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Discrete Morse Theory

11.1 Discrete Morse Theory for Posets

When the set of cells of a CW complex is given by means of a combinatorial
enumeration, and the cell attachment maps are not too complicated, for in-
stance if the CW complex in question is regular, it is natural to attempt to use
the standard notion of cellular collapse to simplify the considered topological
space, while preserving its homotopy type.

Since the presentation of the cell complex is combinatorial, once this course
of action is taken, it becomes imperative to have a language as well as an ap-
propriate combinatorial machinery for dealing with allowed sequences of col-
lapses. Accordingly, we shall first investigate what happens on the purely
combinatorial level of posets, before proceeding to drawing topological con-
clusions and looking at applications.

11.1.1 Acyclic Matchings in Hasse Diagrams of Posets

Recall from Definition 6.13 that for a generalized simplicial complex ∆, a sim-
plicial collapse is simply a removal of interiors of two simplices σ and τ such
that

• dim σ = dim τ + 1;
• the only simplex containing σ is σ itself;
• the only simplices containing τ are σ and τ .

Sometimes such a collapse is called an elementary collapse. Note that a sim-
plicial collapse is possible if and only if there exists a simplex τ whose link
in ∆ consists of a single vertex; the simplex σ is then given by the span of
τ and v. For a general CW complex one has to take care of some additional
technicalities; see Definition 11.12.

In any case, we see that the combinatorial encoding of a set of collapses is
best provided by a matching consisting of a collection of pairs of cells (τ, σ)
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such that σ contains τ , and dimσ = dim τ +1. Clearly, not every matching of
this type can be turned into a sequence of collapses. For instance, no allowed
sequence of collapses for the simplicial complex in Figure 11.1 can be found
in the matching depicted on the right of that figure.

b caa b

c

Fig. 11.1. A hollow triangle and a matching in its face poset.

It is easy to see what goes wrong in this example: the prospective collapses
are all “hooked up” with each other in a cyclic pattern, which we are unable
to break by doing only single collapses. This simple observation leads to the
following formalization.

Definition 11.1.
(1) A partial matching1 in a poset P is a partial matching in the underlying
graph of the Hasse diagram of P , i.e., it is a subset M ⊆ P × P such that

• (a, b) ∈ M implies b � a;
• each a ∈ P belongs to at most one element in M .

When (a, b) ∈ M , we write a = d(b) and b = u(a).
(2) A partial matching on P is called acyclic if there does not exist a cycle

b1 � d(b1) ≺ b2 � d(b2) ≺ · · · ≺ bn � d(bn) ≺ b1, (11.1)

with n ≥ 2, and all bi ∈ P being distinct.

A popular way to reformulate condition (2) of Definition 11.1 is the fol-
lowing. Given a poset P , we can orient all edges in the Hasse diagram of P so
that they point from the larger element to the smaller one. After that, given
a partial matching M , change the orientation of the edges in M to the oppo-
site one. The condition in question now says that the oriented graph obtained
in this fashion has no cycles.

We see that Definition 11.1 allows a more general situation than just the
collapses that we described above. This makes our situation quite different
from the simple homotopy theory considered in Section 6.5. For example,
a partial matching consisting of a single pair of simplices b � a is always
1 Also called discrete vector field.
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acyclic. The reader is invited to intuitively think about such pairs as internal
collapses. The idea is to remove all the matched elements in some appropriate
order, so that the homotopy type of the underlying space is kept intact. We
call the unmatched elements, i.e., the elements that will remain, critical, and
denote the set of critical elements by C(P,M).

The next theorem is the crucial combinatorial fact pertaining to matchings
in Hasse diagrams of posets. It characterizes acyclic matchings by means of
linear extensions.

5 63
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Fig. 11.2. Acyclic matching and the corresponding linear extension.

Theorem 11.2. (Acyclic matchings via linear extensions)
A partial matching on P is acyclic if and only if there exists a linear extension
L of P such that the elements a and u(a) follow consecutively in L.

Proof. Assume first that we have a linear extension L satisfying this property,
and that at the same time, we have a cycle as in (11.1). Set ai = d(bi), for
i = 1, . . . , n. Then

bi+1 � ai ⇒ ai <L bi+1 ⇒ ai <L ai+1

(since ai+1, bi+1 follow consecutively in L). Thus an >L an−1 >L · · · >L

a1 >L a0 = an, yielding a contradiction.
Assume now that we are given an acyclic matching, and let us define L

inductively. Let Q denote the set of elements that are already ordered in L.
We start with Q = ∅. Let W denote the set of minimal elements in P \Q. At
each step we have one of the following cases.

Case 1. One of the elements c in W is critical.

In this case, we simply add c to the order L as the largest element, and proceed
with Q ∪ {c}.
Case 2. All elements in W are matched.

Consider the subgraph of the underlying graph of the Hasse diagram of P \Q
induced by W ∪ u(W ). Orient its edges as described above, i.e., they should
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point from the larger element to the smaller one in all cases, except when
these two elements are matched, in which case the edge should point from the
smaller element to the larger one. Call this oriented graph G.

If there exists an element a ∈ W such that the only element in W ∪ u(W )
that is smaller than u(a) is a itself, then we can add elements a and u(a) on
top of L and proceed with Q∪{a, u(a)}. Otherwise, we see that the outdegree
of u(a) in G is positive, for each a ∈ W . On the other hand, the outdegrees in
G of all a ∈ W are equal to 1. Since therefore outdegrees of all vertices in the
oriented graph G are positive, we conclude that G must have a cycle, which
clearly contradicts the assumption that the considered matching is acyclic.

An example of a linear extension derived from an acyclic matching by this
procedure is shown in Figure 11.2. 	


11.1.2 Poset Maps with Small Fibers

Next, we would like to characterize acyclic matchings by means of a special
class of poset maps.

Definition 11.3. Given two posets P and Q, a poset map ϕ : P → Q is said
to have small fibers if for any q ∈ Q, the fiber ϕ−1(q) is either empty or
consists of a single element or consists of two comparable elements.
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ϕ(f) ϕ(e)
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ϕ(d1) = ϕ(d2)

Fig. 11.3. A poset map with small fibers.

An example is shown in Figure 11.3. We remark that since ϕ is a poset
map, if for some q ∈ Q the fiber ϕ−1(q) consists of two comparable elements,
then one of these two elements must actually cover the other one. Therefore,
to any given poset map with small fibers ϕ : P → Q we can associate a partial
matching M(ϕ) consisting of all fibers of cardinality 2.

Theorem 11.4. (Acyclic matchings via poset maps with small fibers)
For any poset map with small fibers ϕ : P → Q, the partial matching M(ϕ) is
acyclic. Conversely, any acyclic matching on P can be represented as M(ϕ)
for some poset map with small fibers ϕ.
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Proof. The fact that ϕ : P → Q is a poset map implies that the induced
matching M(ϕ) is acyclic: for if it were not, there would exist a cycle as
in (11.1), and ϕ would be mapping this cycle to a set of distinct elements
q1 > q2 > · · · > qt > q1 of Q, for some t, yielding a contradiction.

On the other hand, by Theorem 11.2, for any acyclic matching on P there
exists a linear extension L of P such that the elements a and u(a) follow
consecutively in L. Gluing a with u(a) in this order yields a poset map with
small fibers from P to a chain. 	


In the proof of Theorem 11.4 we have actually constructed a poset map
with small fibers into a chain. These maps are especially important, and we
give them a separate name.

Definition 11.5. A poset map with small fibers ϕ : P → Q is called a col-
lapsing order if ϕ is surjective as a set map, and Q is a chain.

Given an acyclic matching M , we say that a collapsing order ϕ is a collaps-
ing order for M if it satisfies M(ϕ) = M . The etymology of this terminology
is fairly clear: the chain Q gives us the order in which it is allowed to perform
the prescribed collapses.

11.1.3 Universal Object Associated to an Acyclic Matching

It turns out that for any poset P and any acyclic matching on P , there
exists a universal object: a poset whose linear extensions enumerate all allowed
collapsing orders.

Definition 11.6. Let P be a poset, and let M be an acyclic matching on P .
We define U(P,M) to be the poset whose set of elements is M∪C(P,M), and
whose partial order is the transitive closure of the elementary relations given
by S1 ≤U S2, for S1, S2 ∈ U(P,M) if and only if x ≤ y, for some x ∈ S1,
y ∈ S2.

