
Introduction: Problem Solving, EC and EMO

Joshua Knowles1, David Corne2, and Kalyanmoy Deb3

1 School of Computer Science, University of Manchester, UK
j.knowles@manchester.ac.uk

2 School of Mathematical and Computer Sciences (MACS), Heriot-Watt
University, Edinburgh, UK dwcorne@macs.hw.ac.uk

3 Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of
Technology, Kanpur, India deb@iitk.ac.in

Summary. This book explores some emerging techniques for problem solving of a
general nature, based on the tools of EMO. In this introduction, we provide back-
ground material to support the reader’s journey through the succeeding chapters.
Given here are a basic introduction to optimization problems, and an introductory
treatment of evolutionary computation, with thoughts on why this method is so
successful; we then discuss multiobjective problems, providing definitions that some
future chapters rely on, covering some of the key concepts behind multiobjective
optimization. These show how optimization can be carried out separately from sub-
jective factors, even when there are multiple and conflicting ends to the optimization
process. This leads to a set of trade-off solutions none of which is inherently bet-
ter than any other. Both the process of multiobjective optimization, and the set
of trade-offs resulting from it, are ripe areas for innovation — for new techniques
for problem solving. We briefly preview how the chapters of this book exploit these
concepts, and indicate the connections between them.

1 Overview

Intellectual activity consists mainly of various kinds of search.
Alan M. Turing, 1948

When we say that computers can solve problems, it is a sort of half-truth, to
be taken with a medium-sized pinch of salt. It is manifestly true that computers
solve problems when they almost autonomously carry out everyday tasks involving
communication, auditing, logistics and so forth, and computers even act somewhat
more ‘intelligently’ when they do such tasks as controlling an automatic transmis-
sion, or making a medical diagnosis, in which they may even exhibit a computerized
form of learning. But it is also true that computers are not very autonomous in
solving new problems. Much human input and human innovation still goes into the
process of solving difficult problems (designing a cable-stayed bridge, finding novel
drug interventions, brokering international peace initiatives), a state of affairs that
is likely — and desirably so — to continue for some time to come.

2 Knowles et al.

In this book, we consider an area in computer science which is at the forefront
of techniques for solving difficult problems. Evolutionary computation — that is,
methods that resemble a process of Darwinian evolution — can be used as a way
to make computers ‘evolve’ solutions to problems, which we, as humans, do not
ourselves know how to solve. By giving computers the capability of searching for
their own answers to problems — through huge spaces of possibilities, in a very flex-
ible way that goes beyond numerical methods — innovative and intelligent-seeming
solutions and actions can be produced.

Much of evolutionary computation is concerned with optimization. For a human
to use evolutionary computation to solve a new optimization problem, very little is
required. This is where the flexibility of EC comes from: one must only provide the
computer with (i) some way of representing or even ‘growing’ candidate solutions to
the problem, and (ii) some function (or method) for evaluating any candidate solu-
tion, estimating its goodness on a numerical scale. Enormous varieties of problems
can be stated succinctly in this way, from electronic circuits to furniture designs,
and from strategies for backgammon to spacecraft trajectories. And the boon of evo-
lutionary computation (though not one hundred percent realized) is that it turns
computers into almost universal problem solvers which can be used by anyone with
even minimal computational/mathematical competence. Of course, many problems
are fundamentally intractable, in the sense that we cannot hope to find truly optimal
solutions, but this does not really limit the uses of EC, but makes it more useful,
since its strength is in finding the best solution possible given the time allowed.

But, while we just said that optimization is widely applicable, it is but a sub-
set of a larger and even more flexible method of problem solving: multiobjective
optimization (MOO). The drawback of standard optimization (let’s call it single-
objective optimization or SOO) is the requirement for a function that can score each
and every candidate solution in terms of a single objective number. Many problems
exist that are not so easy to state in terms of a single function like this. Humans
are generally much more comfortable with, and used to, thinking in terms of aims
and objectives plural, when stating a problem. And, while it is possible, in princi-
ple, for people to combine their aims in some over-arching function by weighting or
ordering them by importance, in practice, different aims and objectives are often
not measured in the same units, on the same scales, and it is often nigh-impossible
to state the importance of different objectives when one has seen no solutions yet!
More fundamentally, many of the methods for combining functions together into
a single one, necessarily miss potentially interesting solutions. And many methods
are very difficult to use because a small change in weights, gives a totally different
solution. Therefore, it would be great if one could exploit the power of evolutionary
algorithms, but use them to search for solutions even when the aims and objectives
cannot be boiled down to a single function.

We are being purposely obtuse here, of course, because such methods already do
exist in the field of evolutionary multiobjective optimization (EMO), and they have
been growing more and more effective over the past twenty years or so. An EMO
algorithm is, loosely-speaking, one in which objectives are treated independently,
and a set of optimal trade-offs (called Pareto optima) is sought, rather than a single
optimum. But we introduced the field in this roundabout way to emphasise the point,
made above, that computers solve problems — difficult problems at least — only
in concert with humans. Humans are still the ones who generally own the problems
and understand something about what they desire and hope for in a solution. So,

Introduction 3

one of the key hurdles to problem solving with computers is to be able to formulate a
problem in such a way that a computer can actually solve it, and a human is happy
with the solution. EMO has this ability in spades, so rather than being a mere
branch of EC, it actually represents a major step forward generally in computer
problem solving.

Where this book advances further in terms of problem solving with computers,
and problem solving specifically using the tools of evolutionary multiobjective op-
timization, is in examining the critical area of how to exploit the greater flexibility
of search afforded by a multiobjective optimization perspective. While other books
and articles on EMO [6, 7, 5] have given a thorough grounding in the development
of EMO techniques, and have been formidable advocates of its benefits, it is only
relatively recently that a groundswell in terms of researchers confidently exploiting
EMO tools to new and innovative ends has really been apparent. It is on this we
concentrate.

The new uses of EMO do not represent a step-change, but a gradual realization
that there are few hard-and-fast rules in solving problems with the technique. Thus,
researchers have begun to ask themselves such things as what would happen if I
took away a constraint and treated it as an objective, what would happen if I had
a problem where I had one objective but it seemed possible to decompose it into
several, what would happen if I had some different functions which were inaccu-
rate proxies for a true ideal objective function? In this book, we see how current
research is dealing with these questions and further we see valuable products of this
exploration. We see here that, ironically, EMO is very useful in coevolution, an area
characterized by problems that have no formal objective function at all (evaluation
occurs only by competitions). We see it helps in traditional SOO problems, where
it speeds up search. We see it put to numerous uses in ill-posed problems, especially
those in machine learning. Along the way, the chapters also consider the important
issue of how to analyse and exploit the sets of solutions that are obtained from
EMO, both in terms of decision making (i.e., usually choosing one final solution) or
of learning from the set of trade-offs. And the development of EMO methods with
respect to their scalability to larger problems with more objectives is considered,
and supports the ideas proposed throughout the book.

In this chapter, we seek to do two jobs. First, to preview the book, which we have
partly done, but which we continue in Sec. 4. Secondly, to cover some bases for any
readers who might be unfamiliar with the fundamental concepts whose knowledge is
assumed in some of the chapters, we give some appropriate introductory material.
To these ends, Sec. 2 recalls the formal definition of a problem, including, in partic-
ular, an optimization problem. Hard problems, evolutionary algorithms, and the use
of the latter on the former, are then discussed. Sec. 3 deals with multiobjective opti-
mization, giving definitions for Pareto optimality and related issues. Then, Sec. 4 is
a rundown of the four parts the book is divided into, and provides summaries of each
of the chapters that make it up. Finally, Sec. 5 briefly concludes this introduction
chapter.

4 Knowles et al.

2 Problems and Solution Methods

2.1 Optimization Problems

Problems, in computer science, are both abstract and precise. They are abstract in
the sense of describing a whole class of instances; they are nevertheless precise in
the sense that both the inputs and the solution of a problem instance are members
of well-defined (mathematical) sets.

Specifically, a problem consists of: (i) a set of instances, where this set can be
defined by either listing it exhaustively (enumerating it), or, much more usually,
by specifying all the givens that define the form of an instance; and (ii) a set of
solutions, being a definition of the entities that comprise a valid solution and the
criteria for accepting it.

For example, we could define a sorting problem. A valid instance could be defined
as any finite set of positive integers; a valid solution as an ordering of the input set
that is strictly increasing.

An optimization problem is just a problem where the solution part of the problem
is defined in terms of a function (the objective function), which is to be maximized
or minimized.

Definition 1 An optimization problem is specified by a set of problem instances and
is either a minimization problem or a maximization problem.

From here onwards we will consider only minimization problems. In mathemat-
ical parlance, this is done ‘without loss of generality’, i.e., everything we say is true
of both minimization and maximization problems, as long as we replace ‘smallest’
with ‘largest’ and such like.

