4

Unit Level Testing

Unit level testing is used to verify the behavior of a single unit within a
program. Herein, the unit which should be tested must be isolated from other
units within the system in order to prevent interference of test results. In
object-oriented programming, a single unit is typically a class or operation
defined within a class. Typical programming errors which can be discovered
during unit level tests include division by zero, wrong path setting, or incorrect
pointer settings.

Black-box testing can be applied for all levels of testing. They only differ
in the kind of System Under Test (SUT) they address. While component
and integration testing is performed on several units of a system working
together, and system testing refers to the whole system, unit level testing is
performed on individual units within the system. In this chapter, we discuss
the concerns of unit level testing, including how to use the UTP for unit level
test specifications. The use of the profile is illustrated by means of the library
example.

4.1 UTP and Unit Level Testing

Unit level tests can be derived from UML models. A unit in a UML model
might be a single class or an operation. Black-box test is performed without
the knowledge of the internal structure of the SUT. Thus, the prerequisite to
unit testing the SUT using UML is that the tester must get access by calling
public operations or by sending signals via an interface.

I'=Tip 1 Unit level test scope

For unit level testing, an SUT is an indiidual unit (e.g., a class or an oper-
ation) which is to be tested.

52 4 Unit Level Testing

'I’UTP Concept 1 SUT

SUT stands for system under test. For unit level testing, the SUT is an object
or an operation which can be tested by calling operations or sending signals
via public interfaces.

Before defining a test suite in UML, a new package for unit level testing
needs to be created, and the system model must be imported to the test
package in order to get access to the SUT. Figure 4.1 illustrates the package
dependencies of the TTDTestingProfile package with predefined UTP concepts,
the system model package LibrarySystem of the Library Example and its newly
created test package LibraryUnitTest. The test model imports the system model
in order to get access to the SUT during testing. To enable test specification,
the test model needs import of the UTP concept package.

UTP Methodology Rule 1 Creating UTP test model
1. Create a new UML package for the unit level test.

2. Import the SUT system model package.

3. Import the package where UTP concepts are defined.

UTP Unit Test package UTPExampleTotal {1/4}
—
::LibraryUnitTest
1
<<metamodel,profile>> <<import>>

= TTDTestingProfile

<<import>>

1

::LibrarySystem

Fig. 4.1. Package imports

4.1 UTP and Unit Level Testing 53

When using UTP, tests are performed within a given contex. This context
is where test cases are defined, as well as the test configuration and related
concepts. In a unit level UTP model, a test context is a stereotyped class
which contains the unit level test cases as operations. In order to create a test
context within the UTP model, a new UML class needs to be created and the
UTP test context stereotype must be applied to the class.

‘T’UTP Concept 2 Test context

The test context is a stereotyped class that contains the test cases (as opera-
tions) and whose composite structure defines the test configuration. The clas-
sifier behavior of the test context provides the test control, which determines
the order of execution of test cases.

UTP Methodology Rule 2 Define test context in a UTP test model.

To create a test context class for a unit level test, the following steps are
needed:

1. Define a test context class with stereotype << Test Context>>.
2. List all the test cases as public operations in the test context class.

Figure 4.2 shows the test context definition for the Library example. Inside
Package LibraryUnitTest, a test context class called LibraryUnitTestContext is
created and assigned with stereotype <<TestContext>>. This test context

Library Unit Test ~ package LibraryUnitTest {1/1}

<<TestContext>>

LibraryUnitTestContext

book:ltemForLoan

UnitTest_ItemForLoan_Interaction():Verdict
UnitTest_ltemForLoan_Activity():Verdict

Fig. 4.2. Test context

54 4 Unit Level Testing

class owns an attribute called book of class IltemForLoan and defines two test
cases called UnitTest ItemForLoan Interaction() and UnitTest ItemForLoan
Activity(). The concrete behavior specification of those two test cases are
shown in other diagrams later in this chapter. Both test cases are public
operations returning test verdicts as results.

As the names of the test cases already indicate, our unit level tests are
performed on library items for loan. These operate on the concrete system
specification related to the library items. These are part of the specification
of the library system itself.

The concrete classes and signals that are part of the library system are
available to the unit test package as they have been imported from the Li-
brarySystem package. Figure 4.3 shows the class and signal definitions of the
library system. For our unit level testing example, the class ItemForLoan is the
class to be tested. An Item in a library can be a Book, CD, DVD, or Video. It
has several attributes, including one or more authors, a title, an ISBN num-
ber, and a publishing date. The ItemForLoan class represents an item that can
be loaned to a library user. It adds the perspective that an item can be in
either a good or a bad condition. If an item is in a bad condition, it needs to

Classes of the Library package LibrarySystem {4/5}
Iltem <<signal>>
. <<enumeration>> search
Type : ltemTypes
Authors : String[1 .. *] ltemTypes item : Item
Title : String Book
ISBN : String[10] DVD
PublishedDate : String CDROM <<signal>> <<signal>>
- available : Boolean Video repaired fetch
- returnDate : Integer - -
+ belongs : Library[1] item : ltem item : ltem
<<signal>> <<signal>>
reminder reserve
| BeriL <<enumeration>> temElitem
EGFE T EET ltemCondition
+condition : ltemCondition ok
itm: ltem
broken Hgeke <<signal>>
ItemForLoan () b
uyNew ;
timer LoanPeriod() y returning
epdien item : ltem

Fig. 4.3. Classes and signals in the Library System

4.1 UTP and Unit Level Testing 55

be repaired before handed out again to another borrower. The signals shown
in Figure 4.3 illustrate the ways that a tester can trigger various behaviors on
the SUT.

