω · Tuds −
∫

Γ

u · Tωds .

This implies, with Tω = 0, the necessary compatibility conditions for the
given traction ψ, namely

∫

Γ

ω · ψds = 0 for all rigid motions ω (2.2.47)

given by (2.2.11). This condition turns out to be also sufficient for the ex-
istence of u in the classical Hölder function spaces. If ψ ∈ Cα(Γ ) with
0 < α < 1 is given satisfying (2.2.47), then the right–hand side, V ψ in
(2.2.45), automatically satisfies the orthogonality conditions from Fredholm’s
alternative; and the Cauchy singular integral equation (2.2.45) admits a
solutionu ∈ C1+α(Γ ). The solution, however, is unique only up to all rigid
motions ω, which are eigensolutions. For further details see [142].

The hypersingular integral equation of the first kind (2.2.46) also has
eigensolutions which again are given by all rigid motions (2.2.11). As will be
seen, the classical Fredholm alternative even holds for (2.2.46), and the right–
hand side 1

2ψ − K ′ψ satisfies the corresponding orthogonality conditions,
provided, ψ ∈ Cα(Γ ) satisfies the equilibrium conditions (2.2.47). In both
cases, the integral equations , together with appropriate side conditions, can
be modified so that the resulting equations are uniquely solvable (see [141]).

2.2.3 Some Exterior Fundamental Problems

In this section we shall summarize the approach from [142]. For the exterior
displacement problem for u satisfying the Lamé system (2.2.12) and the
Dirichlet condition (2.2.15),

u|Γ = ϕ on Γ ,

we require at infinity appropriate conditions according to (2.2.10); namely
that there exist Σ and some rigid motion ω such that

u(x) + E(x, 0)Σ − ω = O(|x|1−n) as |x| → ∞ .

In general, the constants in Σ and ω are related to each other. However,
some of them can still be specified.
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For n = 2, we consider the following two cases. In the first case,

b in ω = a + b(−x2, x1)T is given .

In addition, the total forces Σ in (2.2.14) are also given, often as Σ = 0 due to
equilibrium. Then a in ω is an additional unknown vector. The representation
formula (2.2.13) for the Dirichlet problem (2.2.12) with (2.2.14) yields the
modified boundary integral equation of the first kind

V σ − a = − 1
2ϕ(x) + Kϕ(x) + b(−x2,+x1)� on Γ , (2.2.48)

∫

Γ

σds = Σ . (2.2.49)

Here, ϕ,Σ and b are given and σ,a are the unknowns. As we will see,
these equations are always uniquely solvable. In particular, for any given
ϕ ∈ C1+α(Γ ),Σ and b, one finds in the classical Hölder–spaces σ ∈ Cα(Γ ).

In the second case, in addition to the total force Σ, the total momentum
∫

Γ

(−x2σ1 + x1σ2)dsx = Σ3

is also given, whereas b is now an additional unknown. Now the modified
boundary integral equation of the first kind reads

V σ(x) − a − b(−x2,+x1)� =
1
2
ϕ(x) + Kϕ(x) on Γ , (2.2.50)

∫

Γ

σds = Σ,

∫

Γ

(−x2σ1 + x1σ2)dsx = Σ3 , (2.2.51)

where ϕ ∈ C1+α(Γ ),Σ, Σ3 are given and σ,a and b are to be determined.
The system (2.2.50), (2.2.51) always has a unique solution σ ∈ Cα(Γ ),a, b.

Both these problems can also be reduced to Cauchy singular integral equa-
tions by applying the traction operator to (2.2.13). This yields the singular
integral equation

1
2σ(x) + K ′σ(x) = −Dϕ(x) for x ∈ Γ , (2.2.52)

with the additional equation (2.2.49) in the first case or the additional
equations (2.2.51) in the second case, respectively. The operator 1

2I + K ′

is adjoint to 1
2I + K in (2.2.17). Due to Mikhlin [210], for these special oper-

ators, Fredholm’s classical alternative is still valid in the space Cα(Γ ). Since

1
2ω + Kω = 0 on Γ

for all rigid motions ω, the adjoint equation (2.2.52) has an 3(n − 1)–
dimensional eigenspace, as well. Moreover, Dω = 0 for all rigid motions;
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hence, the right–hand side of (2.2.52) always satisfies the orthogonality con-
ditions for any given ϕ ∈ C1+α(Γ ). This implies that equation (2.2.52) always
admits a solution σ ∈ Cα(Γ ) which is not unique. If, for n = 2, the total force
and total momentum in addition are prescribed by (2.2.51), i.e. in the second
case, then these equations determine σ(x) uniquely. For finding a and b we
first determine three vector–valued functions λj(x), j = 1, 2, 3, satisfying on
Γ the equations

∫

Γ

a · λjds = aj and
∫

Γ

(−x2, x1) · λj(x)ds = 0 for j = 1, 2 ,

∫

Γ

a · λ3ds = 0 and
∫

Γ

(−x2, x1) · λ3ds = 1 .

(2.2.53)
Since σ(x) on Γ is already known from solving (2.2.52), equation (2.2.50)
can now be used to find a and b; namely

for j = 1, 2 : aj

for j = 3 : b

}
=

∫

Γ

V σ(x) · λj(x)dx − 1
2

∫

Γ

ϕ · λjds −
∫

Γ

(Kϕ) · λjds .

(2.2.54)
If, as in the first case, b and Σ are given, then the additional equations

∫

Γ

σds = Σ and

∫

Γ

λ3(x) · V σ(x)dsx = b − 1
2

∫

Γ

λ3 · ϕds +
∫

Γ

λ3 · Kϕds

determine σ uniquely; and a1, a2 can be found from (2.2.54), afterwards.
In the case n = 3, there are many more possible choices of additional

conditions. To this end, we write the rigid motions (2.2.11) in the form

ω(x) =
3∑

j=1

ajmj(x) +
6∑

j=4

bj−3mj(x) =:
6∑

j=1

ωjmj(x)

where mj(x) is the j–th column vector of the matrix
⎛

⎝
1 , 0 , 0 , 0 , x3 , −x2

0 , 1 , 0 , x2 , 0 , x1

0 , 0 , 1 , −x3 , −x1 , 0 .

⎞

⎠ . (2.2.55)

Let J ⊂ F := {1, 2, 3, 4, 5, 6} denote any fixed set of indices in F . Then we
may prescribe aj−3, bj for j ∈ J , i.e., some of the parameters in ω subject
to the behavior of (2.2.10) at infinity. If J is a proper subset of F then we
must include additional normalization conditions,
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∫

Γ

mk(y) · σ(y)dsy = Σk for k ∈ F \ J . (2.2.56)

By taking the representation formula (2.2.13) on Γ , we obtain from the direct
formulation the boundary integral equation of the first kind on Γ ,

V σ(x) −
∑

k∈F\J
ωkmk(x) = −1

2
ϕ(x) + Kϕ(x) +

∑

j∈J
ωjmj(x) , (2.2.57)

together with the additional equations,
∫

Γ

mk(y) · σ(y)dsy = Σk for k ∈ F \ J . (2.2.58)

In the right–hand side of (2.2.57), the ωj are given, whereas the ωk in the
left–hand side are unknown. For given ϕ ∈ Cα(Γ ), 0 < α < 1, and given
constants ωj , j ∈ J , the unknowns are σ ∈ Cα(Γ ) together with ωk for
k ∈ F \ J .

Again, we may take the traction of (2.2.13) on Γ to obtain a Cauchy
singular boundary integral equation instead of (2.2.57) and (2.2.58), namely
(2.2.52) together with (2.2.58). Since (2.2.52) is always solvable for any given
ϕ ∈ C1+α(Γ ) due to the special form of the right–hand side, and since the
eigenspace of 1

2I + K ′ is the linear space of all rigid motions, the linear
equations (2.2.58) need to be completed by including (card J ) additional
equations which resembles the required behavior of u(x) at infinity for those
ωj given already with j ∈ J . For these constraints, we again choose the
vector–valued functions, λ� on Γ , � ∈ F , (e.g. linear combinations of m�|Γ )
which are orthonormalized to mj |Γ , i.e.,

∫

Γ

mj(x) · λ�(x)dsx = δj,�, j, � ∈ F . (2.2.59)

Now, the complete system of equations for the modified Dirichlet problem can
be formulated as

1
2
σ(x) + K ′σ(x) −

∑

�∈F
α�m�(x) = −Dϕ(x) for x ∈ Γ

∫

Γ

mk · σk(y)dsy = Σk, k ∈ F \ J ,
(2.2.60)

together with
∫

Γ

λj(x) · V σds =
∫

Γ

λj ·
{

1
2
ϕ(x) + K ′ϕ(x)

}
ds + ωj for j ∈ J .
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The desired displacement u(x)|Γ then is obtained from (2.2.13) with σ(x)
determined from (2.2.60) and ωk given by

ωk =
∫

Γ

λk · V σds +
∫

Γ

λk ·
{

1
2
ϕ − Kϕ

}
ds for k ∈ F \ J .

Note that we have included the extra unknown term
∑

α�m�(x) in (2.2.60)
so that the number of unknowns and equations coincide. One can show that
in fact α� = 0 for � ∈ F . The last set of equations has been obtained from
(2.2.50) with (2.2.59).

For the exterior traction problem, the Neumann datum is given by

Tu|Γ = ψ on Γ ,

and the total forces and momenta by
∫

Γ

ψ · mkds = Σk, k ∈ F .

Here, the standard direct approach with x → Γ in (2.2.13) yields the Cauchy
singular boundary integral equation for u|Γ ,

1
2u(x) − Ku(x) = V ψ(x) + ω(x) for x ∈ Γ . (2.2.61)

As is well known, (2.2.61) is always uniquely solvable for any given ψ ∈ Cα(Γ )
and given ω with u ∈ C1+α(Γ ); we refer for the details to Kupradze [176,
p. 118].

If we apply T to (2.2.13) then we obtain the hypersingular boundary
integral equation

Du(x) = − 1
2ψ(x) − K ′ψ(x) for x ∈ Γ . (2.2.62)

It is easily seen that the rigid motions ω(y) on Γ are eigensolutions of
(2.2.62). Therefore, in order to guarantee unique solvability of the boundary
integral equation , we modify (2.2.62) by including restrictions and adding
unknowns, e.g.,

Du0(x) = −1
2
ψ(x) − K ′ψ(x) +

3(n−1)∑

�=1

α�m�(x) for x ∈ Γ and

∫

Γ

mk(y) · u0(y)dsy = 0 , k = 1, · · · , 3(n − 1) .

