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Getting Started

Although exponential smoothing methods have been around since the 1950s,
a modeling framework incorporating stochastic models, likelihood calcu-
lations, prediction intervals, and procedures for model selection was not
developed until relatively recently, with the work of ? and ?. In these (and
other) papers, a class of state space models has been developed that underlies
all of the exponential smoothing methods.

In this chapter, we provide an introduction to the ideas underlying expo-
nential smoothing and the associated state space models. Many of the details
will be skipped over in this chapter, but will be covered in later chapters.

Figure 2.1 shows the four time series from Fig. 1.1, along with point
forecasts and 80% prediction intervals. These were all produced using expo-
nential smoothing state space models. In each case, the particular models
and all model parameters were chosen automatically with no intervention
by the user. This demonstrates one very useful feature of state space models
for exponential smoothing—they are easy to use in a completely automated
way. In these cases, the models were able to handle data exhibiting a range of
features, including very little trend, strong trend, no seasonality, a seasonal
pattern that stays constant, and a seasonal pattern with increasing variation
as the level of the series increases.

2.1 Time Series Decomposition

It is common in business and economics to think of a time series as a combi-
nation of various components such as the trend (T), cycle (C), seasonal (S),
and irregular or error (E) components. These can be defined as follows:

Trend (T): The long-term direction of the series
Seasonal (S): A pattern that repeats with a known periodicity

(e.g., 12 months per year, or 7 days per week)
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Fig. 2.1. Four time series showing point forecasts and 80% prediction intervals
obtained using exponential smoothing state space models.

Cycle (C): A pattern that repeats with some regularity but
with unknown and changing periodicity (e.g., a
business cycle)

Irregular or error (E): The unpredictable component of the series

In this monograph, we focus primarily upon the three components T, S and
E. Any cyclic element will be subsumed within the trend component unless
indicated otherwise.

These three components can be combined in a number of different ways.
A purely additive model can be expressed as

y = T + S + E,

where the three components are added together to form the observed series.
A purely multiplicative model is written as

y = T × S × E,

where the data are formed as the product of the three components. A sea-
sonally adjusted series is then formed by extracting the seasonal component
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from the data, leaving only the trend and error components. In the additive
model, the seasonally adjusted series is y − S, while in the multiplicative
model, the seasonally adjusted series is y/S. The reader should refer to ?,
Chap. 4 for a detailed discussion of seasonal adjustment and time series
decomposition.

Other combinations, apart from simple addition and multiplication, are
also possible. For example,

y = (T + S) × E

treats the irregular component as multiplicative but the other components as
additive.1

2.2 Classification of Exponential Smoothing Methods

In exponential smoothing, we always start with the trend component, which
is itself a combination of a level term (�) and a growth term (b). The level
and growth can be combined in a number of ways, giving five future trend
types. Let Th denote the forecast trend over the next h time periods, and let
φ denote a damping parameter (0 < φ < 1). Then the five trend types or
growth patterns are as follows:

None: Th = �
Additive: Th = � + bh

Additive damped: Th = � + (φ + φ2 + · · ·+ φh)b
Multiplicative: Th = �bh

Multiplicative damped: Th = �b(φ+φ2+···+φh)

A damped trend method is appropriate when there is a trend in the time
series, but one believes that the growth rate at the end of the historical data is
unlikely to continue more than a short time into the future. The equations for
damped trend do what the name indicates: dampen the trend as the length
of the forecast horizon increases. This often improves the forecast accuracy,
particularly at long lead times.

Having chosen a trend component, we may introduce a seasonal compo-
nent, either additively or multiplicatively. Finally, we include an error, either
additively or multiplicatively. Historically, the nature of the error compo-
nent has often been ignored, because the distinction between additive and
multiplicative errors makes no difference to point forecasts.

If the error component is ignored, then we have the fifteen exponential
smoothing methods given in the following table. This classification of meth-
ods originated with ?’ (?) taxonomy. This was later extended by ?, modified

1 See ? for further discussion of the possible combinations of these components.
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Trend component Seasonal component

N A M
(None) (Additive) (Multiplicative)

N (None) N,N N,A N,M
A (Additive) A,N A,A A,M
Ad (Additive damped) Ad,N Ad,A Ad,M
M (Multiplicative) M,N M,A M,M
Md (Multiplicative damped) Md,N Md,A Md,M

by ?, and extended again by ?, giving the fifteen methods in the above table.
Some of these methods are better known under other names. For exam-

ple, cell (N,N) describes the simple exponential smoothing (or SES) method,
cell (A,N) describes Holt’s linear method, and cell (Ad,N) describes the
damped trend method. Holt-Winters’ additive method is given by cell (A,A),
and Holt-Winters’ multiplicative method is given by cell (A,M). The other
cells correspond to less commonly used but analogous methods.