Definition 2 An instance of an optimization problem is a pair (X, f), where the
solution set X is the set of feasible solutions and the objective function f is a mapping
f : X → �. The problem is to find a globally optimal solution, i.e., an i∗ ∈ X such
that f(i∗) ≤ f(i) for all i ∈ X. Furthermore, f∗ = f(i∗) denotes the optimal cost,
and X∗ = {i ∈ X | f(i) = f∗} denotes the set of optimal solutions.

In this definition, ‘solution’ is being used in a broad sense to mean any well-formed
answer to the problem that maps to a cost through the function f . The objective is
not to find a solution, but to find a minimum cost one. In this case, therefore, it is
meaningful to talk about an approximate solution to the problem, i.e., one that is
close to optimal.

Once the problem is defined, we commonly express the task of optimization –
the fact that we wish to minimize our cost function over a particular set of potential
solutions, as follows:

minimize f(x), subject to x ∈ X. (1)

Here, f is the objective function, and it maps any solution x that is a member of
the set of feasible solutions X to the set of real numbers, �. We are asked to find
an x, such that f is minimized.

Introduction 5

2.2 Hard Optimization Problems

Some optimization problems are easy to solve, and fundamentally so. An easy prob-
lem is one where there exists a method that always works — that solves every valid
instance — finding an optimal solution in a reasonable amount of time, or number of
steps. An example of an easy problem is that of finding a shortest path between two
nodes in a network, where the nodes are separated by links with certain lengths. This
problem can be solved using Dijkstra’s famous algorithm (dynamic programming),
an ingenious method that greedily constructs the optimal solution, by considering
partial paths through the network and keeping track of the competing alternatives.

Unfortunately, a great many problems that we encounter — and almost all of
those in science and industry — are hard. That is to say, there is no known method
for solving instances of them exactly and reliably. More than that, these problems
are fundamentally hard in that they can be shown to belong to a set of problems,
all of which are essentially equivalent in their difficulty. The equivalence means that
finding quick and reliable methods for solving one of the problems would result in
quick and reliable methods for all of them.

However, no such method has yet been found, and many think that such a
method does not exist. Computer scientists call optimization problems that are
fundamentally hard in this way, NP-hard [17].

Consider the following list of problems:

- Find a competent, or good, strategy for playing the game, Othello
- Allocate resources for flood protection of the UK
- Define a taxonomy of prokaryotic genes, by their functional activities
- Design a suspension bridge
- Schedule the jobs in a factory, as orders and raw materials arrive periodically.

When defined more precisely, each of these is an example of a fundamentally
hard problem. There is no way to go directly to an optimal solution, or to organize
a search in a super-efficient fashion that gives reliable results for all instances.

Instead, for problems like these, we can only hope to find good (or approximately
optimal) solutions, by a process of searching through alternatives. Further, being
fundamentally hard, this process is likely to take significant time, even using modern
hardware, and even just to find an acceptable, rather than good, solution.

Fortunately, however, we rarely need to resort to a blind, random search through
the set X. Each of these problems, and realistic problems in general, have some
inherent structure that can be exploited as we try to devise a strategy for seeking
good solutions. This structure is usually apparent in the way that similar solutions
are related in terms of the cost function(s). For example, if two suspension bridge
designs are very similar, but differing slightly in the distance between the points of
suspension, then the performance characteristics of these two bridges are likely to
be very similar too. Such structure is partly captured by the search landscape; once
we have settled on the details of X (having decided how we will encode potential
solutions to the problem), the details of f , and the specifics of how we will generate
new solutions from others previously sampled, this landscape comes to life as a high-
dimensional mathematical structure. A fundamental aspect of all modern search
strategies is to sample points in this landscape (i.e., points in X), and attempt to
discover (or simply assume) certain properties of the landscape in an attempt to
navigate a path through it towards good solutions. One class of such strategies,

6 Knowles et al.

called evolutionary computation, is recognized as being particularly successful (in
comparison to other methods, at least) at handling the landscapes found in most
real-world problems.

2.3 Evolutionary Computation

Algorithms are conceived in analytic purity in the high citadels of aca-
demic research, heuristics are midwifed by expediency in the dark corners
of the practitioner’s lair ... and are accorded lower status. Fred Glover

Origins

Problem solving by simulated evolution has been invented independently several
times. Its pre-history can be traced back at least to Butler, who pronounced that
that machines might ‘become as complicated as us’ by evolutionary processes, long
before general purpose computers had even been conceived (see Dyson [9], chap. 2).
Actual computerized simulations began in the 1950s, one of the early notable exam-
ples of problem solving being work by Baricelli [1] to ‘evolve’ fragments of code that
cooperated to play a game called Tac-Tix. Fraser [16], Bremmerman [3], Rechen-
berg [30], Schwefel [33] and Fogel [14] all experimented with models of evolution in
independent work conducted in the 50s and 60s, and were joined by many others,
notably Holland [19] in the 70s. These researchers had very different ends in mind,
and emphasised different elements of the neo-Darwinian principles of evolution in
the models that they investigated (for detailed accounts of this early, pioneering
work see [13] and [9]). For some time, the differences were cemented, and the dis-
tinct methods known as evolution strategies, genetic algorithms and evolutionary
programming developed in isolation. Today, and since the 1990s, evolutionary com-
putation is inclusive of all these areas, and innovations cross the boundaries, using
common concepts and abstractions from nature.4

The Basic Evolutionary Algorithm

Despite the high-falutin ideals of evolutionary computation to model and abstract
from the complexity and richness of nature’s wandering adaptive walks, the basic
evolutionary algorithm for optimization has much more in common with a process
of selective breeding (as used by Mendel) than it does with adaptation. The opti-
mization problem provides a static goal to which the algorithm is directed, and a
population of solutions are improved towards this by rounds of evaluation, biased
selection, reproduction, variation and replacement. One round or cycle is called a
generation, and the pseudocode in Fig. 1 captures the central process in practically
every evolutionary algorithm:

Typically, in evolutionary algorithms, there is made a distinction between the
genotype and the phenotype of a candidate solution, with the genotype being the
medium of reproduction and variation (step 3.2 in Fig. 1), but with selection being
based on the evaluation of the phenotype (steps 2 and 4). There are several alter-
native schemes for selection, but the basis for them is usually a relative ranking

4 We might say there is panmictic (all-mixing) evolution.

Introduction 7

1. Generate a population of candidate solutions to the problem
2. Evaluate the fitness of each candidate in the population
3. Produce some new solutions from this population:
while not done do

3.1 Select (preferring the fitter ones) some to be ‘parents’
3.2 Produce ‘children’ (new candidate solutions) from the parents

end while
4. Evaluate the fitness of each of the children.
5. Update the population, by incorporating some of the new children, and

removing some of the incumbents to make way for them
6. Until there is a reason to stop, return to step 3.

Fig. 1. Pseudocode for an evolutionary algorithm

of the solutions; the fitness of a solution then refers to the expected reproductive
opportunity afforded it by selection.

Reproduction occurs by a combination of replication and mutation events, or
recombination and mutation — both lead to variation in the children produced.
In recombination, genetic material from two or more solutions are crossed over to
yield one or more recombinant offspring. Mutation refers to a small change that is
made to the genotype of an offspring, following a recombination or replication event.
Evolutionary algorithms are always stochastic, and in most cases, selection, recom-
bination, and mutation are all based on dice-rolls. Moreover, the starting or initial
population (step 1 of Fig. 1) is most often created by a stochastic process. The off-
spring population, once created, replaces the population of the previous generation,
becoming the new current (parent) population.

Typically, the population in an evolutionary algorithm is of a fixed size from
one generation to the next. Replacement of the old by the new can again be based
on competition (i.e., selection), but it can also be entirely random. One particularly
popular replacement scheme is for the best few individuals (the elites) of the parent
population to be protected from replacement, so that they survive across generations.
This is called elitism, and it is implemented in most evolutionary algorithms because
it ensures non-retardation of the best solution(s).

Generally, there is immense variety in the way that individual evolutionary al-
gorithms will carry out each of these steps. To a large degree, the reasons for and
nature of this variety relate to the precise problem being addressed — this will
dictate, for example, the encoding used (how candidate solutions are represented
as data structures), which in turn affects the way that recombination and muta-
tion may be done. The more problem-independent aspects of EAs are selection for
breeding (step 3.1) and so-called ‘environmental selection’ (step 5). Many techniques
have been tried and tested, but the general lessons that are clear from practice are
that a ‘low pressure’ strategy tends to do well on the more interesting and difficult
problems. That is, though we may be tempted to strongly prefer to breed exclusively
from the most fit solutions in step 3.1, and be sure to be rid of the poorest solutions

8 Knowles et al.

in step 5, it turns out that we get more capable and reliable algorithms when we
ensure that these steps are gently influenced by fitness.