(2.2.63)

Also here, the unknowns α� are introduced for obtaining a quadratic system.
For the Neumann problem, they all vanish because of the special form of
the right–hand side. As we will see, the system (2.2.63) is always uniquely
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solvable; for any given ψ ∈ Cα(Γ ) we find exactly one u0 ∈ C1+α(Γ ). In
(2.2.63), the additional compatibility conditions can also be incorporated
into the first equation of (2.2.63) which yields the stabilized uniquely solvable
version

D̃u0(x) := Du0(x) +
3(n−1)∑

k=1

∫

Γ

mk(y)u0(y)dsymk(x)

= − 1
2ψ(x) − K ′ψ(x) for x ∈ Γ .

(2.2.64)

Once u0 is known, the actual displacement field u(x) is then given by

u(x) = −V ψ(x) + Wu0(x) for x ∈ Ωc . (2.2.65)

Note that the actual boundary values of u|Γ may differ from u0 by a rigid
motion. u|Γ can be expressed via (2.2.65) in the form

u(x)|Γ =
1
2
u0(x) + Ku0(x) − V ψ(x) . (2.2.66)

In concluding this section we remark that the boundary integral equa-
tions on Hölder continuous charges are considered in most of the more clas-
sical works on this topic with applications in elasticity (e.g., Ahner et al [5],
Balaš et al [11], Bonnemay [18], Kupradze [175, 176], Muskhelishvili [223]
and Natroshvili [225]). However, as mentioned before, we shall come back to
these equations in Chapters 5–10.

Now we extend our approach to incompressible materials.

2.2.4 The Incompressible Material

If the elastic material becomes incompressible, the Poisson ratio
ν := λ/2(λ + µ) tends to 1/2 or λ = 2µν/(1 − 2ν) → ∞ for n = 3 and
for the plane strain case where n = 2. However, for the plane stress case we
have ν → 1/3 and λ → 2µ if the material is incompressible; and our previous
analysis remains valid without any restriction.

In order to analyze the incompressible case, we now rewrite the Lamé
equation (2.2.1) in the form of a system

−∆u + ∇p = 0 ,

div u = −cp where p = −λ + µ

µ
divu

(2.2.67)

and c = 1 − 2ν = µ
λ+µ → 0+ (see Duffin and Noll [66]). This system corre-

sponds to the Stokes system. In terms of the parameter c, the fundamental
solution (2.2.2) now takes the form
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E(x, y) =
1 + 2c

4π(n − 1)µ(1 + c)

{
γn(x, y)I + 1

(1+2c)rn (x − y)(x − y)�
}

(2.2.68)
which is well defined for c = 0, as well. Consequently, the Betti–Somigliana
representation formula (2.2.4) remains valid, where the double layer potential
kernel now reads as

(TyE(x, y))� =
1

2π(n − 1)(1 + c)

{
(cI +

n

r2
(x − y)(x − y)�)

∂γ

∂ny

+
c

rn

(
(x − y)n�

y − ny(x − y)�
)}�

, (2.2.69)

which again is well defined for the limiting case c = 0. However, the limiting
case of the differential equations (2.2.63) leads to the more complicated Stokes
system involving a mixed variational formulation (see Brezzi and Fortin [25])
whereas the associated boundary integral equations remain valid. In fact,
from (2.2.65) and (2.2.66) it seems that the case c = 0 does not play any
exceptional role. However, for small c > 0, a more detailed analysis is re-
quired. We shall return to this point after discussing the Stokes problem in
Section 2.3.

2.3 The Stokes Equations

The linearized and stationary equations of the incompressible viscous fluid
are modeled by the Stokes system consisting of the equations in the form

−µ∆u + ∇p = f ,

div u = 0 in Ω (or Ωc) .
(2.3.1)

Here u and p are the velocity and pressure of the fluid flow, respectively,
which are the unknowns; f corresponds to a given forcing term, while µ is
the given dynamic viscosity of the fluid. We have already seen this system
previously in (2.2.67) for the elastic material when it becomes incompressible,
although for viscous flow with given fluid density ρ, one introduces

ν :=
µ

ρ
� 1

which is usually referred to as the kinematic viscosity of the fluid, not the
Poisson ratio as in the case of elasticity. The fundamental solution of the
Stokes system (2.3.1) is defined by the pair of distributions vk, and qk satis-
fying

−{µ∆xvk(x, y) −∇xqk(x, y)} = δ(x, y)ek ,

divx vk = 0 ,
(2.3.2)

where ek denotes the unit vector along the xk-axis, k = 1, ., n with n = 2 or 3
(see Ladyženskaya [179]). By using the Fourier transform, we may obtain the
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fundamental solution explicitly:
For n = 2,

vk(x, y) =
1

4πµ

{
log

1
|x − y|e

k +
2∑

j=1

(xk − yk)(xj − yj)ej

|x − y|2
}

,

qk(x, y) =
∂

∂xk
{− 1

2π
log

1
|x − y| } ;

(2.3.3)

and for n = 3,

vk(x, y) =
1

8πµ

{ 1
|x − y|e

k +
3∑

j=1

(xk − yk)(xj − yj)ej

|x − y|3
}

,

qk(x, y) =
∂

∂xk
{− 1

4π

1
|x − y| }.

(2.3.4)

We note that from their explicit forms, vk(x, y) and qk(x, y) also satisfy the
adjoint system in the y–variables, namely

−{µ∆yv(x, y) + ∇yqk(x, y)} = δ(x, y)ek ,

−divy vk = 0 .
(2.3.5)

This means that we may use the same fundamental solution for the Stokes
system and for its adjoint depending on which variables are differentiated.
As will be seen, we do not need to switch the variables x and y in the repre-
sentation of the solution of (2.3.1) from Green’s formula (see [179]). For the
flow (u, p), we define the stress operators as in elasticity,

T (u) := −pn + µ(∇u + ∇u�)n (2.3.6)
= σ(u, p)n ,

T ′(u) := pn + µ(∇u + ∇u�)n
= σ(u,−p)n ,

where
σ := −pI + µ(∇u + ∇u�)

denotes the stress tensor in the viscous flow. We remark that it is understood
that the stress operator T is always defined for the pair (u, p). For smooth
(u, p) and (v, q), we have the second Green formula

∫

Ω

u · {−µ∆v −∇q)} dx −
∫

Ω

{−µ∆u + ∇p} · vdy

=
∫

Γ

[T (u) · v − u · T ′(v)] ds

(2.3.7)
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provided
div u = div v = 0 .

Now replacing (v, q) by (vk, qk), and by following standard arguments, the
velocity component of the nonhomogeneous Stokes system (2.3.1) has the
representation

uk(x) =
∫

Γ

[
Ty(u) · vk(x, y) − u · T ′

y(vk)(x, y)
]
dsy +

∫

Ω

f ·vkdy for x ∈ Ω .

(2.3.8)
To obtain the representation of the pressure, we may simply substitute the
relation

∂p

∂xk
= µ∆uk + fk

into (2.3.8). To simplify the representation, we now introduce the funda-
mental velocity tensor E(x, y) and its associated pressure vector Q(x, y),
respectively, as

E(x, y) = [v1, ·,vn], and Q(x, y) = [q1, ·, qn] ,

which satisfy
−µ∆xE + ∇xQ = δ(x, y)I ,

divxE = 0�.
(2.3.9)

As a result of (2.3.4) and (2.3.5), we have explicitly

E(x, y) =
1

4(n − 1)πµ

(
γnI +

(x − y)(x − y)�

|x − y|n
)

,

Q(x, y) =
1

2(n − 1)π
(−∇xγn)� =

1
2(n − 1)π

(∇yγn)�
(2.3.10)

with

γn(x, y) =

{
− log |x − y| for n = 2,

1
|x−y| for n = 3

as in (2.2.2). In terms of E(x, y) and Q(x, y), we finally have the representa-
tion for solutions in the form:

u(x) =
∫

Γ

E(x, y)T (u)(y)dsy −
∫

Γ

(
T ′

yE(x, y)
)�

u(y)dsy

+
∫

Ω

E(x, y)f(y)dy for x ∈ Ω , (2.3.11)

p(x) =
∫

Γ

Q(x, y) · T (u)(y)dsy − 2µ

∫

Γ

(
∂Q

∂ny
(x, y)) · u(y)dsy

+
∫

Ω

Q(x, y) · f(y)dy for x ∈ Ω . (2.3.12)
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It is understood that the representation of p is unique only up to an additive
constant. Also, as was explained before,

T ′
yE(x, y) := σ

(
E(x, y),−Q(x, y)

)
n(y) .

2.3.1 Hydrodynamic Potentials

The last terms in the representation (2.3.11) and (2.3.12) corresponding to
the body force f define a particular solution (U , P ) of the nonhomogeneous
Stokes system (2.3.1). As in elasticity, if we decompose the solution in the
form

u = uc + U , p = pc + P,

then the pair (uc, pc) will satisfy the corresponding homogeneous system of
(2.3.1). Hence, in the following, without loss of generality, we shall confine
ourselves only to the homogeneous Stokes system. The solution of the homo-
geneous system now has the representation from (2.3.11) and (2.3.12) with
f = 0, i.e.,

u(x) = V τ (x) − Wϕ(x) , (2.3.13)
p(x) = Φτ (x) − Πϕ(x). (2.3.14)

(The subscript c has been suppressed.) Here the pair (V, Φ) and (W,Π) are
the respective simple– and double layer hydrodynamic potentials defined by

V τ (x) :=
∫

Γ

E(x, y)τ (y)dsy ,

Φτ (x) :=
∫

Γ

Q(x, y) · τ (y)dsy ;
(2.3.15)

Wϕ(x) :=
∫

Γ

(
T ′

y(E(x, y))
)�

ϕ(y)dsy ,

Πϕ(x) := 2µ
∫

Γ

( ∂

∂ny
Q(x, y)

)
· ϕ(y)dsy for x �∈ Γ .