For each of the 15 methods in the above table, there are two possible state
space models, one corresponding to a model with additive errors and the
other to a model with multiplicative errors. If the same parameter values are
used, these two models give equivalent point forecasts although different
prediction intervals. Thus, there are 30 potential models described in this
classification.

We are careful to distinguish exponential smoothing methods from the
underlying state space models. An exponential smoothing method is an algo-
rithm for producing point forecasts only. The underlying stochastic state
space model gives the same point forecasts, but also provides a framework
for computing prediction intervals and other properties. The models are
described in Sect. 2.5, but first we introduce the much older point-forecasting
equations.

2.3 Point Forecasts for the Best-Known Methods

In this section, a simple introduction is provided to some of the best-
known exponential smoothing methods—simple exponential smoothing
(N,N), Holt’s linear method (A,N), the damped trend method (Ad,N) and
Holt-Winters’ seasonal method (A,A and A,M). We denote the observed time
series by y1, y2, . . . , yn. A forecast of yt+h based on all the data up to time
t is denoted by ŷt+h|t. For one-step forecasts, we use the simpler notation
ŷt+1 ≡ ŷt+1|t. Usually, forecasts require some parameters to be estimated;
but for the sake of simplicity it will be assumed for now that the values of all
relevant parameters are known.
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2.3.1 Simple Exponential Smoothing (N,N Method)

Suppose we have observed data up to and including time t − 1, and we wish
to forecast the next value of our time series, yt. Our forecast is denoted by
ŷt. When the observation yt becomes available, the forecast error is found to
be yt − ŷt. The method of simple exponential smoothing,2 due to Brown’s
work in the mid-1950s and published in ?, takes the forecast for the previous
period and adjusts it using the forecast error. That is, the forecast for the next
period is

ŷt+1 = ŷt + α(yt − ŷt), (2.1)

where α is a constant between 0 and 1.
It can be seen that the new forecast is simply the old forecast plus an

adjustment for the error that occurred in the last forecast. When α has a value
close to 1, the new forecast will include a substantial adjustment for the error
in the previous forecast. Conversely, when α is close to 0, the new forecast
will include very little adjustment.

Another way of writing (2.1) is

ŷt+1 = αyt + (1 − α)ŷt. (2.2)

The forecast ŷt+1 is based on weighting the most recent observation yt with
a weight value α, and weighting the most recent forecast ŷt with a weight of
1 − α. Thus, it can be interpreted as a weighted average of the most recent
forecast and the most recent observation.

The implications of exponential smoothing can be seen more easily if (2.2)
is expanded by replacing ŷt with its components, as follows:

ŷt+1 = αyt + (1 − α)[αyt−1 + (1 − α)ŷt−1]

= αyt + α(1 − α)yt−1 + (1 − α)2ŷt−1.

If this substitution process is repeated by replacing ŷt−1 with its components,
ŷt−2 with its components, and so on, the result is

ŷt+1 = αyt + α(1 − α)yt−1 + α(1 − α)2yt−2 + α(1 − α)3yt−3

+ α(1 − α)4yt−4 + · · · + α(1 − α)t−1y1 + (1 − α)tŷ1. (2.3)

So ŷt+1 represents a weighted moving average of all past observations with
the weights decreasing exponentially; hence the name “exponential smooth-
ing.” We note that the weight of ŷ1 may be quite large when α is small and
the time series is relatively short. The choice of starting value then becomes
particularly important and is known as the “initialization problem,” which
we discuss in detail in Sect. 2.6.

2 This method is also sometimes known as “single exponential smoothing.”



14 2 Getting Started

For longer range forecasts, it is assumed that the forecast function is
“flat.” That is,

ŷt+h|t = ŷt+1, h = 2, 3, . . . .

A flat forecast function is used because simple exponential smoothing works
best for data that have no trend, seasonality, or other underlying patterns.

Another way of writing this is to let �t = ŷt+1. Then ŷt+h|t = �t and
�t = αyt + (1− α)�t−1. The value of �t is a measure of the “level” of the series
at time t. While this may seem a cumbersome way to express the method, it
provides a basis for generalizing exponential smoothing to allow for trend
and seasonality.

In order to calculate the forecasts using SES, we need to specify the ini-
tial value �0 = ŷ1 and the parameter value α. Traditionally (particularly
in the pre-computer age), ŷ1 was set to be equal to the first observation
and α was specified to be a small number, often 0.2. However, there are
now much better ways of selecting these parameters, which we describe in
Sect. 2.6.