Note that in the formulation of Definition 11.6 we think of elements of M
as subsets of P of cardinality 2, while we think of elements of C(P,M) as
subsets of P of cardinality 1. One can loosely say that Definition 11.6 states
that U(P,M) is obtained from P by gluing each matched pair together to
form a single element, with the new partial order induced by the partial order
of P in a natural way. See Figure 11.4 for an example.

Of course, the first natural question is whether this new order is actually
well-defined. The next proposition answers that question and also explains in
what sense U(P,M) is a universal object.

Theorem 11.7. (Universality of U(P,M))
For any poset P and for any acyclic matching M on P , we have:

(1) the partial order on U(P,M) is well-defined;
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Fig. 11.4. A universal poset associated with an acyclic matching.

(2) the induced quotient map q : P → U(P,M) is a poset map with small
fibers;

(3) the linear extensions of U(P,M) are in 1-to-1 correspondence with col-
lapsing orders for M ; this correspondence is given by the composition of
the quotient map q with a linear extension map.

Proof. To prove (1) we need to check the three axioms of partial orders.
The reflexivity is obvious, and the transitivity is automatic, since we have
taken the transitive closure. The only property that needs to be proved is
antisymmetry. So assume that it does not hold, and take X,Y ∈ U(P,M)
such that X ≤U Y , Y ≤U X, and X 
= Y . Choose a sequence

X <U S1 <U · · · <U Sp <U Y <U T1 <U · · · <U Tq <U X, (11.2)

with the minimal possible p and q. Since p and q are chosen to be minimal,
all the sets S1, . . . , Sp and T1, . . . , Tq must have cardinality 2.

Let us first deal with the case p = q = 0 separately. If |X| = |Y | = 1, say
X = {x}, Y = {y}, then we have x ≤ y and y ≤ x, hence x = y, since P itself
is a poset. If |X| = 1 and |Y | = 2, say X = {x}, Y = (a, b), then b > x and
x > a, since x 
= b, x 
= a. This gives b > x > a, yielding a contradiction to
the assumption that b covers a. By symmetry of (11.2) this argument covers
the case |X| = 2, |Y | = 1 as well, so we can assume that |X| = |Y | = 2. In
this case X ≤U Y ≤U X is a cycle, contradicting the assumption that our
matching is acyclic.

From now on, we have p + q ≥ 1. Assume first that |X| = |Y | = 1, say
X = {x}, Y = {y}. If p = 0 and q = 1, let T1 = (a, b), with b � a. On the
one hand, we have x ≤ y; on the other, b ≥ y, x ≥ a. Combining, we get
b ≥ y ≥ x ≥ a, implying x = y, since b covers a. Again by symmetry this
takes care of the case p = 1 and q = 0 as well.

Without loss of generality we may now assume that either p + q ≥ 2, or
|Y | = 2 and p + q ≥ 1. In the first case,
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S1 <U · · · <U Sp <U T1 <U · · · <U Tq

yields a cycle, contradicting the assumption that our matching was acyclic; in
the second case such a cycle is given by

S1 <U · · · <U Sp <U Y <U T1 <U · · · <U Tq.

Part (2) is straightforward. If x < y in P and x ∈ X, y ∈ Y , for X,Y ∈
U(P,M), then X ≤ Y in U(P,M) by the definition of the partial order on
U(P,M), though we may actually get equality. So q is a poset map, and
the fibers are small, since we have just proved that X ≤U Y together with
Y ≤U X implies X = Y .

Let us now prove (3). Given a linear extension l : U(P,M) → Q, the
composition l ◦ q : P → Q is of course a poset map with small fibers, and it is
surjective since both l and q are surjective.

Conversely, assume that ϕ : P → Q is a collapsing order for M . Since ϕ is
surjective, ϕ−1(x) is nonempty for every x ∈ Q; in fact, we have a bijection
between sets ϕ−1(x), for x ∈ Q, and elements of U(P,M). To factor ϕ through
U(P,M), we set l(q(ϕ−1(x))) := x, for each x ∈ Q. We have l ◦ q = ϕ as set
maps. To see that the map l is order-preserving, notice that an elementary
relation S ≥ T , for S, T ∈ U(P,M), implies that there exist x ∈ S, y ∈ T such
that x ≥ y, which in turn implies ϕ(x) ≥ ϕ(y), since ϕ is order-preserving,
and notice furthermore that all relations S ≥ T are just the transitive closures
of the elementary ones.

Thus, we get the desired 1-to-1 correspondence between linear extensions
of U(P,M), and collapsing orders for M . 	


11.1.4 Poset Fibrations and the Patchwork Theorem

Beyond the encoding of all allowed collapsing orders as the set of linear ex-
tensions of the universal object U(P,M), viewing the posets with small fibers
as the central notion of the combinatorial part of discrete Morse theory is
also invaluable for the structural explanation of a standard way to construct
acyclic matchings as unions of acyclic matchings on fibers of a poset map.

The following construction generalizes Definition 10.7 of the stack of
acyclic categories. Since we will need this only for posets, we satisfy our-
selves here with formulating the special case. The generalization to acyclic
categories is straightforward.

Definition 11.8. A poset fibration is a pair (B,F), where

• B is a poset, thought of as the base of the fibration;
• F = {Fx}x∈B is a collection of posets, indexed by the elements of B,

thought of as individual fibers.
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Associated to such a fibration we have a poset E(B,F), defined as the
union ∪x∈BFx, with the order relation given by α ≥ β if either α, β ∈ Fx, and
α ≥ β in Fx, for some x ∈ B, or α ∈ Fx, β ∈ Fy, and x > y in B. This is the
total space.

Furthermore, we have a poset map p : E(B,F) → B defined by p(α) := x
if α ∈ Fx. In particular, we have p−1(x) = Fx, for all x ∈ B. This is the
structural projection map of the total space to the base space, whose preimages
are the fibers.

The notion of poset fibrations satisfies the following universality property.

Theorem 11.9. (Decomposition theorem)
For an arbitrary poset fibration (B,F), where F = {Fx}x∈B, and an arbitrary
poset P , there is a 1-to-1 correspondence between

• poset maps ϕ : P → E(B,F);
• pairs (ψ, {gx}x∈B), where ψ and each gx’s are poset maps ψ : P → B and

gx : ψ−1(x) → Fx, for each x ∈ B.

Under this bijection, the fibers of ϕ are the same as the fibers of the maps gx.

Proof. One direction of this bijection is trivial: given a poset map ϕ : P →
E(B,F), we obtain the poset map ψ : P → B by composing ϕ with the
structural projection map p : E(B,F) → B, and we obtain the poset maps
gx by taking the appropriate restrictions of the map ϕ.

In the opposite direction, assume that we have a poset map ψ : P → B
and a collection of poset maps gx : ψ−1(x) → Fx, for all x ∈ B. Define
ϕ : P → E(B,F) by taking the value of the appropriate fiber map:

ψ(α) := gϕ(α)(α),

for all α ∈ P . Let us see that this defines a poset map. For α > β, α, β ∈P , we
have ϕ(α) ≥ ϕ(β), since ϕ is a poset map. If ϕ(α) = ϕ(β), then gϕ(α)(α) ≥
gϕ(β)(β), since gϕ(α) (= gϕ(β)) is a poset map. Otherwise, we have ϕ(α) >
ϕ(β), and hence gϕ(α)(α) > gϕ(β)(β), by the definition of the partial order on
the total space E(B,F). 	


The decomposition theorem 11.9, is often used as a rationale to construct
an acyclic matching on a poset P in several steps: first map P to some other
poset Q, then construct acyclic matchings on the fibers of this map. By the
observation above, these acyclic matchings will “patch together” to form an
acyclic matching for the whole poset. See Figure 11.5 for an example. For
future reference, we summarize this observation in the next theorem.

Theorem 11.10. (Patchwork theorem)
Assume that ϕ : P → Q is an order-preserving map, and assume that we have
acyclic matchings on subposets ϕ−1(q), for all q ∈ Q. Then the union of these
matchings is itself an acyclic matching on P .
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Proof. The role of the base space here is played by the poset Q, and the
fiber maps gq are given by the acyclic matchings on the subposets ϕ−1(q).
The decomposition theorem tells us that there exists a poset map from P to
the total space of the corresponding poset fibration, and that the fibers of this
map are the same as the fibers of the fiber maps gq. Since the latter are given
by acyclic matchings, we conclude that we have a poset map from P with
small fibers that corresponds precisely to the patching of acyclic matchings
on the subposets ϕ−1(q), for q ∈ Q. 	


ϕ
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P Q
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Fig. 11.5. Acyclic matching composed of acyclic matchings on fibers.