(2.3.16)

In (2.3.13) and (2.3.14) the boundary charges are the Cauchy data ϕ =
u(x)|Γ and τ (x) = Tu(x)|Γ of the solution to the Stokes equations

−µ∆u + ∇p = 0 ,

div u = 0 in Ω .
(2.3.17)

For the exterior problems, the representation formula for u needs to be
modified by taking into account the growth conditions at infinity. Here proper
growth conditions are
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u(x) =

{
Σ log |x| + O(1) for n = 2,
O(|x|−1) for n = 3;

(2.3.18)

p(x) = O(|x|1−n) as |x| → ∞. (2.3.19)

In the two–dimensional case Σ is a given constant vector. The representation
formula for solutions of the Stokes equations (2.3.17) in Ωc with the growth
conditions (2.3.18) and (2.3.19) has the form

u(x) = −V τ (x) + Wϕ(x) + ω , (2.3.20)
p(x) = −Φτ (x) + Πϕ(x) (2.3.21)

with the Cauchy data ϕ = u|Γ and τ = T (u)|Γ satisfying

Σ =
∫

Γ

τds ; (2.3.22)

and ω is an unknown constant vector which vanishes when n = 3.

2.3.2 The Stokes Boundary Value Problems

We consider two boundary value problems for the Stokes system (2.3.17) in
Ω as well as in Ωc. In the first problem (the Dirichlet problem), the boundary
trace of the velocity

u|Γ = ϕ on Γ (2.3.23)

is specified, and in the second problem (the Neumann problem), the hydro-
dynamic boundary traction

T (u)|Γ = τ on Γ (2.3.24)

is given. As consequences of the incompressible flow equations and the Green
formula for the interior problem, the prescribed Cauchy data need to satisfy,
respectively, the compatibility conditions

∫

Γ

ϕ · n ds = 0 ,

∫

Γ

τ · (a + b × x) ds = 0 for all a ∈ IRn and b ∈ IR1+2(n−2) ,

(2.3.25)

with b × x := b(x2,−x1)� for n = 2.
For the exterior problem we require the decay conditions (2.3.18) and

(2.3.19). We again solve these problems by using the direct method of bound-
ary integral equations.

Since the pressure p will be completely determined once the Cauchy data
for the velocity are known, in the following, it suffices to consider only the
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boundary integral equations for the velocity u. We need, of course, the rep-
resentation formula for p implicitly when we deal with the stress operator.
In analogy to elasticity, we begin with the representation formula (2.3.13)
for the velocity u in Ω and (2.3.20) and (2.3.21) in Ωc. Applying the trace
operator and the stress operator T to both sides of the representation for-
mula, we obtain the overdetermined system of boundary integral equations
(the Calderón projection) for the interior problem

ϕ(x) = (1
2I − K)ϕ(x) + V τ (x) , (2.3.26)

τ (x) = Dϕ + (1
2I + K ′)τ (x) on Γ . (2.3.27)

Hence, the Calderón projector for Ω can also be written in operator matrix
form as

CΩ =
(

1
2I − K V

D 1
2I + K ′

)
.

Here V,K,K ′ and D are the four corresponding basic boundary integral op-
erators of the Stokes flow. Hence, the Calderón projector CΩ for the interior
domain has the same form as in (1.2.20) with the corresponding hydrody-
namic potential operators.

For the exterior problem, the Calderón projector on solutions having the
decay properties (2.3.18) and (2.3.19) with Σ given by (2.3.22) is also given
by (1.4.11), i.e.,

CΩc = I − CΩ =
(

1
2I + K −V
−D 1

2I − K ′

)
. (2.3.28)

As always, the solutions of both Dirichlet problems as well as both Neumann
problems in Ω and Ωc can be solved by using the boundary integral equations
of the first as well as of the second kind by employing the relations between
the Cauchy data given by the Calderón projectors.

The four basic operators appearing in the Calderón projectors for the
Stokes problem are defined in the same manner as in elasticity (see Lemmata
2.3.1 and 2.2.3) but with appropriate modifications involving the pressure
terms. More specifically, the double layer operator is defined as

Kϕ(x) :=
1
2
ϕ(x) + lim

Ω�z→x∈Γ

∫

Γ

(
T ′

yE(z, y)
)�

ϕ(y)dsy (2.3.29)

=
∫

Γ\{x}

(
T ′

yE(x, y)
)�

ϕ(y)dsy

=
∫

Γ\{x}

n∑

i,j,k,=1

{
Qk(x, y)δij + µ

(∂Eik(x, y)
∂yj

+
∂Ejk(x, y)

∂yi

)}
nj(y)ϕi(y)dsy

=
n

2(n − 1)π

∫

Γ\{x}

(
(x − y) · n(y)

)(
(x − y) · ϕ(y)

)
(x − y)

|x − y|n+2
dsy



68 2. Boundary Integral Equations

having a weakly singular kernel for Γ ⊂ C2, and, hence, defines a continu-
ous mapping K : Cα(Γ ) → C1+α(Γ ) (see Ladyženskaya [179, p. 35] where
the fundamental solution and the potentials carry the opposite sign). The
hypersingular operator D is now defined by

Dϕ = −TxWϕ(x)
:= − lim

Ω�z→x∈Γ
Tz(∂z, x)

(
Wϕ(z)

)
(2.3.30)

= lim
Ω�z→x∈Γ

{(
Πϕ(z)

)
n(x) − µ

(
∇zWϕ(z) +

(
∇zWϕ(z)

)�)
n(x)

}
.

With the standard regularization this reads

Dϕ(x) = −p.v.

∫

Γ

{
Tx

(
T ′

yE(x, y)
)�}(

ϕ(y) − ϕ(x)
)
dsy (2.3.31)

=
−µ

2(n − 1)π
p.v.

∫

Γ

{
2

1
|x − y|n n(y) ·

(
ϕ(y) − ϕ(x)

)

+
n

|x − y|n+2
n(y) · n(x)

[
(x − y) ·

(
ϕ(y) − ϕ(x)

)]
(x − y)

}
dsy

+
µ

2(n − 1)π

∫

Γ

{ 2n(n + 2)
|x − y|n+4

[
(x − y) · n(x)

]

×
[
(x − y) · n(y)

][
(x − y) ·

(
ϕ(y) − ϕ(x)

)]
(x − y)

− n

|x − y|n+2

([
(x − y) · n(x)

][
(x − y) ·

(
ϕ(y) − ϕ(x)

)]
n(y)

+ n(x) ·
(
ϕ(y) − ϕ(x)

)[
(y − x) · n(y)

]
(x − y)

+
[
(x − y) · n(x)

][
(x − y) · n(y)

](
ϕ(y) − ϕ(x)

))}
dsy .

Again, as in Lemma 2.2.3, the hypersingular operator can be reformulated.

Lemma 2.3.1. Kohr et al [164] Let Γ ∈ C2 and let ϕ be a Hölder continu-
ously differentiable function. Then the operator D in (2.3.30) can be expressed
as a composition of tangential differential operators and simple layer poten-
tials as in (2.2.32)–(2.2.34) where in the case n = 2 set λ+µ

λ+2µ = 1 in (2.2.33)
and in the case n = 3 take E(x, y) from (2.3.10) in (2.2.34).

Now let us assume that the boundary Γ =
L⋃

�=1

Γ� consists of L separate,

mutually non intersecting compact boundary components Γ1, . . . , ΓL.
Before we exemplify the details of solvability of the boundary integral

equations, we first summarize some basic properties of their eigenspaces.

Theorem 2.3.2. (See also Kohr and Pop [163].) Let n = 3. Then we have
the following relations.
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i) The normal vector fields n� ∈ Cα(Γ ) where n�|Γj
= 0 for � �= j generate

exterior to Ω on Γ =
L⋃

�=1

Γ� the L–dimensional eigenspace or kernel of the

simple layer operator V as well as of (1
2I − K ′). Then the operator ( 1

2I −
K) also has an L–dimensional eigenspace generated by ϕ0� ∈ C1+α(Γ ) with
ϕ0�|Γj

= 0 for � �= j satisfying the equations

n� = Dϕ0� for � = 1, L . (2.3.32)

Any eigenfunction
L∑

j=1

γjnj generates a solution

0 ≡
L∑

j=1

γjV nj and p0 = γ1 in Ω

(see Kohr and Pop [163], Reidinger and Steinbach [260]).
ii) On each component Γ� of the boundary, the boundary integral operators
D|Γ�

as well as ( 1
2I + K)|Γ�

have the 6–dimensional eigenspace v� = (a� +
b� × x)|Γ for all a� ∈ IR3 with b� ∈ IR3.

If vj,� with j = 1, . . . , 6 and � = 1, . . . , L denotes a basis of this eigenspace
then there exist 6L linearly independent eigenvectors τj,� ∈ Cα(Γ ) of the
adjoint operator (1

2I + K ′)|Γ�
; and there holds the relation

vj,� = V |Γ�
τj,� (2.3.33)

between these two eigenspaces.
Any of the eigenfunctions vj,� on Γ generates a solution

u0j,�(x) = −
∫

Γ�

K(x, y)vj,�(x)dsx =

{
0 for x ∈ Ω if � = 2, L,
vj,1(x) for x ∈ Ω if � = 1

p0j,�(x) =

⎧
⎨

⎩

0 for x ∈ Ω if � = 2, L,

divx
µ

π(n−1)

∫

Γ1

(
∂

∂ny
γn(x, y)

)
vj,1(y)dsy for x ∈ Ω if � = 1.

In the case n = 2, the operator V needs to be replaced by

Ṽ τ := V τ + α(
∫

Γ

τds) with α > 0

an appropriately large chosen scaling constant α and a + b × x replaced by
a + b(x2,−x1)� and 6 by 3 in ii).

Proof: Let n = 3 and, for brevity, L = 1.
i) It is shown by Ladyženskaya in [179, p.61] that n is the only eigensolution
of (1

2I−K ′). Therefore, due to the classical Fredholm alternative, the adjoint
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operator (1
2I −K) has only one eigensolution ϕ0, as well. It remains to show

that n is also the only linear independent eigensolution to V and satisfies
(2.3.32).

