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Abstract. The Fermi—Pasta—Ulam (FPU) nonlinear oscillator chain has proved to
be a seminal system for investigating problems in nonlinear dynamics. First proposed
as a nonlinear system to elucidate the foundations of statistical mechanics, the initial
lack of confirmation of the researchers expectations eventually led to a number of
profound insights into the behavior of high-dimensional nonlinear systems. The ini-
tial numerical studies, proposed to demonstrate that energy placed in a single mode
of the linearized chain would approach equipartition through nonlinear interactions,
surprisingly showed recurrences. Although subsequent work showed that the origin of
the recurrences is nonlinear resonance, the question of lack of equipartition remained.
The attempt to understand the regularity bore fruit in a profound development in
nonlinear dynamics: the birth of soliton theory. A parallel development, related to
numerical observations that, at higher energies, equipartition among modes could
be approached, was the understanding that the transition with increasing energy is
due to resonance overlap. Further numerical investigations showed that time-scales
were also important, with a transition between faster and slower evolution. This
was explained in terms of mode overlap at higher energy and resonance overlap at
lower energy. Numerical limitations to observing a very slow approach to equiparti-
tion and the problem of connecting high-dimensional Hamiltonian systems to lower
dimensional studies of Arnold diffusion, which indicate transitions from exponen-
tially slow diffusion along resonances to power-law diffusion across resonances, have
been considered. Most of the work, both numerical and theoretical, started from low
frequency (long wavelength) initial conditions.

Coincident with developments to understand equipartition was another program
to connect a statistical phenomenon to nonlinear dynamics, that of understanding
classical heat conduction. The numerical studies were quite different, involving the
excitation of a boundary oscillator with chaotic motion, rather than the excitation of
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the entire chain with regular motion. Although energy transitions are still important,
the inability to reproduce exactly the law of classical heat conduction led to concern
for the generiticity of the FPU chain and exploration of other force laws. Important
concepts of unequal masses, and “anti-integrability,” i.e. isolation of some oscillators,
were considered, as well as separated optical and acoustic modes that could only
communicate through very weak interactions. The importance of chains that do not
allow nonlinear wave propagation in producing the Fourier heat conduction law is
now recognized.

A more recent development has been the exploration of energy placed on the
FPU or related oscillator chains in high-frequency (short wavelength) modes and
the existence of isolated structures (breathers). Breathers are found as solutions to
partial differential equations, analogous to solitons at lower frequency. On oscillator
chains, such as the FPU, energy initially in a single high-frequency mode is found,
at higher energies, to self-organize in oscillator space to form compact structures.
These structures are “chaotic breathers,” i.e. not completely stable, and disintegrate
on longer time-scales. With the significant progress in understanding this evolution,
we now have a rather complete picture of the nonlinear dynamics of the FPU and
related oscillator chains, and their relation to a wide range of concepts in nonlinear
dynamics.

This chapter’s purpose is to explicate these many concepts. After a historical
perspective the basic chaos theory background is reviewed. Types of oscillators, nu-
merical methods, and some analytical results are considered. Numerical results of
studies of equipartition, both from low-frequency and high-frequency modes, are pre-
sented, together with numerical studies of heat conduction. These numerical studies
are related to analytical calculations and estimates of energy transitions and time-
scales to equipartition.

2.1 Historical Perspective and Background Theory

2.1.1 Motivation and Counter Intuitive Numerical Results

In the early 1950s, considering what numerical investigations could be per-
formed on a first generation digital computer at Los Alamos National Labo-
ratory, Enrico Fermi suggested to Stanislaw Ulam and John Pasta that the
foundations of statistical mechanics could be explored. He proposed using a
chain of coupled slightly nonlinear oscillators to show that the nonlinearity
would lead to equipartition of energy among the degrees of freedom. The
model used in the studies was a discretization of a nonlinear spring which to
quartic order is given by the normalized Hamiltonian

N .2 2 3 4
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with IV unit masses and unit harmonic coupling. The oscillator chain is known
as the Fermi-Pasta—Ulam (FPU) model. The original simulations were done
with only the « term present (FPU-«a model) or only the 3 term present
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(FPU-$ model); most subsequent simulations and analysis were done with
the FPU-8 model. With periodic endpoints the chain is translationally invari-
ant, but the original simulations, as with much subsequent work, considered
fixed endpoints, related to a physical finite string. Without nonlinear terms
the coordinates can be transformed to uncoupled normal modes, such that the
energy is always confined to the initial modes in which it is placed. For small
nonlinearities (energy in the nonlinear terms small compared to the energy in
the linear terms) it is logical to place the energy in a mode (or modes) of the
linear system (quasi-modes of the nonlinear system) and observe the subse-
quent behavior of the mode energies subject to the laws of motion described
by the Hamiltonian in (2.1). The initial numerics, programmed by Mary Tsin-
gou for the FPU-« chain with fixed ends and N —1 moving particles, and with
all the energy placed in the first harmonic (k = 1) of the harmonic normal

modes N
2 . [ mik
Qr = \/N ;:1 gi sin ( N ) (2.2)

(with N = 32 and o = 1/4) gave, for example, the result shown in Fig. 2.1
for @1 = 4 (E = E; = 0.077). The initial energy was transferred primar-
ily into the first four modes, with an approximate recurrence (within a few
percent) occurring in a time wqt/27 = 157 fundamental periods. Similar re-
sults were obtained for other initial conditions for both the v and § models,

0t/ 2n

Fig. 2.1. FPU original mode oscillations



24 A.J. Lichtenberg et al.

with the results presented in a Los Alamos report in 1955. Unfortunately,
the untimely death of Fermi, prevented regular publication until the work
appeared in Fermi’s collected works [1]. The simulations did not answer the
question of whether equipartition would ultimately be obtained, as was pre-
dicted from general dynamical principles of the nonexistence of global isolating
integrals, see Poincaré [2], and the inferences used to support the concept of
ergodicity by Fermi himself [3, 4]. Most of the near-term response to the unex-
pected result was to try to explain the recurrences. Using perturbative analysis
Ford [5] and Jackson [6] obtained oscillations of the first few harmonics, with
Jackson’s approach, using nonlinearly perturbed frequencies, giving results,
including the recurrence times, quite similar to the numerical observations.
However, the perturbation procedures are nonconvergent, so no conclusions
can be drawn from them about long-time behavior. There has been a sig-
nificant body of literature concerned with these recurrences and methods of
analysis. Generalizations, for example, have considered energy initially in an
arbitrary mode (rather than the lowest frequency mode), the major couplings
identified, and the effect of various numbers of modes used in analyzing the
dynamics [7]. It was found, for example, that there is an induction period,
i.e. a time during which there is little change in mode energy, if the energy
is initially placed in a high-frequency mode, a condition later observed and
qualitatively explained (see below).

2.1.2 Chaos Theory: KAM Isolation, Arnold Diffusion, Lyapunov
Exponents, KS Entropy

Parallel to the developments, described above, for a high-dimensional Hamilto-
nian system, there were developments in low-dimensional Hamiltonian dynam-
ics that informed the oscillator-chain results, and ultimately were informed by
those results. In particular, the KAM theorem for coupled degrees of freedom
[8, 9, 10] indicated that the generic case was a divided phase space with reg-
ular and chaotic orbits interspersed. Numerical observations, in a surface of
section of a particular two degree of freedom system (the Hénon and Heiles
potential), indicated mostly regular orbits at low energy, with the chaotic
portion of the phase space increasing rather abruptly over a small range of
increasing energy, until most of the phase space is chaotic [11]. A practical
explanation of this rather abrupt increase was that local resonances between
frequencies of the two freedoms, which modified the structure of the phase
space in their neighborhood, would overlap with increasing energy, producing
large areas of chaotic motion [12, 13]. For systems with three or more de-
grees of freedom KAM surfaces cannot isolate chaotic regions: leading to the
possibility of “diffusion”, in the sense that there are initial data which can
reach points in phase space that are arbitrarily far, although such data have
a small microcanonical measure when the nonintegrable perturbation is small
[14]. Furthermore, a heuristic understanding of a many-dimensional system
with weak coupling, backed up by simulations (see [15], Sect. 6.5), indicated
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the fraction of the phase volume that is stochastic continually increases with
increasing number of freedoms N [16]. Another relevant theoretical result is
that the upper bound on the rate of Arnold diffusion is proportional to

oo (1) »

where p is a perturbation parameter [17] and an “optimal convergent” per-
turbation calculation gave a value of ¢ ~ 1/N [18, 19]. This result would
indicate that the diffusion becomes large if '/ ~ 1, but the result, being of
perturbative type, does not extend to so large a perturbation. Other heuristic
forms will be used to estimate the diffusion rate in later Sections. Another de-
velopment in low-dimensional chaos, that would inform the high-dimensional
oscillator chain research, was the study of the three-particle Toda lattice [20],
with Hamiltonian

pY + 3 + p3

H:
2

+exp(—(q1 — g3)) + exp(—(g2 — q1)) + exp(—(g3 — ¢2)) — 3

(2.4)
which corresponds to three particles moving on a ring with exponentially
decreasing repulsive forces between them. In addition to the energy, there is
a relatively obvious isolating integral, namely the total momentum, reducing
the motion to two degrees of freedom. The Henon—Heiles potential [11] is a
truncation of the Toda lattice. However, a surface of section of (2.4), calculated
numerically, showed no chaos [21] and Hamiltonian (2.4) was subsequently
proved to have a third invariant and thus was integrable, i.e. had nonchaotic
phase-space trajectories [22].

In order to obtain equipartition it is sufficient for the dynamics to be “er-
godic” on the energy shell, i.e. microcanonical averages over a given energy
surface and time averages over motions taking place over the same energy
surface must be equal. However, since it is physically relevant that the con-
vergence to equipartition should occur on a finite time, and be possibly fast,
the stronger dynamical property of “mixing” could be required. A direct nu-
merical check of both “ergodicity” and “mixing” is impossible in systems with
many degrees of freedom. However, if all trajectories are chaotic and, hence, on
the average exponentially separating, positive Kolmogorov-Sinai (KS) entropy
[23, 24] and exponentially fast “mixing” follow as a consequence. Therefore,
an obvious quantity to be examined is the largest Lyapunov exponent, giving
the average separation rate between nearby trajectories as

i Ly €@

= Pl (25)

where £(t) is the tangent vector whose time evolution is described by the tan-
gent dynamics equation described in Sect. 2.3. A positive value of A indicates
exponential separation of initially close trajectories, i.e. chaos. A difficulty of
realistic Hamiltonian systems is that, in generic conditions, the energy shell
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is “divided” into chaotic and ordered trajectories, and hence “mixing” can-
not occur everywhere in phase-space. Then, the qualitative statement might
be that, if almost all of the energy surface is characterized by an invariant
distribution that has a positive KS entropy, then, for all practical purposes,
equipartition will be reached. The numerical calculation of Lyapunov expo-
nents has been used extensively to test for chaotic motion, particularly after
the numerical techniques were formalized [25]. It was logical that the method
would be applied to the FPU chain, and became an important element in the
numerical investigations in the 1980s and beyond, as discussed in more detail
below.

For a more complete introduction to these topics see [15]: Sect. 3.2 (KAM
Theory); Sects. 5.2 and 5.3 (concepts of stochasticity) and Sects. 6.1 and 6.2
(Arnold diffusion). See also [13] and, more rigorously, [26].

2.1.3 Geometrization of Hamiltonian Dynamics

Without attempting to be exhaustive, a few historical comments might be
helpful to place the recent contributions about the geometrical approach to
dynamics which are reviewed in the present Chapter, in a more general con-
text.

The idea of looking at the collection of solutions of the Newton’s equa-
tions of motion from a geometric point of view dates back to Poincaré and to
the development of the qualitative theory of differential equations. Tackling
the famous problem of the integrability of the three-body problem, Poincaré
discovered that generic classical Hamiltonian systems, in spite of their deter-
ministic nature, lack predictability because of their extreme sensitivity to the
initial conditions. Such an instability of classical dynamics originates in homo-
clinic intersections, which Poincaré described in his Méthodes Nouvelles de la
Meécanique Céleste [2] without “even attempting to draw” them. The method
was later developed by Cartan among others, using what is now called sym-
plectic geometry [27]. Although of undeniable elegance, symplectic geometry
is not very helpful to advance our knowledge about the regions in phase space
where the dynamics is unstable. The name of Poincaré, together with that of
Fermi, is also associated with an important theorem about the nonexistence
of analytic integrals of motion, besides energy, for generic nonlinear Hamil-
tonian systems describing at least three interacting bodies [3, 4]; this is the
origin of the concept of topological accessibility of the whole constant energy
hypersurface of phase space with high degree of freedom systems, with generic
initial conditions.

In the 1940s, a qualitatively new attempt was made to make use of geomet-
ric concepts to relate Newtonian dynamics with statistical mechanics. Krylov
[28] showed in for the first time the existence of a relationship between dy-
namical instability (seen as the exponential amplification of small deviations
in the initial conditions of a collection of colliding objects representing ide-
alized atoms in a gas) and phase space mixing. Phase mixing is a stronger
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property than ergodicity and is far more relevant to physics than ergodicity.
In fact, while ergodicity assures the equality of time and phase space averages
of physical quantities, phase mixing addresses the rate of approach to ensem-
ble averages in a finite time. In modern terms, Krylov realized the necessity
of chaotic dynamics to obtain fast phase mixing for the physically relevant
observables and to make the connection between dynamics and statistical
mechanics stronger. But Krylov also has the great historical merit of having
attempted to bridge the dynamical foundations of statistical mechanics with a
powerful field of mathematics, Riemannian differential geometry. Krylov knew
mathematical results, concerning the properties of geodesic flows on compact
negatively curved manifolds, by Hadamard [29], Hedlund [30] and Hopf [31].
He envisioned their potential interest to physics, once Newtonian dynamics
is rephrased in terms of Riemannian geometric language. Such a possibility
was well known since the beginning of the century, mainly due to the work
of Levi-Civita; in particular that the principle of stationary action entails the
close connection of a classical mechanical flow with a geodesic flow in a con-
figuration space endowed with a suitable metric. Krylov’s efforts concentrated
on the analysis of the properties of physical systems which move in negatively
curved regions in configuration space. For example, he discussed how the pres-
ence of an inflection point in the Lennard-Jones potential could influence the
dynamics of a dilute gas (through the appearance of regions of negative scalar
curvature in configuration space) and its ensuing strong instability. These at-
tempts have been very influential on the development of the so-called abstract
ergodic theory, where Anosov flows [32] (e.g., geodesic flows on compact man-
ifolds with negative curvature) play a prominent role. Ergodicity and mixing
of these flows have been thoroughly investigated. To give an example, Sinai
proved ergodicity and mixing for two hard spheres by just showing that such
a system is similar enough to a geodesic flow on a negatively curved compact
manifold [33]. Krylov’s intuitions have been worked out further by several
physicists amongst whom we cite those of [34, 35, 36, 37, 38, 39, 40]. They
discovered, much to their surprise, that geodesic flows associated with phys-
ical Hamiltonians do not live on negatively curved manifolds, despite their
chaoticity. Only a few exceptions are known, in particular two low-dimensional
models [35, 36, 41], where chaos is actually associated with hyperbolicity due
to everywhere negatively curved manifolds. In fact, for certain models the re-
gions of negative curvature of the mechanical manifolds apparently shrink by
increasing the number N of degrees of freedom, thus reducing the frequency
of the visits of negatively curved regions.