Why EC works, and the benefits of EC

Evolutionary computation is very successful, but why? There is continued debate
about what underpins its general degree of success, but we first need to clarify what
we mean by ‘success’ in order to address this question properly. What appears to
be the case, at least for some important problems, is as follows:

Performance For some problems, EC is capable of much better solutions (and
achieved in better, or reasonable, time) than all or most other known meth-
ods.

Sufficiency For some problems, EC is capable of solutions competitive with solutions
achieved by all or most other known methods.

Applicability EC is applicable to almost any optimization problem.
Accessibility For some problems, EC has been applied, and works fine, but no com-

parisons with other methods have been done.
Opportunity For some problems, EC is the only approach that can be used with any

chance at all of success — in other words, with EC we can solve problems that
we couldn’t solve before.

The Performance statement is what most people would assume is meant by “EC
is successful”. Indeed it is true, but it must be stressed that this situation exists in
relatively few cases, usually those in which an EC practitioner has worked hard in
configuring the key components of the method – the encoding, the operators, and
perhaps other features (such as using a heuristic to provide seed solutions in the
initial population). The reason for EC’s success in such cases is tied up in the fact
that EC provides a framework within which a new approach can be engineered. At
heart, it seems plausible that the use of the central evolutionary concepts (Darwinian
selection from a population, coupled with a means of variation) is a key element in
the success here — i.e., it is a fundamentally powerful all-purpose landscape search
strategy. However, it is worth noting that much work (usually) needed to be done
to craft the landscape, turning it into a problem more amenable to this strategy.

The Sufficiency point is true for a great many problems, and it doesn’t seem to
characterize EC in a particularly exciting light, yet it speaks to EC’s ‘dependability’.
The key point here is that the ‘other’ methods tend to have a much larger variance in
their success than EC. Given, for example, a set of 100 different real-world problems
to solve, an EC approach, crafted with no undue effort in each case, will probably do
at least ‘OK’ on each of them. In contrast, an alternative method such as Simplex,
that does well in a few cases, may be inapplicable for all other cases; a graph-
based search technique that does well on a certain problem may perform terribly
in other cases, and so on. Sometimes, use of EC may be over the top, like using
an electron microscope to read the small-print in an insurance policy, and a rival
technique will do just as well in far less time. However, that rival may have abysmal
performance elsewhere in this set of problems. And so it goes on. As we noted with
regard to Performance, it seems safe to attribute the success of EC to the notion
that the Darwinian principles of evolution comprise a good all-purpose strategy for
navigating the kinds of landscapes that spring up once we start to solve a real-
world problem. The style of success inherent in Sufficiency, adds some weight to

Introduction 9

this. We can understand the high variance in the performance of other methods in
this context, by suggesting that such an alternative method will be ideally tuned
to aspects of the landscape structure of some (maybe very few) problems, while
being a manifestly hopeless strategy for other problems. The well-known gradient-
descent approach is an obvious example. Essentially, with gradient-descent search,
your problem will be solved quickly and optimally if the landscape’s structure is that
of a single, smooth multidimensional bowl (the optimum being the lowest point in
the centre of the bowl); but on almost any other landscape this strategy will miss
the optimum, by perhaps a great distance.

Bearing much relation to the last point, the Applicability of EC is well-known,
and this, in its own right, is a type of success that EC enjoys in abundance. Almost
by definition, if we have an optimization problem to solve, then we already have to
hand some notion of candidate structures for X and f . We need very little more than
that before we are then able to at least make a first attempt at using EC to solve
that problem. By contrast, other optimization techniques may require additional
elements that are either unforthcoming, or painful to arrange — such as necessary
features of the differentiability of f , or a sensible way to assess the quality of partial
solutions, or a requirement that candidate solutions be real-valued vectors of a fixed
length. An additional feature of EC’s general applicability, important to some, is
the great ease with which EC can exploit parallel computing resources.

Riding on its ready applicability, combined with its essential simplicity (requiring
no particular mathematical or programming prowess, for example), EC is successful
partly through its Accessibility. This in itself has led to many applications in which
EC has been used, pronounced ‘good’, ‘fine’ (or whatever), but not actually eval-
uated in comparison with any alternative approaches. That is, some practitioners,
given some problem that they needed to solve, have chosen EC (for one or more
of the reasons already discussed), used it, and left it at that. Such cases are valid
examples of ‘EC successes’, and some are in commercial use, but that is not to say
that some alternative method wouldn’t be (perhaps much) faster, and/or produce
higher-quality solutions.

So, many of the applications of EC that we see in the literature, or even in the
popular press, may only provide evidence that EC is a highly accessible algorithm,
rather than contribute to the evidence that it is the best choice for the problem at
han. Nevertheless there is ample evidence that for many important problems it is
indeed an appropriate choice; while, in some cases it is arguably the only choice.
The fact that EC imposes no constraint at all on the nature of the structures in
X, the set of candidate solutions, leads to some notable achievements for EC when
researchers exploit the Opportunity this provides. Essentially, there is no candidate
in the list of (non-EC) potential methods for optimization that is able to be applied
to the problem of finding ideal strategies for a fighter pilot to use during a dogfight.
However, EC has been used for this, with notable success [35]. Similarly, though one
can think of antenna design as a problem in which standard parameter vectors are
manipulated to achieve variants on standard designs, EC provides the opportunity
to think of optimizing antennae in a much wider sense; thus, Lohn [23] used EC to
optimize a set of algorithms for constructing antennae (such an approach, Genetic
Programming [21], is a large subfield of EC), enabling a search through a space
of possible antenna designs in which existing styles was just a tiny, imperceptible
corner. In this and many other cases EC becomes a way (perhaps the only successful,
and automated, way) to discover innovative solutions, rather than simply optimize

10 Knowles et al.

around standard, prior designs. Many other such examples, as well as examples
of more conventional successes, may be found on a visit to the ‘HUMIES’ awards
website at http://www.genetic-programming.org/hc2007/cfe2007.html

We haven’t yet quite answered the question of ‘why’ EC works. But there is no
great mystery there. The well-known ‘No Free Lunch’ theorem [39] tells us that,
given an entirely random collection of landscapes (so, think in terms of all conceiv-
able landscapes) no single approach is capable of the type of success that we have
claimed here for EC. The flip-side of this is that, given some non-random collec-
tion of problems — a collection in which there is a bias towards certain elements of
general structure in the problem landscapes, say — a method may well exist which
is generally better than others. It is highly plausible to suggest that the collection
of real-world problems is highly biased in such a sense. In particular, once we have
gone through the process of formalising a problem sensibly, and defined X, f and
the operators we will use to move within X, landscapes that we construct are invari-
ably correlated, in the sense that nearby elements of X tend to have similar cost.
Thus real-world problems are highly biased towards correlated landscapes. Mean-
while, the essential Darwinian strategy used by EC, which is to follow ‘clues’ in a
landscape under the assumption of such correlation (apples not falling far from the
tree), yet not to overcommit too soon to any particular path or region in a landscape
(everyone has some chance to reproduce, rather than only the very fittest), seems
well suited to most of the landscapes in this class, while rarely being a particularly
poor approach.

The basic theory behind the EC search strategy is well known, and exemplified
in Price’s theorem [27], which basically expresses part of the above in formal terms.
In the EC field, specialisations of Price’s theorem have been derived [19], [29], [26],
which express nuances of the central idea, tied to specific kinds of solution structure
X. Given these highly general statements, we can be satisfied that the prowess of EC
is not a magical ability, but explainable. Meanwhile, similarly general statements for
several classes of EC algorithm enable us to be satisfied that an EA will generally
make progress in reasonable time [12, 32, 31, 37]. Beyond this, which we need not
(and choose not) go into here, the EC literature is replete with incremental steps
in our understanding of the many aspects involved in how to best configure an EA
for a particular problem class. There remains very much to discover about that very
point, but one key theme, which we certainly will develop further here, is one which
also further evidences EC’s traits of Applicability and Opportunity. Sometimes, with
other optimization methods, a problem with two or more objectives can only be
addressed if it is first simplified to a single-objective (and hence, a different) problem.
But, as we will see, this hurdle is not present with EC.

3 Multiobjective Optimization: Why Many Are Better
Than One

We have seen in the last section that amongst the benefits of EC is its general appli-
cability in optimization. Yet, an optimization problem defined by a single objective
function is itself a restricted class of problems. More generally, an optimization
problem may have multiple objectives.