As we will show later on, for V , the Fredholm theorems are also valid and
V : Cα(Γ ) → Cα+1(Γ ) has the Fredholm index zero. Let τ0 be any solution
of V τ0 = 0. Then the single layer potential

u0 = V τ0 with p0 = Φτ0

is a solution of the Stokes system in Ω as well as in Ωc with u0|Γ = 0. Then
u0 ≡ 0 in IR3 and the associated pressure is zero in Ωc and p0 = β = constant
in Ω. As a consequence we have from the jump relations

Tx(u0−, p0) − Tx(u0+, 0) =
[
σ(u0, p0)n

]
|Γ = −βn ,

therefore τ0 = −βn.
On the other hand, V n|Γ = 0 follows from the fact that u := V n and

p := Πn is the solution of the exterior homogeneous Neumann problem of
the Stokes system since

T (V u)|Γ = (− 1
2I + K ′)n = 0 .

and therefore vanishes identically (see [179, Theorem 1 p.60]).
In order to show (2.3.32), we consider the solution of the exterior Dirichlet

Stokes problem with u+|Γ = ϕ0 �= 0 which admits the representation

u(x) = Wϕ0 − V τ .

Then it follows that the corresponding simple layer term has vanishing bound-
ary values,

−V τ |Γ = ϕ0 − ( 1
2I + K)ϕ0 = (1

2I − K)ϕ0 = 0 .

Hence, τ = βn with some constant β ∈ IR. Application of Tx|Γ gives

τ = βn = −Dϕ0 + (1
2I − K ′)βn = −Dϕ0 .

The case β = 0 would imply τ = 0 and then u(x) solved the homogeneous
Neumann problem which has only the trivial solution [179, p. 60] implying
ϕ0 = 0 which is excluded. So, β �= 0 and scaling of ϕ0 implies (2.3.32).
ii) For the operator (1

2I+K) having the eigenspace (a+b×x)|Γ of dimension
6 we refer to [179, p. 62]. Hence, the adjoint operator (1

2I + K ′) also has a
6–dimensional eigenspace due to the classical Fredholm theory since K is a
compact operator. For the operator D let us consider the potential u(x) =
Wv(x) in Ωc with v = a+b×x|Γ . Then u is a solution of the Stokes problem
and on the boundary we find

u+|Γ = (1
2I + K)v = 0 .
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Therefore u(x) = 0 for all x ∈ Ωc and, hence,

TWv = −Dv = 0 and v ∈ kerD .

Conversely, if Dv = 0 then let u be the solution of the interior Dirichlet
problem with u−|Γ = v which has the representation

u(x) = V τ − Wτ for x ∈ Ω

with an appropriate τ . Then applying T we find

τ = (1
2I + K ′)τ + Dv = (1

2I + K ′)τ .

Therefore τ satisfies ( 1
2I−K ′)τ = 0 which implies τ = βn with some β ∈ IR.

Hence,
u(x) = βV n(x) − Wv(x) = −Wv(x)

and its trace yields
(1
2I + K)v = 0 on Γ .

Therefore v = a + b × x with some a, b ∈ IR3.
Now let τ0 ∈ ker( 1

2I + K ′) , τ0 �= 0. Then u(x) := V τ0(x) in Ω is a
solution of the homogeneous Neumann problem in Ω since Tu|Γ = (1

2I +
K ′)τ0 = 0. Therefore u = a + b × x with some a, b ∈ IR3 and

V τ0 ∈ ker( 1
2I + K) .

The mapping V : ker(1
2I + K ′) → ker(1

2I + K) is also injective since for
τ0 �= 0,

V τ0 = 0 would imply τ0 = βn

and, hence,

(1
2I + K ′)τ0 = 0 = β( 1

2I + K ′)n = βn − ( 1
2I − K ′)βn = βn .

So, β = 0, which is a contradiction. The case L > 1 we leave to the reader
(see [143]).

For n = 2 the proof follows in the same manner and we omit the details.
�

In the Table 2.3.3 below we summarize the boundary integral equations
of the first and second kind for solving the four fundamental boundary value
problems together with the corresponding eigenspaces as well as the compat-
ibility conditions. We emphasize that, as a consequence of Theorem 2.3.2, the
orthogonality conditions for the right–hand side given data in the boundary
integral equations will be automatically satisfied provided the given Cauchy
data satisfy the compatibility conditions if required because of the direct
approach.

In the case of n = 2 in Table 2.3.3, replace V by Ṽ and b × x by
(bx2,−x1)� , b ∈ IR , a ∈ IR2.
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Since each of the integral equations in Table 2.3.3 has a nonempty kernel,
we now modify these equations in the same manner as in elasticity by incor-
porating eigenspaces to obtain uniquely solvable boundary integral equations.
Again, in order not to be repetitious, we summarize the modified equations
in Table 2.3.4.

A few comments are in order.
In the two–dimensional case, it should be understood that V should be

replaced by Ṽ and that kerD = span {vj,�} with vj,� a basis of {a+b
(

x2
−x1

)
}|Γ�

with a ∈ IR2 , b ∈ IR. Moreover, as in elasticity in Section 2.2, one has to
incorporate

∫

Γ

σds appropriately, in order to take into account the decay

conditions (2.3.18).
For exterior problems, special attention has to be paid to the behavior at

infinity. In particular, u has the representation (2.3.20), i.e.,

u = Wϕ − V τ + ω in Ωc .

Then the Dirichlet condition leads on Γ to the system

V τ − ω = −(1
2I − K)ϕ and

∫

Γ

τds = Σ , (2.3.34)

where in the last equation Σ is a given constant vector determining the log-
arithmic behavior of u at infinity (see (2.3.18)). For uniqueness, this system
is modified by adding the additional conditions

∫

Γ

τ · n�ds = 0 � = 1, L .

Then the system (2.3.34) is equivalent to the uniquely solvable system

V τ − ω +
L∑

�=1

ω3�n� = −( 1
2I − K)ϕ ,

∫

Γ

τ · n�ds = 0 ,
∫

Γ

σds = Σ , � = 1, L , or (2.3.35)

V τ − ω +
L∑

�=1

∫

Γ

τ · n�dsn� = −( 1
2I − K)ϕ ,

∫

Γ

σds = Σ . (2.3.36)

These last two versions (2.3.35) and (2.3.36) correspond to mixed for-
mulations and have been analyzed in detail in Fischer et al [80] and
[134, 135, 137, 139].

In the same manner, appropriate modifications are to be considered for
other boundary co nditions and the time harmonic unsteady problems and
corresponding boundary integral equations as well [137, 139], Kohr et al [163,
162] and Varnhorn [310]. There, as in this section, the boundary integral
equations are considered for charges in Hölder spaces. We shall come back to
these problems in a more general setting in Chapter 5.
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Note that for the interior Neumann problem, the modified integral equa-
tions will provide specific uniquely determined solutions of the integral equa-
tions, whereas the solution of the original Stokes Neumann problem still has
the nullspace a + b × x for n = 3 and {a + b(x2,−x1)�} for n = 2.

Finally, the second versions of the modified integral equations (II) in
Table 2.3.4 are often referred to as stabilized versions in scientific computing.
Clearly, the two versions are always equivalent Fischer et al [79].

2.3.3 The Incompressible Material — Revisited

With the analysis of the Stokes problems available, we now return to the
interior elasticity problems in Section 2.2.4 for almost incompressible mate-
rials, i.e., for small c ≥ 0, but restrict ourselves to the case that Γ is one
connected compact manifold (see also [143], and Steinbach [289]). The case

of Γ =
L⋃

�=1

Γ� as in Theorem 2.3.2 is considered in [143].

For the interior displacement problem, the unknown boundary traction σ
satisfies the boundary integral equation (2.2.40) of the first kind,

Ve�σ = (1
2I + Ke�)ϕ on Γ . (2.3.37)

where the index e� indicates that these are the operators in elasticity where
the kernel Ee�(x, y) can be expressed via (2.2.68). Then with the simple layer
potential operator Vst of the Stokes equation and its kernel given in (2.3.10)
we have the relation

Ve� =
1

1 + c
Vst +

2c

1 + c

1
µ

V∆I (2.3.38)

where V∆ denotes the simple layer potential operator (1.2.1) of the Laplacian.
Inserting (2.3.38) into (2.3.37) yields the equation

Vstσ = (1 + c)(1
2I + Ke�)ϕ − c

2
µ

V∆σ , (2.3.39)

which corresponds to the equation (1) of the interior Stokes problem in
Table 2.3.3.

As was shown in Theorem 2.3.2, the solution of (2.3.39) can be decom-
posed in the form

σ = σ0 + αn with
∫

Γ

σ0 · nds = 0 and α ∈ IR . (2.3.40)

Hence,

Vstσ0 = (1 + c)(1
2I + Ke�)ϕ − c

2
µ

V∆(σ0 + αn) ,

∫

Γ

σ0 · nds = 0 .
(2.3.41)
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A necessary and sufficient condition for the solvability of this system is
the orthogonality condition

∫

Γ

{
(1 + c)(1

2I + Ke�)ϕ − c
2
µ

V∆σ0 − αc
2
µ

V∆n
}
· nds = 0 .

Now we combine (2.2.68) with (2.3.29) and obtain the relation

(1 + c)Ke�ϕ = Kstϕ + c(K∆ϕ + L1ϕ) (2.3.42)

between the double layer potential operators of the Lamé and the Stokes sys-
tems where K∆ is the double layer potential operator (1.2.8) of the Laplacian
and L is the linear Cauchy singular integral operator defined by

L1ϕ =
1

2π(n − 1)
p.v.

∫

Γ\{x}

(n(y) · ϕ(y)(x − y) − (x − y) · ϕ(y)n(y)
|x − y|n

)
dsy .

(2.3.43)
Therefore the orthogonality condition becomes

∫

Γ

{( 1
2I + Kst)ϕ} · nds + c

[∫

Γ

{( 1
2I + K∆ + L1)ϕ} · nds

− 2
µ

∫

Γ

(V∆σ0) · nds − α
2
µ

β∆

]
= 0

where β∆ :=
∫

Γ

(V∆n) · nds. Since
∫

Γ

nds = 0, it can be shown that β∆ > 0

(see [138], [141, Theorem 3.7]). In the first integral, however, we interchange
orders of integration and obtain

∫

Γ

(
( 1
2I + Kst)ϕ

)
· nds =

∫

Γ

ϕ ·
(
( 1
2I + K ′

st)n
)
ds =

∫

Γ

ϕ · nds

from Theorem 2.3.2. Hence, the orthogonality condition implies that α must
be chosen as

α =
1
c

µ

2β∆

∫

Γ

ϕ · nds +
µ

2β∆

∫

Γ

{( 1
2I + K∆ + L1)ϕ} · nds − 1

β∆

∫

Γ

(V∆σ0) · nds.