We conclude our discussion of poset maps with small fibers by mentioning
that this point of view yields a rich class of generalizations. Indeed, any choice
of the set of allowed fibers will yield a combinatorial theory that could be
interesting to study. One could, for instance, allow any Boolean algebra as
a fiber. This would correspond to the theory of all collapses, not just the
elementary ones, which we get when considering the small fibers. One can take
any other infinite family of posets. One prominent family is that of partition
lattices {Πn}∞n=1. What happens if we consider all poset maps with partition
lattices as fibers?

11.2 Discrete Morse Theory for CW Complexes

11.2.1 Attaching Cells to Homotopy Equivalent Spaces

We shall use the following standard fact of algebraic topology, which we state
here with only a sketch of a proof.

Theorem 11.11. Assume that X1 and X1 are two homotopy equivalent topo-
logical spaces, and let h : X1 → X2 be some homotopy equivalence. Let σ be
a cell with attachment maps f1 : ∂σ → X1 and f2 : ∂σ → X2 such that h ◦ f1

is homotopic to f2; see Figure 11.6.
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Under these conditions, the space X1 ∪f1 σ is homotopy equivalent to the
space X2 ∪f2 σ.

∂σ

f1 f2

h
X2X1

Fig. 11.6. Attaching a cell to homotopy equivalent spaces.

The homotopy equivalence in Theorem 11.11 can be described by giving
an explicit map f : X1∪f1σ → X2∪f2σ. This map is induced by the map h, and
by the homotopy H : ∂σ×I → X2 satisfying H(∂σ, 0) = f2, H(∂σ, 1) = h◦f1.
To describe f , we identify σ with the unit disk Dn, and ∂σ with the bounding
unit sphere S

n−1. Then we set (cf. Corollary 7.12)

f(x) := h(x), for x ∈ X1,

f(tv) :=

{
2tv, for 0 ≤ t ≤ 1/2, v ∈ S

n−1,

H(v, 2t − 1), for 1/2 ≤ t ≤ 1, v ∈ S
n−1.

The following two special cases of Theorem 11.11 are often distinguished
as being of particular importance:

Case 1. X1 = X2, and h = idX1 .
This is a special case of Proposition 7.11, which is used, for example, in jus-
tifying the fact that the homotopy type of a CW complex is uniquely deter-
mined even if the cell attachment maps are given only up to homotopy; see
Figure 11.7.

Fig. 11.7. Changing the attachment map by a homotopy.
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Case 2. h ◦ f1 = f2.
In fact, if h ◦ f1 = f2, then it is much simpler to describe the homotopy
equivalence map f : X1 ∪f1 σ → X2 ∪f2 σ. We may simply set

f(x) :=

{
h(x), for x ∈ X1;
x, for x ∈ Int σ.

(11.3)

11.2.2 The Main Theorem of Discrete Morse Theory for CW
Complexes

Intuitively, a cellular collapse is a strong deformation retract that pushes the
interior of a maximal cell in, using one of its free boundary cells as the starting
point, much like compressing a body made of clay. The cellular collapses can
be defined for arbitrary CW complexes.

Definition 11.12. Let X be a topological space and let Y be a subspace of X.
We say that Y is obtained from X by an elementary collapse if X can be
represented as a result of attaching a ball Bn to Y along one of the hemi-
spheres. In other words, if there exists a map ϕ : Bn−1

− → Y such that
X = Y ∪ϕ Bn, where Bn−1

− denotes one of the closed hemispheres on the
boundary of Bn.

Such a collapse is called cellular if additionally X is a CW complex, and
X is a CW complex obtained from Y by attaching two cells: Bn−1

+ (this is the
opposite hemisphere of Bn−1

− ) and Bn, with ϕ inducing the necessary attaching
maps as above.

The simplicial collapse defined in Section 6.4 is a special case of Defini-
tion 11.12. We are now ready to formulate the central result of this section. For
technical convenience, we restrict ourselves to considering cellular collapses in
the setting of polyhedral complexes only.

Theorem 11.13.
(Main theorem of discrete Morse theory for CW complexes)
Let ∆ be a polyhedral complex, and let M be an acyclic matching on F(∆)\{0̂}.
Let ci denote the number of critical i-dimensional cells of ∆.

(a) If the critical cells form a subcomplex ∆c of ∆, then there exists a sequence
of cellular collapses leading from ∆ to ∆c.

(b) In general, the space ∆ is homotopy equivalent to ∆c, where ∆c is a CW
complex with ci cells in dimension i.

(c) There is a natural indexing of cells of ∆c with the critical cells of ∆ such
that for any two cells σ and τ of ∆c satisfying dim σ = dim τ + 1, the
incidence number [τ : σ] is given by

[τ : σ] =
∑

c

w(c). (11.4)
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Here the sum is taken over all alternating paths c connecting σ with τ ,
i.e., over all sequences c = (σ, a1, u(a1), . . . , at, u(at), τ) such that σ � a1,
u(at) � τ , and u(ai) � ai+1, for i = 1, . . . , at−1. For such an alternating
path, the quantity w(c) is defined by

w(c) := (−1)t[a1 : σ][τ : u(at)]
t∏

i=1

[ai : u(ai)]
t−1∏
i=1

[ai+1 : u(ai)], (11.5)

where the incidence numbers in the right-hand side are taken in the com-
plex ∆.

Remark 11.14. The converse of Theorem 11.13(a) is clearly true in the fol-
lowing sense: if ∆c is a subcomplex of ∆ and if there exists a sequence of
collapses from ∆ to ∆c, then the matching on the cells of ∆ \ ∆c induced
by this sequence of collapses is acyclic. In particular, a polyhedral complex
∆ is collapsible if and only if the poset F(∆) \ {0̂} allows a complete acyclic
matching.

Proof of Theorem 11.13. Take the linear extension L satisfying the condi-
tions of Theorem 11.2.
Proof of (a). Clearly, the linear extension can be chosen so that all the
critical cells come first. Hence, if read in decreasing order, L gives a sequence
of cellular collapses leading from ∆ to ∆c.
Proof of (b). We perform induction on the cardinality of F(∆). If |F(∆)|= 1,
the statement is clear. For the induction step, let σ be the last cell in L.
Case 1. The cell σ is critical.
Let ∆̃ = ∆ \ Int σ, and let ϕ : ∂σ → ∆̃ be the attaching map of σ in ∆.
The matching M restricted to ∆̃ is again acyclic, and the critical cells are the
same, with σ missing. Hence by induction, there exist a CW complex ∆̃c and
a homotopy equivalence h : ∆̃ → ∆̃c.

Consider the composition attaching map h◦ϕ : ∂σ → ∆̃c; see Figure 11.8.
By Theorem 11.11, we conclude that ∆̃ ∪ϕ σ � ∆̃c ∪h◦ϕ σ. Note that ∆ =
∆̃∪ϕ σ. The theorem follows by induction if we set ∆c := ∆̃c ∪h◦ϕ σ. The new
homotopy equivalence map is given by equation (11.3).

∂σ

ϕ

h
∆̃c∆̃

h ◦ ϕ

Fig. 11.8. Attaching a critical cell.
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Case 2. The cell σ is not critical.
In this case we must have (d(σ), σ) ∈ M . Note that d(σ) is maximal in F(∆)\
{σ}, and let ∆̃ = ∆ \ (Int σ ∪ Int d(σ)).

Clearly, removing the pair (d(σ), σ) is a cellular collapse; in particular,
there exists a homotopy equivalence f : ∆ → ∆̃. On the other hand, by the
induction assumption, there exist a CW complex ∆̃c with ci i-dimensional
cells and a homotopy equivalence f̃ : ∆̃ → ∆̃c. Hence, setting ∆c := ∆̃c, we
have obtained the desired homotopy equivalence f̃ ◦ f : ∆ → ∆c.
Proof of (c). We would like to give an elementary geometric argument. Let
σ be some critical cell of ∆ of dimension n. Initially, σ was attached along its
boundary sphere, but after all the internal collapses, the attachment became
more intricate. We would like to envision the attaching map as “a map of the
world” drawn on the boundary sphere ∂σ. When the attaching map changes,
we “redraw” this map, usually only locally.

Recall that the collapses can be performed so that the dimension of the
collapsing pairs does not increase (the dimension is measured by the one of
the two cells that has higher dimension). This means that first all collapses of
dimension n can be performed, then all collapses of dimension n − 1.