2.3.2 Holt’s Linear Method (A,N Method)

?3 extended simple exponential smoothing to linear exponential smoothing
to allow forecasting of data with trends. The forecast for Holt’s linear expo-
nential smoothing method is found using two smoothing constants, α and β∗
(with values between 0 and 1), and three equations:

Level: �t = αyt + (1 − α)(�t−1 + bt−1), (2.4a)
Growth: bt = β∗(�t − �t−1) + (1 − β∗)bt−1, (2.4b)
Forecast: ŷt+h|t = �t + bth. (2.4c)

Here �t denotes an estimate of the level of the series at time t and bt denotes
an estimate of the slope (or growth) of the series at time t. Note that bt is a
weighted average of the previous growth bt−1 and an estimate of growth
based on the difference between successive levels. The reason we use β∗
rather than β will become apparent when we introduce the state space
models in Sect. 2.5.

In the special case where α = β∗, Holt’s method is equivalent to “Brown’s
double exponential smoothing” (?). Brown used a discounting argument to
arrive at his forecasting equations, so 1 − α represents the common discount
factor applied to both the level and trend components.

In Sect. 2.6 we describe how the procedure is initialized and how the
parameters are estimated.

3 Reprinted as ?.
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One interesting special case of this method occurs when β∗ = 0. Then

Level: �t = αyt + (1 − α)(�t−1 + b),

Forecast: ŷt+h|t = �t + bh.

This method is known as “SES with drift,” which is closely related to the
“Theta method” of forecasting due to ?. The connection between these
methods was demonstrated by ?.

2.3.3 Damped Trend Method (Ad,A Method)

? proposed a modification of Holt’s linear method to allow the “damping” of
trends. The equations for this method are:4

Level: �t = αyt + (1 − α)(�t−1 + φbt−1), (2.5a)
Growth: bt = β∗(�t − �t−1) + (1 − β∗)φbt−1, (2.5b)

Forecast: ŷt+h|t = �t + (φ + φ2 + · · ·+ φh)bt. (2.5c)

Thus, the growth for the one-step forecast of yt+1 is φbt, and the growth is
dampened by a factor of φ for each additional future time period. If φ = 1,
this method gives the same forecasts as Holt’s linear method. For 0 < φ < 1,
as h → ∞ the forecasts approach an asymptote given by �t + φbt/(1− φ). We
usually restrict φ > 0 to avoid a negative coefficient being applied to bt−1 in
(2.5b), and φ ≤ 1 to avoid bt increasing exponentially.

2.3.4 Holt-Winters’ Trend and Seasonality Method

If the data have no trend or seasonal patterns, then simple exponential
smoothing is appropriate. If the data exhibit a linear trend, then Holt’s linear
method (or the damped method) is appropriate. But if the data are seasonal,
these methods on their own cannot handle the problem well.

? proposed a method for seasonal data. His method was studied by ?, and
so now it is usually known as “Holt-Winters’ method” (see Sect. 1.3).

Holt-Winters’ method is based on three smoothing equations—one for
the level, one for trend, and one for seasonality. It is similar to Holt’s lin-
ear method, with one additional equation for dealing with seasonality. In
fact, there are two different Holt-Winters’ methods, depending on whether
seasonality is modeled in an additive or multiplicative way.

4 We use the same parameterization as ?, which is slightly different from the
parameterization proposed by ?. This makes no difference to the value of the
forecasts.
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Multiplicative Seasonality (A,M Method)

The basic equations for Holt-Winters’ multiplicative method are as follows:

Level: �t = α
yt

st−m
+ (1 − α)(�t−1 + bt−1) (2.6a)

Growth: bt = β∗(�t − �t−1) + (1 − β∗)bt−1 (2.6b)
Seasonal: st = γyt/(�t−1 + bt−1) + (1 − γ)st−m (2.6c)
Forecast: ŷt+h|t = (�t + bth)st−m+h+

m
, (2.6d)

where m is the length of seasonality (e.g., number of months or quarters
in a year), �t represents the level of the series, bt denotes the growth, st
is the seasonal component, ŷt+h|t is the forecast for h periods ahead, and
h+

m = [(h− 1) mod m] + 1. The parameters (α, β∗ and γ) are usually restricted
to lie between 0 and 1. The reader should refer to Sect. 2.6.2 for more details
on restricting the values of the parameters. As with all exponential smooth-
ing methods, we need initial values of the components and estimates of the
parameter values. This is discussed in Sect. 2.6.