(2.3.44)
Replacing α from (2.3.44) in (2.3.41) we finally obtain the corresponding
stabilized equation,

Vstσ0 +
∫

Γ

σ0 · ndsn + cBσ0 = f (2.3.45)

where the linear operator B is defined by

Bσ0 :=
2
µ

(
V∆σ0 −

1
β∆

∫

Γ

(V∆σ0) · ndsV∆n
)
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and the right–hand side f is given by

f = (1
2I + Kst)ϕ − 1

β∆

∫

Γ

ϕ · ndsV∆n

+c
[
(1
2I + K∆ + L1)ϕ − 1

β∆

∫

Γ

{( 1
2I + K∆ + L1)ϕ} · ndsV∆n

]
.

Since for c = 0 the equation (2.3.45) is uniquely solvable, the regularly per-
turbed equation (2.3.45) for small c but c �= 0 is still uniquely solvable.

With σ0 available, α can be found from (2.3.44) and, finally, the bound-
ary traction σ is given by (2.3.40). Then the representation formula (2.2.6)
provides us with the elastic displacement field u and the solution’s behavior
for the elastic, but almost incompressible materials, which one may expand
with respect to small c ≥ 0, as well. In particular we see that, for the almost
incompressible material

ue� = ust + 1
β∆

∫

Γ

ϕ · ndsV∆n + O(c) as c → 0

where ust is the unique solution of the Stokes problem with

ust|Γ = ϕ − 1
β∆

∫

Γ

ϕ · ndsV∆n + O(c) .

We also have the relation
∫

Γ

ϕ · nds =
∫

Ω

divudx = −c
∫

Ω

pdx .

This shows that only if the given datum
∫

Γ

ϕ · nds = O(c) then we have

ue� = ust + O(c) .

Next, we consider the interior traction problem for the almost incompress-
ible material. For simplicity, we now employ Equation (2.2.46),

De�u = (1
2I − K ′

e�)ψ on Γ (2.3.46)

where now ψ, the boundary stress, is given on Γ satisfying the compatibility
conditions (2.2.47), and the boundary displacement u is the unknown.

With (2.3.38), i.e.,

Ee�(x, y) =
1

1 + c
Est(x, y) +

c

1 + c

1
2(n − 1)πµ

γn(x, y)I (2.3.47)

and with Lemma 2.3.1 we obtain for the hypersingular operators

De�ϕ = Dstϕ + cL2ϕ (2.3.48)
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where for n = 3

L2ϕ(x) = Mx

∫

Γ\{x}

4µ2 1
1 + c

(
Est(x, y)− 1

2(n − 1)µπ
γn(x, y)I

)
Myϕ(y)dsy ,

(2.3.49)
and for n = 2 the differential operators can be replaced as Mx = d

dsx
and

My = d
dsy

. Hence, (2.3.46) can be written as

Dstu = (1
2I − K ′

e�)ψ − cL2u . (2.3.50)

In view of Theorem 2.3.2, one may decompose the solution u in the form

u(x) = u0(x) +
M∑

j=1

αjmj(x) (2.3.51)

where
∫

Γ

u0 · mjds = 0 for j = 1, . . . , M with M := 1
2n(n + 1) ,

and mj(x) are the traces of the rigid motions given in (2.2.55). These vector
valued functions form a basis of the kernel to De� as well as to Dst which
implies also that

L2mj = 0 for j = 1, . . . ,M and c ∈ IR . (2.3.52)

Substituting (2.3.51) into (2.3.50) yields the uniquely solvable system of equa-
tions

Dstu0 + cL2u0 = (1
2I − K ′

e�)ψ ,∫

Γ

u0 · mjds = 0 for j = 1, . . . ,M ; (2.3.53)

or, in stabilized form

Dstu0 +
M∑

j=1

∫

Γ

u0 · mjdsmj + cL2u0 = (1
2I − K ′

e�)ψ . (2.3.54)

The right–hand side in (2.3.53) satisfies the orthogonality conditions
∫

Γ

(
( 1
2I − K ′

e�)ψ
)
· mjds = 0 for j = 1, . . . ,M

since the given ψ satisfies the compatibility conditions
∫

Γ

ψ · mjds = 0 for j = 1, . . . , M

and the vector valued function mj satisfies

( 1
2I + Ke�)mj = 0 on Γ .
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The equations (2.3.53) or (2.3.54) are uniquely solvable for every c ∈
[0,∞) and so, the general elastic solution ue� for almost incompressible ma-
terial has the form

ue�(x) = Ve�ψ(x) − We�u0(x) +
M∑

j=1

αjmj(x)

=
1

1 + c

{
ust +

2c

µ
V∆ψ − c(W∆u0 + L1u0

}
(x) +

M∑

j=1

αjmj(x)

for x ∈ Ω with arbitrary αj ∈ IR and where ust is the solution of the Stokes
problem with given boundary tractions ψ, and L1 is defined in (2.3.43). For
c → 0 we see that for the elastic Neumann problem

ue� = ust + O(c)

up to rigid motions, i.e., a regular perturbation with respect to the Stokes
solution.

2.4 The Biharmonic Equation

In both problems, plane elasticity and plane Stokes flow, the systems of partial
differential equations can be reduced to a single scalar 4th–order equation,

∆2u = 0 in Ω (or Ωc) ⊂ IR2, (2.4.1)

kwown as the biharmonic equation. In the elasticity case, u is the Airy stress
function, whereas in the Stokes flow u is the stream function of the flow. The
Airy function W (x) is defined in terms of the stress tensor σij(u) for the
displacement field u as

σ11(u) =
∂2W

∂x2
2

, σ12(u) = − ∂2W

∂x1∂x2
, σ22(u) =

∂2W

∂x2
1

,

which satisfies the equilibrium equation divσ(u) = 0 automatically for any
smooth function W . Then from the stress-strain relation in the form of
Hooke’s law, it follows that

∆W = σ11(u) + σ22(u) = 2(λ + µ)divu ;

and thus, W satisfies (2.4.1) since ∆(div u) = 0 from the Lamé system. On
the other hand, the stream function u is defined in terms of the velocity u in
the form

u = (∇u)⊥.

Here ⊥ indicates the operation of rotating a vector counter–clockwise by
a right angle. From the definition, the continuity equation for the velocity
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is satisfied for any choice of a smooth stream function u. One can verify
directly that u satisfies (2.4.1) by taking the curl of the balance of momentum
equation in the Stokes system. We note that in terms of the stream function,
the vorticity is equal to ωk = ∇ × u = ∆uk, where k is the unit vector
perpendicular to the (x1, x2)− plane of the flow. For the homogeneous Stokes
system, the vorticity is a harmonic function, and as a consequence, u satisfies
the biharmonic equation (2.4.1).

To discuss boundary value problems for the biharmonic equation (2.4.1),
it is best to begin with Green’s formula for the equation in Ω. As is well
known, for fourth-order differential equations, the Green formula generally
varies and depends on the choice of boundary operators, i.e., how to apply
the integration by parts formulae. In order to include boundary conditions
arising for the thin plate, we rewrite ∆2u in terms of the Poisson ratio ν in
the form

∆2u =
∂2

∂x2
1

(∂2u

∂x2
1

+ν
∂2u

∂x2
2

)
+2(1−ν)

∂2

∂x1∂x2

( ∂2u

∂x1∂x2

)
+

∂2

∂x2
2

(∂2u

∂x2
2

+ν
∂2u

∂x2
1

)
.

Now integration by parts leads to the first Green formula in the form
∫

Ω

(∆2u) vdx = a(u, v) −
∫

Γ

{ ∂v

∂n
Mu + vNu

}
ds , (2.4.2)

where the bilinear form a(u, v) is defined by

a(u, v) :=
∫

Ω

{
ν∆u ∆v + (1 − ν)

2∑

i,j=1

( ∂2u

∂xi∂xj

∂2v

∂xi∂xj

)}
dx ; (2.4.3)

and M and N are differential operators defined by

Mu := ν∆u + (1 − ν)
(
(n(z) · ∇x)2u)|z=x

)
, (2.4.4)

Nu := −
{ ∂

∂n
∆u + (1 − ν)

d

ds

(
(n(z) · ∇x)(t(z) · ∇x)u(x)

)}

|z=x

(2.4.5)

where t = n⊥ is the unit tangent vector, i.e. t1 = −n2 , t2 = n1. Then

Mu = ν∆u + (1 − ν)
[∂2u

∂x2
1

n2
1 + 2

∂2u

∂x1∂x2
n1n2 +

∂2u

∂x2
2

n2
2

]
,

Nu = − ∂

∂n
∆u + (1 − ν)

d

ds

{(∂2u

∂x2
1

− ∂2u

∂x2
2

)
n1n2 −

∂2u

∂x1∂x2
(n2

1 − n2
2)

}
.

For the interior boundary value problems for (2.4.1), the starting point is the
representation formula

u(x) =
∫

Γ

{E(x, y)Nu(y) +
( ∂E

∂ny
(x, y)

)
Mu(y)}dsy (2.4.6)

−
∫

Γ

{
(
MyE(x, y)

) ∂u

∂ny
+

(
NyE(x, y)

)
u(y)}dsy for x ∈ Ω ,
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where E(x, y) is the fundamental solution for the biharmonic equation
given by

E(x, y) =
1
8π

|x − y|2 log |x − y| (2.4.7)

which satisfies
∆2

xE(x, y) = δ(x − y) in IR2 .

As in case of the Laplacian, we may rewrite u in the form

u(x) = V (Mu,Nu) − W
(
u,

∂u

∂n

)
(2.4.8)

where

V (Mu,Nu) :=
∫

Γ

{E(x, y)Nu(y) +
( ∂E

∂ny
(x, y)

)
Mu(y)}dsy , (2.4.9)

W
(
u,

∂u

∂n

)
:=

∫

Γ

(
MyE(x, y)

)∂u

∂n
(y) +

(
NyE(x, y)

)
u(y)}dsy (2.4.10)

are the simple and double layer potentials, respectively, and u|Γ , ∂u
∂n |Γ ,Mu|Γ

and Nu|Γ are the (modified) Cauchy data. This representation formula
(2.4.6) suggests two basic types of boundary conditions:
The Dirichlet boundary condition, where u|Γ and ∂u

∂n |Γ are prescribed
on Γ , and the Neumann boundary condition, where Mu|Γ and Nu|Γ
are prescribed on Γ . In thin plate theory, where u stands for the deflection
of the middle surface of the plate, the Dirichlet condition specifies the dis-
placement and the angle of rotation of the plate at the boundary, whereas
the Neumann condition provides the bending moment and shear force at
the boundary. Clearly, various linear combinations will lead to other mixed
boundary conditions, which will not be discussed here.