We think of this collapsing as a dynamic procedure, and we start by tracing
the changes of the attachment map of σ when the collapses of dimension n
are executed. Let (a, u(a)) be such a collapse. If a was not in the image of
the attaching map of σ at this point, then this collapse does not alter the
attaching map. If a is in the image of the attaching map of σ at this point,
then this collapse alters the attaching map (the map of the world on ∂σ) as
follows: a gets replaced with ∂u(a) \ Int a. In a polyhedral complex this says
that a gets replaced with the Schlegel diagram of u(a) with respect to a; see
Figure 11.9 for an example. This process will continue until all the collapses
of dimension n are done.

4

1

2

6

3

5

1

3

4

2

Fig. 11.9. Internal collapses as boundary subdivisions: the result of collapsing
(234, 2345) and (345, 3456).

Once it is finished, the only cells of dimension n−1 that appear in the image
of the attaching map of σ are the critical ones and those that are matched to
the cells of dimension n − 2. The execution of collapses of dimension n − 1,
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which follows after that, has a simple effect on the latter ones: they are being
internally collapsed, leaving no contribution to the incidence numbers.

This means that the only thing that we need to understand is how often
and with which orientations the critical cells of dimension n − 1 will appear
on the boundary sphere ∂σ. It follows from our iterative procedure above
that appearances of a given critical cell τ are in one-to-one correspondence
with the alternating paths. Indeed, every replacement of a with ∂u(a) \ Int a
corresponds to prolonging the alternating path with the edge up (a, u(a)), and
then extending it with all possible edges down (b, u(a)).

The correctness of (11.4) follows from the following observation, which
allows us to trace the evolution of incidence numbers of the cells on ∂σ. When
the cell a with the incidence number ε gets replaced by the cells ∂u(a) \ Int a,
each such cell b gets the incidence number −ε[a : u(a)][b : u(a)]. 	


It is easy to see that the proof of Theorem 11.13(b) actually works in
greater generality: one can take arbitrary CW complexes, at the same time
replacing cellular collapses by arbitrary homotopy equivalences. More pre-
cisely, we have the following result.

Theorem 11.15. Let X be a CW complex, and let

F0(X) ⊂ F1(X) ⊂ · · · ⊂ Ft(X) = X

be a CW filtration of X such that the subcomplex F0(X) is just a single vertex,
and such that for all i = 1, . . . , t, either Fi(X) \ Fi−1(X) consists of a single
cell, or the inclusion map fi : Fi−1(X) ↪→ Fi(X) is a homotopy equivalence.

Then X is homotopy equivalent to a CW complex whose cells are in
dimension-preserving bijection with the cells of X, which appear as Fi(X) \
Fi−1(X).

Proof. If the inclusion map fi : Fi−1(X) ↪→ Fi(X) is a homotopy equivalence,
then there exists gi : Fi(X) → Fi−1(X), which is a homotopy equivalence as
well. After this observation, the proof of Theorem 11.13(b) works one-to-one,
with critical cells replaced with Fi(X) \Fi−1(X) whenever the latter consists
of a single cell, and with collapses replaced by such maps gi. 	


11.2.3 Examples

Example 0: Internal collapses on the boundary of a simplex

Our first example is rather simple. Let ∆ be the boundary of an n-dimensional
simplex. We see that F(∆) \ {0̂} = B̄n+1. Consider the following matching M
on B̄n+1: (S, S∪{1}) ∈ M for all S ⊂ {2, . . . , n+1}. Clearly, this is an acyclic
matching, and the only critical simplices are σ = {1} and σ = {2, . . . , n + 1}.
Therefore c0 = cn−1 = 1, whereas c1 = · · · = cn−2 = 0. It follows that
∆ � S

n−1, as is of course expected.
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Example 1: The independence complexes of strings and cycles

Our first real application is concerned with the independence complexes of
graphs, which were defined in Subsection 9.1.1. Recall that for an arbitrary
integer n ≥ 1, we let Ln denote the graph consisting of n vertices and n − 1
edges that connect these vertices so as to form a string.

Proposition 11.16. For any n ≥ 1, we have

Ind(Ln) �

⎧⎪⎨
⎪⎩

S
k−1, if n = 3k;

pt, if n = 3k + 1;
S

k, if n = 3k + 2.

Proof. Assume that the vertices of Ln are labeled 1 through n in the same
sequence as they occur along the string. Let k denote the maximal integer
such that 3k ≤ n. Furthermore, let C be a chain with k + 1 elements labeled
as follows:

c3 > c6 > · · · > c3k > cr.

We define a map ϕ : F(Ind (Ln)) → C by the following rule. The simplices
that contain the vertex labeled 3 get mapped to c3; the simplices that do
not contain the vertex labeled 3, but contain the vertex labeled 6 get mapped
to c6; the simplices that do not contain the vertices labeled 3 and 6, but contain
the vertex labeled 9 get mapped to c9; and so on. Finally, the simplices that
contain none of the vertices labeled 3, 6, . . . , 3k all get mapped to cr (the
index r stands here for the rest).

Clearly, the map ϕ is order-preserving, since if one takes a larger simplex,
it will have more vertices, and the only way its image may change is to go up
when a new element from the set {3, 6, . . . , 3k} is added and is smaller than
the previously smallest one.

Let us now define acyclic matchings on the preimages of C under the
map ϕ. We split our argument into three cases.

Case 1. First we consider the preimage ϕ−1(c3). For any simplex σ ∈ ϕ−1(c3)
we have 3 ∈ σ and hence 2 /∈ σ. It follows that pairing σ ↔ σ ⊕ {1} provides
a matching that is well-defined and is obviously acyclic.

Case 2. Next, we consider the preimages ϕ−1(c6) through ϕ−1(c3k). Let t
be an integer such that 2 ≤ t ≤ k. The preimage ϕ−1(c3t) consists of all
simplices σ such that 3, 6, . . . , 3t− 3 /∈ σ, while 3t ∈ σ. In particular, we have
3t−1 /∈ σ. This means that the pairing σ ↔ σ⊕{3t−2} provides a well-defined
matching, which is acyclic.

Case 3. Finally, we consider the preimage ϕ−1(cr). We consider three sub-
cases.

If n = 3k + 1, then this preimage is a face poset with a cone with apex in n;
in particular, the pairing σ ↔ σ ⊕ {n} provides an acyclic matching with
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one critical cell σ = {n}, which has dimension 0. By Theorem 11.10 we can
conclude that Ind (L3k+1) is collapsible.

If n = 3k, we see that X = ϕ−1(cr) is a face poset of the boundary of a k-
dimensional cross-polytope, which is the same as the k-fold join of S

0 with
itself. By Theorem 11.10 the matching constructed up to now is acyclic, and
it gives us a collapsing sequence leading to X. In particular, this shows that
Ind (L3k) is homotopy equivalent to S

k−1.

If n = 3k + 2, we see that X = ϕ−1(cr) is a face poset of the boundary
of a (k + 1)-dimensional cross-polytope, since this time around we have the
k-fold join of S

0 with itself. The rest is just the same, and we conclude that
Ind (L3k+2) is homotopy equivalent to S

k. 	

Note that the proof of Proposition 11.16 actually yields a stronger state-

ment: instead of contractibility, we actually get a collapsibility, and instead
of a mere homotopy equivalence to a sphere of some dimension, we get a se-
quence of collapses, leading to an explicit sphere, sitting inside Ind (Ln) as
a subcomplex.

For an arbitrary integer n ≥ 2, we let Cn denote the cycle with n ver-
tices. These vertices are labeled 1, . . . , n, with arithmetic operations on labels
performed modulo n. The homotopy type of the independence complexes of
cycles allows an easy description as well.

Proposition 11.17. For any n ≥ 2, we have

Ind(Cn) �
{

S
k−1 ∨ S

k−1, if n = 3k;
S

k−1, if n = 3k ± 1.

Proof. Let k denote the maximal integer such that 3k ≤ n + 1, and let the
chain C be defined in the same way as in Proposition 11.16. Furthermore,
let ϕ : F(Ind (Cn)) → C be the order-preserving map also described by the
same rule as the one in Proposition 11.16. Again, we are looking for acyclic
matchings on the preimages.

To start with, the matchings on the preimages ϕ−1(c6) through ϕ−1(c3k)
defined identically to Proposition 11.16 are again well-defined and acyclic,
without any critical cells. The cases of the remaining two preimages are slightly
different.

The preimage ϕ−1(c3) is the same as the face poset of Ind (Ln−3) with
a minimal element added. Taking the acyclic matching for Ind (Ln−3) and
augmenting it by matching the critical 0-cell with the minimal element yields
a new acyclic matching. If n = 3k+1, this matching has no critical cells at all.
Otherwise, i.e., if n = 3k, or n = 3k − 1, it has one critical cell in dimension
k − 1.