This somewhat biased search for negative curvature has been the main
obstacle to an effective use of the geometric framework originated by Krylov
to explain the source of chaos in Hamiltonian systems. On the other hand, it is
true that the Jacobi equation, which describes the stability of a geodesic flow,
is in practice only tractable on negatively curved manifolds. Formidable math-
ematical difficulties are encountered in treating the (in)stability of geodesic
flows on manifolds of nonconstant and not everywhere negative curvature.
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Moreover, for this kind of problem, intuition can hardly help. However, the
advent of computers has been of invaluable help. As a matter of fact, dur-
ing the last few years an interplay between analytic methods and numerical
simulation has made it possible to overcome the difficulties, showing that the
Riemannian geometric approach can be applied to dynamical systems of inter-
est to statistical mechanics, field theory, and condensed matter physics [42].
This has extended the domain of application of geometric techniques, and has
also introduced a new point of view about the origin of chaos in Hamiltonian
systems, as well as new methods to describe and understand it, “new” in a
sense that will be made clear in Sect. 2.4.7.

A more detailed exposition of the geometric method and its application to
calculating Lyapunov exponents, which we will be summarizing in Sects. 2.4.7
and 2.8.2, can be found in [42]. See also mathematical expositions in [27, 28].

2.1.4 Development of Soliton Theory

It is somewhat ironical that the most celebrated result that came out of the
investigation of the FPU chain did little to resolve Fermi’s original question
of whether or not the nonlinearity would lead to equipartition among the
degrees of freedom. In an attempt to understand the apparent stability of
the recurrences Norman Zabusky and Martin Kruskal [43, 44] found a Taylor
expansion of the discreteness, valid for long wavelength modes, that recovered
partial differential equations, different from the original nonlinear spring which
produced the discretized chain of oscillators. The resulting equations are the
Korteveg—de Vries (KdV) equation for the FPU-a chain and the modified
Korteveg—de Vries (mKdV) equation for the FPU-3 chain [43, 44]. The latter
chain, with appropriate normalizations, gave the standard form

Ur + 120U + ugee =0 (2.6)

where 7 = h3t/24, ¢ = v — ht, h = L/N, L with the length of the string and
N the number of oscillators. Nonlinear equations of this and related types
had been known to have stable traveling solutions, where the dispersion and
nonlinearity balance to produce constant amplitude and propagation velocity.
An arbitrary initial condition, such as the lowest linear mode on the FPU-3
chain, breaks up initially into a set of structures each having a steady travel-
ing solution with its own velocity. Remarkably, these structures are sufficiently
stable that they pass through one another without breaking up, and the ob-
served recurrences can be interpreted in terms of their superpositions. But
these results do not improve on the best perturbation calculations, and are
clearly limited to long-wavelength (low-frequency) modes by the approxima-
tions which led to (2.6). Partial differential equations, like (2.6), have an infi-
nite number of freedoms, such that general integrability from arbitrary initial
conditions requires an infinite number of invariants of the motion. The real
excitement came when it was shown that such an infinite set exists for (2.6),
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and the new field of soliton theory and applications was born, which would
take us far from the subject at hand. A final note, which is important to our
overall understanding, is that a single initial nonlinear mode solution of the
mKdV equation was found to become unstable as the energy is increased. A
linearization around the nonlinear structure predicted the unstable wave num-
bers and growth rates, and showed that the values correspond to the observed
mode growth for the same discretized structure on the FPU-/ oscillator chain
[45, 46]. The result in which one soliton decomposes into a finite number is
not inconsistent with general soliton theory. The instability will give us insight
into some later results.

2.1.5 Resonance Overlap Explanations

Using the concept of mode overlap to estimate the transition between regular
and chaotic motion Felix Izrailev and Boris Chirikov obtained estimates for
mode overlap both for low- and high-frequency modes [47]. Although there are
various approximations required to obtain results, a simple numerical estimate
can be made by equating the nonlinear frequency shift Awy to the mode
spacing dwy, i.e. setting Awy/dwy, ~ 1. The mode overlap estimate from this
approximation, in terms of energy density, is

Ey, {4/(35k) , k< N 2.7)

k=N T\ 2k3(N —k)/(3BN?), (N —k) < N .
The result for long-wavelength modes, k < N, is not a necessary condition,
as seen in many subsequent numerical experiments, but approximates another
transition, discussed below, between weak and strong stochasticity (the SST).
The result for short-wavelength modes, (N — k) < N, is neither necessary nor
sufficient. It predicts easy overlap at short wavelengths due to mode crowding,
while numerical simulations show consistently that, from a practical point of
view, equipartition is more readily obtained from long-wavelength than from
short-wavelength initial conditions. General theoretical arguments as to the
accessibility of modes has been advanced to show that this is the case [48, 49].

We discuss a resonance overlap criterion, as presently used, in Sect. 2.4.1.
The concept, initially proposed by Chirikov for two degrees of freedom and
reviewed by him, including higher dimensionality, [13], can also be found in
[15], Chap. 4.

2.1.6 Numerical Methods

The straightforward method of computing Lyapunov exponents, using (2.5),
particularly the largest exponent, was a powerful numerical tool for statisti-
cally investigating the dynamical properties of oscillator chains. Another very
useful statistical quantity is the information entropy
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S = —Zek In ey (2.8)
k

with e = Ex/ Y, Ek, such that S = 0 if all the energy resides in a single
mode, and has a maximum S = In NV if the energy is uniformly distributed
among all modes. By using (2.5) and (2.8), detailed numerical investigations
were carried out among investigators in Florence [50, 51, 52, 53], starting
from long-wavelength modes of the FPU-f system, obtaining the variation
of XA and S with energy density ¢ = EF/N. They found a distinct break in
the behavior between weak stochasticity at lower values of e, having strong
power-law dependencies of A and S on ¢, and strong stochasticity at higher ¢
with weak & dependence. The transition (SST) is qualitatively related to the
mode overlap criterion (2.7). Note that ¢ is not necessarily a small quantity.

2.1.7 Methods of Analysis and Numerical Results

It is clear from the phase space description of high-dimensional systems that
mode overlap is not necessary to obtain positive Lyapunov exponents. Most
generic initial conditions will lie in stochastic layers, exhibiting A > 0. The
question becomes what determines the rate of energy diffusion between the de-
grees of freedom? One approach to this problem is to isolate a few of the most
closely coupled modes and determine if their resonant interaction results in
chaos that can then couple to other resonances. This was done, as described
previously, for low-dimensional chaos to understand the exponentially slow
Arnold diffusion. For high-dimensional systems the situation is more com-
plicated with rapid diffusion across overlapped resonances and slow Arnold
diffusion along resonance (see [15], Chap. 6, for a detailed discussion). The
method of isolating a few interacting resonances and then calculating their
coupling to the larger phase space was used for another oscillator chain, a
discretized sine-Gordon equation, to explore the transition from power-law
(numerically observable) equipartition rates with varying £, to exponentially
slow (not numerically observable) rates [54]. It was also found, using this
approach and comparison with numerics, that short-wavelength mode inter-
actions required considerably higher energy to produce chaos. The method
was then applied to the FPU-S chain, in more detail, specifically investigat-
ing the process by which stochastic interaction between a few long-wavelength
modes was transferred to short-wavelength modes and calculating a transition
between exponentially slow and power-law scaling of the energy transfer [55].
At about the same time, there was considerable attention given to determin-
ing the scaling of the equipartition time T, with &, in the power-law regime,
finding Teq o< 73 [56, 57, 58] with the latter references giving a heuristic cal-
culation of this scaling. The numerics and method of estimation will be given
in Sects. 2.5 and 2.8, respectively. Other authors have fitted the data to a
“stretched exponential”, Tuy o< exp(—c!/*) [59], obtaining a better agreement
over a wider € range, but without any theoretical underpinning. Indeed, the
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reason for this scaling has not been explicitly explained, nor has its relation
to the power-law scaling. It is very likely that, as ¢ is decreased, longer and
longer time-scales come into play and, therefore, no definite functional form
will be able to fit the increase of the time-scale over the full small £ range.
The scaling A o £2, detected at e smaller than the threshold value of the SST
transition (¢ ~ 1), has also not been specifically related to the Tpq o e73
scaling in the same € range. The scaling at higher ¢, that is at ¢ larger than
the threshold value of the SST transition, has been heuristically determined
using a random matrix approximation for the tangent dynamics, intuitively
suggesting that above the SST chaos is fully developed [53]. The scalings of
A with € can now be determined, analytically, by considering the geometry of
the phase space near equipartition. Making suitable assumptions about the
geometry of mechanical manifolds, the scaling of A with €, both below and
above the SST transition and the value of € at the transition has been theoret-
ically calculated in agreement with numerical findings [42, 60, 61]. Although
the method was developed to understand the FPU-{ scaling, it is applicable
to oscillator chains with various force laws, as can be found in the referenced
works. The mathematical procedure is outlined in Sects. 2.4.7 and 2.8.2.

2.1.8 Comparison of Different Oscillator Chains

Although the FPU-g oscillator chain has received most of the attention, there
has been, from the beginning, interest in other force laws. The cubic potential
in the FPU-a model is more conducive to using expansion procedures to obtain
analytic estimates [62], and also, the form with periodic boundary conditions
and appropriately chosen « is a third order truncation of the Toda lattice po-
tential, which is integrable. However, the FPU-« is not energy renormalizable
with varying « (does not scale with aF), and furthermore suffers from the
problem of unbounded trajectories at high energy. Nevertheless, comparison
with the FPU-G dynamics has added considerably to our overall understand-
ing. If the finite time version of the Lyapunov exponent (2.5) is calculated for
the N-particle Toda lattice and its FPU-«a approximation, the two exponents
decrease, without separation, until some “induction time” or “trapping time”
7r(€), is reached, after which Appy_, attains a constant value, while A,ga
continues to decay, as it must for an integrable system [61]. Plotting 7r(¢),
with N as a parameter, in the weak stochasticity regime, it was found in [61]
that 77 oc 72, which is different from the Teq ox £ 72 scaling found both for the
FPU-« and the FPU-3 systems, i.e. the trapping time and the equipartition
time scale differently with €. A transition at some small € to a rapid increase
in 7p with decreasing e, with the transition value a function of N, was also
observed and interpreted as a transition to regular motion. This phenomenon
had been observed earlier in the discretized sine-Gordon system and inter-
preted in a similar fashion [54]. However, subsequent work with the FPU-3
system elicited a different interpretation, that the transition was to the ex-
ponentially slow form of Arnold diffusion [55]. These different interpretations
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have not been theoretically reconciled. The Hamiltonian containing both cubic
and quartic nonlinearities, as in (2.1), has also been investigated [63].

The contrast of the FPU oscillator chain with other types of chains has also
led to considerable insight and some additional puzzles. The class of Klein—
Gordon chains, with on-site potentials, are similar to the FPU, but more
complicated, both because they lack the FPU translational invariance and
because they have an additional parameter whose scaling must be determined.
In addition to the sine-Gordon version, a closer comparison with the FPU-3
chain employs a Klein—-Gordon on-site potential having quadratic and quartic
terms, with Hamiltonian

N 2 2 2 4
p; (¢i+1 — @) mq; | PBg;
H_,22+ ) + o, (2.9)
which is often called the ¢* model to distinguish the quartic nonlinearity
from other Klein—-Gordon potentials. In the first comprehensive numerical
comparison of the two systems, (2.1) and (2.9), some physical differences were
observed and, qualitatively, understood. In particular, at a given ¢, the ¢* took
significantly shorter time to obtain equipartition from long-wavelength mode
initial conditions and significantly longer time from short-wavelength modes,
than the FPU [64]. The fact that from short wavelengths it was generally a
longer process to obtain equipartition was remarked in that early work, but
little background theory had been done for these initial conditions. A later
comparison for the long wavelengths provided a more complete numerical
study and was able to explain quantitatively these differences [65]. We will
present the numerical comparisons in Sect. 2.5 and outline the supporting
theory in Sect. 2.8. The understanding of the results from short wavelengths
awaited the development of new theoretical concepts, as given below. Before
considering this subject we note that the emphasis on energy density, holding
€ constant as N is varied, i.e. F/ oc IV, is not always the relevant way to look at
a problem, as seen in calculating resonance overlap [55]. The case in which E
is held fixed as N is varied has been used to analytically calculate stochasticity
thresholds of the FPU and ¢* models [66].

2.1.9 Dynamics at Short Wavelengths: Chaotic Breathers

Following the original numerical work, most numerical studies examined the
evolution from long-wavelength (low-frequency) modes in which neighboring
oscillators are nearly in phase. Zabusky and Deem [67] were the first to con-
sider the case in which the energy is put into a high-frequency mode. In their
early work, the zone-boundary mode was excited with an added spatial modu-
lation for the FPU-a model. Our main concern here will be the FPU-£ model,
and spatial modulation of the mode is spontaneously created by modulational
instability. Budinsky and Bountis [68] found that the zone-boundary m-mode,
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i.e. the mode with 180° phase shift between neighboring oscillators of the one-
dimensional FPU lattice is unstable above a given energy threshold E. which
scales like 1/N. This result was later confirmed by Flach [69] and Poggi and
Ruffo [70], who also obtained the exact numerical factor relating E. to 1/N.
These results were obtained using a direct linear stability analysis around the
periodic orbit corresponding to the m-mode. Similar methods have been more
recently applied to other modes and other FPU potentials by Chechin [71, 72]
and Rink [73]. A technique which allows for a more general exploration of the
dynamics starting from short wavelengths is to follow an envelope function of
the oscillators defined by 1); = (—1)%g;. Since the main phase variation of the
oscillator amplitudes ¢; vary by nearly 7 from one oscillator to the next, the v;
vary slowly; a Taylor expansion of the envelope function in the oscillator space
can produce a differential equation whose equilibrium properties, stability, and
nonlinear effects can be explored (see Sect. 2.4.5). A formula for E., valid for
all N, has been obtained in Refs. [74, 75, 76, 77] in the rotating wave ap-
proximation (RWA) given in (2.86). Besides calculating the energy threshold,
the growth rates of mode amplitudes were obtained. The application to the
Klein-Gordon lattices was first studied by Kivshar and Peyrard [78], following
an analogy with the Benjamin—Feir instability in fluid mechanics [79]. A dif-
ferent approach to describe this instability had been previously introduced by
Zakharov and Shabat [80], who studied the associated nonlinear Schrédinger
equation in the continuum limit. Using that method for the FPU equations of
motion, the instability boundary was found by Berman and Kolovskii [81] in
the so-called “narrow-packet” approximation. Detailed numerics over longer
times were obtained for the FPU model by Pettini [64] and for the discretized
sine-Gordon equation by Goedde [54], both indicating that, for a given en-
ergy, short-wavelength (high-frequency) modes required longer times to reach
equipartition than long-wavelength modes. At about the same time it was
demonstrated that stable intrinsic localized modes (ILMs) could exist for an-
harmonic periodic structures [82]. However, from more general high-frequency
initial conditions there was a tendency to form ILMs but they were not stable,
breaking up and ultimately decaying toward equipartition [75, 83].