From the bilinear form (2.4.2), we see that

a(u, v) = 0 for v ∈ R := {v = c1x1 + c2x2 + c3 | for all c1, c2, c3 ∈ IR} .
(2.4.11)

This implies that the Neumann data need to satisfy the compatibility
condition ∫

Γ

{ ∂v

∂n
Mu + vNu

}
ds = 0 for all v ∈ R . (2.4.12)

We remark that looking at (2.4.2), one might think of choosing ∆u and
− ∂

∂n∆u as the Neumann boundary conditions which correspond to the Pois-
son ratio ν = 1. This means that the compatibility condition (2.4.12) requires
that it should hold for all harmonic functions v. However, the space of har-
monic functions in Ω has infinite dimension, and this does not lead to a
regular boundary value problem in the sense of Agmon [2, p. 151].
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As for the exterior boundary value problems, in order to ensure the
uniqueness of the solution of (2.4.1) in Ωc, we need to augment (2.4.1) with
an appropriate radiation condition (see (2.3.18)). We require that

u(x) =
(
A0r +

A1 · x
|x|

)
r log r + O(r) as r = |x| → ∞ (2.4.13)

for given constant A0 and constant vector A1. Under the condition (2.4.9),
we then have the representation formula for the solution of (2.4.1) in Ωc,

u(x) = −V (Mu,Nu) + W
(
u,

∂u

∂n

)
+ p(x), (2.4.14)

where p ∈ R is a polynomial of degree less than or equal to one.
Before we formulate the boundary integral equations we first summarize

some classical basic results.

Theorem 2.4.1. (Gakhov [90], Mikhlin [208, 209, 211] and Muskhelishvili
[223]). Let Γ ∈ C2,α , 0 < α < 1.
i) Let

ϕ = (ϕ1, ϕ2)� =
(
u|Γ ,

∂u

∂n
|Γ

)
∈ C3+α(Γ ) × Γ 2+α(Γ )

be given. Then there exists a unique solution u ∈ C3+α(Ω) ∩ C4(Ω) of the
interior Dirichlet problem satisfying the Dirichlet conditions

u|Γ = ϕ1 and
∂u

∂n
|Γ = ϕ2 . (2.4.15)

For given A0 ∈ IR and A1 ∈ IR2 there also exists a unique solution
u ∈ C3+α(Ωc ∪ Γ ) ∩ C4(Ωc) of the exterior Dirichlet problem which behaves
at infinity as in (2.4.13).
ii) For given

ψ = (ψ1, ψ2)� ∈ C1+α(Γ ) × Cα(Γ )

satisfying the compatibility conditions (2.4.12), i.e.,
∫

Γ

{
ψ1

∂v

∂n
+ ψ2v

}
ds = 0 for all v ∈ R , (2.4.16)

the interior Neumann problem consisting of (2.4.1) and the Neumann condi-
tions

Mu|Γ = ψ1 and Nu|Γ = ψ2 (2.4.17)

has a solution u ∈ C3+α(Ω)∩C4(Ω) which is unique up to a linear function
p ∈ R.

If, for the exterior Neumann problem in Ωc, in addition to ψ the linear
function p ∈ R is given, then it has a unique solution u ∈ C3+α(Ωc ∪ Γ ) ∩
C4(Ω) with the behaviour (2.4.13), (2.4.14) where
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A0 = −
∫

Γ

ψ2ds and A1 =
∫

Γ

(ψ1n + ψ2x)ds . (2.4.18)

As a consequence of Theorem 2.4.1 one has the useful identity of Gaussian
type,

−W
(
p,

∂p

∂n

)
=

⎧
⎨

⎩

p for x ∈ Ω ,
1
2p for x ∈ Γ ,
0 for x ∈ Ωc ,

for any p ∈ R . (2.4.19)

2.4.1 Calderón’s Projector

(See also [144].) In order to obtain the boundary integral operators as x
approaches Γ , from the simple– and double–layer potentials in the represen-
tation formulae (2.4.8) and (2.4.14), we need explicit information concerning
the kernels of the potentials. A straightforward calculation gives

V (Mu,Nu)(x) =
∫

Γ

E(x, y)Nu(y)dsy +
∫

Γ

( ∂E

∂ny
(x, y)

)
Mu(y)dsy

=
1
8π

∫

Γ

|x − y|2 log |x − y|Nu(y)dsy (2.4.20)

+
1
8π

∫

Γ

n(y) · (y − x)(2 log |x − y| + 1)Mu(y)dsy

W
(
u,

∂u

∂n

)
(x) =

∫

Γ

(
MyE(x, y)

)∂u(y)
∂n

dsy +
∫

Γ

(
NyE(x, y)

)
u(y)dsy

=
1
8π

∫

Γ

{
(2 log |x − y| + 1) + ν(2 log |x − y| + 3)

+2(1 − ν)
((y − x) · n(y))2

|x − y|2
}∂u(y)

∂n
dsy (2.4.21)

+
1
2π

∫

Γ

{ ∂

∂ny
log(

1
|x − y| )

− 1
2
(1 − ν)

d

dsy

( (x − y) · t(y)(x − y) · n(y)
|x − y|2

)}
u(y)dsy .

This leads to the following 16 boundary integral operators.



84 2. Boundary Integral Equations

K
(

ϕ σ

)
=

lim
Ω
�

z
→

x
∈

Γ

⎛ ⎜ ⎜ ⎜ ⎜ ⎝

−
W

(ϕ
1
,0

)(
z
)
−

1 2
ϕ

1
(z

)
−

W
(0

,ϕ
2
)(

z
)

V
(σ

1
,0

)(
z
)

V
(0

,σ
2
)(

z
)

−
n

x
·∇

z
W

(ϕ
1
,0

)(
z
)

−
n

x
·∇

z
W

(0
,ϕ

2
)(

z
)
−

1 2
ϕ

2
(x

)
n

x
·∇

z
V

(σ
1
,0

)(
z
)

n
x
·∇

z
V

(0
,σ

2
)(

z
)

−
M

z
W

(ϕ
1
,0

)(
z
)

−
M

z
W

(0
,ϕ

2
)(

z
)

M
z
V

(σ
1
,0

)(
z
)
−

1 2
σ

1
(x

)
M

z
V

(0
,σ

2
)(

z
)

−
N

z
W

(ϕ
1
,0

)(
z
)

−
N

z
W

(0
,ϕ

2
)(

z
)

N
z
V

(σ
1
,0

)(
z
)

N
z
V

(0
,σ

2
)(

z
)
−

1 2
σ

2
(x

)⎞ ⎟ ⎟ ⎟ ⎟ ⎠

=

⎛ ⎜ ⎜ ⎜ ⎜ ⎝

−
K

1
1

V
1
2

V
1
3

V
1
4

D
2
1

K
2
2

V
2
3

V
2
4

D
3
1

D
3
2

−
K

3
3

V
3
4

D
4
1

D
4
2

D
4
3

K
4
4

⎞ ⎟ ⎟ ⎟ ⎟ ⎠
(2

.4
.2

2)

w
he

re
w

e
w

ri
te

(
ϕ σ

)
=

(ϕ
1
,ϕ

2
,σ

1
,σ

2
)�

=
( u

,
∂
u

∂
n

,M
u
,N

u
) �

| Γ
.

T
he

n
th

e
C

al
de

ro
n

pr
oj

ec
to

r
as

so
ci

at
ed

w
it

h
th

e
bi

–L
ap

la
ci

an
is

de
fin

ed
by

C Ω
:=

1 2
I

+
K

=

⎛ ⎜ ⎜ ⎝

1 2
I
−

K
1
1

V
1
2

V
1
3

V
1
4

D
2
1

1 2
I

+
K

2
2

V
2
3

V
2
4

D
3
1

D
3
2

1 2
I
−

K
3
3

V
3
4

D
4
1

D
4
2

D
4
3

1 2
I

+
K

4
4

⎞ ⎟ ⎟ ⎠
(2

.4
.2

3)



2.4 The Biharmonic Equation 85

Some more explanations are needed here. In order to maintain consistency
with our notations for the Laplacian, we have adopted the notations Vij ,Kij

and Dij for the weakly and hypersingular boundary integral operators ac-
cording to our terminology. These boundary integral operators are obtained
by taking limits of the operations ∇z(•) ·nx,Mz, Nz, respectively on the cor-
responding potentials V and W as Ω 
 z → x ∈ Γ . As in the case of the
Laplacian, for any solution of (2.4.1), the Cauchy data (u, ∂u

∂n ,Mu,Nu)Γ on Γ
are reproduced by the matrix operators in (2.4.23), and CΩ is the Calderón
projector corresponding to the bi–Laplacian. In the classical Hölder function
spaces, we have the following lemma.

Lemma 2.4.2. Let Γ ∈ C2,α , 0 < α < 1. Then CΩ maps
∏3

k=0 C3+α−k(Γ )
into itself continuously. Moreover,

C2
Ω = CΩ . (2.4.24)

As a consequence of this lemma, one finds the following specific identities:

V12D21 + V13D31 + V14D41 = (1
4I − K2

11),

D21V12 + V23D32 + V24D42 = (1
4I − K2

22),

D31V13 + D32V23 + V34D43 = (1
4I − K2

33),

D41V14 + D42V24 + D43V34 = (1
4I − K2

44).

Clearly, from (2.4.24) one finds 12 more identities between these operators.
In the same manner as in the case for the Laplacian, for any solution u

of (2.4.1) in Ωc with p = 0, we may introduce the Calderón projection CΩc

for the exterior domain for the biharmonic equation. Then clearly, we have

CΩc = I − CΩ ,

where I denotes the identity matrix operator. This relation then provides the
corresponding boundary integral equations for exterior boundary value prob-
lems. As will be seen, the boundary integral operators in CΩ are pseudodif-
ferential operators on Γ and their orders are summarized systematically in
the following:

Ord(CΩ) :=

⎛

⎜⎜⎝

0 −1 −3 −3
+1 0 −1 −3
+1 +1 0 −1
+3 +1 +1 0

⎞

⎟⎟⎠ (2.4.25)

The orders of these operators can be calculated from their symbols and
provide the mapping properties in the Sobolev spaces to be discussed in
Chapter 10.