Equation (2.6c) is slightly different from the usual Holt-Winters’ equa-
tions such as those in ? or ?. These authors replace (2.6c) with

st = γyt/�t + (1 − γ)st−m.

The modification given in (2.6c) was proposed by ? to make the state space
formulation simpler. It is equivalent to ?’s (?) variation of Holt-Winters’
method. The modification makes a small but usually negligible difference
to the forecasts.

Additive Seasonality (A,A Method)

The seasonal component in Holt-Winters’ method may also be treated addi-
tively, although in practice this seems to be less commonly used. The basic
equations for Holt-Winters’ additive method are as follows:

Level: �t = α(yt − st−m) + (1 − α)(�t−1 + bt−1) (2.7a)
Growth: bt = β∗(�t − �t−1) + (1 − β∗)bt−1 (2.7b)

Seasonal: st = γ(yt − �t−1 − bt−1) + (1 − γ)st−m (2.7c)
Forecast: ŷt+h|t = �t + bth + st−m+h+

m
. (2.7d)

The second of these equations is identical to (2.6b). The only differences in the
other equations are that the seasonal indices are now added and subtracted
instead of taking products and ratios.
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As with the multiplicative model, the usual equation given in textbooks
for the seasonal term is slightly different from (2.7c). Most books use

st = γ∗(yt − �t) + (1 − γ∗)st−m.

If �t is substituted using (2.7a), we obtain

st = γ∗(1 − α)(yt − �t−1 − bt−1) + [1 − γ∗(1 − α)]st−m.

Thus, we obtain identical forecasts using this approach by replacing γ in
(2.7c) with γ∗(1 − α).

2.4 Point Forecasts for All Methods

Table 2.1 gives recursive formulae for computing point forecasts h periods
ahead for all of the exponential smoothing methods. In each case, �t denotes
the series level at time t, bt denotes the slope at time t, st denotes the seasonal
component of the series at time t, and m denotes the number of seasons in a
year; α, β∗, γ and φ are constants, and φh = φ + φ2 + · · ·+ φh.

Some interesting special cases can be obtained by setting the smoothing
parameters to extreme values. For example, if α = 0, the level is constant
over time; if β∗ = 0, the slope is constant over time; and if γ = 0, the sea-
sonal pattern is constant over time. At the other extreme, naı̈ve forecasts
(i.e., ŷt+h|t = yt for all h) are obtained using the (N,N) method with α = 1.
Finally, the additive and multiplicative trend methods are special cases of
their damped counterparts obtained by letting φ = 1.

2.5 State Space Models

We now introduce the state space models that underlie exponential smooth-
ing methods. For each method, there are two models—a model with additive
errors and a model with multiplicative errors. The point forecasts for the
two models are identical (provided the same parameter values are used), but
their prediction intervals will differ.

To distinguish the models with additive and multiplicative errors, we add
an extra letter to the front of the method notation. The triplet (E,T,S) refers to
the three components: error, trend and seasonality. So the model ETS(A,A,N)
has additive errors, additive trend and no seasonality—in other words, this
is Holt’s linear method with additive errors. Similarly, ETS(M,Md,M) refers
to a model with multiplicative errors, a damped multiplicative trend and
multiplicative seasonality. The notation ETS(·,·,·) helps in remembering the
order in which the components are specified. ETS can also be considered an
abbreviation of ExponenTial Smoothing.

Once a model is specified, we can study the probability distribution
of future values of the series and find, for example, the conditional mean



18 2 Getting Started

Ta
b

le
2.

1.
Fo

rm
ul

ae
fo

r
re

cu
rs

iv
e

ca
lc

ul
at

io
ns

an
d

po
in

tf
or

ec
as

ts
.

Tr
en

d
Se

as
on

al

N
A

M

N
� t

=
α

y t
+

(1
−

α
)�

t−
1

� t
=

α
(y

t
−

s t
−m

)+
(1

−
α
)�

t−
1

� t
=

α
(y

t/
s t
−m

)+
(1

−
α
)�

t−
1

s t
=

γ
(y

t
−

� t
−1

)+
(1

−
γ
)s

t−
m

s t
=

γ
(y

t/
� t
−1

)+
(1

−
γ
)s

t−
m
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of a future observation given knowledge of the past. We denote this as
µt+h|t = E(yt+h | xt), where xt contains the unobserved components such
as �t, bt and st. For h = 1 we use µt+1 ≡ µt+1|t as a shorthand notation. For
most models, these conditional means will be identical to the point forecasts
given earlier, so that µt+h|t = ŷt+h|t. However, for other models (those with
multiplicative trend or multiplicative seasonality), the conditional mean and
the point forecast will differ slightly for h ≥ 2.