The existence of ILMs (also called breathers) on periodic chains and the
complex behavior of more arbitrary high-frequency initial conditions has led
to extensive study of these structures to understand their stability. A com-
prehensive review of these studies would lead us far from the main topic of
this review (see [84] for a review and further references). The breathers can
be stationary or moving, and, like low-frequency solitons, can pass through
one another. Whether energy is exchanged in such an interaction depends on
the system’s stability properties. ILMs that are not exact solutions of the un-
derlying system generally exchange energy, and in a particular process have
been shown to transfer energy from the smaller to the larger breather [85].
This phenomenon is also observed numerically for a Klein-Gordon chain [86]
and for the FPU-S chain [87, 88]. For fixed end-points, as in the original FPU
studies and much subsequent work, a clearly defined instability boundary
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cannot be calculated for a discrete chain. Nevertheless, as described below,
some approximate results are available.

The four-mode resonance overlap criterion for a stochasticity transition,
described in Sect. 2.4.1 for low-frequency modes, has also been used for high-
frequency modes for the discretized sine-Gordon chain [54]. It predicted the
increased stability for these modes, as found numerically. Another approach to
a reduced problem is to represent the main-energy containing oscillator and
the immediate neighboring oscillators as a three degree of freedom system
from which a mapping can be obtained [89]. In this reduced phase space, de-
pending on the energy and the action, one observes both regular and chaotic
regions. The chaotic regions are sufficient to indicate chaos in the larger sys-
tem, but do not give a time-scale for equipartition to be approached. The
regular regions may also be chaotic in the larger system, but are generally
more weakly so. Note that the mapping presentation uses initial conditions
close to those of a breather, which is narrow in oscillator space, and there-
fore has a broad distribution of energies in mode space. Contrarily, the mode
presentation starts with a narrow distribution in mode space and therefore
a broad distribution in oscillator space. The technique employing the enve-
lope equations and the RWA has been used to describe longer time effects,
as well as instability boundaries both for periodic boundary conditions at low
energies [90, 91] and fixed boundary conditions at both low and high energies
[92, 93, 94], and used to compare the dynamics of the FPU and ¢* chains [94].

The general picture that has emerged is that if the energy is placed in
a high-frequency mode or modes for which neighboring oscillators are pri-
marily out of phase, a complicated dynamics ensues, which consists of three
stages. First, there is an initial stage in which, for sufficiently high energy,
the mode breaks up into a number of breather-like structures. Second, on a
slower time-scale, these structures coalesce into one large unstable structure,
called a “chaotic breather” (CB). Since a single large CB closely approximates
a stable breather, a third and final decay stage, toward equipartition, can be
very slow. One does not know whether there exists any true energy threshold
to achieve equipartition, although there appears to be some numerical evi-
dence for such a threshold in the discretized sine-Gordon system. However, as
discussed extensively with respect to low-frequency mode initial conditions,
the practical thresholds refer to observable timescales.

For nonlinear structures on chains having “weak spring” potentials, for
which the nonlinear restoring force substracts from the linear restoring, the
interaction that causes the final decay is radiation from the breathers to the
propagating linear modes. For “strong spring” potentials the breather fre-
quency is above the optical band, so a more subtle energy interchange must
occur [84, 87, 95, 96]. A beat phenomenon has been postulated as the energy
interchange mechanism, and used to calculate an e-scaling that agrees with
numerics [92].



2 Dynamics of Oscillator Chains 35

2.1.10 Heat Transport in Lattice Models

A main goal of classical kinetic theory is to provide the definition of trans-
port coefficients through phenomenological constitutive equations. The ba-
sic hypotheses of this macroscopic theory of transport phenomena are the
assumption that fluxes are proportional to thermodynamic forces and that
the system evolves close to equilibrium [97]. For instance, when dealing with
heat transport in a solid, one defines the thermal conductivity s through the
Fourier law

J = —kVT, (2.10)

where the heat flux J is the amount of heat transported through the unit sur-
face in unit time and T'(x, t) is the local temperature. Such a phenomenological
relation was first proposed in 1808 by Fourier as an attempt to explain the
phenomenon of the Earth cooling. Equation (2.10) is assumed to be valid close
to equilibrium. Actually, the very definition of the local energy flux J(x,¢) and
temperature field T'(x,t) relies, in turn, on the local equilibrium hypothesis,
i.e. on the possibility of defining a local temperature for a macroscopically
small but microscopically large volume in position x at time ¢.

The first and most elementary attempt to give a microscopic foundation to
Fourier’s law dates back to Debye [98]. By rephrasing the results of the kinetic
theory for the (dilute) phonon gas, he found that the thermal conductivity
should be proportional to Cvf, where C is the heat capacity and v, ¢ are
the phonon mean velocity and free path, respectively. Moreover, Debye also
realized that at a microscopic level the finite thermal conductivity in crystals
should be a consequence of the nonlinear forces acting among the constituent
atoms [98].

Peierls further extended the conjecture of Debye and formulated a
Boltzmann-like equation, which shows that anharmonicity is necessary for
obtaining genuine diffusion of the energy by the so-called Umklapp processes,
where the nonlinearity is introduced phenomenologically in the transport
equation, independently of the microscopic nature of the interactions [99].
Nonetheless, the Boltzmann—Peierls approach represented an improvement
in the theory of lattice thermal conductivity. It allows one to compute the
dependence of x on the temperature which agrees reasonably well with exper-
imental data in the very low-temperature regime. However, basic questions
remained, such as under which conditions is local equilibrium obtained in a
physically accessible time? This kind of a problem partly inspired the nu-
merical experiment by Fermi, Pasta and Ulam, as Fermi was aware of the
conceptual difficulties concerning the possibility of constructing a satisfactory
microscopic approach to transport theory. In nonlinear chains, the complex
interactions among the constituent atoms or molecules of a real solid are re-
duced to harmonic and nonlinear springs, acting between nearest-neighbor
equal-mass particles. Despite such simplifications, the basic ingredients that
one reasonably conjectures to be responsible for the main physical effect (i.e.
the finiteness of thermal conductivity) are contained in the model. As already
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described, the original study expected to verify a common belief, which had
never been put to a rigorous test: an isolated mechanical system with many de-
grees of freedom should eventually yield equilibrium through “thermalization”
of the energy. Furthermore, the measurement of the time interval needed to
approach the equilibrium state, i.e. the “relaxation time” of the chain of oscil-
lators, would have provided an indirect determination of thermal conductivity
K, since Debye’s argument predicts k o« C, /7, i.e. inversely proportional to
the relaxation time 7, ~ ¢/v, which is assumed to represent the average time
needed for a phononic excitation to relax to thermal equilibrium.

After the lack of success of the FPU numerical experiment, the first im-
portant attempt to reconsider the problem of heat transport in solids from a
theoretical point of view was to consider a homogeneous harmonic chain with
fixed boundary conditions in contact with stochastic Langevin heat baths
[100]. The equations of motion

’:jn - WQ(Qn+1 - 2(]77, + Qn—l) + 5n1(§+ - AC]l) + 5nN(§— - )\q.N)v (211)

where £ are independent stochastic processes with zero mean and variance
2 1 kT, with Ty > T_, can be solved by a phase-space description, i.e.
using the Fokker—Planck equation. However, the solutions were not success-
ful in reproducing the Fourier law. They predicted that the heat flux was
proportional to the temperature difference, rather than the temperature gra-
dient, thus showing that homogeneous harmonic chains do not exhibit normal
transport properties. Although there are many aspects of linear chains, such as
the inclusion of disorder or varying masses [101] that we have not considered
above, our main concern here is with nonlinear chains. Numerical studies of
heat conductivity in the FPU chain were reconsidered at the end of the 1960s.
In particular, nonequilibrium simulations of the FPU model (2.1) with cou-
pling constants o and ( fixed to represent the leading terms of the expansion
of the Lennard-Jones potential were performed [102, 103]. These authors also
considered the effect of disorder by including in the model either a disordered
binary mixture of masses [102] or random nonlinear coupling constants [103].
The combination of nonlinearity and disorder did not help the researchers to
obtain a clear understanding of the problem. They even found cases in which
anharmonicity increases thermal conductivity. The attention was mainly fo-
cused on the form of the temperaure profile T'(x). They noticed that its shape
depended on the existence of disorder. Although it is known that T'(z) is not a
self-averaging observable for disordered harmonic chains, it is not known how
T'(z) depends on disorder over long enough time-scales in anharmonic chains.
Additional questions that were investigated concerned the concentration of
impurities [102].

Preliminary work on homogeneous anharmonic chains considered the
equal-masses FPU and Lennard-Jones chains composed of 30 particles and
coupled with Langevin baths at their boundaries [104], a task that was unfea-
sible with the computer resources available at that time. As a consequence,
several attempts of designing easy-to-simulate toy models followed these first
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studies. Some examples are reviewed in [105]. One was the so-called ding-a-
ling model, a prototype of all models with an on-site potential, as described
in (2.16) in the next Section. This model was found to exhibit normal ther-
mal conductivity. The increase in computer power led to a revival of the
heat conduction problem inbetween the mid-1980s and the mid-1990s, when
nonequilibrium simulations of the FPU model [106, 107] and of the diatomic
Toda chain [108, 109, 110, 111] of alternating light and heavy masses were per-
formed. Subsenquently, there were systematic studies on the size dependence
of the heat conductivity for the FPU chain with quartic [112, 113, 114] or cubic
[115] nonlinear potential as well as for the diatomic Toda chain [116, 117].
They indicated a divergence of the heat conductivity with N, the number
of mass points, which was interpreted as due to ballistic transport of energy
through the chain. As we will comment in the following, an on-site potential
determines a classical conductivity.

2.2 Formulations: Types of Oscillator Chains

2.2.1 Chains Similar to the FPU

Over the years, since the first numerical investigation by Fermi, Pasta and
Ulam, many different oscillator chains have been studied. There have been var-
ious reasons for the particular choices, sometimes because they approximated
physical systems, sometimes for their simplicity, and sometimes designed to
bring out specific features or compare results with other chains.

In choosing an oscillation chain for the initial study, the FPU-3 system was
a reasonable choice, as it is a discretization of the partial differential equation
for the nonlinear string with a strong nonlinear restoring force

1+35(ZZ)T = 0. (2.12)

The discretization of y(z,t) as y;(t),

Py Py
otz 0x?

Y _ Yj+1—Yj Yj — Yji-1
= 2.13
ox Ax or Ax ( )
0%y Y41 — 2y +yj1

ox2 Ax? ’ (2.14)

where Ax = L/N, with L as the length of the string and N — 1 the number
of oscillators, yields

o (Wi =2y +y)
Yi = Azx?
(i1 —vi)? | wi—wi-1)? | (Wi — i) (w5 — vi-1)
. {(1 +4) [ Ax? + Ax? * Ax?
(2.15)
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The original work, and also the analytic investigation by Izrailev and Chirikov
[47], were with fixed end points at j = 0 corresponding to = 0, and j = N
corresponding to x = L, such that j = 1,2..., N—1 for the moving oscillators.
The coordinates can be rescaled at fixed N to any Az and L to give the
FPU-G part of (2.1), with Az normalized to 1. Letting Az — Az’ = L'/L
and introducing the change of variables y; — y;L'/L and t' — tL'/L leads
to (2.15) again. Since dyj/dt’ = dy;/dt, the energy per mode is unchanged.
Thus increasing N by adding oscillators to the end of the chain at fixed Az is
equivalent to adding oscillators by subdividing the chain at fixed L, provided
the time and displacement are rescaled.

The addition of the a term to (2.1) is a logical extension to a more general
restoring force. However the o and 3 terms have different properties, with the
energy scaling differently with choices of o and 3, such that the energy F is
renormalizable with SE and with o2 E. Furthermore, the sign in the nonlinear
term in (2.12) changes the behavior from a strong to a weak spring, while the
«a term has a directional antisymmetry. Some of the consequences of these
differences will emerge in the following sections.

It also became clear in subsequent years that, while fixed endpoints were
a physical condition for an actual string, periodically continued endpoints (or
mass points on a circle) had some attractive features for analysis. With a pe-
riodic boundary condition (BC), waves traveling in a single direction without
reflection are allowed, which is a key ingredient in the development of soliton
theory, as we outline in Sect. 2.4.3. For a periodic BC, linear momentum is an
exact invariant, which simplifies various analyses. If the oscillator dynamics is
expressed in terms of linear modes, i.e. the modes which would be exact so-
lutions in the absence of the nonlinearity, other differences between fixed and
periodic boundaries become evident. For a periodic BC there is a highest fre-
quency boundary mode that has exact alternation of oscillator phases, which
is an exact solution of the nonlinear problem, as considered in subsequent
sections.

The FPU type of oscillator chains did not realistically represent the dy-
namics of solid materials. A more general representation is given by the Hamil-
tonian

2
H= Z [é?rln +U(q:) +V(giy1 — @) (2.16)

where U and V are on-site and inter-site potentials, respectively, which are
most generally nonlinear. They can be constructed as physical models of one-
dimensional crystals or by discretizations of Klein—Gordon partial differential
equations. For the FPU chain U = 0. One form of (2.16) that is used to
compare to FPU-3 dynamics is the ¢* chain with V = (1/2)(¢;+1 — ¢;)? and
U = (m?/2)¢? + (8/4)q}, as given in (2.9), and compared theoretically and
numerically with the FPU in various subsequent sections. The Hamiltonian
of (2.16) and the simplified form (2.9) are not rescalable as is the FPU-3, but
the coefficients can be chosen to make useful comparisons.
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An interesting special case of the Klein—Gordon class of partial differential
equations is the sine-Gordon equation

Yt — You + siny = 0, (2.17)

which can discretized in space in the same manner as the nonlinear spring to
obtain the system Hamiltonian

N N N
1
H= E 2p?+ E (1 —cosy;) + E Aijyiyj, (2.18)
i=1 i=1

ij=1
where the coupling matrix A;; is given by

(2055 — 6i,5—1 — i j+1)

A = (Az)2 ,

(2.19)
pi =y, Ax = L/N, and ;5 is the Kronecker §. As with the more general
forms of the discretized Klein—Gordon, (2.18) is not rescalable on Az, such
that both L and N enter as essential parameters. The discretized system is of
particular interest, as the partial differential equation is integrable, unlike the
nonlinear spring, so the discretization, itself, becomes the only source of chaos.
However, at low frequencies (long wavelengths) where the FPU approximates
an integrable system, the transitions are similar [54]. One interesting feature in
that work was an explicit discretization of time, so forming a 2/N-dimensional
symplectic map to be analyzed. The sine-Gordon on-site potential has also
been used as an interaction potential to study the Fourier heat law, as we
discuss in Sect. 2.7.2. For that case the potential is known as the Frenkel—
Kontorova potential.