Introduction 11

A multiobjective optimization problem (MOP) is typically formalized like this:

minimize {f1(x), f2(x), f3(x), . . . , fk(x)}
subject to x ∈ X

(2)

expressing the fact that we want, ideally, a single solution x that minimizes each of
k distinct cost functions (also called objective functions). These functions may well
be conflicting to various degrees, in the sense that a solution a for which f1(a) is
particularly good, may be such that f2(a) is particularly bad.

At this point, some terminology is necessary. A solution structure x ∈ X is
often called a decision vector (and X is called the decision space), since the values
in x tend to encapsulate the design decisions that we need to make. Meanwhile,
the vector (f1(x), f2(x), ..., fk(x)) is referred to as the vector of objectives, which
inhabits the so-called objective space, typically but not necessarily �k.

The quality of a candidate solution x is now no longer measured as a scalar, but
as a vector. This makes necessary a new way to assess whether or not some solution
x is better than some other solution y. Previously we might say either “x is better
than (worse than) y” or “x and y are equally fit”. Now, we can still say that they are
equally fit, to describe cases in which the objective vectors for x and y are identical,
but there are two distinct ways in which x and y’s performance on the task may
be different. First, we might have “x is better than y”, as before, to cover cases in
which x’s objective vector is better than y’s in at least one objective, and no worse
in all the others. This is called dominance and we say that x dominates y. Secondly,
we may have a case in which x is better than y on some objectives, but y is better
than x on other objectives. In this situation we say that x and y are incomparable,
or we say that they are nondominated.

Given a set of multiobjective solutions (such as the current population of solu-
tions during an EMO algorithm run), some of this set will be dominated by others
in this set. Those that are not dominated by any others in that set (which may
be a single solution, or the whole set) form what we call the Pareto set. In objec-
tive space, the set of objective vectors corresponding to the Pareto set is called the
Pareto front.

Commonly, the true, optimal solution to a real multiobjective problem is such
a set, containing more than one, and perhaps hundreds or thousands, of nondomi-
nated points. Put another way, no single solution in X dominates (or is equal to)
all other solutions in X; instead, the minimization task is satisfied by a set of dis-
tinct, nondominated solutions. Strictly speaking, this set is the Pareto set (and the
corresponding objective vectors are the Pareto front), while all other sets of nondom-
inated solutions that we may form from elements of x (such as the nondominated
points of the current population during an EMO run) are, at best, ‘approximations’
to the Pareto set. Commonly, however, papers in the field refer to “Pareto front of
the current population”, and the precise meaning is usually clear from the context.

Any single point on the Pareto front is called Pareto optimal ; it is (usually)
not optimal in the single-objective sense, since it (usually) does not minimize each
of the objectives; however, it represents a compromise, such that if any solution
exists that improves upon it on one objective, then that solution will be worse
on at least one other objective. Clearly, the Pareto set for any problem contains,
for each objective, a point that ‘truly’ minimizes that objective. That is, if we are
trying to find a bridge design that has minimal mass, minimal cost, and whose
construction would involve a minimal carbon footprint, then we can expect three

12 Knowles et al.

of the solutions in the Pareto set to be, respectively, the best possible solutions
in these respects among those members of X that are feasible bridge designs. It
is almost always too much to expect, of course, that any single solution will do
particularly well on any pair of objectives, or all three at once, especially where
there is such obvious conflict. For example, cheaper designs will invariably use less
optimal materials in terms of strength/mass ratio, and will typically exploit mass-
produced, environmentally questionable sources. Nevertheless, the vector of scores
for these three points on each objective, representing the best attainable for each
objective, is itself a useful reference point in multiobjective optimization, known
as the ideal point. Some multiobjective optimization methods use an estimation of
this point in order to set target directions for the search. Similarly, the so-called
nadir point represents the vector of worst values for each objective, for points in the
Pareto front (note that, for a problem whose Pareto front shrinks to a single point,
the ideal and nadir points are the same).

These concepts are illustrated very simply in Fig. 2, where we see contrived ex-
amples of Pareto fronts for two problems. The white circles are supposed to represent
the Pareto optimal solutions, plotted in objective space, for a two-objective mini-
mization problem. The circles correspond to actual points (designs, decision vectors,
etc.) in the Pareto set. The white square locates the ideal point — a solution that we
cannot actually achieve in this problem, but showing the best attainable result for
each objective individually. Notice that this particular Pareto front ‘bulges’ towards
its ideal point — this is called a convex front. More generally, convexity is present in
a Pareto front if we can generally draw straight lines between two different solutions,
and find that there are solutions on the Pareto front that dominate the points on
the line. Alternatively, fronts in some problems may display much concavity — this
is the case with the Pareto front represented by black circles in Fig. 2 (these are also
used in the figure to illustrate the concept of a nadir point). A particularly interest-
ing aspect of problems with concavities in the Pareto front is that the solutions in
the concavity are not the optima of any simple weighted sum of the objectives. That
is, these may be points that the decision maker (see later in this section) will choose,
since they may form an ideal trade-off given various considerations. However, they
will invariably be missed in a search based on a single objective weighted sum, since,
on such a unidimensional view of fitness, these so-called unsupported solutions are
bested by other points on the front.

Now, from the viewpoint of the ‘owner’ of the optimization problem we are trying
to solve, we seem to have a difficulty. In the more common approach to optimization,
we will typically combine our different objectives into one (for example, adding up
a bridge design’s scores for cost, mass and carbon footprint) and concentrate on
minimizing their sum. This eventually yields a single result – which is the bridge
design that achieved the best combined score. Alternatively we may find several
solutions that achieve the same best score, but, when using single objective methods,
these will invariably turn out to be quite similar, and effectively the same design.
Hence, the problem has been defined, the optimization has been done, and we can
provide the solution, and move on to the next job. However, if we treat this as
a multiobjective problem, and perform a multiobjective search, our tactics for the
end game are not immediately clear. The outcome of our search is now a set of
solutions, and these will typically contain quite a variety of different designs. What
do we deliver as the single best design?

Introduction 13

Good

Bad

Good Bad

Fig. 2. Examples of possible Pareto fronts, convex (light) and concave (dark), show-
ing the ideal point for the convex front (white square) and the nadir point for the
concave front (dark square)

Before we answer that, certain notes will be instructive. First, whatever was
the optimal point in the single-objective (added up) formulation of the problem is
sure to be on the Pareto front of the multiobjective version of the problem. That is,
an adequately designed multiobjective search will deliver the ‘best’ single-objective
solution as one of the contents of the returned set of solutions. This is trivial to
see, by noting that the solution that truly optimizes a single objective ‘added up’
formulation must be a nondominated solution. Second, notice that the usual practice,
when combining many objectives into one, is to attempt to weight them suitably.
So, if cost is more important to us than anything else, we will give this a much
heftier multiplier than mass or carbon footprint, in the hope that this will guide
our (single-objective) search towards cheaper solutions, but which still show some
consideration for the other objectives. However, for the same reasons as before, the
optimal solution to this ‘new’ single objective problem will also be on the Pareto
front of our (unaltered) multiobjective search. Indeed, the Pareto front contains
the optima for every possible weighted-sum based single objective search for this
problem.

Thus, one way to view a multiobjective search is as a way to free the problem-
solver from the need to specify weights for each objective. It is notoriously difficulty
to decide on the correct relative weights in the first place, but you can be sure that
the returned Pareto set will contain (at least a good approximation to) the solution
that optimizes the ‘correct’ weighted-sum single-objective formulation (as well as all
others), without ever needing to specify the weights.

Suppose, then, that you are an engineer who normally casts your problem as a
single-objective weighted sum, but has been convinced, by one of the authors of this
chapter, to do a multiobjective search instead. Suppose, too, that beforehand you
specify a set of weights, W , for each objective, just as you would normally do. Now,
proceed to do a multiobjective search, but without actually making use of W . At
the end, you have a set of solutions — a set of bridge designs, or factory production
schedules, or whatever. Faced with this choice of possible solutions, and looking for
an easy, swift, automatic way to make the choice, you can simply take the one that
minimizes the single objective sum specified by W . So, why do it multiobjective at
all? Well, the difference is potentially twofold. First, via the multiobjective search
you may have found a better result, in terms of the single-objective score found by

14 Knowles et al.

W , than you would have using a single-objective search method. This is a commonly
observed phenomenon. Second, you are presented with a diverse set of solutions that
provides information about the trade-offs available to you. Even though the weight
set W may represent for you a robust statement of what you require in a design
(though usually it doesn’t), some solutions on the Pareto front that don’t optimize
this particular weighted sum may nevertheless grab your attention. You may well
discover, for example, that an unexpectedly good saving in mass may be possible
for just a slight increase in cost. True, what we are suggesting here is that a decision
needs to be made, and in that sense the multiobjective search seems not to have
automatically solved your problem for you. But, on anything more than cursory
inspection, it becomes clear that the multiobjective search has provided everything
that the single-objective search would have provided for you, plus more, so this is
not an extra decision to be begrudged, it is an extra opportunity, to grasp or ignore
as you see fit.