2.5.1 State Space Models for Holt’s Linear Method

We now illustrate the ideas using Holt’s linear method.

Additive Error Model: ETS(A,A,N)

Let µt = ŷt = �t−1 + bt−1 denote the one-step forecast of yt assuming we
know the values of all parameters. Also let εt = yt − µt denote the one-step
forecast error at time t. From (2.4c), we find that

yt = �t−1 + bt−1 + εt, (2.8)

and using (2.4a) and (2.4b) we can write

�t = �t−1 + bt−1 + αεt, (2.9)
bt = bt−1 + β∗(�t − �t−1 − bt−1) = bt−1 + αβ∗εt. (2.10)

We simplify the last expression by setting β = αβ∗. The three equations
above constitute a state space model underlying Holt’s method. We can write
it in standard state space notation by defining the state vector as xt = (�t, bt)′
and expressing (2.8)–(2.10) as

yt = [1 1] xt−1 + εt, (2.11a)

xt =
[

1 1
0 1

]
xt−1 +

[
α
β

]
εt. (2.11b)

The model is fully specified once we state the distribution of the error term εt.
Usually we assume that these are independent and identically distributed,
following a Gaussian distribution with mean 0 and variance σ2, which we
write as εt ∼ NID(0, σ2).

Multiplicative Error Model: ETS(M,A,N)

A model with multiplicative error can be derived similarly, by first setting
εt = (yt − µt)/µt, so that εt is a relative error. Then, following a similar
approach to that for additive errors, we find

yt = (�t−1 + bt−1)(1 + εt),
�t = (�t−1 + bt−1)(1 + αεt),
bt = bt−1 + β(�t−1 + bt−1)εt,
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or

yt = [1 1] xt−1(1 + εt),

xt =
[

1 1
0 1

]
xt−1 + [1 1]xt−1

[
α
β

]
εt.

Again we assume that εt ∼ NID(0, σ2).
Of course, this is a nonlinear state space model, which is usually consid-

ered difficult to handle in estimating and forecasting. However, that is one
of the many advantages of the innovations form of state space models—we
can still compute forecasts, the likelihood and prediction intervals for this
nonlinear model with no more effort than is required for the additive error
model.

2.5.2 State Space Models for All Exponential Smoothing Methods

We now give the state space models for all 30 exponential smoothing
variations. The general model involves a state vector xt = (�t, bt, st, st−1, . . . ,
st−m+1)′ and state space equations of the form

yt = w(xt−1) + r(xt−1)εt, (2.12a)
xt = f (xt−1) + g(xt−1)εt, (2.12b)

where {εt} is a Gaussian white noise process with variance σ2, and µt =
w(xt−1). The model with additive errors has r(xt−1) = 1, so that yt = µt + εt.
The model with multiplicative errors has r(xt−1) = µt, so that yt = µt(1 +
εt). Thus, εt = (yt − µt)/µt is the relative error for the multiplicative model.
The models are not unique. Clearly, any value of r(xt−1) will lead to identical
point forecasts for yt.

Each of the methods in Table 2.1 can be written in the form given in (2.12a)
and (2.12b). The underlying equations for the additive error models are given
in Table 2.2. We use β = αβ∗ to simplify the notation. Multiplicative error
models are obtained by replacing εt with µtεt in the equations of Table 2.2.
The resulting multiplicative error equations are given in Table 2.3.

Some of the combinations of trend, seasonality and error can occasionally
lead to numerical difficulties; specifically, any model equation that requires
division by a state component could involve division by zero. This is a
problem for models with additive errors and either multiplicative trend or
multiplicative seasonality, as well as the model with multiplicative errors,
multiplicative trend and additive seasonality. These models should there-
fore be used with caution. The properties of these models are discussed in
Chap. 15.

The multiplicative error models are useful when the data are strictly pos-
itive, but are not numerically stable when the data contain zeros or negative
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values. So when the time series is not strictly positive, only the six fully
additive models may be applied.

The point forecasts given earlier are easily obtained from these models
by iterating (2.12) for t = n + 1, n + 2, . . . , n + h, and setting εn+j = 0 for
j = 1, . . . , h. In most cases (notable exceptions being models with multiplica-
tive seasonality or multiplicative trend for h ≥ 2), the point forecasts can be
shown to be equal to µt+h|t = E(yt+h | xt), the conditional expectation of the
corresponding state space model.

The models also provide a means of obtaining prediction intervals. In the
case of the linear models, where the prediction distributions are Gaussian,
we can derive the conditional variance vt+h|t = V(yt+h | xt) and obtain
prediction intervals accordingly. This approach also works for many of the
nonlinear models, as we show in Chap. 6.