Closely related to the FPU chain is the chain with the same interparti-
cle potential structure but with varying masses. To explore the question of
whether a fraction of the modes, in a distinguishable mode packet, could be
isolated from the modes initially containing the energy, Galgani et al. [118§]
considered a modified FPU-$ model, with fixed ends, described by the Hamil-
tonian

N 2 2 4
p; (¢i+1 — @) (¢ir1 — ai)
H= 2.20
with m; = 1 for ¢ odd and m; = m < 1 for ¢ even. The alternation of

masses separated the linear mode spectrum into branches, an acoustic branch
which is only slightly modified from the usual spectrum, and an optical branch
associated with the lower mass particles. The form of the spectrum is given
in Sect. 2.2.2 and the implication for mode isolation in the thermodynamic
limit is discussed in Sect. 2.4.2

Another oscillator chain of particular importance is the Toda lattice, which
generalizes the three-particle lattice, given in (2.4), to N particles. The lat-
tice, with exponential forces between particles, is generally thought of as con-
strained on a ring, which is equivalent to periodic BC. This discretized chain
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is exactly integrable, which makes it uninteresting in itself, but very useful
for comparing to the FPU-«a potential that can be considered to be a trun-
cation of the Toda potential (see Sect. 2.4.3). The same comparison of the
three particle Toda potential with its truncation, the Henon and Heiles po-
tential [11], was very useful in understanding low-dimentional chaos, as we
have already discussed briefly in Sect. 2.1.2. The N-particle Toda chain has
also been used to explore the effect of alternating heavy and light masses,
which is not integrable, and is discussed briefly in Sect. 2.7.1 in connection
with heat conduction.

The oscillator chains described above do not exhaust the useful types that
have been explored in a variety of contexts. One such chain of historical impor-
tance is the “ding-a-ling” model consisting of alternately harmonically bound
and free hard-core particles, which was used to obtain the Fourier law of heat
conduction [119]. It is given in (2.132), Sect. 2.7.2, and its properties are dis-
cussed there. Variants of the ding-a-ling model have also been studied in this
context [120]. The less artificial potentials of the Klein-Gordon type also can
produce the Fourier law, and are considered in Sect. 2.7.2.

2.2.2 Representation in Modes of the Linear System

We have already mentioned that, for linear chains, the transformation to the
harmonic normal modes, as given by (2.2), gives a set of mode amplitudes
Qr that are invariant under the motion. This can be seen by applying the
inverse transform, with N moving particles, to the FPU-£ chain (2.1) or the

¢ chain (2.9)
2 & ik
qZ:\/N+1Zkain<N+1), (2.21)
k=1

to obtain [121]

N N
H 1
/ Z 2 (P +wiQg) + 8N+ Z (4,4, k,DQiQ;QrQu,  (2.22)
k=1 i

where Py are the corresponding momenta, with the mode frequencies wy

given by
) wk
Wi = 2s8in <2N—|—2> (2.23)

k
wk:\/m2+4sin2<2]\7fr+2> (2.24)

for the ¢*. It is immediately apparent from Hamilton’s equations that the
dynamics of the linear modes are independent of one another. The quartic
terms couple the modes together, with

for the FPU-43, and
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C(i,j, k1) = wiwjwpw, Y Bli+j+k+1) (2.25)
P

for the FPU-/3, and, for the ¢?,

Cli,j k1) =Y Bli+j+k+1). (2.26)
P

The sum is over the eight permutations of the sign of 7,7,k,l and the function
B(x) takes the value 1 if the argument is zero, —1 if the argument is £2(N+1),
and zero otherwise. The selection rule for the couplings, which simplifies the
analysis, follows from the quartic nature of the coupling (e.g., see [122]).

From (2.23) we see that frequencies spacings follow a simple sine function:
they are linearly spaced (i.e. proportional to k/N) for k < N and accumulate
quadratically (i.e. as (7k/2(N + 1))?) near the highest frequency, which lies
just below 2. For periodic boundary conditions, the frequencies are

wy, = 2sin(mk/N), (2.27)

which has only N/2 different linear frequencies, and an exact zone-boundary
mode with wy/o = 2. The existence of this mode with exact alternation of
the phase of neighboring oscillators allows one to obtain some exact solutions,
which we consider in Sect. 2.4.4. For the ¢* chain, the linear part of the on-site
potential results in the m? term in (2.24). If m? > 7k/N, then there is also
quadratic accumulation of frequencies above wy = m. This bunching plays a
significant role in the chaotic numerics, as described in Sect. (2.5). The FPU-«
Hamiltonian can also be transformed by using the harmonic normal modes to
obtain the transformed Hamiltonian

«

H, =
2VN +1,

N N
;(P§+W§Qi)+ > Clh g Q;QuQ,  (2.28)

k=1 gi=1

which is simpler, having only a product of three summations to represent the
cubic term. Furthermore, it is considerably more stable than the FPU-/3 as
it is a truncation to cubic order of an N-particle Toda lattice, as we have
considered in the previous subsection.

For numerical integrations if, for example, a single mode initial condition
is used, usually with all the energy in the form of potential energy, then
E = (1/2)wiQ3 (e = wiQ3%/(2N)), and the oscillator equations are integrated
with their initial values given from (2.21). Due to the nonlinearity, the energy
does not remain in the initial mode but spreads through the mode spectrum,
defined in terms of the instantaneous ¢; by the transformation in (2.2). For
energy sufficiently low that there is no resonance overlap (see Sect. 2.4.1),
the energy is principally confined to the initial mode falling exponentially
to other k-values, but satisfying the selection rule as given by (2.25) and
following. Using perturbation theory, DeLuca et al. [55] obtained the mode
energy decay in geometric progression
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Ey ~ p*Ep_os, (2.29)

with + as the initial mode and h the index of any high-frequency mode, and
p is the average decay ratio between modes, 2y apart, given by

38E

. 2.
i (2.30)

p =
The formula only holds for SE < 1, where resonances do not play a significant
role. Numerical results for v = 3 and 5 agreed quite well with the analytical
predictions of (2.29) and (2.30).
The related problem of the FPU with alternating masses, as given in (2.20),
has linear normal modes with frequencies

B 1+m:l:\/1+m2+2mcoskj

I (2.31)

Wy
where k; = 2j7/(N +1) and 1 < j < N/2 (for notational convenience we use
j as the mode number). The acoustic branch has 0 < j < N/2 and the optical
branch for N/2 < j < N. The dispersion, calculated from (2.31), shows an
optical branch that moves to higher frequencies and flattens as m is decreased;
for example, the frequency separation of the minimum optical and maximum
acoustic frequency is Aw = v/2(1/(1/m) — 1), while the optical frequency
spread is dw;, = \/2/m(v/1+m — 1) & \/m/2, m < 1. The implication for
isolated modes in the thermodynamic limit is discussed in Sect. 2.4.2.

Depending on the nonlinear forces, there are implications for the stability
of nonlinear structures for the various forms of the linear modes. A weak spring
(6 < 0) in the FPU puts the nonlinear solution in the acoustic band which
can then radiatively couple to the linear modes, destroying nonlinear stability.
Similarly, for a strong spring (5 > 0) but with an optical branch, a nonlinear
acoustic mode can be shifted into the optical branch where it can dissipate
by loosing energy to that branch. The various treatments of these phenomena
are a major area for study (see, e.g., [84]), beyond the subject matter of this
review. However, the phenomena will reappear in various subsequent sections.

2.3 Formulations: Methods of Numerical Analysis

Apart from the exception of integrable cases, most of the models of oscillator
chains introduced in Sect. 2.2 require numerical investigation. The choice of
suitable observables is then crucial to point out features of mathematical and
physical interest. In this section, we introduce the description of indicators
concerning both dynamical and statistical properties. In general, they are
inspired by generalizations or extensions of the thermodynamic concept of
entropy.
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2.3.1 Measurement of Chaos Indicators

A quantitative characterization of the oscillator chains is their degree of
chaoticity. This is measured by the largest Lyapunov exponent, whose pos-
itivity can be a hint to the possible equipartition of the energy among the
degrees of freedom. Let us briefly recall that if

it = X2t ) (2.32)

is a generic dynamical system, the tangent dynamics to this flow is de-
scribed by

e’ k
= Jir(x(t ; 2.
R REO): (233)
where J;x = 0X'/0z*, and the largest Lyapunov exponent is given by
L [E@)]
A=lim In (2.34)
t=oo ¢t [E(0)]

for almost all choices of £(0), under rather general assumptions. If z =
(q',....¢N,p',....pN), with X? = (0H/9p') for i = 1,...,N and X’ =
—(0H/0q") for i = N +1,...,2N the dynamical system (2.32) represents a
Hamiltonian flow. The corresponding tangent vector is £ = (£1,...,&2N) =
(&1, &N, T 2N, and, by setting Alx(t),&(t)] = {7 J[z(t)] € +
T T ()] €}/ 2€7¢ = [€7€ + €7€]/26T¢ = (d/dt) In(€T€)Y? = § In][€]], this

can be formally expressed as a time average

t
A= Tim | / dr Az(r), £(7)] . (2.35)
t—oo t 0

Now we want to specify the more general concept of Kolmogorov—Sinai
entropy [23, 24] associated with the Lyapunov exponents and discuss its rele-
vance. Besides the largest Lyapunov exponent A, in a dynamical system made
of N degrees of freedom, each one described by a pair of canonical coordinates
(position and momentum) one can define a spectrum of Lyapunov exponents,
Ai, where the index ¢ = 1,--- ;2N labels the exponents from the largest to the
smallest one. An effective algorithmic procedure for evaluating the spectrum
of Lyapunov exponents is discussed in [152]. Beyond rigorous mathematical
definitions, an interpretation of the Lyapunov spectrum can be obtained by
considering that the partial sum h, = > | A; (n < 2N) measures the av-
erage exponential rates of expansion, or contraction, of a generic volume of
geometric dimension n in phase space. Accordingly, h;y = A\; = X is equivalent
to the definition given in (2.34), since a “one-dimensional volume” is a generic
tangent segment in phase space; ho = A1 + A2 gives the divergence rate of a
surface; hoy = 21251 A; is the average divergence rate of the whole phase
space. In Hamiltonian systems, according to Liouville’s theorem, any volume
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in phase space is conserved and hony = 0. Moreover, for each \; > 0 there ex-
ists Aoy_i+1 = —\;.} Chaotic evolution implies that a small region in phase
space (for instance, the volume identifying the uncertainity region around an
initial condition) is expanded and contracted with exponential rates along
different directions in phase space. After a time of the order 1/ the distance
between two infinitesimally close initial conditions will have the size of the
accessible phase space; accordingly, we have no means of predicting where the
image of an initial point is in phase space by knowing the image of an initially
close-by point, even if after a long time these points will eventually come again
close to each other (for a detailed discussion see [123]). A very important con-
ceptual achievement is that the mechanical description of a chaotic evolution
can be replaced by a description in terms of a probability distribution on
phase space which is invariant under time evolution and which allows one to
define a metric entropy h. The mathematical details go beyond the scope of
this manuscript; see [123, 124, 125, 126]. For our purposes, it is important
to mention that Pesin later proved, under rather general assumptions, that
there exist a remarkable relation between Kolmogorov’s metric entropy and
the positive component of the Lyapunov spectrum [127]:

h= Y X, (2.36)

j,s.t.2;>0

where the sum extends over all the positive Lyapunov exponents. This for-
mula can be applied to the study of the dynamics of Hamiltonian systems,
like the FPU chain. In this respect, it is particularly interesting to check this
formula in the thermodynamic limit, in which the number of oscillators tends
to infinity. In general, this limit does not commute with the limit ¢ — oo
in (2.5), i.e. the measurement of A and h may depend on the order in which
these limits are performed. Numerical evidence of the existence of a limit
curve for the spectrum of Lyapunov exponents in the thermodynamic limit
for the FPU chain was later obtained ([128]; see also Fig. 2.2 ). Further numer-
ical evidence of the existence of such a limit for a variety of physical systems
have been subsequently obtained. However, a rigorous mathematical proof is
still lacking, although some attempts in this direction exist [129, 130]. The
value of h is expected to depend on some typical parameters, like the energy
density ¢ for a Hamiltonian chain of oscillators. For instance, the Lyapunov
spectrum of the FPU-8 model shown in Fig. 2.2 is obtained for e = 10,
which is sufficiently large to yield a strongly chaotic dynamics. By decreas-
ing ¢ sufficiently to enter the almost-recurrent dynamical regime observed by

! For each conserved quantity like the energy, momentum etc., there is a pair of con-
jugated exponents that are zero. Stated differently, each conservation law amounts
to a geometrical constraint that limits the access of the trajectory to a subman-
ifold of phase space. Integrability has the consequence that all \; are zero, i.e.
there can be as many conservation laws as the number of degrees of freedom; the
converse is in general not true.
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Fig. 2.2. The spectrum of positive Lyapunov exponents of the FPU-8 model for
different chain lengths, from 8 up to 64 oscillators

Fermi, Pasta, and Ulam in their original numerical experiment, the shape of
the spectrum also changes significantly. In this weakly chaotic regime, the
maximum Lyapunov exponent is found to decrease and the positive compo-
nent of the Lyapunov spectrum approaches the horizontal axis. Still the only
null exponents are those corresponding to the conserved quantities, although
the others take significantly smaller values and the value of h is drastically
reduced. According to this description, one is led to conclude that, in the
thermodynamic limit, all possible chaotic degrees of freedom should remain
chaotic for arbitrarily small values of ¢, despite that beyond a certain value
it will become practically impossible to distinguish them from zero. In this
respect, h cannot provide a characterization of the weakly chaotic regime in
terms of an effective number of active degrees of freedom, as discussed in
the following Section. Nonetheless, the Lyapunov analysis can provide a clear
quantitative characterization of the strong and weak chaotic regimes observed
in the FPU-chain. Actually, the maximum Lyapunov exponent of the FPU-£3
model has been analytically estimated [131] on the basis of the geometrical
approach, sketched in Sect. 2.4.7. It has been found that there is a transition
value of the energy density, ., at which the scaling of A with € changes from
a strong e-scaling, \(¢) x €2, to a weaker one \(¢) o £/%. The numerics is
given in Sect. 2.5 and the calculation of the scaling is outlined in Sect. 2.8.
This steep scaling of A(e) below e, implies that the typical relaxation time,
i.e. the inverse of A, may become exceedingly large for very small values of
e. It is worth stressing that this result seems independent on the size N of



46 A.J. Lichtenberg et al.

the system, thus indicating that the different relaxation regimes represent a
statistically relevant effect.