2.4.2 Boundary Value Problems and Boundary Integral Equations

We begin with the boundary integral equations for the Dirichlet problems.
For the integral equations of the first kind we employ the second and the
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first row of CΩ which leads to the following system for the interior Dirichlet
problem,

V σ :=

(
V23 V24

V13 V14

)(
σ1

σ2

)
=

(
−D21

1
2I − K22

1
2I + K11 −V12

)(
ϕ1

ϕ2

)
=: f i .

(2.4.26)

The solution of the interior Dirichlet problem has associated Cauchy data σ
which satisfy the three compatibility conditions:

∫

Γ

(σ1n + σ2x)dsx = 0 , −
∫

Γ

σ2ds = 0 . (2.4.27)

As we shall see in Chapter 10 , V is known as a strongly elliptic operator
for which the classical Fredholm alternative holds. Hence uniqueness will
imply the existence of exactly one solution σ ∈ C1+α(Γ ) × Cα(Γ ).

For the exterior Dirichlet problem, by using CΩc and the representation
(2.4.13) we obtain the system with integral equations of the first kind,

V σ + Rω = −
(

D21
1
2I + K22

1
2I − K11 V12

)(
ϕ1

ϕ2

)
=: fe ,

∫

Γ

(σ1n + σ2x) = A1 , −
∫

Γ

σ2ds = A0 (2.4.28)

where

R(x) = −
(

0 n1 n2

1 x1 x2

)
and ω = (ω0, ω1, ω2)� ∈ IR3 .

Lemma 2.4.3. The homogeneous system corresponding to (2.4.28) has only
the trivial solution in C1+α(Γ ) × C

α(Γ ) × IR3.

Proof: Let σ0,ω0 be any solution of

V σ0 + Rω0 = 0 on Γ ,
∫

Γ

( ∂v

∂n
, v

)
σ0ds = 0 for all v ∈ � (2.4.29)

and consider the solution of (2.4.1),

u0(x) := V σ0(x) + p0(x) with p0(x) =
◦
ω0 +

◦
ω1x1 +

◦
ω2x2 for x ∈ Ωc .

Then A0 = 0 , A1 = 0 because of (2.4.29) and (2.4.18), hence u0 = O(|x|)at
infinity due to (2.4.13) which implies u0(x) = p0(x) for all x ∈ Ωc ∪ Γ . On
the other hand, u0(x) is also a solution of (2.4.1) in Ω and is continuous
across Γ where u0|Γ = 0. Hence, due to Theorem 2.4.1, u0(x) = 0 for all x
in Ω. Consequently, Mu±

0 |Γ = 0 and Nu±
0 |Γ = 0. Then the jump relations

corresponding to CΩc − CΩ imply σ0 = ([Mu]|Γ , [Nu]|Γ )� = 0 on Γ and
0 = u−

0 |Γ = u+
0 |Γ = p0 implies p0(x) = 0 for all x, i.e.,

◦
ω = 0. �
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As a consequence, both, interior and exterior Dirichlet problems lead to
the same uniquely solvable system (2.4.28) where only the right–hand sides
are different and, for the interior Dirichlet problem, ω = 0.

Clearly, the solution of the Dirichlet problems can also be treated by using
the boundary integral equations of the second kind. To illustrate the idea we
consider again the interior Dirichlet problem where u|Γ = ϕ1 and ∂u

∂n |Γ = ϕ2.
From the representation formula (2.4.6) we obtain the following system for
the unknown σ = (Mu,Nu)� on Γ :

(
1
2I + K33 −V34

−D43
1
2I − K44

)(
σ1

σ2

)
=

(
D31 D32

D41 D42

)(
ϕ1

ϕ2

)
=: Dϕ . (2.4.30)

This system (2.4.30) of integral equations has a unique solution. As we shall
see in Chapter 10, for 0 ≤ ν < 1 the Fredholm alternative is still valid for
these integral equations and σ ∈ C1+α(Γ ) × Cα(Γ ). So, uniqueness implies
existence.

Lemma 2.4.4. Let
◦
σ ∈ Cα(Γ ) × C1+α(Γ ) be the solution of the homoge-

neous system
( 1
2I + K33)

◦
σ1 − V34

◦
σ2 = 0

−D34
◦
σ1 + (1

2I − K44)
◦
σ2 = 0 on Γ .

(2.4.31)

Then
◦
σ = 0.

Proof: For the proof we consider the simple layer potential

u0(x) = V
◦
σ

which is a solution of (2.4.1) for x �∈ Γ . Then for x ∈ Ω we obtain with
(2.4.31):

Mu−
0 |Γ = (1

2I − K33)
◦
σ1 + V34

◦
σ2 =

◦
σ1 ,

Nu−
0 |Γ = (1

2I + K44)
◦
σ2 + D43

◦
σ1 =

◦
σ2 .

Then the Green formula (2.4.2) implies

∫

Γ

( ◦
σ1

∂v

∂u
+

◦
σ2v

)
ds = 0 for all v ∈ � . (2.4.32)

For x ∈ Ωc, we find Mu+
0 |Γ = 0 and Nu+

0 |Γ = 0 due to (2.4.31). Then
Theorem 2.4.1 implies with (2.4.32) that

u0(x) = p(x) for x ∈ Ωc ∪ Γ with some p ∈ � .

But u0(x) is continuously differentiable across Γ and satisfies (2.4.1) in Ω

with boundary conditions u−
0 |Γ = p|Γ and ∂u−

0
∂n |Γ = ∂p

∂n |Γ . Hence, with
Theorem 2.4.1 we find
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V
◦
σ(x) = u0(x) = p(x) for x ∈ IR2 .

Then
◦
σ1 = [Mu0]|Γ = 0 and

◦
σ2 = [Nu0]|Γ = 0 .

�

We now conclude this section by summarizing the boundary integral equa-
tions associated with the two boundary value problems of the biharmonic
equation considered here in the following Tables 2.4.5 and 2.4.6. However,
the missing details will not be pursued here. We shall return to these equa-
tions in later chapters.

We remark that in Table 2.4.5 we did not include orthogonality conditions
for the right–hand sides in the equations INP (1) and (2), EDP (2) and ENP
(1) since due to the direct approach it is known that the right–hand sides
always lie in the range of the operators. Hence, we know that the solutions
exist due to the basic results in Theorem 2.4.1, and, moreover, the classical
Fredholm alternative holds for the systems in Table 2.4.5. From this table we
now consider the modified systems so that the latter will always be uniquely
solvable. The main idea here is to incorporate additional side conditions as
well as eigensolutions. These modifications are collected in Table 2.4.6. In
particular, we have augmented the systems by including additional unknowns
ω ∈ IR3 in the same manner as in Section 2.2 for the Lamé system. Note that
in Table 2.4.6 the matrix valued function S is defined by

S(x) :=
( ◦
σ1(x),

◦
σ2(x),

◦
σ3(x)

)

where the columns of S are the three linearly independent eigensolutions of
the operator on the left–hand side of EDP (2) in Table 2.4.5. If we solve the
exterior Neumann problem with the system ENP (1) in Table 2.4.6, then we
obtain a particular solution with p(x) = 0 in Ωc, and for given p(x) �= 0, the
latter is to be added to the representation formula (2.4.14). For the interior
Neumann problem, the modified boundary integral equation INP (1) and (2)
provide a particular solution which presents the general solution only up to
linear polynomials.

Note that here we needed Γ ∈ C2,α and even jumps of the curvature
are excluded. For piecewise Γ ∈ C2,α–boundary, Green’s formula, the rep-
resentation formula as well as the boundary integral equations need to be
modified appropriately by including certain functionals at the discontinuity
points (Knöpke [160]).
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Table 2.4.6. Modified Systems for the Biharmonic Equation

BVP

(1)

(
V23 V24

V13 V14

) (
σ1

σ2

)
+Rω =

(
−D21

1
2
I − K22

1
2
I + K11 −V12

) (
ϕ1

ϕ2

)

∫
Γ

σ2ds = 0 ,
∫
Γ

(σ1n + σ2x)dsx = 0
IDP

(2)

(
1
2
I + K33 −V34

−D43
1
2
I − K44

) (
σ1

σ2

)
=

(
D31 D32

D41 D42

) (
ϕ1

ϕ2

)

(1)

(
D41 D42

D31 D32

) (
u
∂u
∂n

)
+Rω =

(
−D43

1
2
I − K44

1
2
I + K33 −V34

) (
ψ1

ψ2

)

∫
Γ

uds = 0 ,
∫
Γ

(
ux1 + n1

∂u
∂n

)
ds = 0 ,

∫
Γ

(
ux2 + n2

∂u
∂n

)
ds = 0

INP

(2)

(
1
2
I + K11 −V12

−D21
1
2
I − K22

) (
u
∂u
∂n

)
+Sω =

(
V13 V14

V23 V24

) (
ψ1

ψ2

)

∫
Γ

uds = 0 ,
∫
Γ

(
ux1 + n1

∂u
∂n

)
ds = 0 ,

∫
Γ

(
ux2 + n2

∂u
∂n

)
ds = 0

(1)

(
V23 V24

V13 V14

) (
σ1

σ2

)
+Rω = −

(
D21

1
2
I + K22

1
2
I − K11 V12

) (
ϕ1

ϕ2

)

−
∫
Γ

σ2ds = A0 ,
∫
Γ

(σ1n + σ2x)ds = A1

EDP

(2)

(
1
2
I − K33 V34

D43
1
2
I + K44

) (
σ1

σ2

)
+

(
1 x1 x2

0 n1 n2

)
ω

= −
(

D31 D32

D41 D42

) (
ϕ1

ϕ2

)
−

∫
Γ

σ2ds = A0 ,
∫
Γ

(σ1n + σ2x)ds = A1

(1)

(
D41 D42

D31 D32

) (
up

∂up

∂n

)
+Rω = −

(
D43

1
2
I + K44

1
2
I − K33 V34

) (
ψ1

ψ2

)

∫
Γ

upds = 0 ,
∫
Γ

(
upn1 +

∂up

∂n
x1

)
ds = 0 ,

∫
Γ

(
upn2 +

∂up

∂n
x2

)
ds = 0

ENP

(2)

(
1
2
I − K11 V12

D21
1
2
I + K22

) (
u
∂u
∂n

)
= −

(
V13 V14

V23 V24

) (
ψ1

ψ2

)
+

(
p

∂
∂n

p

)
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2.5 Remarks

Very often in applications, on different parts of the boundary, different bound-
ary conditions are required or, as in classical crack mechanics (Cruse [58]),
the boundaries are given as transmission conditions on some bounded mani-
fold, the crack surface, in the interior of the domain. A similar situation can
be found for screen problems (see also Costabel and Dauge [52] and Stephan
[293]).