A more direct approach that works for all of the models is to simply
simulate many future sample paths, conditional on the last estimate of the
state vector, xt. Then prediction intervals can be obtained from the per-
centiles of the simulated sample paths. Point forecasts can also be obtained
in this way by taking the average of the simulated values at each future time
period. One advantage of this approach is that we generate an estimate of
the complete predictive distribution, which is especially useful in applica-
tions such as inventory planning, where the expected costs depend on the
whole distribution.

2.6 Initialization and Estimation

In order to use these models for forecasting, we need to specify the type of
model to be used (model selection), the value of x0 (initialization), and the
values of the parameters α, β, γ and φ (estimation). In this section, we discuss
initialization and estimation, leaving model selection to Sect. 2.8.

2.6.1 Initialization

Traditionally, the initial values x0 are specified using ad hoc values, or via a
heuristic scheme. The following heuristic scheme, based on ?, seems to work
very well.

• Initial seasonal component. For seasonal data, compute a 2×m moving aver-
age through the first few years of data. Denote this by { ft}, t = m/2 +
1, m/2 + 2, . . . . For additive seasonality, detrend the data to obtain yt − ft;
for multiplicative seasonality, detrend the data to obtain yt/ ft. Compute
initial seasonal indices, s−m+1, . . . , s0, by averaging the detrended data for
each season. Normalize these seasonal indices so that they add to zero for
additive seasonality, and add to m for multiplicative seasonality.
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• Initial level component. For seasonal data, compute a linear trend using
linear regression on the first ten seasonally adjusted values (using the sea-
sonal indices obtained above) against a time variable t = 1, . . . , 10. For
nonseasonal data, compute a linear trend on the first ten observations
against a time variable t = 1, . . . , 10. Then set �0 to be the intercept of
the trend.

• Initial growth component. For additive trend, set b0 to be the slope of the
trend. For multiplicative trend, set b0 = 1 + b/a, where a denotes the
intercept and b denotes the slope of the fitted trend.

These initial states are then refined by estimating them along with the
parameters, as described below.

2.6.2 Estimation

It is easy to compute the likelihood of the innovations state space model
(2.12), and so obtain maximum likelihood estimates. In Chap. 5, we show
that

L∗(θ, x0) = n log
( n

∑
t=1

ε2
t

)
+ 2

n

∑
t=1

log |r(xt−1)|

is equal to twice the negative logarithm of the likelihood function (with con-
stant terms eliminated), conditional on the parameters θ = (α, β, γ, φ)′ and
the initial states x0 = (�0, b0, s0, s−1, . . . , s−m+1)′, where n is the number of
observations. This is easily computed by simply using the recursive equa-
tions in Table 2.1. Unlike state space models with multiple sources of error,
we do not need to use the Kalman filter to compute the likelihood.

The parameters θ and the initial states x0 can be estimated by minimiz-
ing L∗. Alternatively, estimates can be obtained by minimizing the one-step
mean squared error (MSE), minimizing the residual variance σ2, or via some
other criterion for measuring forecast error. Whichever criterion is used, we
usually begin the optimization with x0 obtained from the heuristic scheme
above and θ = (0.1, 0.01, 0.01, 0.99)′.

There have been several suggestions for restricting the parameter space
of α, β and γ. The traditional approach is to ensure that the various equations
can be interpreted as weighted averages, thus requiring α, β∗ = β/α, γ∗ =
γ/(1 − α) and φ to all lie within (0, 1). This suggests that

0 < α < 1, 0 < β < α, 0 < γ < 1 − α, and 0 < φ < 1.

However, we shall see in Chap. 10 that these restrictions are usually
stricter than necessary (although in a few cases they are not restrictive
enough).

We also constrain the initial states x0 so that the seasonal indices add to
zero for additive seasonality, and add to m for multiplicative seasonality.
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2.7 Assessing Forecast Accuracy

The issue of measuring the accuracy of forecasts from different methods has
been the subject of much attention. We summarize some of the approaches
here. A more thorough discussion is given by ?.

There are three possible ways in which the forecasts can have arisen:

1. The forecasts may be computed from a common base time, and be of vary-
ing forecast horizons. That is, we may compute out-of-sample forecasts
ŷn+1|n, . . . , ŷn+h|n based on data from times t = 1, . . . , n. When h = 1, we
write ŷn+1 ≡ ŷn+1|n.

2. The forecasts may be from varying base times, and be of a consistent fore-
cast horizon. That is, we may compute forecasts ŷ1+h|1, . . . , ŷm+h|m where
each ŷj+h|j is based on data from times t = 1, . . . , j.