2.3.2 Equipartition Indicators: Information Entropy, Effective
Number of Modes

In the numerical experiment by Fermi, Pasta and Ulam, the initial energy
was placed in a single low-k mode and the authors aimed at studying how
this energy would eventually flow to the other modes. The description of the
dynamics in terms of Fourier modes was a natural approach at least for small
specific energy, despite the fact that they are not the proper modes of the
chain. They expected that the nonlinearity would yield a fast decay towards
equipartition of the energy among the Fourier modes as a natural condition
to be fullfilled at thermodynamic equilibrium. The existence of the two dy-
namical regimes in the FPU problem for low and high values of the energy
density, €, has been characterized in this context by introducing a suitable
equipartition indicator among the Fourier modes [51, 52]. This indicator is
inspired by information entropy, but, at variance with Kolmogorv’s metric
entropy, it relies upon a heuristic definition. In a chain made of N oscillators
with periodic boundary conditions there are N/2 independent Fourier modes.
A spectral entropy S(t) can be defined as

N/2

St) ==Y pa(t)Inpn(t) (2.37)
n=1

where p,(t) = E,(t)/ >, En(t), En(t) being the harmonic energy of the
Fourier mode with wave vector k, = 27n/N at time t. When only a sin-
gle Fourier mode is excited S(t) vanishes, and it takes its maximum value
Smax = In(N/2) when equipartition of the energy among the Fourier modes
is obtained. Numerical studies showed that this quantity exhibits good sta-
tistical properties, while it can describe the approach to energy equipartition
starting from either single-mode or multimode initial excitations. To compare
chains of different lengths, a normalized quantity was defined:

n(t) = gzd: B g((é)) : (2.38)

Notice n(t) tends towards zero when the system approaches equipartition and
that it keeps a value close to 1 when the initial spectral entropy is maintained
during time evolution. In the long time limit 7(¢) was found numerically to
approach an asymptotic average value 7, which was used for identifying the
equipartition thresholds of the FPU-« and -3 models [51, 52]. Moreover, it
has been also observed that the very dynamics of 7(t) provides a qualitative
characterization of the different dynamical regimes observed in these chain
models [132]. The regular, quasi-recurrent dynamics of 1 or of neg = Neg/N
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(see below) observed for small values of € turns to a fast decay towards small
7 (nest ~ 1) for large values of .

A more physically transparent measure is what we call the effective number
of modes containing energy, which can be defined as

Negt = exp S, (2.39)
which is conveniently normalized as
Neff = NCH/N . (240)

For oscillators, the same definitions (2.37)-(2.40) can be used, with the energy
of each oscillator taken directly from the Hamiltonian, by assigning half of the
difference potential to each neighbor, to obtain the normalized effective num-
ber of oscillators containing energy, nesc, which we will use in the numerics
from short-wavelength mode initial conditions. The instantaneous values of
neg do not asymptote to one, at equipartition, due to fluctuations. A simpli-
fied calculation of the effect of fluctuations introduces a deviation de; from
equipartition e; = €; + de;. Expanding the logarithmic function in S in (2.37)
as In(1+3e;/e;) = 8e;/e; — (1/2)(8e;/€;)? and performing the summation over
1 yields

Jif exp{—Neélne — Nde2/(2e)} = exp{—Nd&e2/(28)}. (2.41)

Neff = Nosc =

Taking ¢ = 1/N and making the assumption of normal statistics, that for
each normal mode 8e2 = &2 (this is confirmed by calculations), we see that
N cancels giving an asymptotic value neg = nose = exp(—0.5) = 0.61, at
equipartition, for both modes and oscillators. More accurate calculations have
been made separately for modes and oscillators, including the nonlinear terms
in the oscillator calculation, yielding at equipartition, ([92] Appendix D),

Nneg = 0.65 Nose = 0.74. (2.42)

To obtain some smoothing of the numerical values of neg(t) and negs(t), vari-
ous short-time averages of these quantities have been used, yielding somewhat
different values from those predicted in (2.42).

2.4 Formulations: Analytic, Low-Energy
and Short-Time Results

2.4.1 Transformations and Low-Dimensional Calculations

We have seen in Sect. 2.2 that a transformation to the coordinates of harmonic
normal modes decouples the modes if only linear forces are present. For small
values of SFE, the smaller nonlinear terms couple all of the modes together.
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Taking the FPU-f system with energy initially placed in a long-wavelength
mode, which we consider here, the selection rule for the couplings results in a
geometric progression of the energy fall-off to shorter-wavelength modes [55].
The strongest interactions are therefore among neighboring modes, with the
initial energy in a long-wavelength mode interchanging energy most strongly
with its nearest neighbors. The resulting beat oscillations, as observed nu-
merically in the original and much subsequent work (see Fig. 2.1), involved
primarily a few modes. The predominant localization among a few modes al-
lows a useful investigation of a reduced problem, involving some minimum
number of modes. To look at “resonance overlap,” a four-mode subsystem is
examined, which contains two three-mode resonances. This was done for the
sine-Gordon chain by Goedde et al. [54] and then in more detail for the FPU-3
chain by DeLuca et al. [55]. Summarizing the analytic method, a transforma-
tion of the four-mode Hamiltonian to action-angle variables exhibits two slow
angles of the major resonances 0, = 01 + 03 — 205 and 6, = 03 + 04 — 203.
A second transformation is performed to the new variables , and 6, fol-
lowed by employing the method of averaging over the two remaining fast
angles. The resultant averaged Hamiltonian has two additional approximate
constants of the motion, which are the actions related to the averaged-over
angles and thus is reduced to two freedoms. The resulting Hamiltonian has
the approximate form

Hy = (W)ZEV [— (Js + Jup) /AT

N
8};2 (8JF +3J2, — AJsJsp + Jeds — 2JJsp)

16J2 VI JaJs Iy cos(0sy + 6.)

16J2 (/113 T cos 0, + |/ Ta T4 cos 95p)] L (243)

where J., Jq, Js, and Jg, are the transformed actions and Jy, Ja, J3, and Jy
are the original actions, related to the transformed actions by the canonical
transformation

Ji=J, (2.44)
Ty = Jop (2.45)
Js = Jy — 2Jp + Je (2.46)
Ji=Jop+Ja. (2.47)

J. and Jy are new constants of the motion, resulting from the averaging,
and J. was chosen such that J. = E,/Q,, i.e. the action corresponding to
the initial energy, primarily in mode ~. The concept of “resonance overlap” is
taken from low-dimensional chaos theory, which considers separately the phase
space motion H(Js,8s) with Jgp = const. and H (Jsp, 0sp) with J; = const.,
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with overlap being the condition that for some values of 85 and 6, we obtain
Js = Jsp. The variable actions Jg and Jg, are numerically studied by looking
at the phase space of one degree of freedom in a surface of section of the
other freedom, with area filling trajectories indicating resonance overlap. The
overlap is governed by

60

R=(N+1),

E, >1, (2.48)
where R measures the ratio of nonlinear to linear energy in the resonant
degrees of freedom, analogous to the energy ratios used to calculate the mode
overlap condition in (2.7). As in that calculation, from our understanding of
low-dimensional chaos, we expect significant stochasticity to appear for R > 1.
R =1 has recently been shown to be the transition to instability for periodic
solutions of the full chain [133].

The results for four R-values are given in Fig. 2.3, showing the transition
to stochasticity in the reduced system. From the same four-mode calculation,
the frequency of a typical resonant trajectory is given by

2
m
Qp ~ pyBE, ( ) (2.49)
N
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Fig. 2.3. Surfaces of section of the averaged H4 system in formula (2.43) with two
slow angles and six initial conditions per picture, we plot Js vs. 05
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with u a constant of order unity, dependent on the particular initial conditions.
(Here and afterward, we use the approximation N + 1 ~ N.)

The transition to stochasticity in a reduced system is neither necessary
to ultimately reach equipartition, nor sufficient to produce equipartition on
numerically observable time-scales. We note from (2.48), as the number of
freedoms increases overlap occurs at decreasing energy. However, from (2.49),
we see that the stochasticity also exhibits itself on increasingly slow time-
scales. Furthermore, there is a competition between local resonance overlap,
which spreads energy among neighboring modes, and the process of Arnold
diffusion, which transports energy along guiding resonances to modes in other
parts of the phase space. This latter process is exponentially slow at low
energy. Although a rigorous upper bound on Arnold diffusion has the form
given in (2.3), this does not determine the diffusion rate from the long wave-
lengths to the short wavelengths. The appropriate calculation is made from
a three-resonance model ([13]; see also [15], Sects. 6.1 and 6.2). We have al-
ready considered the two resonances, which produce the local stochasticity.
The third resonance, called the guiding resonance, links two short-wavelength
modes to the low frequencies via the selection rule (2.25). Again, following
[55], the calculation yields a rate of energy increase in the short-wavelength
mode proportional to exp(—7/¢), with £ ~ Qp/8Q), where 8y, is the short-
wavelength resonance frequency. Thus we expect the diffusion to be numeri-
cally observable if Qp > 8y, i.e. the low frequency beat becomes comparable
to a high-frequency resonance that it can couple to, that is, one for which
B # 0in (2.25). The smallest 8Q), (largest €) is 82, = v(7/N)?. Substituting
for Qp from (2.49), together with this 8Qy, yields the inequality

uBE, > 1 (2.50)

for diffusion along resonances to compete with diffusion across resonances.
Here, as in all other equations SF appears as a product, which measures the
nonlinearity. The implications of (2.50) can be seen in numerical calculations
in Fig. 2.4 at small values of R for some relatively small oscillator chains, for
which the lower edge gives a long-time asymptotic value of Neg. Considering
that for R > 1 there is strong local coupling among modes, then as R increases
and the energy interchange spreads to more modes, there is an increase of
Neg o< R, given by this lower edge. However, at some value of E, = E,
satisfying (2.50) the values of Ng leave this asymptote, and, in fact, approach
equipartition over longer times. This scaling, first found numerically in [56],
is physically explained by the direct transfer of energy through the guiding
resonances to high-frequency modes (see [55] for a more detailed calculation).
We illustrate the spreading to higher modes in Fig. 2.5 at R = 2.9 for N =
32, below the E. transition as found in Fig. 2.4. The increase in energy in
some high-frequency modes, specified from the selection rules, is above the
background, but does not increase with time. We will contrast this result
with the spectrum for E > FE, in Fig. 2.9, which approaches equipartition as
time increases.
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As with the FPU-S oscillator chain, the FPU-a can also be analyzed in
terms of overlapping resonances to determine the onset of large stochastic lay-
ers among the long-wavelength modes. Because the nonlinear term is cubic,
rather than quartic, the resonances are simpler, involving only three terms,
and the scaling, with ¢, for resonance overlap, is different. Shepelyansky [62]
has used the same averaging procedure as described in the four-mode approxi-
mation of the FPU-£, to analyze the FPU-« chain, obtaining the Hamiltonian
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Fig. 2.5. Log of average energies at R = 2.9 for N = 32 (E = 1.4) after ¢t =
2000(N/7)?
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N N
«
H = Zwklk + . Z (wklwk2wk3[k1[k2fk3)l/2
k=1 2VN +1 K1, ko ks=1
X COS(91€3 — 6‘k2 — ekl )5k37k1+k2 (2.51)

where all the angles have been averaged over, except the resonant ones for
which ks = k1 + k2 in the long-wavelength spectrum. For these wavenumbers
from (2.23), wy ~ 7k/(N + 1) such that ws ~ wy + we. The Is and s are
the action-angle variables, as in (2.43), before the final transformation to the
resonant coordinates. Because of the lower cubic products, Shepelyansky was
able to examine the full Hamiltonian, and after making two simplifying further
transformations he derived the approximate chaos border at long wavelengths,
v < N, where 7 is the k-value at the center of the resonance

aN3/2EY2 /42 5 . (2.52)

Comparing (2.52) with (2.48), which has R > 1 for resonance overlap, we see
that the scaling with the perturbation strengths « or 3 are the same, as is
the scaling of e o« N? if we substitute for the energy density ¢ = E/N in
both cases. Thus for fixed energy density (fixed temperature), both formulas
predict a resonant transition to local chaos in the thermodynamic limit, N —
00. The energy-dependence with quartic or cubic nonlinearities is, of course,
different. Shepelyansky investigated the transition of (2.52) numerically, using
the largest Lyapunov exponent, finding reasonable agreement. He also fits the
distribution of linear mode energies to the distribution

1

E
ke keexp(k/ke —c) +1

(2.53)

(with the best fit for ¢ = 2.65) such that k. is a measure of the number
of modes containing energy, similar to Neg, but for early times for which
the energy distribution still decreases exponentially with mode number, i.e.
the energy has not significantly diffused to the high frequencies through the
Arnold Web. The numerical estimate for the scaling is

ke ~ (N3a2E)Y/4 (2.54)

which the author was able to predict analytically. This is contrasted with the
result from Fig. 2.4, which indicates that

i.e. is governed by the number of modes that can satisfy the local overlap
condition R > 1 with R given in (2.48). Shepelyansky [62] has analytically
estimated m = 1/2.

The FPU-a model can be obtained as a third order truncation of the power
series expansion of the Toda lattice potential, defined by the Hamiltonian:
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N o

N
Hp,q)=> "
k

=1

N
+ Z kz::l lexp(=b(gr+1 — qr)) + b(gr+1 —aqr) — 1] . (2.56)

Since the Toda lattice is integrable, i.e. does not exhibit stochastic behavior,
the FPU-« is more stable than the FPU-3. However, because the nonlinear
potential is cubic the trajectories become unbounded at high energy. There-
fore, it is restricted to examining low-energy phenomena, as was described
above. Using (2.35) for calculating A for neighboring trajectories, and choos-
ing the constants a and b in (2.56) to correspond to the FPU-« given in (2.1),
Pettini and co-workers [61] compared the variation with time of the inte-
grable and nonintegrable systems, with the result as shown in Fig. 2.6. The
initial conditions, starting on separate orbits, separate linearly (see [15]) from
which, calculating from (2.35) over short times, a large Lyapunov exponent is
obtained. However this effect continually diminishes in the averaging process
and, after a long time, only an average exponential divergence of the trajec-
tories remains. In Fig. 2.6 we show the value of A stabilizing at the average
exponent for the FPU-« system, while it vanishes for the Toda system. As an
aside remark, we point out that the stabilized value of A, shown in this figure,
is not necessarily the asymptotic value, but may correspond to a value in a
more localized region of the phase space. Without exploring this possibility
in detail we note that the numerical values of A presented in Sect. 2.5, and
compared to calculations in Sect. 2.8, have been obtained in a way that should
be close to the infinite-time average.