As an example of mixed boundary conditions let us consider the Lamé
system with given Dirichlet data on ΓD ⊂ Γ and given Neumann data on
ΓN ⊂ Γ where Γ = ΓD ∪ ΓN ∪ γ with the set of collision points γ of the two
boundary conditions (which might also be empty if ΓD and ΓN are separated
components of Γ ) (see e.g. Fichera [76], [145], Kohr et al [164], Maz‘ya [202],
Stephan [295]) where meas (ΓD) > 0.

For n = 2, where Γ is a closed curve, we assume that either γ = ∅ or
consists of finitely many points; for n = 3, the set γ is either empty or a
closed curve and as smooth as Γ . For the Lamé system (2.2.1) the classical
mixed boundary value problem reads:

Find u ∈ C2(Ω) ∩ Cα(Ω) , 0 < α < 1, satisfying

−∆∗u = f in Ω with

γ0u = ϕD on ΓD and Tu = ψN on ΓN .
(2.5.1)

For reformulating this problem with boundary integral equations we first ex-
tend ϕD from ΓD and ψN from ΓN onto the complete boundary Γ such that

ϕD = ϕ|ΓD
and ψN = ψ|ΓN

(2.5.2)

with ϕ ∈ Cα(Γ ) , 0 < α < 1 and appropriate ψ. Then

γ0u = ϕ + ϕ̃ , Tu = ψ + ψ̃ (2.5.3)

where now
ϕ̃ ∈ Cα

0 (ΓN ) = {ϕ ∈ Cα(Γ ) | suppϕ ⊂ ΓN} (2.5.4)

and ψ̃ with supp ψ̃ ⊂ ΓD are the yet unknown Cauchy data to be determined.
With (2.5.3), the representation formula (2.2.4) reads

v(x) =
∫

Γ

E(x, y)ψ(y)dsy −
∫

Γ

(
TyE(x, y)

)�
ϕ(y)dsy

+
∫

Γ

E(x, y)ψ̃(y)dsy −
∫

Γ

(
TyE(x, y)

)�
ϕ̃(y)dsy (2.5.5)

+
∫

Ω

E(x, y)f(y)dy for x ∈ Ω .
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As is well known, even if ψ ∈ Cα(Γ ) then ψ̃ will have singularities at γ which
need to be taken into account either by {dist (x, γ)}− 1

2 ψ̃1 with ψ̃1 ∈ Cα(ΓD)
or by adding singular functions at γ.

Taking the trace and the traction of (2.5.5) on Γ leads with (2.5.3) to the
system of boundary integral equations

V ψ̃(x) − Kϕ̃(x) = 1
2ϕ(x) + Kϕ(x) − V ψ(x) − Nf(x) for x ∈ ΓD ,

K ′ψ̃(x) + Dϕ̃(x) = 1
2ψ(x) − K ′ψ(x) − Dϕ(x) − TxNf(x) for x ∈ ΓN .

(2.5.6)

As will be seen in Chapter 5, the system (2.5.6) is uniquely solvable for
ϕ̃ ∈ Cα

0 (ΓN ) and ψ̃ either in the space with the weight {dist (x, γ)}− 1
2 or

in an augmented space according to the asymptotic behaviour of the solu-
tion and involving the stress intensity factors (Stephan et al [297] provided
meas(ΓD) > 0.

In a similar manner one might also use the system of integral equations
of the second kind

1
2 ϕ̃(x) + Kϕ̃(x) − V ψ̃(x) = V ψ(x) − 1

2ϕ(x) − Kϕ(x) + Nf(x)
for x ∈ ΓN ,

1
2 ψ̃(x) − K ′ψ̃(x) − Dϕ̃(x) = − 1

2ψ(x) + K ′ψ(x) + Dϕ(x) + TxNf(x)
for x ∈ ΓD . (2.5.7)

For the Laplacian and the Helmholtz equation and mixed boundary value
problems as well as for the Stokes system one may proceed in the same man-
ner. As will be seen in Chapter 5, the variational formulation for the mixed
boundary conditions provides us with the right analytical tools for show-
ing the well–posedness of the formulation (2.5.6) (see e.g., Kohr et al [164],
Sauter and Schwab [266] and Steinbach [290]). In the engineering literature,
usually the system (2.5.7) is used for discretization and then the equations
corresponding to (2.5.7) are obtained by assembling the discrete given and
unknown Cauchy data appropriately (see e.g., Bonnet [18], Brebbia et al
[23, 24] and Gaul et al [94]).

For crack and insertion problems let us again consider just the example
of classical linear theory without volume forces. Let us consider a bounded
open domain Ω ⊂ IRn with n = 2 or 3 enclosing a given bounded crack
or insertion surface as an oriented piece of a curve Γc ∈ Cα, if n = 2 or,
if n = 3, as an open piece of an oriented surface Γc ∈ Cα, with a simple,
closed boundary curve ∂Γc = γ ∈ Cα. Further the crack should not reach
the boundary ∂Ω = Γ of Ω, i.e., Γ c ⊂ Ω. The annulus Ωc := Ω \ Fc is not a
Lipschitz domain anymore but if we distinguish the two sides of Γc assigning
with + the points near Γc on the side of the normal vector nc given due to
the orientation of Γc and the points of the opposite side with −, the traces
from either side are still defined. For the crack or insertion problem, an elastic
field u ∈ C2(Ωc) is sought which satisfies the homogeneous Lamé system
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−∆∗u = 0 in Ωc , (2.5.8)

in Cα(Ωc ∪ Γ ) and up to Γc from either side with possibly different
traces at Γc,

γ±
0 u|Γc

= ϕ± and T±
c u = ψ± (2.5.9)

where we have the transmission properties

[γ0u]|Γc
:= (γ+

0 u − γ−
0 u)|Γc

= [ϕ]|Γc
= (ϕ+ − ϕ−)|Γc

∈ Cα
0 (Γc) (2.5.10)

and

[Tcu]|Γc
:= (T+

c u − T−
c u)|Γc

= [ψ]|Γc
:= (ψ+ − ψ−)|Γc

∈ Cα
1 (Γc) (2.5.11)

with

Cα
0 (Γc) := {v ∈ Cα(Γ c) | (γ+

0 v − γ−
0 v)|γ = 0} , (2.5.12)

and

Cα
1 (Γc) := {ψ = {dist (x − γ)}− 1

2 ψ1(x) |ψ1 ∈ Cα(Γ c)} . (2.5.13)

For the classical insertion problem with Dirichlet conditions γ0u = ϕ ∈
Cα(Γ ) on Γ the functions ϕ± ∈ Cα

0 (Γc) are given. The unknown field u then
has to satisfy the boundary conditions

γ0u|Γ = ϕ on Γ and with (ϕ+ − ϕ−)|γ = 0 ,

γ+
0 u|Γc

= ϕ+ and γ−
0 u|Γc

= ϕ− on Γc

(2.5.14)

as well as the transmission conditions (2.5.10) and (2.5.11).
By extending Γc up to the boundary Γ ficticiously and applying the Green

formula to the two ficticiously separated subdomains of Ω one finds the rep-
resentation formula

u(x) =
∫

Γ

E(x, y)ψ(y)dsy −
∫

Γ

(
TyE(x, y)

)�
ϕ(y)dsy

−
∫

y∈Γc

E(x, y)[ψ]|Γc
(y)dsy +

∫

Γc

(
T c

yE(x, y)
)�[ϕ]|Γc

(y)dsy

(2.5.15)

for x ∈ Ωc.
By taking the traces of (2.5.15) at Γ and at Γc one obtains the following

system of equations on Γ and on Γc:
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∫

y∈Γ

E(x, y)ψ(y)dsy −
∫

y∈Γc

E(x, y)[ψ](y)dsy

= 1
2ϕ(x) + Kϕ(x) −

∫

y∈Γc

(
T c

yE(x, y)
)�[ϕ]dsy for x ∈ Γ ,

−
∫

y∈Γ

E(x, y)ψ(y)dsy +
∫

Γc

E(x, y)[ψ](y)dsy

= − 1
2

(
ϕ+(x) + ϕ−(x)

)
+

∫

Γc

(
T c

yE(x, y)
)�[ψ]dsy for x ∈ Γc .

(2.5.16)

This is a coupled system for ψ ∈ Cα(Γ ) on Γ and [ψ] ∈ Cα
1 (Γc) on Γc, which,

in fact, is uniquely solvable for any given triple (ϕ,ϕ+,ϕ−) with the required
properties.

For the classical crack problem with Dirichlet conditions on Γ , e.g. as
ψ+ ∈ Cα(Γ c) and ψ− ∈ Cα(Γ c) are given with (ψ+ − ψ−)|γ = 0; the
desired fields u has to satisfy (2.5.8) and the boundary conditions

γ0u|Γ = ϕ on Γ and T+
c u|Γc

= ψ+ , T−
c u|Γc

= ψ− on Γc (2.5.17)

as well as the transmission conditions (2.5.10), (2.5.11).
Again from the representation formula (2.5.15) we now obtain the coupled

system
∫

y∈Γ

E(x, y)ψ(y)dsy +
∫

y∈Γc

(
T c

yE(x, y)
)�[ϕ](y)dsy

= 1
2ϕ(x) + Kϕ(x) +

∫

y∈Γc

E(x, y)[ψ]|Γc
(y)dsy for x ∈ Γ ,

Dc[ϕ](x) −
∫

y∈Γ

T c
xE(x, y)ψ(y)dsy

= 1
2

(
ψ+(x) + ψ−(x)

)
− Kc | ([ψ]|Γc

)(x)

−
∫

y∈Γ

T c
x

(
TyE(x.y)

)�
ϕ(y)dsy for x ∈ Γc

(2.5.18)

for the unknowns ψ ∈ Cα(Γ ) and [ϕ] ∈ Cα
0 (Γc). As it turns out, this sys-

tem always has a unique solution for any given triple (ϕ,ψ+,ψ−) with the
required properties.

The desired displacement field in Ωc is in both cases given by (2.5.15).
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