4.1.1 State Machines

In order to generate test cases for the SUT ItemForLoan, we need a com-
plete behavioral specification of the SUT class. UML state machines are the
standard way to describe the behavior of a class.

I’ Tip 2 State machine adequacy

In order to derive useful test cases, the class behavior must be described. State
machines provide good means for class behavior description. Test cases can
be generated from the state machine specification, and the more precise and
complete the state machines are, the better the derived test cases.

In our library example, class ltemForLoan is to be tested. Figure 4.4 illus-
trates its behavior specification by a State Machine. An ltemForLoan can exist
in various states. In its initial state, it is available to any borrower. After it has
been borrowed by a certain library user, it may be returned back in a good or
broken condition. In latter case, the item will be repaired (toBeRepaired). In
case that the item is still borrowed, but requested by another user, the item
will be reserved for that user. When a reserved item is returned, depending on
the condition of the item, it will be repaired (repairForReserver or availableFor-
Reserver). If it is available for the reserver, the reserver gets the item as soon
as it is returned, and the item moves into the borrowed state. In cases where
a broken item cannot be repaired, it will be replaced by a new version of the
item.

4.1.2 Interactions

In UTP, a test scenario is described informally by a test objective, which is
simply the textual description of the purpose of a test case. Test cases are
the concrete realization of a set of behaviors which achieve the test objective.
When using state machines for behavioral specification, test cases can be gen-
erated by simulating the behavior of the state machine. This simulation seeks
to achieve a given coverage criteria (e.g., transition coverage, state coverage)
[2] by ensuring that test data values are used to trigger the SUT in a way that
helps achieve the coverage criteria.

In the library example, one test objective may be to “verify that a broken
item returned to the library is sent for repair.” To achieve this objective,
concrete test cases with message flow between the SUT and the test system
are created. This can be done using UML interaction diagrams or activity

56 4 Unit Level Testing

Behavior of ltemForLoan statemachine ItemForLoan :: ltemForLoan {1/3}

available

repaired(itm)
[condition == ok]
vailableNow(itm);

. returning(ifm)
fetch(itm) [condition

fetch(itm)
/availableLater(itm);

fetch(itm)
/availableLater(itm);

borrowed

’ returning(itm)

[condition == broken]

toBeRepaired

fetch(itm)

(itm)
[conditiqn == broken]
/ouyNew\itm);

availableForReserver

returniag (itm) repaired(itm)
[conditidg == ok] [condition == ok]
/availableNow(itm); / availableNow(itm);

repaired(itm)
[condition ==,
/buyNew(it

broken]

returning(itm)
] [condition == broken]
reserved

repairForReserver

(i (.
/availableLater(itm); /availableLater(itm);

Fig. 4.4. State machine of item

\I’UTP Concept 3 Test objective
A test objective describes the purpose of the test in an informal way.

diagrams to show communication between the test system and the SUT. For
unit level test cases in a UTP model, the test context instance represents the
test system.

Depending on predefined test strategies and coverage criteria (e.g., state-
ment, branch, path, or other coverage criteria), the state machine of ItemFor-
Loan can be simulated and the graph can be traversed in order to derive the
test cases. In this example, we utilized state coverage criteria, which seeks to
reach all of the states in the IltemForLoan state machine (Figure 4.4) at least

4.1 UTP and Unit Level Testing 57

UTP Methodology Rule 3 Specifying test cases with interaction diagrams
For a unit-level test case, the test context instance can be used to trigger
the SUT. Interaction diagrams provide good means for detailed test behavior
specification. This is done using the following steps:

1. Define a test case by creating a new interaction diagram.

2. Initiate the test case with an instance of the test context.

3. The test context instance creates the SUT instances and triggers it using
operation calls or signals.

4. The order of these calls/signals is derived from the system model by sim-
ulation with an appropriate coverage criterion.

5. At the end of the test case, set the unit level testing verdict by returning
a verdict value. For system derived test cases, this is typically pass.

once. A single test case is enough to achieve this coverage criterion. Figure 4.5
shows the derived unit level test case called UnitTest ItemForLoan Interaction
in an interaction diagram.

‘T’UTP Concept 4 Test case

A UTP test case concretizes a test objective by triggering inputs and observing
outputs of the system. A test case always returns a test verdict.