Considerable effort has been directed toward the comparison of the FPU-
0B chain with oscillator chains constructed from discretization of the Klein—
Gordon equation, particularly the ¢* chain, with the nonlinear term being
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Fig. 2.6. Maximal Lyapunov exponent vs. time for the Toda lattice (open squares)
and for the FPU-a model (solid triangles) for N = 32 and ¢ = 0.0217
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an on-site potential. However, little attention was given to the comparison on
shorter time-scales, from long-wavelength initial conditions. Comparing the
coefficients in (2.25) and (2.26), for small m, we see that the nonlinearity is
much weaker for long wavelengths (small w for the FPU potential than for
the ¢* potential). The opposite holds for short wavelengths, where the ws are
about 2 (for small m). Physically this is easily understood, as the forces be-
tween neighboring oscillators are quite small for the FPU at long wavelengths:
neighboring oscillators are in phase, with nearly the same amplitudes, while
at short wavelengths the nearly out of phase amplitudes amplifies the forces
between them, as compared to the nonlinear self-force of the ¢*. The conse-
quences for the times to achieve equipartition, starting from either low- or
high-frequency initial conditions, will be presented in Sect. 2.8. The strong
nonlinearity, coupled with the weak dispersion at short wavelengths, which is
evident from either (2.23) or (2.24), leads to narrow structures in the oscil-
lator space, which exhibit the short-time characteristics of breathers. These
structures called chaotic breathers (CB’s) are introduced in Sect. 2.4.4, and
investigated in some detail in Sects. 2.6 and 2.7.2.

2.4.2 The Thermodynamic Limit

The analysis described in Sect. 2.4.1 of considering a few modes which contain
most of the energy, to understand the subsequent behavior, is appropriate for
finite, relatively small, values of N. We have already seen that for fixed € and
increasing N, (2.48), with R > 1, for the FPU-g and (2.52) for the FPU-«
indicate local stochasticity and therefore diffusion throughout the phase space
in the Arnold web, but without specifying the time-scale. For fixed e = E/N,
approaching the thermodynamic limit (N — o0), other questions arise.

In Sect. 2.4.1 we saw, from various perspectives that at fixed £ the number
of modes forming an energy-containing packet, in a reasonably short time,
would increase with N, while the fraction of modes neg = Neg/N would
remain constant. This implied that for fixed E equipartition would not be
reached, at least for computationally observable times, for large values of V.
However, at fixed E, ¢ decreases with increase in N, so the question of what
happens for fixed € in the thermodynamic limit was not addressed.

In Sect. 2.3.1, we numerically indicate that the value of the largest Lya-
punov exponent decreases with the power law A oc €2, but for low values of N
there are faster drop-offs, which may be exponentially varying, as suggested
in the previous section. However, the drop-off value of € occurs at increasingly
small ¢ as N is increased. Similarly, in Sect. 2.5.2, the time to equipartition
T.q increases as a power law in € at smaller IV, with any faster increases ap-
pearing at smaller £ as N is increased. The implication is that Toq o £73 at
the thermodynamic limit.

From a different perspective, Galgani and coworkers [48, 49] used a con-
vergent perturbation theory to rigorously show that two groups of oscillators,
well separated in frequency space, would transfer energy exponentially slowly
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from the low to the high frequencies, i.e. energy would be “frozen out” of the
high-frequency oscillators over times 7 o exp(awp/w;) the ratio of the high
to low frequencies. Using these ideas, they estimated transfer times from low
to high frequencies for the FPU chain, but came to the conclusion that the
energy could not be bounded away from the high frequencies for exponentially
long times in the thermodynamic limit [118]. In the same paper they returned
to the concept of two well-separated groups of oscillators by employing the
alternating mass chain given in (2.20). As described in Sect. 2.2.2, with the
lighter mass m much smaller than the heavier unit mass, an optical branch
becomes thin with 8wy, ~ (m/2)'/? and can be treated in perturbation theory
as occurring at a single high frequency wy, ~ (2/m)'/2. The upper edge of the
acoustic band is wj(max) ~ 1. The ratio appears in the rate of change of the
high-frequency action proportional to exp(—B(wn/wWimax))) at fixed N and
€, in qualitative agreement with their previous work. However, B vanished
inversely with a power of N, and thus the high frequency modes were not iso-
lated in the thermodynamic limit. Their numerical studies with 0 < N < 200
were not conclusive, but indicated a weak N-dependence.

A similar oscillator chain to that given in (2.20), but with the heavy and
light masses distributed randomly, also resulted for finite N in only a partial
filling of the modes [134]. A calculation of neg, starting from long-wavelength
initial conditions, indicated that only the acoustic modes came to equipartion
in the time-scales investigated, with very little energy in the optical branch.
This is also consistent with exponentially slow transfer to the optical branch,
but definitive answers in the thermodynamic limit cannot be obtained from
numerically observable times. We present results in Sect. 2.5.

2.4.3 Long-Wavelength Approximations: KdV, mKdV; Stability;
Exact Periodic Solutions

In the introduction, we described, briefly, that Taylor series expansions for
long wavelengths of the FPU-« and FPU-§ chains result respectively in the
KdV and mKdV partial differential equations. We illustrate the method for
the most extensively studied case of the mKdV approximation to the FPU-3
chain. Starting from the differential form of the oscillator equations

2, . 1
aafj = W1 =) = (W5 = y) + 5 [ —93)° = (w5 —w-0)°], (257)

where the displacements of the lattice sites have been rescaled to obtain the
nonlinear coefficient 1/3, Zabusky and Kruskal [44] used a Taylor expansion
to make y into a continuous variable y(z,t), using a integro-differential form

Yt

UE—2h

1 (V=
+ 5 V14 h2n2dn (2.58)
0

to transform (2.57) in lowest order in Az = h = L/N into the equation
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ur + 120%ug + ugee = 0, (2.59)

where L is the chain length, N the number of oscillators; the time and length
variables have been rescaled by 7 = h3t/24 and ¢ = x — ht, and the subscripts
t,x,7,& denote differentiation with respect to that variable.

Defining u by a differential in ¢ and an integral in = reduced the time
derivatives by one and increased the space derivative by one to obtain the
well-known mKdV equation, which is integrable as we show below. We note,
however, that the choice of a unique direction in the variable £ implies a
traveling solution and thus a solution only exists as a single nonlinear wave
on an infinite or periodic chain.

Periodic solutions, stationary in the frame ¢ — C't, can be obtained by
integrating (2.59) twice, giving

;ug—ku‘l— ;Czﬂ—Bu—f—A: ;ug—kP(u):O, (2.60)
where A and B are constants of integration. For a periodic lattice the mean
of u must be zero which implies B = 0. Equation (2.60) is in the form of a
one-degree-of-freedom Hamiltonian, which is therefore integrable. Equilibrium
solutions to (2.60) have been obtained in terms of the Jacobi elliptic functions
(or cnoidial waves) en (€, q), with ¢? (the modulus) taken as a parameter with
0 < ¢ < 1. Driscoll and O’Neal [45, 46] examined the solutions for stability,
both analytically for long-wavelength perturbations, and numerically. They
determined the unstable modes of any solution ug by numerically solving the
linearized eigenvalue problem

ivv — Cue + 12(UOU)§ + veee = 0, (2.61)

where u(&,7) = up(§) + v(§) exp(ivT). The waves are found to be stable if
all four roots of the associated polynomial P(u) are real, and unstable if two
roots are real and two are complex. Although the normalized time 7 is scaled
by h < 1/N, the complete rescaling of the normalized equations back to un-
normalized variables gives growth rates independent of N. Driscoll and O’Neil
then compared the growth rates with those found from numerical integration
of the equations of motion for the FPU chain with various values of N. For
wavenumber 7k/L they obtain the growth rate as a function of the modulus
q? of the elliptic function, as shown in Fig. 2.7. In this situation the growth of
the unstable modes in the continuous limit is found to be an upper bound on
the mode growth of the finite chain. A similar relation was also found to exist
between the existence of instability in the sine-Gordon equation and equiparti-
tion in an oscillator chain corresponding to the discretized sine-Gordon equa-
tion [95]. For the FPU system we would not expect the mKdV instability to
be directly related to equipartition among the high frequency modes, as the
mKdV differential equation does not describe these modes. However, mixing
of low-frequency modes in the continuous system corresponds to stochasticity
among low-frequency modes in the discrete system. To explore this further,
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Fig. 2.7. Scaled lattice instability rate v (data points) and mKdV prediction (solid
curves) for cnoidal waves vs. modulus ¢°

we compare the onset of instability in the rescaled parameters of the mKdV
equation, as found by Driscoll and O’Neal, to the parameters governing the
interaction among the low-frequency modes in the four-mode analysis. The
rescaling of R from (2.48) gives the relationship R = (8/72)(v/2)?¢* K2(¢?),
where 7 is the number of nodes of the cnoidal function and K(g?) is the
complete elliptic integral. The instability appears for ¢ ~ 0.25 (K = 1.7)
for v = 2, which corresponds to R. ~ 0.58. This is close to the value which
produced a separatrix layer in the four-mode resonance interaction found in
Sect. 2.4.1, so we conclude that the mechanisms are related. The single-mode
initial conditions give rise to beat phenomenon, corresponding to stable soli-
tons. It is only when the solitons become unstable that this manifests itself
as chaos in the discrete system.

For the FPU-« oscillator chain a similar Taylor expansion and transfor-
mation to new variables, gives the KdV equation

1
Ur + Ulg + 2411,555 =0 (2.62)

which is also integrable. However, for the KdV equation, linearization of the
solution does not exhibit unstable eigenvalues, and thus chaos appears when
the Taylor expansion breaks down at larger values of energy when the discrete-
ness leads to diffusion among the low-frequency modes. As with the mKdV
equation, a single soliton, which travels in a given direction, cannot satisfy
fixed boundary conditions so that more than one soliton is required to de-
scribe any prescribed initial condition.

For either the KAV or mKdV equation an initial condition consisting of a
long-wavelength linear mode, say
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u(t =0,€ = x) = ug cos (2Zx> , (2.63)

where u ~ g!/2 (¢ is the energy per degree of freedom in the FPU) will break up
into a set of solitons. The shortest wavelength of the resulting solitons can be
estimated from dimensional analysis [44, 135]. For long wavelengths, the dis-
persion is weak, therefore the dynamics is dominated by the nonlinearity. One
can therefore neglect the dispersive term, which for the KdV equation (2.62)
satisfies (1/24)ueee /(uug) < 1 or dimensionally

173
(ve/l)

By reintroducing «, using the scaling ¢ — a~“¢, and by considering that the
fraction of degrees of freedom neg =~ 1/lmin, we obtain

< 1or Ly ~e V2. (2.64)

2

Neg ~ a2/t (2.65)

This result agrees with the scaling estimated and found numerically by She-
pelyansky [62], if nex = Nem/N is substituted in (2.54) and also coincides
with later studies of Biello et al. [136] and Berchialla et al. [137]. In a manner
similar to that described above, the scaling of n.g with ge, for the FPU-£,
can be determined from the ratio of dispersive to nonlinear terms in (2.59),
giving ;

e/l

Changing ¢ to ¢ — fe and neg >~ 1 /1, we obtain

> lor lmin ~ 5_1/2 . (266)

ne ~ (Be)* . (2.67)

This result is in agreement with the estimate by Shepelyansky [62], but dif-
ferent from the scaling found numerically in Fig. 2.4, which, however, has not
been examined for large N, where (2.67) applies.

It has also been recently shown [133] that it is possible to construct exact
periodic solutions of the FPU chains, for fixed fe at finite IV, by a Newton
method. The authors called the solutions g¢-breathers (QBs) in analogy to
short-wavelength solutions of a few oscillators, since they designated the lin-
ear mode number by ¢. These solutions are complementary to those obtained
from continuous approximations. For the FPU-a and FPU-3, asymptotic ex-
pansions in the small parameters p = a//2(N + 1) and o = 3/(2(N + 1)),
respectively, produce exponentially decaying linear-mode spectra, similar to
those described in Sect. 2.4.1, and similar to expansions obtained from soliton
solutions with periodic boundary conditions. Unlike the solitons, the periodic
solutions cannot be summed to produce the initial conditions of a single linear
mode. Nevertheless, for small perturbation parameters, they are sufficiently
close to single-mode initial conditions that interesting results can be obtained
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from them to compare to the usual numerics. For the FPU-3, the periodic so-
lutions become unstable, similar to the instability we have seen in the mKdV
equation. A very interesting result is that the bifurcation to unstable solutions
of the FPU-3 chain occurs at a value of R = 1 4+ O(1/N?); from Sect. 2.4.1
we recall that R = 68FE(N + 1)/7? relates nonlinear to linear terms in the
Hamiltonian. The condition R ~ 1 was a semi-quantitative transition for reso-
nance overlap, leading to local chaos. Here we find that the condition becomes
precise for the onset of an instability that also leads to local chaos. We note
again, as in Sect. 2.4.1, that with increasing N the value of SFE at which
the instability occurs continually shrinks to reach zero in the thermodynamic
limit.

2.4.4 Short-Wavelength (high-frequency) Initial Conditions

Let us consider the equations of motion in Fourier space for the FPU-3 model
with periodic boundary conditions ¢; = q;4+n

QT:FT(Ql,...,QNfl), T'Zl,...,N—]., (268)
where
Bu N-1
Fo(Q1,...,Qn-1) = —w; Qr — QNT > wjwpw Crj Q;QrQu . (2.69)
4ok,l=1
and the frequencies are in this case
. [Tk
wk:2sm(N) k=0,...,N—1. (2.70)

The coupling coefficients, analogous to those in (2.25) for fixed boundaries,
are given by

Cijit = —Digjgrrt + Digji—i + Dot + Dottt (2.71)

where

(2.72)

A (=1)™ for r = mN withm € Z
710 otherwise .

The center of mass motion is decoupled; this is why the sum in (2.68) extends
up to N — 1. A natural question that arises is whether a set of modes exists
which is decoupled from the others. If we put the energy only in this set, this is
not shared by the others. Such a set is an invariant manifold in Fourier space.
The question of existence has been positively solved [70, 71]. For instance,
modes

b N N N 2N 3N

473727 37 4

are decoupled and are the only one-mode solutions with this property. The
time-dependence of such periodic solutions is given in [70]. Moreover periodic

(2.73)
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and quasi-periodic solutions evolving on two-mode manifolds have been de-
rived, and a full classification of higher dimensional invariant manifolds has
been obtained. The existence of these invariant manifolds is related to spatial
symmetries [71, 72].