Finally, we describe an acyclic matching on the preimage ϕ−1(cr) by con-
sidering three cases.

If n = 3k − 1, then we know that 3, 6, . . . , 3k − 3, 3k /∈ σ, where we recall
that with our conventions 3k = 1. Therefore, we are dealing with a face poset
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of a cone with apex in 2, and hence pairing σ ↔ σ ⊕ {2} gives a well-defined
acyclic matching with one critical cell {2} in dimension 0.

If n = 3k, then we again have a face poset of the join of k copies of S
0.

Denote the sets of vertices of these k copies of S
0 by {x1, y1}, . . . , {xk, yk}.

Consider the pairing σ ↔ σ ⊕ {xi}, where i is the minimal index such that
yi /∈ σ. This is a well-defined acyclic matching with critical cells {x1} of
dimension 0, and {y1, . . . , yk} of dimension k − 1.

If n = 3k+1, then we have a face poset of k−1 copies of S
0 and one copy of

Ind (L3). Denote the sets of vertices of these k−1 copies of S
0 by {x1, y1}, . . . ,

{xk−1, yk−1}, and let {xk, yk, zk} be the vertices of Ind (L3), with yk being the
middle vertex. Consider the pairing with the same rule: σ ↔ σ⊕{xi}, where i
is the minimal index such that yi /∈ σ. This is a well-defined acyclic matching
with critical cells {x1} of dimension 0, and {y1, . . . , yk} of dimension k − 1.
	


For future reference, let us remark that the proofs of Proposition 11.16 and
Proposition 11.17 imply that the inclusion graph homomorphism i : L3k ↪→
C3k+1 induces an isomorphism on the homology groups i∗ : H∗(Ind (L3k)) ↪→
H∗(Ind (C3k+1)).

Example 2: The simplicial complex ∆(Π̄n) is homotopy equivalent
to a wedge of (n − 1)! spheres of dimension n − 3

Recall the partition lattice Πn introduced in Chapter 9.

Theorem 11.18. For n ≥ 3, the simplicial complex ∆(Π̄n) is homotopy
equivalent to a wedge of spheres of dimension n − 3.

Proof. The statement is obviously true for n = 3, so we assume that n ≥ 4
and proceed by induction. Set α := (1)(2, 3, . . . , n), and let Q to be the interval
consisting of all partitions having a singleton block (1) with reversed order,
i.e., Q := [0̂, α]opΠn

. We define an order-preserving map ϕ : F(∆(Π̄n)) → Q by
the following rule:

a chain c is taken to the minimal element of Q that can be added to c.

One example is shown in Figure 11.10. To analyze this rule, take c ∈
F(∆(Π̄n)), assume c = (π1 < π2 < · · · < πt), and consider various cases.
Case 1. If α ≥ πt, then ϕ(c) = α.
Case 2. If α 
≥ πk and either α ≥ πk−1 or k = 1, then ϕ(c) = πk ∧ α.
In words: find the smallest partition πk in c, where 1 is a part of a nonsingleton
block B, and then partition B into (1) and B \ {1}. This also shows that the
minimal element in this rule is unique; hence the map ϕ is well-defined.

To see that ϕ is order-preserving, it is enough to notice that if the chain is
increased, then the minimal possible element of Q, i.e., the maximal possible
element of [0̂, α]Πn

that can be added to this chain will either remain the same
or increase in Q (resp. decrease in [0̂, α]Πn

).
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1|24|3
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1|23|4 1|24|3 1|2|34
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1|234

1|2|3|4

Fig. 11.10. The map ϕ for n = 4.

By Theorem 11.10 it is now sufficient to construct acyclic matchings on
the fibers ϕ−1(x). We do this again with case-by-case analysis.
Case 1. Let S = ϕ−1((1)(2) . . . (n)). Clearly, the poset S is in fact a disjoint
union S = S2 ∪ · · · ∪ Sn, where Si is the subposet consisting of all chains
containing the element (1i)(2) . . . (i − 1)(i + 1) . . . (n), for i = 2, . . . , n. Each
poset Si is actually a copy of F(∆(Π̄n−1)) ∪ {0̂}. By induction, there exists
an acyclic matching on F(∆(Π̄n−1)) that has one critical cell in dimension 0
and (n − 2)! critical cells in dimension n − 4.

In the poset F(∆(Π̄n−1)) ∪ {0̂} this acyclic matching can be extended to
have only the top-dimensional critical element, since the other one is matched
with 0̂. When considered in Si, these maximal chains consist of n−2 elements;
hence they correspond to critical simplices of dimension n − 3 in ∆(Π̄n).
Case 2. Let S = ϕ−1(π), for π 
= (1)(2) . . . (n). The matching rule in this
case is the following: add π to the chain if it is not there already; otherwise,
remove it. Obviously this gives an acyclic matching. The only element that
is not matched is the chain consisting only of π: this one would have to be
matched with an empty chain, which, by our assumptions, is not there. This
corresponds to one critical cell of dimension 0.

Summarizing our considerations, we get (n−1)×(n−2)! = (n−1)! critical
cells of dimension n−3 and one critical cell of dimension 0. We may therefore
conclude that ∆(Π̄n) is homotopy equivalent to a wedge of (n − 1)! spheres
of dimension n − 3.

The spheres are enumerated by these critical cells of dimension n − 3. If
desired, the recurrence above can be avoided and the chains corresponding to
these critical cells can be listed explicitly. These are indexed by permutations
of {2, . . . , n}, where for every such permutation (i1, . . . , in−1) the correspond-
ing chain c is given by

c = (1, i1)(2) . . . (n) < (1, i1, i2)(2) . . . (n) < · · · < (1, i1, . . . , in−2)(in−1).
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The dual cochains of these simplices can also be taken as a basis for the
cohomology group H̃n−3(∆(Π̄n); Z). 	


In the next two examples we illustrate how one can check the acyclicity of
a partial matching directly, bypassing the patchwork theorem.

Example 3: The generalized simplicial complex ∆(Π̄n)/Sn

is collapsible

The indexing of the simplices of ∆(Π̄n)/Sn.
The simplices of ∆(Π̄n) can be indexed with sequences of the set partitions of
[n], where the partitions refine each other. One can think of such a sequence
as a forest, where vertices are ordered into levels, each level correspond to
a set partition of [n], and each vertex on that level corresponds to a block of
this partition.

We can therefore index the simplices of ∆(Π̄n) with such “leveled forests,”
where the vertices carry subsets of [n] as labels, and the label of each vertex is
equal to the union of the labels of its children; see Figure 11.11 for an example.
If one desires, one can also add two artificial levels: one on top, consisting of
one vertex having the label [n], and one on the bottom, consisting of n leaves
having labels 1 through n; this way we obtain labeled trees. Clearly, the labels
of the bottom level determine all other labels.

3

2

3

2

11

11

2 1

221

3 4

131

1 11 111 2 2 1

Fig. 11.11. Examples of labeled forests indexing 2-simplices of the generalized
simplicial complex ∆(Π̄n)/Sn.

The symmetric group Sn acts by permuting the ground set [n]. We leave
it as an exercise to see that an Sn-orbit of a labeled tree as above consists
of all labeled trees with the same cardinalities of the labels on the vertices.
As a result of this observation, we can index the simplices of ∆(Π̄n)/Sn with
the labeled trees as above, with the difference that the labels are positive
integers, and labels on each level form a number partition of n (instead of the
set partition of [n]). For example, the vertices of ∆(Π̄n)/Sn are indexed with
number partitions of n, edges of ∆(Π̄n)/Sn are indexed with the ways two
such number partitions can refine each other, and so on.
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We also see that, both in the case of ∆(Π̄n) and in that of ∆(Π̄n)/Sn,
the boundary operator is obtained by deleting entire levels from trees and
reconnecting vertices transitively through the deleted level.

∂

1 2

122

2 3

11

=

2

2

+

1 1

2

1 2

3

1 1

2

1 2

3

2

2

1

1

−

Fig. 11.12. An example of the boundary operator in the generalized simplicial
complex ∆(Π̄n)/Sn.

When λ is a number partition of n, λ = (λ1, . . . , λt), we define s2(λ) =∑t
i=1

⌊
λi

2

⌋
and µ2(λ) = (2s2(λ), 1n−2·s2(λ)) = (2, . . . , 2︸ ︷︷ ︸

s2(λ)

, 1, . . . , 1︸ ︷︷ ︸
n−2·s2(λ)

). Clearly

µ2(λ) refines λ.