Multiobjective search is therefore viewed as a way of providing the opportu-
nity for a decision maker to make informed decisions about the solution based on
information about the solutions that inhabit the Pareto front. In contrast, a single-
objective formulation and search, when applied to an inherently multiobjective prob-
lem, provides a solution that may look appealing in the absence of alternatives, but
is otherwise potentially far from what the decision maker may choose given a better
supply of possibilities.

When we therefore decide to face a multiobjective problem on its own terms,
and apply a search method that supplies a variety of different but equally ‘optimal’
solutions for a decision maker to consider, there are various ways we can respond to
this opportunity. As noted above, if we have a preferred weight vector at hand, we
can use that to pick the ‘best’ one. If instead we are skeptical about this, or any,
weight vector, other approaches are available to us, from the long-established field
of multicriterion decision making.

3.1 A Note on Multicriterion Decision Making

The man who, though exceedingly hungry and thirsty, [is] both equally,
being equidistant from food and drink, is therefore bound to stay where
he is.

Aristotle, On the Heavens (Book II)

Given that we have used an approach that generates an approximation to the
Pareto front, the decision maker is provided with this as both a collection of different
solutions to the problem, and a source of information about the conflicts between the
objectives, and other aspects of the space of possible solutions. If the decision maker
is an expert in the problem domain (which should normally be the case!), she may
go into a dark room, and emerge some time later having made her choice, based on
perhaps deep consideration of the information at hand as well as other, unformalized
(maybe unformalizable) aspects of the probable performance characteristics of the
various potential solutions.

But, such decision makers are expensive, and it is therefore desirable to have
more formal, automated ways to help decision makers minimize their effort. These

Introduction 15

are generally ways to use additional information about the problem or problem
domain, which may have been difficult to include in the original search that led to
the Pareto set. There are many standard such methods, and the reader may refer to
any textbook on multicriterion decision making for further information on the many
existing techniques for selecting a final preferred solution (e.g see [10, 25, 34, 38]).

To provide a flavour of the type of method in use, however, we mention first the
idea of ‘preference articulation’. When an expert is at hand who is able to provide
authoritative views on how to balance conflicting measures and goals, this can be
exploited by using preference articulation techniques [8, 2, 20], whereby a series of
concrete questions about preferences are asked to the decision maker. The answers
then determine if it is possible to build one or other type of consistent model of
the decision maker’s internal utility function; if so, then an automated procedure
can potentially be developed for solution evaluation/selection. Note that far more
complicated types of model exist for this than a simple weighted sum over the
objectives.

3.2 Visualization Methods

When tackling an optimization problem, visualization may be used to present vari-
ous features revealed about the problem, or to present information about the search
method being used. Amongst other things, the purposes of visualization include es-
timating the optimal solution value, monitoring the progress or convergence of an
optimization run, assessing the relative performance of different optimizers (includ-
ing stochastic optimizers whose results form a distribution), and surveying features
of the search landscape.

In multiobjective optimization, the above purposes of visualization remain im-
portant, but the set-valued nature of the results and the conflicts that exist between
objectives mean that additional or dual aspects come into play. These will often
include gaining an appreciation of the location and range of the Pareto set/front,
assessing conflicts and trade-offs between objectives, and selecting preferred solu-
tions.

In the following, we briefly present some of the visualization techniques used by
contributors in this book. For more information on visualization techniques that go
beyond those used in this book, the reader is referred to [25] (pp. 239–249), [28]
and [24].

A basic task in MOO visualization is to illustrate the Pareto front, or the approx-
imation of it found by an optimizer. A raw plot of the Pareto front approximation
for bi-objective (or sometimes three-objective) problems (see Fig. 3) is thus very
common. In this book, several of the chapters use this visualization technique to
present results or concepts. When used carefully, it is an intuitive and straight-
forward method which can yield much information in a small amount of space.
It is worth remembering, however, that the eye’s tendency to interpolate between
points is usually not to be trusted when considering points shown in such a plot. The
boundary of the region dominated by a set of points is represented by its attainment
surface, as shown in Fig. 3. This is the representation used in the chapter by Handl
and Knowles in their visualization of the Pareto fronts obtained by multiobjective
clustering.

Many problems of interest go beyond two or three objectives, of course. To
gain an understanding of the range of the Pareto front and the conflicts between

16 Knowles et al.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

m
in

im
iz

e
f2

(x
)

minimize f1(x)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

m
in

im
iz

e
f2

(x
)

minimize f1(x)

Fig. 3. (Top) A standard two-objective plot of a Pareto front approximation. (Bot-
tom) The corresponding attainment surface represents the family of tightest goals
that are known to be attainable as a result of the points found

objectives (and to help select preferred solutions), a parallel axis plot (also known as
a value path) [18] is one method that has much to recommend it (see Fig. 4): it can
handle relatively many objectives; all objectives are represented simultaneously; the
value of each objective is shown by position along a standard numeric axis; and the
conflicts between pairs of adjacent objectives is represented by the angles of lines.
By adding interaction, allowing a user to change the order of presentation of the
objectives and to set acceptable values for objectives, it is possible to learn much
about the Pareto set. Parallel axes plots, or variations of them, can be seen in use
in the chapters of Rodriguez and Fleming, Brockhoff et al, and Parmee et al in this
book.

Introduction 17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

no
rm

al
iz

ed
 fi

tn
es

s
(m

in
 is

 b
et

te
r)

objectives

max=1 max=1 max=0.98 max=0.99 max=0.99

min=-8.8 min=-8.9 min=-8.7 min=-8.9 min=-8.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

no
rm

al
iz

ed
 fi

tn
es

s
(m

in
 is

 b
et

te
r)

objectives

max=1 max=1 max=0.98 max=0.99 max=0.99

min=-8.8 min=-8.9 min=-8.7 min=-8.9 min=-8.6

Fig. 4. (Top) A parallel axes plot showing a whole approximation set. (Bottom) A
subset of the approximation set, arrived at by interactively setting acceptable levels
for each objective (shown by the cross-hairs)

To assess the progress of an optimizer, a plot of best function value against
iteration (or time) is the standard method used in single-objective optimization. In
multiobjective optimization, this simple and very useful visualization device cannot
be used. However, some authors in the book use an appropriate one-dimensional
measure of progress in place of best function value, and plot this instead. Cutello et al
do this in their chapter, showing how progress towards a known gold standard is
made over time.

18 Knowles et al.

Similarly, it is often useful in single-objective evaluation to plot best function
value achieved (after convergence) against some metaparameter, like a parameter
of the search method used. Jin et al and Branke et al in this volume both plot
one-dimensional performance metrics against meta-parameters to show the effects
of the latter on search performance.

3.3 From EAs to EMOAs

Our primary interest in this book is the use of evolutionary multiobjective optimiza-
tion algorithms (EMOAs) — that is, evolutionary algorithms that work directly with
fitness vectors, rather than scalar fitness values. The benefits and merits of EAs, as
discussed above, carry over directly to EMOAs, while the steps we need to take to
operate with fitness vectors rather than scalars are relatively straightforward, as we
shall briefly discuss.

Before launching into an introduction to EMOAs, however, we do not dismiss
alternative optimization strategies. Though not our focus, non-EMOA multiobjec-
tive optimization predates EMOA, and continues to thrive. The field of operations
research (OR) is the primary alternative to EMO in this respect.

OR boasts a rich and growing multiobjective optimization literature. Many of
the problems considered in OR are multiobjective versions of convex problems, e.g.,
minimum spanning tree, where the single-objective version is polynomial-time solv-
able by convex optimization methods; to find Pareto optima of the multiobjective
problem, one can scalarize the objectives, and apply the same convex methods (so
finding one Pareto optimum is ‘easy’). However, for most of these problems, it can
be shown that the number of Pareto optima is exponential in the number of input
variables, and hence finding the Pareto optimal set is intractable for large problems
(see [11]). For these reasons, some of the work reported in the OR literature is based
on mathematical programming techniques supplemented with different schemes for
approximately sampling the Pareto front via scalarizing methods. Methods also
based on traditional optimization techniques, but using decision-making before or
interactively during optimization to reduce the number of Pareto optima to find,
are also popular.

In parallel, the OR field has also developed methods for nonconvex multiob-
jective optimization problems. These rely mainly on approximate optimization al-
gorithms such as simulated annealing and tabu search. To adapt them for use in
multiobjective optimization, two main approaches are possible. One is to adjust the
core functions of the algorithm, such as the acceptance function, so as to base deci-
sions on dominance relations between solutions (or other factors, such as proximity
of solutions in objective space). The other is to leave the basic algorithm in its
original form, and rely on scalarizing techniques (as used in the mathematical pro-
gramming approaches discussed above) to build up an approximation of the Pareto
optimal front.