The question of linear stability is more difficult and it has been solved
analytically only for the zone boundary mode k£ = N/2. In this case, one finds
the critical energy E. (8 =1)

=2V w2 (1) [76082 N (2.74)

E. = .
9 N/ [3cos? (n/N) — 1]?

Above this energy, the zone-boundary mode solution looses stability by de-
veloping a spatial modulation. The initial zig-zag spatial pattern deforms in
such a way to create a smooth long-wavelength envelope, with many bumps.
Since the critical energy vanishes as NV increases, in the thermodynamic limit
the zone-boundary mode is always unstable. However, the rate at which the
instability develops diverges with system size N [70]. The development of
the instability leads to the creation of a “chaotic breather,” as discussed in
Sects. 2.4.5 and 2.4.6

Such instabilities exist also for other invariant modes and set of invariant
modes, but have not yet been studied carefully neither analytically nor numer-
ically. For instance, it is well known that if the energy is initially put in even
(odd) modes in a FPU chain with an even number of oscillators and periodic
boundary condition, energy remains in the set of even (odd) modes forever,
until a critical energy is reached above which energy is exchanged among the
two sets. In fact the set of even (odd) modes is an invariant set, according to
our definition.

Let us sketch the derivation of formula (2.74) following Dauxois et al. [138].
Due to periodic boundary conditions, the normal modes are plane waves of
the form

_ A i0.(t) —i60,,(t)
an (D) 2(e te ) (2.75)

where 0,,(t) = gn —wt and g = 27k/N (k= —N/2,...,N/2). The dispersion
relation of nonlinear phonons in the RWA given by (2.86) is w?(q) = 4(1 +
A)sin®(g/2), where A = 3a?sin?(g/2) takes into account the nonlinearity.
Modulational instability is investigated by studying the linearized equation
associated with the envelope of the carrier wave (2.75). Therefore, one intro-
duces infinitesimal perturbations in the amplitude and phase and looks for
solutions of the form

0(t) = 211+ b 0] xPiBa(0) + a(B)]) + 5L+ ba(8)] explB(E) + (1)
= a[l + by (t)] cos[gn — wt + Py ()], (2.76)

where b,, and 1, are reals and assumed to be small in comparison with the pa-
rameters of the carrier wave. Substituting (2.76) into the equations of motion,
one obtains for the real and imaginary part of the secular term exp(i(gn —wt))
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—w?by, + 2wy, + by, = (14+2A)[cosq (bpt1 + bn—1) — 2by]
—A (bpy1 +bp—1 — 2b,cosq) — (1 +2A)sing (Y1 — Yn-1) (2.77)
_w2¢n - 2an + wn = (1 + 2A) [COSQ (wn+l + ¢n—l) - 2¢n]
+(1 + 2A) Sinq (anrl - bnfl) +A (¢n+1 + ’@ljnfl - 2¢n Cos Q) . (278)

Further assuming b,, = by €(@"=2) 4 c.c. and 1, = 1y (@) 4 c.c. one
gets the two following equations for the secular term el(@n—%)

bo[Q% + w? +2(1 4 2A)(cosgcos Q — 1) — 2A(cos Q — cosq)]

—2ithg [wQ + (1 +2A) singsinQ] =0 (2.79)
Do[Q% + w? + 2(1 + 2A)(cos gcos Q — 1) + 2A(cos Q — cosq))
+2ibg w2 + (1 4 2A) singsin Q] = 0. (2.80)

Nontrivial solutions for the linear system of (2.79)—(2.80) can be found only
if the equations determinant vanishes, i.e. if the following equation is fulfilled:

{(Q+w)2 — 4(1 + 2A) sin? <qZQ)} x

x {(Q — w)% — 4(1 4 2A) sin® <q_2Q)} = 4A2 (cos Q — cosq)?.
(2.81)

This equation admits four different solutions when the wavevectors ¢ of the
unperturbed wave and @ of the perturbation are fixed. If one of the solutions
is complex, an instability of one of the modes (¢ + @) is present, with a
growth rate equal to the imaginary part of the solution. Using this method,
one can derive the instability threshold amplitude for any wavenumber. A
first interesting case is ¢ = m, the zone-boundary mode. One can easily see
that (2.81) admits two real and two complex conjugate imaginary solutions if
and only if
5 Q@ 1+ A
27 14+3A°
The first mode to become unstable when increasing the amplitude a corre-
sponds to the wavenumber ¢ = 27/N. Therefore, the critical amplitude a,
above which the ¢ = m-mode looses stability is

B sin? (7/N) 1/2
e = <3 [3cos? (7/N) — 1]) ' (283)

cos (2.82)

Since for the m-mode the energy is given by E = N(2a? + 4a*), one obtains
the critical energy given in (2.74). The asymptotic behavior for large N of
this formula gives the same threshold as (2.99) in Sect. 2.4.6, see also [81,
139]. This critical energy is also very close to the Chirikov threshold for short
wavelength (2.7).
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2.4.5 Expansions for Generic Discrete Systems-Envelopes

If we excite a high-frequency mode, v, with n = N+1—~ < N +1, then the
instantaneous oscillator amplitude alternates from one oscillator to the next.
As in previous studies [90, 91, 92], to remove this fast variations an envelope
function ;(t) = (—1)%q;(t) is introduced, giving a smoothed spatial profile.
The smoothed profile allows the oscillator to be described by a continuous
variable from a Taylor expansion, giving

Bre + 40 + 16603 + {ue + 1280002 + 2 e)} + - =0, (2.84)

where subscripts ¢ and 2 stand for temporal and spatial derivatives of ¥ (x,t).
Linear terms with spatial derivatives describe the dispersion, the dependence
of the frequency w on effective wave number 7k/(N + 1) in (2.84), while
nonlinear terms produce a frequency shift, that steepens the envelope function
tending to form localized states (CBs). This process qualitatively explains why
relaxation is accompanied by the formation of sharply localized states if energy
is initially deposited in the high-frequency part of the spectrum, where the
effect of dispersion is small, while only broad nonlinear structures are formed
if the energy is initially in the low frequency modes where the dispersion is
large [92]. Keeping the leading terms proportional to powers of degree zero
and two and assuming a monochromatic dependence t(z,t) = (x) cos(wt),
leads to an equation for 1 (x)

(_w2 +4)Y + uw + ﬁ(12¢3 =+ 97“/’35 + 9¢2¢zz) =0, (2.85)
where we have used the RWA, i.e. the expansion
cos®(wt) = (3/4) cos(wt) + (1/4) cos(3wt), (2.86)

and dropped terms proportional to cos(3wt) [90, 91]. Neglecting terms pro-
portional to § yields a linear equation for the eigenmodes:

(_w2 + 4)1/) + wmm =0. (287)

Solving (2.87) with zero boundary conditions at © = 0 and at x = N + 1 gives
eigenmodes for n = N+1—k < N+1 which correspond to the high-frequency
linear normal modes of the discrete FPU chain

9 ™m

z/J,(LO) (%) = Ymax,n sin(gnz) , Wwr=4- qa Gn = Nil (2.88)

The nonlinear equation (2.85) has exact analytical solutions, ¢ (x), which are
periodic functions of x. There are three types of solutions:

(i) the infinite chain having a single localized breather with ¢ (z) — 0 as
x — to0, with frequency w = wp

wi =4+ 6892, , (2.89)

where 1),,, is the breather maximum amplitude given in (2.91);
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(ii) the chain with periodic boundary conditions including the m-mode for
which each oscillator has opposite phase and equal amplitude as its neigh-
bors, and, correspondingly, the envelope function ¥ = ¥max = Ymin = Ym,
a constant, for which the nonlinear frequency shift reaches a maximum
value

wh =4+ 128y2, (2.90)

(iii) and the case of fixed zero displacement at © = 0 and x = N + 1, with
intermediate values of wg.

For a single breather, n = 1, the breather structure is similar to a breather
on an infinite line which has analytic approximations for small and large
amplitude. For 9342 < 1

Um
cosh(v/66¢,x)

while in the large amplitude case 9312, > 1, the breather has a finite width
of 4-5 oscillators

YB(r) = (2.91)

YB(T) = P, cos \/zx |z < W\/Z . (2.92)

For most numerical studies of oscillator chains the initial state imposed on
the system is that of a single linear mode. This state is generally not close
to an equilibrium. The initial state rapidly relaxes, governed by the nonlin-
ear equations. The evolution may be influenced by the underlying stability
of nearby equilibria, but cannot be analyzed directly as perturbations around
those equilibria. It is also possible to prepare the initial condition to be close
to an equilibrium and consequently to directly analyze linear stability. The
envelope solutions are fast oscillating functions of time which are subject to
parametric (modulation) instability, i.e. an instability which is driven by the
periodic variation of the frequency that appears in the linear equation for
a perturbation. The frequency shift is caused by the nonlinearity in the un-
perturbed envelope solution. For the usually applied modal initial conditions,
unstable breakup of modes is observed [87, 88]. However, numerical calcula-
tions show that the nonlinear stage of this instability leads to the formation
of long-living self-organized localized structures, the chaotic breathers, which
appear to be marginally stable with respect to a fast modulational instability.

Another question is how many breathers appear after the relatively short
time of evolution from an initial state. In this context, fixed zero boundary
conditions are significantly different from the m-mode initial values for peri-
odic boundary conditions. In the periodic case, the m-mode is simultaneously
a normal mode of the linear problem and an exact solution to the nonlin-
ear envelope equation. Evolution from this equilibrium state is initiated by a
modulation instability, and the wavelength of the fastest growing mode of the
linearized equations gives an estimate of the number of breathers generated
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during the nonlinear phase of instability. In the case of zero boundary condi-
tions, the high-frequency normal modes do not satisfy the nonlinear envelope
equation. When used as initial conditions at low energy, they relax toward or
around a few nearest stable equilibrium solutions. We expect that the linear
analysis could, at best, only qualitatively describe their evolution.

2.4.6 Instability from Short-Wavelength Initial Conditions

For analysis of nonstationary envelopes, which describe relaxation, instabil-
ity, or breather translational motion, it is convenient to rewrite the basic
equation (2.84) in the form of two coupled equations for amplitude ¢(z, t) and
phase ¢(x,t)

P(x,t) = q(z,t) cos(wt + ¢(x, 1)) . (2.93)

Substituting (2.93) in (2.84) and collecting terms proportional to sin(wt +
¢(x,t)) and cos(wt + ¢(x,t)) leads to coupled equations

q(btt + 2(]15(‘«‘] + ¢t) + qu(bm + Q¢ww + 125q2qw¢m + 3ﬁq3¢ww =0, (294)

Gt — (W + 0)°q + 49 + Qoo — g5 + 128¢° + 98¢(q2)x — 68¢° 3 = 0. (2.95)

The frequency w is a constant given approximately by (2.89) and determined
by the amplitude of the unperturbed solution. When the amplitude is slightly
varied, g(z,t) = (x)+ dq(z, t), the frequency of the fast nonlinear oscillation
is also varied. As w is taken to be contant this effect is represented by the
time-varying phase, ¢(x,t) = 8¢(x,t). Since (2.94) depends on derivatives
of d¢(x,t), but not the phase itself, it can be linearized by considering the
derivatives of 8¢(x, t) as first order corrections. This yields two coupled linear
equations

2wy + Y8 + 20y (1 + 68Y°)8¢, + ¥(1 + 361°)8¢ee =0 , (2.96)

8L]t&t + ((1 +9ﬂ"r/)2)SQz)z + (4_""}2 —|—36ﬂ’l,/)2 + 18ﬁ"r/)¢zz + 95%25)5(]— ZWwad)t =0.
(2.97)

These equations have been solved numerically under various assumptions,
with the result being that breather equilibria in chains with fixed ends are
probably marginally stable to parametric instabilities [93]. This probably
accounts for the long-time stability of the breathers that are formed from
the parametric instabilities of mode initial conditions. To explore the latter
situation a useful approximation is to consider the case of constant spatial
profile of the envelope ¥ (x,t) = 1, coswt. This corresponds to the m-mode
with periodic boundary conditions, which has the highest nonlinear frequency
shift (2.90) [91]. This mode is a solution to (2.85) but does not belong to the
envelope solutions with zero boundary conditions. Setting the spatial deriva-
tive of ¢(x) equal to zero, (2.96) and (2.97) reduce to coupled equations for
d¢(x,t) and d¢q(z,t), with constant coefficients. They can be solved by letting
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Oq(z,t) o< d¢p(x,t) ox exp(st 4 ikx) which gives a biquadratic equation for s.
Substituting for w from (2.90), the result is

s* +2[36y + 8 — k2(1 + 6y)]s® = k2(1 + 3y)[24y — k2(1 + 9)] ,

y = By5, . (2.98)
This gives a threshold for the modulation instability of the m-mode
N +1)2
Gﬁwi( 7:; ) >1. (2.99)

There is a most unstable wavenumber k,,, which corresponds to the maximum
of the growth rate, s,,. In the limit of small v,,, 9y < 1, the value of k,,, and
$m is found by dropping s?, then setting d(s?)/d(k?) = 0, to obtain [91]

ki = \/128¢m ,  Sm = 3002, . (2.100)

For intermediate amplitude envelopes all terms are included in (2.98). In the
limit of large amplitudes 9y > 1, the fastest growing mode has wavenumber
and maximum growth rate [92]

B =123, 85 = 0.93v/ By, . (2.101)

Comparing (2.100) and (2.101), the transition from small to large amplitude
takes place at 312 ~ 1/9 which corresponds, for 8 = 0.1, to 1, ~ 1.

These results have been checked by numerical calculations, starting from
various mode initial conditions, obtaining reasonable agreement [93]. For
example, in one way of forming initial conditions one can take a set of
Fourier modes to approximate a square wave, using a, = 4/mn, n odd, with
n =N+ 1—~ (v is an initial k-value). Considering the nine highest fre-
quency modes, for E'=16, one obtains the evolution as shown, at three times,
in Fig. 2.8. The initial nine ripples, with large end-values, in Fig. 2.8a, are
characteristic of the Fourier sum. The evolution through various transitions,
e.g., Fig. 2.8b at t = 100, leads to a large amplitude fastest growing mode at
t = 220 with a wavelength of A = 16, Fig. 2.8¢, which is predicted from (2.100).
The growth time from the first emergence of the fastest growing mode (not
shown) is also consistent with the observations. The fastest growing k-value is
established from either a smaller or a larger number of initial modes than the
corresponding value n,, = 128(27/k;,). In either case, the subsequent time
evolution, on a slower time-scale, is to form nonlinear chaotic breathers which
coalesce and then decay to equipartition, on slower time-scales.