3. We may wish to compare the accuracy of methods between many series
at a single forecast horizon. That is, we compute a single ŷn+h|n based on
data from times t = 1, . . . , n for each of m different series.

While these are very different situations, measuring forecast accuracy is the
same in each case.

The measures defined below are described for one-step-ahead forecasts;
the extension to h-steps-ahead is immediate in each case and raises no new
questions of principle.

2.7.1 Scale-Dependent Errors

The one-step-ahead forecast error is simply et = yt − ŷt, regardless of how the
forecast was produced. Similarly the h-step-ahead forecast error is et+h|t =
yt+h − ŷt+h|t. This is on the same scale as the data. Accuracy measures that
are based on et are therefore scale-dependent.

The two most commonly used scale-dependent measures are based on
the absolute error or squared errors:

Mean absolute error (MAE) = mean(|et|),

Mean squared error (MSE) = mean(e2
t ).

When comparing forecast methods on a single series, we prefer the MAE
as it is easy to understand and compute. However, it cannot be used to make
comparisons between series as it makes no sense to compare accuracy on
different scales.

2.7.2 Percentage Errors

The percentage error is given by pt = 100et/yt. Percentage errors have
the advantage of being scale-independent, and so are frequently used to
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compare forecast performance between different data sets. The most com-
monly used measure is:

Mean absolute percentage error (MAPE) = mean(|pt|)
Measures based on percentage errors have the disadvantage of being infi-
nite or undefined if yt = 0 for any t in the period of interest, and having an
extremely skewed distribution when any yt is close to zero. Another problem
with percentage errors that is often overlooked is that they assume a mean-
ingful zero. For example, a percentage error makes no sense when measuring
the accuracy of temperature forecasts on the Fahrenheit or Celsius scales.

They also have the disadvantage that they put a heavier penalty on pos-
itive errors than on negative errors. This observation led to the use of the
so-called “symmetric” MAPE proposed by ?, which was used in the M3
competition (?). It is defined by

Symmetric mean absolute percentage error (sMAPE)
= mean(200|yt − ŷt|/(yt + ŷt)).

However, if yt is zero, ŷt is also likely to be close to zero. Thus, the measure
still involves division by a number close to zero. Also, the value of sMAPE
can be negative, so it is not really a measure of “absolute percentage errors”
at all.

2.7.3 Scaled Errors

The MASE was proposed by ? as a generally applicable measure of forecast
accuracy. They proposed scaling the errors based on the in-sample MAE from
the naı̈ve forecast method. Thus, a scaled error is defined as

qt =
et

1
n − 1

n

∑
i=2

|yi − yi−1|
,

which is independent of the scale of the data. A scaled error is less than one
if it arises from a better forecast than the average one-step naı̈ve forecast
computed in-sample. Conversely, it is greater than one if the forecast is worse
than the average one-step naı̈ve forecast computed in-sample.

The mean absolute scaled error is simply

MASE = mean(|qt|).

The in-sample MAE is used in the denominator as it is always available
and effectively scales the errors. In contrast, the out-of-sample MAE for the
naı̈ve method can be based on very few observations and is therefore more
variable. For some data sets, it can even be zero. Consequently, the in-sample
MAE is preferable in the denominator.
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The MASE can be used to compare forecast methods on a single series,
and to compare forecast accuracy between series as it is scale-free. It is the
only available method which can be used in all circumstances.

2.8 Model Selection

The forecast accuracy measures described in the previous section can be used
to select a model for a given set of data, provided the errors are computed
from data in a hold-out set and not from the same data as were used for
model estimation. However, there are often too few out-of-sample errors to
draw reliable conclusions. Consequently, a penalized method based on in-
sample fit is usually better.

One such method is via a penalized likelihood such as Akaike’s information
criterion:

AIC = L∗(θ̂, x̂0) + 2q,

where q is the number of parameters in θ plus the number of free states
in x0, and θ̂ and x̂0 denote the estimates of θ and x0. (In computing the
AIC, we also require that the state space model has no redundant states—see
Sect. 10.1, p. 149.) We select the model that minimizes the AIC amongst all of
the models that are appropriate for the data.

The AIC also provides a method for selecting between the additive
and multiplicative error models. Point forecasts from the two models are
identical, so that standard forecast accuracy measures such as the MSE or
MAPE are unable to select between the error types. The AIC is able to select
between the error types because it is based on likelihood rather than one-step
forecasts.

Obviously, other model selection criteria (such as the BIC) could also
be used in a similar manner. Model selection is explored in more detail in
Chap. 7.