Meanwhile, in recent years, some OR researchers have begun to experiment with
evolutionary algorithm approaches, encouraged by the rapid development of the field
of evolutionary multiobjective optimization. This brings us to our main topic.

There are comprehensive and authoritative recent texts available providing re-
views of and descriptions of the field of EMO (e.g., [5, 15, 7]). The central difference
to the single objective case is the assignment of fitness — obviously, each individual

Introduction 19

in the population now has its performance characterized by a fitness vector, rather
than a single value. Perusal of Fig. 1 suggests that the only way this need affect the
operation of an evolutionary algorithm is in the selection steps — i.e., steps 5 and
9, in which we are making decisions that require us to compare candidate solutions
in terms of relative fitness. This is indeed the case, and EMO algorithms tend to be
characterized by how these steps are performed.

The primary style of approach, often referred to (see several of the coming chap-
ters) as Pareto ranking, is to give each point in the population a single score based on
the degree to which it dominates, or is dominated by, other points in the population.
In one of the most celebrated such approaches, nondominated sorting [36], the score
assigned to a candidate solution reflects the ‘depth’ to which it dominates other
candidates in the current population. Specifically, all of the nondominated solutions
in the population are given the best rank (say, rank 1). These are then marked as
‘ranked’, and we proceed to find the nondominated front among the unranked re-
mainder. These are ranked 2, and the process continues until all candidates have
been ranked. An individual’s rank is then converted into a selective probability in
any one of numerous ways. Often, for example, practitioners will borrow the simple
Tournament Selection method common in single objective EAs, in which some (usu-
ally) small number from the population are randomly picked, and the best of these
(highest ranked, breaking ties randomly) becomes selected as a parent. As for the
other selection step (step 5 in Fig. 1), the typical approach in EMOAs is to ensure
that the Pareto front of the merged parent and child population is preserved, and
any remaining space in the population is filled by relatively highly ranked members.
It is common, however, for the Pareto front size to be larger than the population
size — when this happens (and more generally too, e.g., in considering which of
the non-front candidates to keep, when this is an issue) — selection decisions are
often based on density in objective space. So, we might prefer to maintain points
that are in relatively sparsely populated parts of the front, and don’t mind losing
solutions that are in crowded sections. These are certainly not the only approaches
to selection, and meanwhile we have skipped over many issues that are the topic
of hot research subareas in the field. However, the reader is again referred to any
of several accessible papers and texts that present the main techniques, and others
that describe ongoing research areas.

Meanwhile, the remainder of the book attempts to characterize and focus on a
certain category of subareas, in which EMO is considered more widely, as a frame-
work in which a variety of novel approaches to problem solving can be devised and
implemented.

4 New Directions in Problem Solving with MOO
Techniques

Rather than regarding problems as immutably divided into single-objective and
multiobjective, and basing such distinctions purely on the properties required of
a solution to the problem, EMO scientists, in practice, are finding reasons to blur
these distinctions, co-opting the EMO mechanisms for handling individual objectives
for related but distinct purposes that enhance the optimization process. This book
is largely about the most prominent and successful of these new problem-solving

20 Knowles et al.

approaches. It is not a book of EC techniques or of isolated applications, but rather
concentrates on the concepts guiding the use of EMO in broad problem classes. In
particular, it shows how EMO

• can be used to understand and resolve ill-defined problems;
• helps in dynamic optimization environments, in problems with constraints, and

in various learning problems where quality is not always directly measurable or
free from biases;

• can eliminate a measurement bias or other confounding factor in the optimization
of an objective;

• can combine information from multiple sources;
• can change the landscape of a problem, making it easier to search;
• supports proper progress and convergence in search problems where the objective

is not explicit, but instead based on tests or competitions (e.g., in co-evolution);
• and, may be employed in the reverse-engineering of artificial and natural systems,

where it can contribute to the quest for new principles of design.

Among these and other lessons, we also learn more about the decision-making step
for choosing a ‘final’ solution that is associated with more traditional uses of mul-
tiobjective optimization, and explore how this need not be an entirely subjective
matter. In some uses of EMO presented in this book — for example, when apply-
ing it to traditional ‘single-objective’ problems, like constrained optimization — the
‘best’ solution is not a function of decision-maker preferences, and its identification
can be automated.

4.1 Chapter Summaries

Part I — Exploiting Multiple Objectives: From Problems to
Solutions

Part I of the book is a collection of chapters about problem formulation. It shows
how broad classes of problem, usually formulated with a single objective to optimize,
can be re-cast as multiobjective problems, with various beneficial and sometimes
even dramatic effects. In some cases, the effect achieved is an improvement in the
efficiency of searching the problem space. In other cases, there is a more profound
effect, so that different and better solutions can be accessed asymptotically, i.e., the
ultimate potential outcome of the search is improved. In yet other cases, the new
problem formulation yields a greater understanding of a problem, with its competing
goals and objectives, and this can help to re-evaluate the problem, possibly leading
to a more conscious refinement of it.

Using several objectives to help solve what are traditionally considered ‘single-
objective’ problems may raise the spectre of ‘relaxing’ the problem in some people’s
minds, resulting in a set of trade-offs, when only one solution is really wanted.
However, as is shown throughout the chapters in Part I, this does not turn out
to be a difficulty: the single-objective formulation (if it exists in well-defined form)
can always be invoked post hoc to select the best solution; and where this is found
inappropriate, it is because the multiobjective problem formulation has revealed a
weakness, or a hidden assumption, in the original problem definition — one that
should be externalized and dealt with appropriately. This issue of selecting the final
solution is discussed at some level in most of these chapters, and what is found is

Introduction 21

an interesting contrast to the usual view that multiobjective optimization always
implies a phase of (human) decision making.

Ficici (Chap. 2) considers co-evolutionary algorithms (CEAs), a thriving area
of research that has the potential to make valuable contributions to the breadth of
the whole problem-solving domain. The defining characteristic of CEAs is that the
fitness of an individual (a candidate solution) is defined, implicitly, by interactions
with other individuals. From this, it follows that CEAs can be used to solve prob-
lems for which no known (explicit) objective function exists: problems that would be
impossible to tackle using traditional optimization methods, such as finding optimal
strategies in two- or multi-player games. Ficici’s chapter shows how Pareto optimal-
ity can be used as an organizing principle in CEAs, with each individual being viewed
as a potential objective for optimization. From this idea, several long-standing dif-
ficulties associated with CEAs can be better understood and largely circumvented.
Moreover, the multiobjective framework allows the general co-evolutionary learning
problem to be handled in such a way that monotonic improvement of solutions is
ensured. This idea relates to elitism in MOEAs, and to the use of archives of non-
dominated solutions, a theme which is touched on in several other chapters in the
book, particularly de Jong and Bucci’s. The issue of decision making is raised in
the chapter, and its relationship to the concept of refinement, and the equilibrium
selection problem in game theory is described, with some tantalizing prospects for
future developments.

One of the earliest uses of multiobjective methods for solving single-objective
problems was their application in constrained optimization, an area thoroughly re-
viewed in Mezura-Montes and Coello’s work (Chap. 3). Constrained optimization
problems represent a large and important chunk of real-world problems, especially
in engineering, but they still pose a challenge to traditional evolutionary algorithm
methods. In this chapter, the common EA approach of using penalty functions is
compared, conceptually, with multiobjective formulations of the problem. Two ben-
efits of the latter are posited: that weights do not have to be selected in order to
balance the different importance or ranges of the constraints; and, that the number
of improving paths to the optimum is much greater, which increases the possibility of
approaching good solutions. Work that both supports and criticizes these assertions
is considered, and an empirical study is used to compare some of the current state-
of-the-art methods. In constrained optimization, it is shown that decision making
never enters as a matter of DM preferences, even in the multiobjective formulation.
In other words, there is an automatic way of selecting the objectively best solution
from the Pareto front in all cases.

Another considerable area of research in problem solving concerns optimization
in dynamically changing contexts, as explained in Chap. 4., Bui et al. investigate
using a secondary helper objective for this class of problems, aimed at maintaining
diversity in the evolving population, and thus a readiness for sudden or periodic
changes in the optima. The use of a secondary objective, and application of standard
MOEAs, is a simple approach to handling dynamism, and what is more it does not
introduce any issues related to decision making. Comparisons made with existing EA
mechanisms for dynamic problems, namely hypermutation and random immigration,
show the MOEA approach already gives the most consistently good performance,
while there remains much room for further development of the technique.