Theorem 11.19. The generalized simplicial complex ∆(Π̄n)/Sn is collapsi-
ble, for all n ≥ 3.

Proof. Set Xn := ∆(Π̄n)/Sn. The quotient map p : ∆(Π̄n) → Xn is cellular.
The vertices of Xn are indexed by the number partitions λ of n, λ 
= (n), (1n).
These partitions are partially ordered by refinement. We call the vertices that
have the form (2a, 1n−2a), for some a, special.

Let us now describe an acyclic matching on P = F(Xn). Let F ∈ P . If
all vertices of F are special, then we put F in the set of critical simplices.
If not, define λ(F ) to be the smallest not special vertex of F . If µ2(λ(F )) is
a vertex of F , then we match F with F \ {µ2(λ(F ))}; otherwise, we match F
with F ∪ {µ2(λ(F ))}.

To see that this is a valid matching, note that

λ(F ) = λ(F ∪ µ2(λ(F ))).

Next, we show that the obtained matching M is acyclic. Assume that
there exists a sequence σ0, . . . , σt ∈ P such that all σi are different, with the
exception σ0 = σt, and such that u(σi) � σi+1 for 0 ≤ i ≤ t − 1. Assume
that u(σ0) = (a1, . . . , aα, b1, . . . , bβ), where the ai’s are special and b1 is not.
Then σ0 = (a1, . . . , aα−1, b1, . . . , bβ). Since σ1 is matched upward, and u(σ0) 
=
u(σ1), we have σ1 = (a1, . . . , aα, b2, . . . , bβ). We see that the number of special
vertices in σ1 is larger by 1 than in σ0. Repeating the argument, we see that
σt has t special vertices more than σ0; therefore σ0 
= σt. This leads to the
conclusion that M is an acyclic matching.
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The critical simplices form a subcomplex of Xn, which we call XC
n . By

Theorem 11.13, there exists a sequence of elementary collapses leading from
Xn to XC

n . Observe that if A = (a1, . . . , at) and B = (b1, . . . , bt) are two
simplices of ∆(Π̄n) such that for i = 1, . . . , t, both ai and bi are of the type
(2αi , 1n−2αi) for some αi, then there exists g ∈ Sn such that gA = B, i.e.,
p(A) = p(B). This implies that XC

n is a simplex, so we can conclude that Xn

is collapsible.
Note that this matching can also be found in a functorial way as follows.

Let Q be a chain with �n/2� elements labeled with the numbers 1, . . . , �n/2�
in reverse order; i.e., 1 labels the maximal element. Define ϕ : P → Q by
mapping the cell F ∈ P to the maximal number k such that (2k, 1n−2k) is
either a vertex of F or can be added to F to form a new cell. This is an order-
preserving map, since taking a bigger cell will either keep this number k the
same or decrease it.

An acyclic matching on the fiber ϕ−1(k), for k ∈ Q, is simply obtained by
adding the vertex (2k, 1n−2k) to cells that do not have it, or removing it from
those that do. The only critical cell has dimension 0, and it can be found in
the fiber ϕ−1(k), for k = �n/2�: it is the vertex (2k, 1n−2k), which cannot be
removed, since the empty cell is not being matched. 	


Example 4: Bounded sets in a lattice

As we have seen in Chapter 9, there are a number of constructions associating
a simplicial complex to a poset (or more generally, to a category); here is yet
another one that works for lattices.

Definition 11.20. Let L be an arbitrary finite lattice. We define J (L) to be
the simplicial complex whose set of vertices is equal to the set of elements of
L̄, and whose simplices are all subsets S ⊆ L̄ that have a nontrivial lower
bound, i.e., such that

∧
S 
= 0̂.

Clearly, the simplicial complex J (L) contains ∆(L̄) as a subcomplex. It
turns out that much more is true.

Theorem 11.21. Let L be an arbitrary finite lattice. Then J (L) ↘ ∆(L̄).

Proof. As the centerpiece of the argument we define the following partial
acyclic matching on F(J (L)). Let S be an arbitrary simplex of J (L). Assume
that F(J (L))[S] is not a chain. Set t := |S|, and let {a1, a2, . . . , at} be a linear
extension of F(J (L))[S], i.e., if 1 ≤ i < j ≤ t, then ai 
≥ aj .

Let k(S) be the maximal index, 1 ≤ k(S) ≤ t, such that a1 < a2 < · · · <
ak(S), and ak(S) < ai, for all k(S) + 1 ≤ i ≤ t; see Figure 11.13. If S has
no minimal element, then we set k(S) := 0. Set a(S) := ak(S)+1 ∧ · · · ∧ at.
Since F(J (L))[S] is not a chain, we have k(S) ≤ t − 2, and hence a(S) is
well-defined.
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Let Σ be the set of all subsets S ⊆ L̄ such that F(J (L))[S] is not a chain
and such that a(S) 
∈ S. For S ∈ Σ define µ(S) := S ∪ {a(S)}; again see
Figure 11.13. Clearly, µ defines a partial matching, and, since for any S ∈ Σ
we have a(µ(S)) = a(S), we see that the set µ(Σ) ∪ Σ consists of all subsets
S ⊆ L̄ such that F(J (L))[S] is not a chain. Consequently, the set of critical
elements C(F(J (L)), µ) consists of all chains S ∈ F(∆(L̄)).

µak(S)−1

a1

ai, i > k(S)

ak(S)

ak(S)−1

a1

ai, i > k(S)

ak(S)

a(S) = ak(S)+1 ∧ · · · ∧ at

Fig. 11.13. The partial matching µ.

Let us see that the partial matching µ is acyclic. Assume that there exists
a sequence S1, . . . , St ∈ Σ, where t ≥ 2, such that µ(S1) � S2, µ(S2) � S3, . . . ,
µ(St) � S1. Let again {a1, a2, . . . , at} be a linear extension of F(J (L))[S1],
as above. By the definition of covering relations, and since S2 
= S1, we have
S2 = µ(S1) \ {ai}, for some 1 ≤ i ≤ t. If 1 ≤ i ≤ k(S1), then a(S2) = a(S1),
which, together with S1 = µ(S1) \ {a(S1)}, implies a(S2) ∈ S2, and hence
S2 ∈ µ(Σ), giving a contradiction.

Finally, the only option left is that k(S1) + 1 ≤ i ≤ t, in which case
a(S2) ≥ a(S1), since the join is taken over a set in which each element is
larger than a(S1). If the equality a(S2) = a(S1) holds, then S2 ∈ µ(Σ), again
giving a contradiction. Thus we have shown that a strict inequality must hold:
a(S2) > a(S1).

Analogously, we can prove that a(Si+1) > a(Si), for all 1 ≤ i ≤ t− 1, and
that a(S1) > a(St), which, when combined together, yields a contradiction
to the assumption that the matching is not acyclic. By Theorem 11.13 we
see that the acyclic matching µ provides a sequence of elementary collapses
leading from J (L) to ∆(L̄). 	


More applications will appear in the subsequent sections.
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11.3 Algebraic Morse Theory

In this section we give a version of discrete Morse theory that is adapted to
the setting of arbitrary free chain complexes.

11.3.1 Acyclic Matchings on Free Chain Complexes
and the Morse Complex

Let R be an arbitrary commutative ring with unit. Recall that a chain complex
C∗ consisting of R-modules,

C∗ = · · · ∂n+2−→ Cn+1
∂n+1−→ Cn

∂n−→ Cn−1
∂n−1−→ . . . ,

is called free if Cn is a finitely generated free R-module for all n. When no
confusion can occur, we simply write ∂ instead of ∂n. We also always require
that C∗ be bounded on the right.

In order to introduce a combinatorial element into this setting, we need
to choose a basis (i.e., a set of free generators) Ωn for each Cn. When this
is done, we say that we have chosen a basis Ω =

⋃
n Ωn for the entire chain

complex C∗. We write (C∗, Ω) to denote a chain complex with a basis. A free
chain complex with a basis is the main object of study of algebraic Morse
theory.

Given a free chain complex with a basis (C∗, Ω) and two elements α ∈ Cn

and b ∈ Ωn, we denote the coefficient of b in the representation of α as a linear
combination of the elements of Ωn by kΩ(α, b), or, if the basis is clear, simply
by k(α, b). For x ∈ Cn we write dim x = n. By convention, we set kΩ(α, b) = 0
if the dimensions do not match, i.e., if dimα 
= dim b.