2.8.1 Automatic Forecasting

We combine the preceding ideas to obtain a robust and widely applicable
automatic forecasting algorithm. The steps involved are summarized below:

1. For each series, apply all models that are appropriate, optimizing the
parameters of the model in each case.

2. Select the best of the models according to the AIC.
3. Produce point forecasts using the best model (with optimized parameters)

for as many steps ahead as required.
4. Obtain prediction intervals5 for the best model either using the analyti-

cal results, or by simulating future sample paths for {yn+1, . . . , yn+h} and

5 The calculation of prediction intervals is discussed in Chap. 6.
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finding the α/2 and 1− α/2 percentiles of the simulated data at each fore-
casting horizon. If simulation is used, the sample paths may be generated
using the Gaussian distribution for errors (parametric bootstrap) or using
the resampled errors (ordinary bootstrap).

This algorithm resulted in the forecasts shown in Fig. 2.1. The models
chosen were:

• ETS(A,Ad,N) for monthly US 10-year bond yields
(α = 0.99, β = 0.12, φ = 0.80, �0 = 5.30, b0 = 0.71)

• ETS(M,Md,N) for annual US net electricity generation
(α = 0.99, β = 0.01, φ = 0.97, �0 = 262.5, b0 = 1.12)

• ETS(A,N,A) for quarterly UK passenger vehicle production
(α = 0.61, γ = 0.01, �0 = 343.4, s−3 = 24.99, s−2 = 21.40, s−1 = −44.96,
s0 = −1.42)

• ETS(M,A,M) for monthly Australian overseas visitors
(α = 0.57, β = 0.01, γ = 0.19, �0 = 86.2, b0 = 2.66, s−11 = 0.851, s−10 =
0.844, s−9 = 0.985, s−8 = 0.924, s−7 = 0.822, s−6 = 1.006, s−5 = 1.101,
s−4 = 1.369, s−3 = 0.975, s−2 = 1.078, s−1 = 1.087, s0 = 0.958)

Although there is a lot of computation involved, it can be handled
remarkably quickly on modern computers. The forecasts shown in Fig. 2.1
took a few seconds on a standard PC.

? applied this automatic forecasting strategy to the M-competition data
(?) and IJF-M3 competition data (?), and demonstrated that the methodology
is particularly good at short-term forecasts (up to about six periods ahead),
and especially for seasonal short-term series (beating all other methods in
the competition for these series).

2.9 Exercises

Exercise 2.1. Consider the innovations state space model (2.12). Equations
(2.12a) and (2.12b) are called the measurement equation and transition equation
respectively:

a. For the ETS(A,Ad,N) model, write the measurement equation and transi-
tion equations with a separate equation for each of the two states (level
and growth).

b. For the ETS (A,Ad,N) model, write the measurement and transition equa-
tions in matrix form, defining xt, w(xt−1), r(xt−1), f (xt−1), and g(xt−1).
See Sect. 2.5.1 for an example based on the ETS(A,A,N) model.

c. Repeat parts a and b for the ETS(A,A,A) model.
d. Repeat parts a and b for the ETS(M,Ad,N) model.
e. Repeat parts a and b for the ETS(M,Ad,A) model.
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Exercise 2.2. Use the innovations state space model, including the assump-
tions about εt, to derive the specified point forecast,

ŷt+h|t = µt+h|t = E(yt+h | xt),

and variance of the forecast error,

vt+h|t = V(yt+h | xt),

for the following models:

a. For ETS(A,N,N), show ŷt+h|t = �t and vt+h|t = σ2[1 + (h − 1)α2].
b. For ETS(A,A,N), show ŷt+h|t = �t + hbt and

vt+h|t = σ2
[
1 +

h−1

∑
j=1

(α + βj)2
]

c. For ETS(M,N,N), show ŷt+h|t = �t, vt+1|t = �2
t σ2, and

vt+2|t = �2
t

[
(1 + α2σ2)(1 + σ2) − 1

]
.

Exercise 2.3. Use R to reproduce the results in Sect. 2.8.1 for each of the four
time series: US 10-year bond yields, US net electricity, UK passenger vehicle
production, and Australian overseas visitors. The data sets are named bonds,
usnetelec, ukcars and visitors respectively. The ets() function found in
the forecast package can be used to specify the model or to automatically
select a model.

Exercise 2.4. Using the results of Exercise 2.3, use R to reproduce the results
in Fig. 2.1 for point forecasts and prediction intervals for each of the four
time series. The forecast() function in the forecast package can be used
to produce the point forecasts and prediction intervals for each model found
in Exercise 2.3.
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