Cutello et al (Chap. 5) apply multiobjective EAs to the traditionally single-
objective problem of predicting a protein’s native structure, a pressing and massively

22 Knowles et al.

significant problem in the biological sciences. The rather specialized nature of this
problem belies the fact that it may serve as an archetype for others in which the
objective function is not really objective or final, but a proxy used to help find
solutions. In structure prediction, it is an energy function that is minimized, and this
is essentially a guess made up of several components of energy; the ultimate arbiter
of quality, however, is not the objective function, but the distance to the observed,
real structure (which is not available at the time of optimization in real instances of
the problem, however). Taking a multiobjective approach to the problem (here by
decomposing the energy function into its components) is a process of learning how
to align the objective functions with the ultimate measure of solution quality. Here,
the flexible nature of multiobjective search is being used as a way to improve the
models on which the optimization is based.

Neumann and Wegener’s interest (Chap. 6) is in the possibility that for well-
defined problems a multiobjective formulation could be straightforwardly faster to
solve for an evolutionary algorithm than a single-objective one. Taking two classic
problems from combinatorial optimization, the single source shortest path problem
and the minimum spanning tree problem, they demonstrate that this possibility is
not a fiction. For the MST, the asymptotic expected optimization time is derived
for simple multiobjective and single-objective EAs, indicating the superiority of the
former. Experimental results on different instance types also show a performance
advantage of multiobjective algorithms for some classes of minimum spanning tree.
In all cases, the problem formulations used here directly yield unique solutions to
the original problem and no extra step of decision making is involved.

Handl and Knowles (Chap. 7) express and develop a view of problem-solving-via-
MOO that concords with some of the ideas expressed in the preceding five chapters.
They believe that in practical problem-solving applications, MOO is used in a va-
riety of subtly different ways, called modes. The modes capture the specific reason
why the problem has been formulated with multiple objectives, and what job each
of the objectives is doing. Handl and Knowles identify five different modes and pro-
vide examples of each from their own research. They also show how some modes
require no decision making for solution selection, while others reveal useful trade-
off information that would normally be hidden, but which must be accounted for
to select a final operational solution. For the latter case, however, some automatic
and semi-automatic methods of decision making have been successfully devised, no-
tably those based on the shape of the Pareto front and the consideration of control
distributions.

Part II — Multiple Objectives in Machine Learning

Part II of the book concerns the application of MOO to different problems in machine
learning. The chapters collected here, like those in part I, emphasise the reasoning
behind the multiobjective formulations presented, and demonstrate that core diffi-
culties in machine learning can be understood and alleviated by the multiobjective
approach. Common themes in machine learning, and in these chapters, are the trade-
off between accuracy and model complexity; conflicts between training, validation
and testing errors; and the combining of rules or classifiers. More unusual issues
that are also highlighted include competing errors in multi-class problems, program
bloat in genetic programming, and the value of promoting models that humans can
understand in system identification.

Introduction 23

Fieldsend et al (Chap. 8) consider the supervised learning paradigm, in which
the output class or value of a datum must be predicted from its inputs, following a
period of training on a random i.i.d. sample of example data. It is well known that the
supervised learning problem is about generalization performance, which is difficult to
assess during training, and hence different terms are often added to the basic training
error objective to achieve regularization or model selection. Fieldsend et al consider
multiobjective approaches to this central issue, and show some graphical methods for
identifying solutions that best balance accuracy vs model complexity. The chapter
also identifies a number of supervised learning problems where competing error terms
are inherent, and a balance must be struck between them. One such is the different
costs of misclassifications in multi-class data, most notably in disease diagnosis.
Some groundbreaking methods in this problem area are presented.

The first of two consecutive chapters on genetic programming is Bleuler et al’s
(Chap. 9). Genetic programming is a form of computer program induction, based
on evolutionary algorithm principles (see [22]). Bleuler et al focus on the problem
of ‘bloat’ in GP, whereby evolved programs have the tendency to grow larger and
larger, containing more and more useless code. This problem with GP has been
a bugbear for several years, and several methods for counteracting it have been
proposed and studied. In recent years, several multiobjective approaches have been
tried, with considerable success. In this chapter, the reason behind the success of
the Pareto-based approach to reducing bloat is investigated, following a thorough
review of this area.

Rodriguez-Vázquez and Fleming (Chap. 10) concentrate on the use of genetic
programming in system identification, specifically for non-linear dynamical systems.
They show how a multi-stage process, which involves going back and forth between
steps of structure selection, parameter estimation and validation can be compressed
into a one-step process through the use of a multiobjective formulation. Moreover,
human understanding of generated models is identified as an important issue which
can be further enhanced by including objectives that control the type and complexity
of model components used.

Rule mining is a method of classification, often for large databases, based on
two processes, (i) extracting useful rules and (ii) combining them. Ishibuchi et al
(Chap. 11) investigate both processes, exploring what is meant by a Pareto optimal
rule and a Pareto optimal rule set, and how these can be approximated. They uncover
interesting relations between accuracy and complexity, which echo the ‘switchback
effect’ shown in Fieldsend et al’s earlier chapter. They also show that Pareto optimal
rule sets are not necessarily comprised entirely of Pareto optimal rules, and this is
more the case as the ruleset size is allowed to grow.

Part III — Multiple Objectives in Design and Engineering

In design and engineering, it is quite widely understood and accepted that problems
invariably have competing objectives, and that problem solving is about finding good
balances, or spotting niches where a different type of solution might be attractive
for the first time. Part III of the book is about this area, particularly open-ended
design, where it is almost a given that problems are multiobjective, when viewed at
some level. Instead of explaining why and how multiple objectives arise here, the
chapters rather focus on how to support understanding, learning and invention in
a multiobjective space, and also how the same principles that are used for design

24 Knowles et al.

might also help when analysing and seeking to understand existing natural systems,
which have inevitably evolved under several and various selection pressures.

Deb and Srinivasan (Chap. 11) suggest a systematic procedure of using two or
more conflicting objectives (usually minimization of size and maximization of per-
formance) to unveil salient knowledge about properties which when present in a
solution would make it an optimal solution corresponding to the underlying objec-
tives. The argument works as follows. Since Pareto-optimal solutions are no ordinary
solutions in the search space, but rather correspond to optimal solutions of certain
trade-offs among objectives, a series of such solutions is expected to possess some
common properties that can provide a practitioner with important knowledge about
‘what makes a solution optimal?’. This process of ‘innovization’ — the creation of
innovative knowledge through multiobjective optimization — is illustrated through
a number of engineering design problems.

Parmee’s focus (Chap. 12) is on methods to support the human designer as she
goes about her business, particularly in the area of conceptual design. Advanced
methods of visualization, interactive evolution and machine learning are described,
all aimed at taking away the drudgery of evaluation, and freeing the designer to make
more insightful and high-level choices and inferences, based on an understanding of
the multiobjective nature of the problem space.

Moshaiov is interested in analogies that can be drawn between artificial and
natural systems (Chap. 13). He explores how and why such analogies have been
useful because of what they can tell us about the design process, and about natural
(evolved) phenomena. From this historic background, he moves on to consider why,
in cybernetics, artificial life and evolutionary biology, the concept of trade-off is
known, but a multiobjective view is rarely taken. Moshaiov explains how such a
view could be made acceptable to both biologists and engineers, and considers what
the consequences of this broader outlook might be.

Part IV — Scaling Up Multiobjective Optimization

Much evidence for the potential of multiobjective optimization to deliver new and
powerful solutions to problems, from classic combinatorial optimization problems
to open-ended design problems, is provided in the first three parts of the book. To
turn this into a reality, there is, of course, a continuing need for the development of
effective multiobjective optimization methods. Of great concern to the field in recent
times has been the scalability of the algorithms and concepts we use — scalability
to increasing numbers of objectives and to larger design spaces. Part IV of the book
presents some of the latest developments in the design of scalable multiobjective
evolutionary algorithms.

Jin et al (Chap. 15) consider how the relatively low-dimensional manifold in
which Pareto optimal solutions reside can be modeled and projected back into the
much higher dimensional parameter space. Such an approach promises to achieve
great scalability in parameter space dimension, provided certain base assumptions
are valid. Jin et al show excellent performance of their techniques for problems with
up to 100 real-valued parameters.

The first of three chapters concerned with methods capable of handling problems
with many objectives is provided by Hughes (Chap. 16). He provides a background
to the issue and reviews the capabilities of several existing Pareto and non-Pareto

Introduction 25

multiobjective EAs at handling problems with four or more objectives. He considers
both the issues of convergence to the Pareto front, and of controlling the distribution
of points along it.

De Jong and Bucci (Chap. 17) are concerned with a particular class of problems
that results in optimization problems with many objectives, easily tens or hundreds
of them. This class is where the objectives are defined in terms of ‘tests’, an approach
that may be taken when other methods of evaluation are not possible. Although the
space of tests is usually very large, de Jong and Bucci show that tests need not all be
arranged on orthogonal axes, but they can be grouped together, depending on how
they affect the ordering of candidate solutions. This enables a significant reduction
in the number of effective objective dimensions considerably.