Note that a free chain complex with a basis (C∗, Ω) can be represented as
a ranked poset P (C∗, Ω), with R-weights on the order relations. The elements
of rank n correspond to the elements of Ωn, and the weight of the covering
relation b � a, for b ∈ Ωn, a ∈ Ωn−1, is simply defined by wΩ(b � a) :=
kΩ(∂b, a). In other words,

∂b =
∑
b�a

wΩ(b � a)a,

for each b ∈ Ωn. Again, if the basis is clear, we simply write w(b � a).

Definition 11.22. Let (C∗, Ω) be a free chain complex with a basis. A partial
matching M ⊆ Ω×Ω on (C∗, Ω) is a partial matching on the covering graph
of P (C∗, Ω) such that if b � a, and b and a are matched, i.e., if (a, b) ∈ M ,
then w(b � a) is invertible.

It is important to note that Definition 11.22 is different from the topo-
logical one, which was used in Theorem 11.13. In the algebraic setting, the
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condition that the matched cells form a regular pair (in the CW sense) is re-
placed by requiring that the covering weights in matched pairs be invertible.
However, the notion of acyclic matching, which is purely combinatorial, since
it is defined on the level of posets, remains the same.

Given such a partial matching M, we denote by Un(Ω) the set of all b ∈ Ωn

such that b is matched with some a ∈ Ωn−1, and analogously, we denote by
Dn(Ω) the set of all a ∈ Ωn that are matched with some b ∈ Ωn+1. We let
Cn(Ω) := Ωn \ {Un(Ω) ∪ Dn(Ω)} denote the set of critical basis elements of
dimension n. Finally, we set U(Ω) :=

⋃
n Un(Ω), D(Ω) :=

⋃
n Dn(Ω), and

C(Ω) :=
⋃

n Cn(Ω).
Given two basis elements s ∈ Ωn and t ∈ Ωn−1, the weight of an alternating

path

p = (s � d(b1) ≺ b1 � d(b2) ≺ b2 � · · · � d(bn) ≺ bn � t), (11.6)

where n ≥ 0 and all bi ∈ U(Ω) are distinct, is defined to be the quotient

w(p) := (−1)n w(s � d(b1)) · w(b1 � d(b2)) · · ·w(bn � t)
w(b1 � d(b1)) · w(b2 � d(b2)) · · ·w(bn � d(bn))

. (11.7)

The reader is invited to compare (11.7) with formula (11.5). Additionally, we
shall use the notation p• = s and p• = t.

Definition 11.23. Let (C∗, Ω) be a free chain complex with a basis, and let
M be an acyclic matching. The Morse complex

· · ·
∂M

n+2−→ CM
n+1

∂M
n+1−→ CM

n

∂M
n−→ CM

n−1

∂M
n−1−→ · · · ,

is defined as follows. The R-module CM
n is freely generated by the elements

of Cn(Ω). The boundary operator is defined by

∂M
n (s) =

∑
p

w(p) · p•,

for all s ∈ Cn(Ω), where the sum is taken over all alternating paths p satisfying
p• = s. Again, if the indexing is clear, we simply write ∂M instead of ∂M

n .

Given a free chain complex with a basis (C∗, Ω), we can choose a different
basis Ω̃ by replacing each a∈Dn(Ω) by ã= w(u(a)� a)·a, because w(u(a)� a)
is required to be invertible. Since

k
Ω̃

(x, ã) = kΩ(x, a)/w(u(a) � a), (11.8)

for any x ∈ Ωn, we see that the weights of those alternating paths that do
not begin with or end in an element from Dn(Ω) remain unaltered, since the
quotient w(x � z)/w(y � z) stays constant as long as x, y 
= a. In particular,
the Morse complex will not change. On the other hand, by (11.8), w

Ω̃
(u(a) �
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a) = 1, for all a ∈ D(Ω̃), so the total weight of the alternating path in (11.6)
will simply become

w
Ω̃

(p) = (−1)nw
Ω̃

(s � d(b1)) · wΩ̃
(b1 � d(b2)) · · ·wΩ̃

(bn � t).

Because of these observations, we may always replace any given basis of C∗
with the basis Ω̃ satisfying w

Ω̃
(u(a) � a) = 1, for all a ∈ D(Ω̃).

11.3.2 The Main Theorem of Algebraic Morse Theory

The chain complex · · · −→ 0 −→ R id−→ R −→ 0 −→ · · · , where the only
nontrivial modules are in the dimensions d and d− 1, is called an atom chain
complex, and is denoted by Atom (d).

The main theorem of algebraic Morse theory brings to light a certain
structure in C∗. Namely, by choosing a different basis, one can represent C∗
as a direct sum of two chain complexes, of which one is a direct sum of atom
chain complexes, in particular acyclic, and the other one is isomorphic to CM

∗ .
For convenience, the choice of basis can be performed in several steps, one step
for each matched pair of the basis elements.

Theorem 11.24.
(Main theorem of discrete Morse theory for free chain complexes)
Assume that we have a free chain complex with a basis (C∗, Ω), and an acyclic
matching M. Then C∗ decomposes as a direct sum of chain complexes CM

∗ ⊕
T∗, where T∗ �

⊕
(a,b)∈M Atom (dim b).

It can be advisable to use the example in Subsection 11.3.3 as an illustra-
tion for the following proof.

Proof. To start with, let us choose a linear extension L of the partially ordered
set P (C∗, Ω) satisfying the conditions of Theorem 11.2, and let <L denote the
corresponding total order.

Assume first that C∗ is bounded; without loss of generality, we can assume
that Ci = 0 for i < 0, and i > N . Let m = |M | denote the size of the matching,
and let l = |Ω| − 2m denote the number of critical cells.

We shall now inductively construct a sequence of bases Ω0, Ω1, . . . , Ωm

of C∗. More specifically, each basis will be divided into three parts: C(Ωk) =
{ck

1 , . . . , ck
l }, D(Ωk) = {ak

1 , . . . , ak
m}, and U(Ωk) = {bk

1 , . . . , bk
m}, such that

ak
i = d(bk

i ), for all i ∈ [m].
We start with Ω0 = Ω and the initial condition b0

i <L b0
i+1, for all i ∈

[m− 1]. Since the lower index of k−(−,−) and w−(− � −) will be clear from
the arguments, we shall omit it to make the formulas more compact.

When constructing the bases, we shall simultaneously prove by induction
the following statements:

(i) C∗ = C∗[k]⊕Ak
1 ⊕· · ·⊕Ak

k, where C∗[k] is the subcomplex of C∗ generated
by Ωk \ {ak

1 , . . . , ak
k, bk

1 , . . . , bk
k}, and Ak

i is isomorphic to Atom (dim bk
i ), for

i ∈ [k];
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(ii) for every xk ∈ {bk
k+1, . . . , b

k
m} ∪ C(Ωk), yk ∈ C(Ωk), we have w(xk �

yk) =
∑

p w(p), where the sum is restricted to those alternating paths from x0

to y0 that use only the pairs (a0
i , b

0
i ), for i ∈ [k].

Clearly, all of the statements are true for k = 0. Assume k ≥ 1.

Transformation of the basis Ωk−1 into the basis Ωk:
we set

• ak
k := ∂bk−1

k ;
• bk

k := bk−1
k ;

• xk := xk−1 − w(xk−1 � ak−1
k ) · bk−1

k , for all xk−1 ∈ Ωk−1, x 
= ak, bk.

First, we see that Ωk is a basis. Indeed, assume bk−1
k ∈ Cn. For i 
= n, n−1,

we have Ωk
i = Ωk−1

i ; hence by induction, it is a basis. Then Ωk
n−1 is obtained

from Ωk−1
n−1 by adding a linear combination of other basis elements to the

basis element ak−1
k ; hence Ωk

n−1 is again a basis. Finally, Ωk
n is obtained from

Ωk−1
n by subtracting multiples of the basis element bk−1

k from the other basis
elements; hence it is also a basis.

Next, we investigate how the poset P (C∗, Ω
k) differs from P (C∗, Ω

k−1). If
x 
= bk, we have w(xk � ak

k) = k(∂xk, ak
k) = k(∂xk, ak−1

k ) = k(∂xk−1, ak−1
k )−

w(xk−1 � ak−1
k ) · k(∂bk−1

k , ak−1
k ) = 0, where the second equality follows from

the fact that Ωk
n−1 is obtained from Ωk−1

n−1 by adding a linear combination of
other basis elements to the basis element ak−1

k , and the last equality follows
from k(∂bk−1

k , ak−1
k ) = 1.