The diagram shows in the beginning the test context instance TestLibrary-
TestContext, which creates a new instance called book of class ltemForLoan.
The item is available and will be fetched by the user. In its borrowed state,
it can be reserved by a further user and when the first borrower returns the
item in a broken condition, it gets repaired for and borrowed to the reserver.
When the reserver returns the item in an irreparable condition, the item is
replaced by a new exemplar. If this test case terminates successfully, all states
of the ItemForLoan object will have been covered.

A test must deliver its result in a certain form to the external world.
In UTP, they are in the form of test verdicts. Predefined verdicts in UTP
include pass, fail, inconclusive, and error. The pass verdict indicates that the
SUT behaves correctly for the specified test behavior. The fail verdict describes
that the SUT does not behave according to the behavior. The inconclusive
verdict is used when the test neither passes nor fails, but is still valid according
to the specification of the SUT. Finally, the error verdict indicates an issue
within the test system itself.

Test cases generated automatically from the system specification typically
represent the expected correct behavior of the system. Thus, the test results

58

4 Unit Level Testing

sd interaction UnitTest_ltemForLoan_Interaction J UnitTest_ltemForLoan1

<<TestContext>>
: LibraryUnitTestContext

ltemForLoan(book,ok)

fetch(book.itm)

<<SUT>>
book

available

reserve(book.itm)

borrowed

returning(book.itm)

reserved

condition=broken;

J

repaired(book.itm)

repairForReserver

condition=0k;

availableNow(book.itm)

fetch(book.itm)

C availableForReserver)

returning(book.itm)

borrowed

condition=broken;

J

repaired(book.itm)

toBeRepaired

buyNew(book.itm)

return pass;

{1/1}

Fig. 4.5. Test case—interaction diagram

4.1 UTP and Unit Level Testing 59

are usually set to pass at the end of these test cases. Accordingly, the verdict of
test case UnitTest ItemForLoan Interaction in our library example is assigned
to pass.

\I’UTP Concept 5 Test verdicts

In UTP, each test case returns a verdict. Predefined verdicts are pass, fail,
inconclusive, and error.

4.1.3 Activity Diagrams

Test cases can also be illustrated by UML activity diagrams. Activity dia-
grams provide a slightly different view of the system behavior than interaction
diagrams. While the latter concentrates on the communication between the
objects, an activity diagrams lays its focus more on the local behavior of an
object.

Figure 4.6 shows a test case for the Library Example in an activity di-
agram, also derived from the state machine introduced in Figure 4.4. Here,
the operation calls and message exchanges between the objects are not in the
focus. Instead, the internal activities of each of the objects are illustrated.

UTP Methodology Rule 4 Specifying test cases with activity diagrams
For a unit-level test case, the test context instance can be used in order to trig-
ger the SUT. Activity diagrams provide good means for detailed test behavior
specification. To do so, the following steps are needed:

1. Define a test case by creating a new activity diagram.

2. Initiate the test case with a test context instance by creating a partition
for the test context in the activity diagram.

8. Parallely to test context, a partition for the SUT instance is needed.

4. Derive test behavior from the system model by simulation and applying
coverage criteria.

5. At the end of the test case, set the unit level testing verdict by returning
a verdict value. For test cases derived from the system specification, this
s usually the pass value.

Two partitions called LibraryUnitTestContext and ltemForLoan and their
activity flows are shown in Figure 4.6. The transitions and state information
in the state machine of ItemForLoan are transformed to activities in the dia-
gram. Within the ItemForLoan partition, the availability of the library item is
checked. Depending on its status, two different activity flows are traversed. In

60 4 Unit Level Testing

UnitTest_ItemForLoan_Activity activity UnitTest_ItemForLoan_Activity {1/1}
LibraryUnitTestContext ItemForLoan
‘fetch Item’

'check availability'

/mavailable

true

/mndition

false

'get item'

'return pass;'

Verdict

'reserve item' % 'make reservation’ }7

ok

'repair item'

Fig. 4.6. Test case—activity diagram

this test case, the end of the activity diagram can only be reached if the book
is in a good status and is available to another borrower. In this case, the test
result will be set to pass.

4.2 Chapter Summary

In this chapter, we introduced several key UTP concepts, including SUT, test
context, test cases, and predefined UTP test verdicts. These concepts can be
used to model unit level tests (as well as other types of tests). We use state

4.2 Chapter Summary 61

machines as a basis for modeling the behavior of the SUT. We then illustrate
how state machines can be simulated to allow the derivation of test cases.
These are generated by traversing the graph using user-defined test strategies
and coverage criteria. The test cases are modeled using behavior diagrams such
as interaction diagrams (for focusing on communication between objects) or
activity diagrams (for focusing on the local activity of the objects in the test
case).

2 Springer
http://www.springer.com/978-3-540-72562-6

Model-Driven Testing

Using the UML Testing Profile

Baker, P.; Dai, Z.R.; Grabowski, |.; Schieferdecker, |.;
Williams, C.

2008, XV, 184 p. 94 illus., Hardcowver

ISBEN: 278-3-540-72562-6