Brockhoff et al (Chap. 18) also seek to reduce the number of objectives pre-
sented, to a lower number, which is easier to handle effectively. The first method
for doing this has similarities with de Jong and Bucci’s method for tests: it depends
on inspection of the orderings induced by the objectives on sampled sets of solu-
tions, and whether or not these orderings can be preserved when some objectives
are removed from consideration. The second method does not consider orderings per
se, it is based on principal components analysis on the objectives to establish the
redundant ones. Both techniques are demonstrated on test instances, and unifying
concepts are discussed.

5 Concluding Remarks

There are many interesting topics vying for inclusion in a book on multiobjective
problem solving. Our choice has been guided by the desire to present the emerging
concepts and methods that are being used to tackle important and long-standing
classes of problems; and as a result some things have necessarily been left out. We
have not touched on the use of other natural analogies in multiobjective problem
solving, such as methods based on social insect behaviour, or flocking — methods
that can trump evolutionary algorithms in some domains. We have not considered
multiobjective optimization for problems where the number of solution evaluations
possible is severely restricted, an area which is gaining rapid prominence because of
the take-up of EMO in engineering and science, where evaluations are often costly.
In machine learning, we covered several topics, but left out the contribution MOO
is beginning to make in searching for ensembles of neural networks [4], though en-
sembles of rules are considered in the chapter by Ishibuchi et al.

And you, the reader, may well consider that we have overlooked something else
— and you are surely right. But what remains in the book is, we hope, the beginnings
of a synthesis that shows the contributions MOO is making to the core activity of
problem solving with computers. Rather than an esoteric technique at the fringes of
evolutionary algorithm research, or a specialist’s area in operations research, MOO
is now being used to help people solve all sorts of problems by offering genuinely
new approaches to them. It goes beyond a method that allows engineers to balance
out different criteria — though that is an important aspect of it. It can transform
a problem, reaching solutions that were not possible before, or allowing monotonic
progression where cycling previously occurred. It can take us to solutions, even to
classic problems, more quickly than before. And we have seen that the algorithms

26 Knowles et al.

for achieving this are being developed anew, with fresh concepts to take us on to a
new scale of problem-solving ability.

Acknowledgment

JK gratefully acknowledges the support of the Biotechnology and Biological Sciences
Research Council (BBSRC), UK.

References

[1] N. A. Barricelli. Numerical testing of evolution theories Part II: Preliminary
tests of performance, symbiogenesis and terrestrial life. Acta Biotheoretica,
16(3–4):99–126, 1963.

[2] V. Belton and T. J. Stewart. Multiple Criteria Decision Analysis: an Integrated
Approach. Springer-Verlag, Berlin, Germany, 2002.

[3] H. J. Bremermann. Optimization through evolution and recombination. In
Self-Organizing Systems, pages 93–106. Spartan Books, Washington, DC, 1962.

[4] A. Chandra and X. Yao. Ensemble Learning Using Multi-Objective Evolution-
ary Algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):417–
445, 2006.

[5] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
New York, May 2002. ISBN 0-3064-6762-3.

[6] D. Corne, K. Deb, P. Fleming, and J. Knowles. The Good of the Many Out-
weighs the Good of the One: Evolutionary Multi-Objective Optimization. IEEE
Connections Newsletter, 1(1):9–13, 2003.

[7] K. Deb. Evolutionary Algorithms for Multi-Criterion Optimization in Engi-
neering Design. In K. Miettinen, M. M. Mäkelä, P. Neittaanmäki, and J. Pe-
riaux, editors, Evolutionary Algorithms in Engineering and Computer Science,
chapter 8, pages 135–161. John Wiley & Sons, Ltd, Chichester, UK, 1999.

[8] J. S. Dyer, P. C. Fishburn, R. E. Steuer, J. Wallenius, and S. Zionts. Multi-
ple criteria decision making, multiattribute utility theory: the next ten years.
Management Science, 38(5):645–654, 1992.

[9] G. Dyson. Darwin Among the Machines. Penguin Books, 1999.
[10] M. Ehrgott. Multicriteria Optimization. Number 491 in Lecture Notes in

Economics and Mathematical Systems. Springer, Berlin, 2000.
[11] M. Ehrgott and X. Gandibleux. An Annotated Bibliography of Multi-objective

Combinatorial Optimization. Technical Report 62/2000, Fachbereich Mathe-
matik, Universität Kaiserslautern, Kaiserslautern, Germany, 2000.

[12] D. Fogel. Asymptotic convergence properties of genetic algorithms and evo-
lutionary programming: Analysis and experiments. Cybernetics and Systems,
25(3):389–407, 1994.

[13] D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE
Transactions on Neural Networks, 5(1):3–14, 1994.

[14] L. J. Fogel. Autonomous automata. Industrial Research, 4(1):14–19, 1962.

Introduction 27

[15] C. M. Fonseca and P. J. Fleming. An Overview of Evolutionary Algorithms
in Multiobjective Optimization. Evolutionary Computation, 3(1):1–16, Spring
1995.

[16] A. S. Fraser. Simulation of genetic systems by automatic digital computers.
Australian Journal of Biological Sciences, 10:484–491, 1957.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP Completeness. W. H. Freeman and Company, San Francisco,
1979.

[18] A. M. Geoffrion, J. S. Dyer, and A. Feinberg. An Interactive Approach for
Multi-Criterion Optimization, with an Application to the Operation of an Aca-
demic Department. Management Science, 19(4):357–368, 1972.

[19] J. H. Holland. Adaption in Natural and Artificial Systems. University of Michi-
gan Press, 1975.

[20] R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences
and Value Trade-Offs. Cambridge University Press, Cambridge, UK, 1993.

[21] J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.

[22] W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer,
2002.

[23] J. Lohn, G. Hornby, and D. Linden. An Evolved Antenna for Deployment on
NASA’s Space Technology 5 Mission. In Genetic Programming Theory and
Practice II, pages 13–15. Springer, 2004.

[24] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev. Interactive Decision Maps:
Approximation and Visualization of Pareto Frontier. Kluwer Academic, 2004.

[25] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Pub-
lishers, 1999.

[26] R. Poli and W. Langdon. Schema Theory for Genetic Programming with One-
Point Crossover and Point Mutation. Evolutionary Computation, 6(3):231–252,
1998.

[27] G. R. Price. Selection and covariance. Nature, 227:520–521, 1970.
[28] A. Pryke, S. Mostaghim, and A. Nazemi. Heatmap visualization of population

based multi objective algorithms. In Evolutionary Multi-Criterion Optimization
(EMO 2006), volume 4403 of LNCS, pages 361–375. Springer, 2006.

[29] N. Radcliffe. The algebra of genetic algorithms. Annals of Mathematics and
Artificial Intelligence, 10(4):339–384, 1994.

[30] I. Rechenberg. Cybernetic solution path of an experimental problem, 1965.
Library Translation 1122, Royal Aircraft Establishment, Farnborough, UK.

[31] G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Trans-
actions on Neural Networks, 5(1):96–101, 1994.

[32] G. Rudolph. Convergence of evolutionary algorithms in general search spaces.
In Proceedings of the IEEE International Conference on Evolutionary Compu-
tation, pages 50–54, 1996.

[33] H.-P. Schwefel. Kybernetische Evolution als Strategie der experimentellen
Forschung in der Stromungstechnik. Master’s thesis, Hermann Föttinger Insti-
tute for Hydrodynamics, Technical University of Berlin, 1965.

[34] Y. Siskos and A. Spyridakos. Intelligent multicriteria decision support:
Overview and perspectives. European Journal of Operational Research,
113(2):236–246, 1999.

28 Knowles et al.

[35] R. E. Smith, B. A. Dike, B. Ravichandran, A. El-Fallah, and R. Mehra. Discov-
ering Novel Fighter Combat Maneuvers in Simulation: Simulating Test Pilot
Creativity. In Creative Evolutionary Systems, pages 467–486. Morgan Kauf-
mann, 2001.

[36] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sort-
ing in genetic algorithms. Technical report, Department of Mechanical Engi-
neering, Indian Institute of Technology, Kanpur, India, 1993.

[37] D. Thierens and D. Goldberg. Convergence models of genetic algorithm selec-
tion schemes. In Parallel Problem Solving from Nature — PPSN III, volume
866 of LNCS, pages 119–129, 1994.

[38] P. Vincke. Multicriteria Decision-aid. Wiley, New York, 1992.
[39] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1:67–82, 1997.

http://www.springer.com/978-3-540-72963-1