Furthermore, since Ωk
n is obtained from Ωk−1

n by subtracting multiples of
the basis element bk−1

k from the other basis elements, we see that for x ∈ Ωk
n+1,

y ∈ Ωk
n, y 
= bk, we have w(xk � yk) = w(xk−1 � yk−1). Additionally, since

the differential of the chain complex squares to 0, we have 0 =
∑

zk∈Ωk
n

w(xk �
zk) · w(zk � ak

k) = w(xk � bk
k) · w(bk

k � ak
k) = w(xk � bk

k), where the second
equality follows from w(zk � ak

k) = 0, for z 
= bk.
We can summarize our findings as follows: all weights in the poset

P (C∗, Ω
k) are the same as in P (C∗, Ω

k−1), with the following exceptions:
(1) w(xk � bk

k) = 0, and w(bk
k � xk) = 0, for x 
= ak;

(2) w(ak
k � xk) = 0, and w(xk � ak

k) = 0, for x 
= bk;
(3) w(xk � yk) = w(xk−1 � yk−1) − w(xk−1 � ak−1

k ) · w(bk−1
k � yk−1), for

x ∈ Ωk
n, y ∈ Ωk

n−1, x 
= bk, y 
= ak.
In particular, the statement (i) is proved. Furthermore, the following fact

can be seen by induction, using (1), (2), and (3):
Fact (∗). If w(xk � yk) 
= w(xk−1 � yk−1), then b0

k ≥L y0.

Indeed, either y ∈ {ak, bk} or y is critical or y = ak̃, for k̃ > k such that
w(bk−1

k � yk−1) 
= 0. In the first two cases, b0
k ≥L y0 by the construction of L,
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and the last case is impossible by induction, and again, by the construction
of L.

We have w(bk
j � ak

j ) = w(bk−1
j � ak−1

j ), for all j, k. Indeed, this is clear for
j = k. The case j < k follows by induction, and the case j > k is a consequence
of Fact (∗).

Next, we see that the partial matching Mk := {(ak
i , bk

i ) | i ∈ [m]} is acyclic.
For j ≤ k, the poset elements bk

j , ak
j are incomparable with the rest; hence they

cannot be a part of a cycle. For i > k, we have w(bk
j � ak

i ) = w(bk−1
j � ak−1

i ),
by Fact (∗). Hence by induction, no cycle can be formed by these elements
either.

Finally, we trace the boundary operator. Let xk ∈ {bk
k+1, . . . , b

k
m}∪C(Ωk),

yk ∈ C(Ωk). We have w(xk � yk) = w(xk−1 � yk−1) − w(xk−1 �
ak−1

k )w(bk−1
k � yk−1). By induction, the first term counts the contribution

of all the alternating paths from x0 to y0 that do not use the edges b0
l � a0

l ,
for l ≥ k. The second term contains the additional contribution of the alter-
nating paths from x0 to y0 that use the edge b0

k � a0
k. Observe that if this edge

occurs, then by the construction of L, it must be the second edge of the path
(counting from x0), and by Fact (∗), we have w(xk−1 � ak−1

k ) = w(x0 � a0
k).

This proves the statement (ii), and therefore concludes the proof of the finite
case.

It is now easy to deal with the infinite case, since the basis stabilizes as
we proceed through the dimensions, so we may take the union of the stable
parts as the new basis for C∗. 	


We remark that even if the chain complex C∗ is infinite in both directions,
one can still define the notions of the acyclic matching and of the Morse com-
plex. Since each particular homology group is determined by a finite excerpt
from C∗, we may still conclude that H∗(C∗) = H∗(CM

∗ ).

11.3.3 An Example

Note that the proof of Theorem 11.24 is actually an algorithm. In this subsec-
tion we illustrate the workings of this algorithm on a concrete chain complex,
namely one associated to some chosen triangulation of the projective plane;
see Figure 11.14. For the sake of clarity, we restrict ourselves to Z2-coefficients.
In our figures, a solid line directed from a basis element x down to the basis
element y means that ∂x contains y with coefficient 1 when ∂x is decomposed
in the current basis of the chain group in dimension dim y, that is, the basis
consisting of elements that are depicted in the figure in question on the same
level as y.

The algorithm starts by picking an extension L satisfying the conditions
of Theorem 11.2; this is done in Figure 11.15.

This linear order yields the initial basis Ω0; see Figure 11.16.
Applying the basis transformation rule to Ω0 is especially easy, since we are

dealing with Z2-coefficients: all we need to do is to replace all basis elements
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4 2 = 41 = 3

1 3
0

2

0401

014 012 034 023

1412

0

0203

Fig. 11.14. A triangulation of RP
2 and the corresponding face poset.

12 13

7 63 5

41

11 9

8 10

2

Fig. 11.15. The linear extension L.

b5 c3

b1 a3

c1

c2

a2

b2

b3

a5 a4

b4

a1

Fig. 11.16. The basis Ω0.

x containing a1 in their boundary by x+ b1, and recompute the boundaries in
the new basis. Again, since we are working over Z2, the new boundaries of the
basis elements in the same dimension as b1 are simply obtained by taking the
symmetric sum (exclusive or) of the sets covered by x and by b1. The analogy
with Gaussian elimination is apparent. The resulting basis with corresponding
boundaries is shown in Figure 11.17.

We continue in the same way to obtain the bases Ω2 through Ω5, as shown
in Figures 11.18–11.21. In each figure, the thick line denotes the next collapse.
The important thing that one should keep in mind is that at each step, the
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b5 c3

b1 a3 + b1

c1

c2

a2

b2

b3

a5 + b1 a4 + b1

b4

a1 + c1

Fig. 11.17. The basis Ω1.

poset in the figure is given with respect to the new basis, i.e., the boundaries
all have to be recalculated accordingly.

b5 c3

c1

c2 + b2

a2 + c1

b2b1 a3 + b1 + b2

b3

a4 + b1a5 + b1 + b2

b4

a1 + c1

Fig. 11.18. The basis Ω2.

b5 c3

c1

c2 + b2

a2 + c1

b2b1 a3 + b1 + b2

b3

a4 + b1a5 + b1 + b2

b4 + b3

a1 + c1

Fig. 11.19. The basis Ω3.

The final answer is presented in Figure 11.21. It is a good illustration of
Theorem 11.24 in this special case. In the new basis, shown in circles and
rounded rectangles, our chain complex splits into five atom chain complexes
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b5 c3 + b4 + b3

c1

c2 + b2

a2 + c1

b1 a3 + b1 + b2 b2

b3

a5 + b1 + b2 a4 + b1 + c2 + b2

b4 + b3

a1 + c1

Fig. 11.20. The basis Ω4.

b5 c3 + b4 + b3 + b5

c1

c2 + b2

a2 + c1

b1 a3 + b1 + b2 b2

b3

a5 + b1 + c2 a4 + b1 + c2 + b2

b4 + b3

a1 + c1

Fig. 11.21. The basis Ω5.

and the Morse complex. The five atom chain complexes correspond to the
initially matched pairs, and have no influence on the homology of the chain
complex. The Morse complex is especially simple in this case, since all the
differentials ∂M

∗ come out to be trivial. This, of course, would have been
different if we had worked with integer coefficients. The interested reader is
invited to contemplate the latter case.

11.4 Bibliographic Notes

Discrete Morse theory is a tool that was discovered by Forman, whose original
article [For98], as well as a later survey [For03], are warmly recommended as
excellent sources of background information, as well as some topics that we
did not cover in this chapter.

Our main innovation in Section 11.1 is the equivalent reformulation of
acyclic matchings in terms of poset maps with small fibers, as well as the
introduction of the universal object connected to each acyclic matching. The
patchwork theorem 11.10 is a standard tool, used previously by several au-
thors. We think that the terminology of poset fibrations together with the
decomposition theorem 11.9 give the patchworking particular clarity.
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The material of Sections 11.2.1 and 11.2.2 is quite standard, though our
proof of Theorem 11.13(c) is a new ad hoc argument.

We have taken our examples from various sources. Proposition 11.16 and
Proposition 11.17 were both originally proved in [Ko99], though in a different
way. Theorem 11.18 has been proved in [Bj80], whereas Theorem 11.19 can
be found in [Ko00]. Finally, Theorem 11.21 is taken from [Ko06c].

Algebraic Morse theory was discovered independently by several sets of
authors. We invite the reader to consult the original sources [JW05, Ko05c,
Sk06], providing excellent insight into various aspects of the subject, as well
as supplying further applications. Our treatment here follows the algorithmic
presentation in [Ko05c].
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