For the ¢* oscillator chain, starting from (2.9), one can make the same
Taylor expansion used for the FPU chain, followed by the rotating wave ap-
proximation, to obtain [94]

(W? +m? +4)p + e + iﬁq/ﬁ =0, (2.102)
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Fig. 2.8. Illustrating a set of initial conditions fixed at the ends but with a
9-mode Fourier spectrum approximating a m-mode distribution in the central re-
gion, at times: (a) t = 10, (b) ¢t = 100, (c) ¢t = 220. The predicted fastest growing
mode has A, = 16, in agreement with the results seen in (c).

which is to be compared with (2.85). One observes three differences: the extra
linear coefficient m?, the smaller coefficient of the 1® term (3/4 rather than
12), and the absence of the mixed cubic terms. For most comparisons, we
choose m small (m = 0.1), which is negligible compared to 4, and the mixed
cubic term in the FPU plays only a minor role in the dynamics. The remaining
clear difference is the factor of 16 that the 13 term is smaller in the ¢* envelope
than the FPU envelope. This factor is clearly understood by a comparison of
the original FPU and ¢* Hamiltonians (2.1) and (2.9). Since the nonlinear ¢*
potential results from a self force, the potential arises only from the extension
of the mass point ¢; and is therefore quartic in that extension. In contrast,
the FPU quartic potential arises from the difference of neighboring oscillators
(¢i+1 — @:)- Since these oscillators are approximately 7 out of phase, there is
an increase of 4 factors of 2 in the quartic potential, i.e. 16. The effect of the
factor of 16 is reflected in all subsequent calculations, appearing linearly in the
instability threshold (2.99), as a square-root in the most unstable wavenumber
km (2.100) and linearly in the maximum growth rate s,, (2.100), which were
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found numerically in comparisons between the two chains [94]. Care must be
taken in the comparisons if the energy F is used as the parameter, because
there is a range of scalings of ¢, with F from low to high energy (see [93, 94],
for a detailed treatment). We will return to these comparisons of scalings in
later sections describing the stochastic behavior.

In Sect. 2.4.5 we saw that the envelope approximation with periodic bound-
ary conditions has an equilibrium solution that is exactly constant, the bound-
ary or m-mode. This equilibrium becomes unstable at an envelope amplitude
given by (2.99), and, using the low amplitude approximation for the energy,

E ~2Nv2, , (2.103)

then (2.99) yields the energy border of instability

2

5E>3N.

(2.104)
This result can also be found directly from the discrete m-mode [70], so does
not depend on the envelope expansion. For the FPU-3 chain with fixed ends,
the instability still exists, but is only approximately given by (2.104), as the
envelope equilibrium no longer has an expansion that yields an exact border
of instability. Although the envelope equilibrium of the m-mode results from
breather-like equations, it is an extended mode, rather than the usually stud-
ied intrinsically localized modes (ILMs), which are much more stable. This
general class of short-wavelength modes, near the m-boundary mode, had pre-
viously been studied by Berman and Kolovskii [81] using a different technique.
Starting from the mode representation for the FPU-{ chain, and assuming
that only a few modes neighboring the m-mode were present, they expanded
about that wave number k, as n = k — k; (n < k,), and removing the fast
oscillations by factoring out exp [(iwr + An)t], A = 2(7/N) cos(mk, /N), from
the modes, they arrive at the nonlinear Schrédinger (NLS) equation

0b 9%
Tor =Y ope

where Vo = (36/N)sin®(rk./N), Q = (7/N)?sin(nk,/N), and ®(6,t) =
®(0+42m,t). The NLS equation, like the KdV equation, is completely integrable
with soliton-like solutions. However, like the mKdV equation, the solitons
are subject to an instability which can be calculated by linearization of the
equilibrium, as outlined for the envelope approximation in Sect. 2.4.5. The
result, for instability, is the same as in (2.104), but now involves a narrow
mode packet, rather than the single m-mode. It is also close to the Chirikov
mode overlap criterion for local chaos, which from (2.7) can be written as
BE =~ 27%/3N. As already discussed, all of these criteria signal the onset of
local chaos in the discrete chain, but do not inform us about equipartition on
nonexponential time-scales. However, the Berman—Kolovskii paper considers a
second transition at which the narrow packet approximation breaks down and

+ Vol®*® (2.105)
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therefore the NLS approximation is no longer valid. For this higher energy,
the packet size is not contained, which may lead to power-law time-scales to
equipartition. The value they estimate is

272
3 )
which is independent of V. This high-frequency estimate is quite close to the
low-frequency estimate (2.50), both predicting nonexponentially slow diffu-
sion, which survives in the thermodynamic limit. Both (2.106) and (2.50) give
results for extended modes, which is the relevant result for low frequencies; but
for high frequencies (2.106) does not take into account the later developments,
predicting the formation of long-lived but not fully stable ILMs (the CBs).
The original work included qualitative numerical support for both (2.104)
and (2.106). A more detailed numerical investigation, including the formation
and slow decay of the CBs, is given in Sect. 2.6. Some recent comments on,

and reference to extensions of, the narrow packet approximation can be found
in [140].

BE > (2.106)

2.4.7 Geometric Formalism and the Method of Estimating
the Largest Lyapunov Exponent

As already mentioned in the Introduction, classical perturbation theory
(CPT) is inadequate to describe the properties of Hamiltonian dynamics when
the phase space is formed by chaotic orbits, even if a perturbative descrip-
tion is justified when the time-scales are short with respect to the instability
time-scales. For the transition from weak stochasticity to strong stochasticity
in high-dimensional systems, the perturbative treatment is completely inad-
equate, due to the energies involved which are much larger than the values
for which it is meaningful to consider the systems as quasi-integrable. More-
over, the canonical transformation from natural coordinates to angle-action
variables, which is a prerequisite to tackle chaos from the point of view of ho-
moclinic intersections, is very complicated and necessarily approximated, not
to speak of the lack of the generalization of the Poincaré-Birkhoff theorem at
arbitrary IV concerning the fate of resonant tori, another necessary prerequi-
site for the standard description of chaos through homoclinic intersections.
A problem that naturally arises is how to explain the origin of a Strong
Stochasticity Threshold (SST) and how to compute, the crossover energy. Ac-
cording to the above arguments, one has to look for some nonperturbative
method. The only rigorous theoretical framework dealing with the opposite
situation of CPT, i.e. with completely chaotic trajectories, is ergodic theory.
We have already mentioned in Sect. 2.1.3 that it was Krylov who first realized
the relevance of mixing for statistical mechanics, and the relevance of the sta-
bility properties of geodesics on Riemannian manifolds of negative curvature
for mixing. More recently, the geometric approach has been reconsidered with
the aid of numerical simulations, finding out that the dominant mechanism
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for dynamical instability in physically relevant geodesics flows is parametric
instability due to curvature variations along the geodesics, instead of the neg-
ative curvature [141, 142, 143, 144].

For a dynamical system described by the Lagrangian function

Jaika)i'd" V(o) (2.107)

according to Maupertuis’ principle of stationary action, among all the possible
isoenergetic paths «v(¢) with fixed end points, the paths which make the first
variation of the action functional vanish, which is such that

L(q,q) =

oL
(1) +(t) O
are natural motions.
Since 2W = ¢;0L/0q; , is the kinetic energy, Maupertuis’ principle reads

6/ 2Wdt:8/ (gaxd'd®) " dt:S/ ds = 0. (2.109)
~(t) ~(t) ~(s)

The last integral indicates that if the configuration space M of a system with
N degrees of freedom is given a proper Riemannian structure by introducing
the metric [42, 145]

gik = 2[E — V(q)]air (2.110)

so that ds® = 4[E—V (q)]a;;dg'd¢’ is its arclength, then the trajectories of the
Newtonian motions coincide with the geodesics of the manifold M endowed
with the metric tensor (2.110). This metric is known as the Jacobi metric and
is defined in the region of the configuration space where E > V(g). In local
coordinates, the geodesic equations on a Riemannian manifold are given by

d?q! Iy d¢/ dg®

ds? Ik ds ds (2.111)

where s is the proper time and F; . are the Christoffel coefficients of the Levi-
Civita connection associated with g;;, [146]. By direct computation, it can be
easily verified that the geodesic equations, together with the relation between
s and t, i.e. ds? = 4[F — V(q)]dt?, yield

d%q¢’ )%

=—_ 2.112

a2 e (2.112)

i.e. Newton’s equations associated with the Lagrangian (2.107).
The stability of an orbit is related to the curvature of the Riemannian

manifold. If we define the curvature K at a point = relative to a tangent plane
m, which is spanned by the vectors u,v at x, then

(R(v, u)u,v)

K(u,v) = K(z,m) = A ]2

: (2.113)
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where R is the Riemann—Christoffel curvature tensor [146]. K turns out to be
independent of the choice of the two vectors w,v in 7w. The knowledge of K
for the N(N — 1) planes 7 spanned by a maximal set of linearly independent
vectors completely determines R at z. If dim(M) = 2 then K coincides with
the Gaussian curvature. A manifold is isotropic if K(x,7) does not depend
on the choice of the plane 7. The remarkable result (Schur’s theorem [146]) is
that in this case K is also constant, i.e. it also does not depend on the point x.
For a constant-curvature, i.e. isotropic, manifold (2.113) reduces to a constant
K = 1 R 2.114
NN -1) (2.114)
where N is the number of degrees of freedom and R is the scalar curvature.
For a congruence of geodesics {v-(s) = v(s,7)|7 € R} issuing from a
neighborhood 7 of a point of a manifold [for more details see [142]], dependent
on the parameter 7, fixing a reference geodesic ¥(s,79), if ¥(s) is the vector
field tangent to 7 in s, and J(s) the vector field tangent in 7y to the curves
vs(7) for a fixed s, then the evolution of J contains the information on the
stability (or instability) of the reference geodesic #¥; if |.J| grows exponentially,
then the geodesic will be unstable in the Lyapunov sense, otherwise it will be
stable. It is remarkable that such an evolution is completely determined by
the curvature tensor R, which is a consequence of the fact that J is a Jacobi
field, i.e. it obeys the equation

V2J(s) + R(J(s),7(s))3(s) = 0. (2.115)

Among several Riemannian geometrizations of Newtonian dynamics, a very
interesting one is defined in an enlarged configuration spacetime M x R?, with
local coordinates (¢°,¢*,...,q", ..., ¢",¢"*!), endowed with a nondegenerate

pseudo-Riemannian metric whose arc-length [147]
ds® = g dg"dg” = a;; dg'dg’ — 2V (q)(dg”)* + 2dq dg™ ! (2.116)

is called the Eisenhart metric. The natural motions are obtained as the canon-
ical projection on the configuration space-time of those geodesics for which
the arclength is positive-definite and given by ds? = (const.)2dt?. The geo-
metric formulations of Newtonian dynamics, based on Jacobi and Eisenhart
metrics, respectively, are equivalent. The interest in the Eisenhart metric is
that the instability equation for the geodesic spread (2.115) written in this
metric yields the standard tangent dynamics equation which is commonly
used in numerical computations of Lyapunov exponents.

We note, parenthetically, that the two basic topological conditions for the
onset of chaos in any deterministic dynamics are stretching and folding of
volumes in phase space [148]. In the case of Hamiltonian chaos, these two
conditions are fulfilled by the existence of homoclinic intersections [15, 148].
In the Riemannian description of Hamiltonian chaos, stretching of nearby
trajectories is provided by instability, and folding by not allowing the distance
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to grow indefinitely, i.e. by compactness. In this way, the phase trajectories
forget the initial conditions; their evolution becomes unpredictable in the long
run. In the majority of systems of physical interest, the configuration space
is a bounded domain so that the instability of nearby trajectories, studied by
means of (2.115), implies chaos.

In the particular case of isotropic (or constant curvature) manifolds, (2.115)
becomes very simple: choosing a geodesic frame, i.e. a reference frame trans-
ported along a reference geodesic, the Jacobi equation is written as

d2J

g TET=0, (2.117)

and has either bounded oscillating solutions ||J|| & cos(v/K s) or exponentially
unstable solutions ||.J|| o exp(v/—K s) according to the sign of the constant
sectional curvature K. If the curvatures are negative, the geodesic flow is
unstable even if the manifold is no longer isotropic. Equation (2.117) is valid
only if K is constant. Nevertheless, for dim M = 2 (surfaces), the Jacobi
equation, again written in a geodesic reference frame for the sake of simplicity,
takes a form very close to that of isotropic manifolds,

d?J 1

82 + 2R(8) J=0, (2.118)

where R(s) denotes the scalar curvature of the manifold at the point P = ~(s).
This equation helps in understanding the origin of geodesic instability besides
hyperbolicity. In fact, the solutions of (2.118) may exhibit an exponentially
growing envelope even if the curvature R(s) is everywhere positive but non
constant. This is the case, for example, of two harmonic oscillators coupled
through cubic or quartic terms [143, 149).

In many physically relevant systems (typically a set of coupled anhar-
monic oscillators on a lattice in d space-dimensions) the curvatures are neither
constant nor everywhere negative, and the straightforward approach based
on (2.117) does not apply. This is the main difficulty in extending the meth-
ods of abstract ergodic theory to physically relevant models. The key point is
to realize that negative curvatures are not strictly necessary for chaos, with the
bumpiness of the manifold, being responsible for curvature fluctuations along
the geodesics, that can trigger parametric instability and hence exponentially
growing solutions of the stability equation (2.118).

In the large N case, under a set of suitable hypotheses [for details see [60]],
it is possible to derive a scalar effective stability equation resembling (2.118),
where the role of R(s) is played by a random process, from which an analytic
estimate of the largest Lyapunov exponent can be obtained. The theory leads
to the stochastic equation

d?ep

der T ER)p + (Bkr) ()0 =0, (2.119)
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where ¢ denotes any of the components of J in (2.115) because all of them
are assumed to obey the same effective equation of motion. Here (kg)s, is
the microcanonical average of the 1/N fraction of the Ricci curvature Kr
of the mechanical manifold?, and (8%kg)s, = N (8*KR)y, is the variance
of the Ricci curvature of the mechanical manifold averaged on the constant
energy manifold X = H~1(E); finally, n(s) is a Gaussian 8-correlated random
process of zero mean and unit variance.

Equation (2.119) is a scalar equation which, independently of the knowledge
of dynamics, provides a measure of the average degree of instability of the
dynamics through the growth-rate of ¢(s). The peculiar properties of a given
Hamiltonian system enter (2.119) through the global geometric properties
(kr)s, and (8°kg)s, of the ambient Riemannian manifold. Moreover these
averages are functions of the energy F of the system (and of the energy density
e = E/N, which is the relevant quantity for N — o0), so that from (2.119)
one can obtain the energy dependence of the geometric instability exponent.

Equation (2.119) is of the form

2
d=y .
ds?

representing a stochastic oscillator where the squared frequency (s) is

the above described stochastic Gaussian process. The process §(t), with
proper time s replaced by physical time ¢, is assumed to be stationary
and §-correlated, that is its time correlation function I'g(t1,t2) is such that

Ta(ti,t2) = Ta(|ta — t1]) and Tq(t) = 703 8(¢) , where 7 is a characteristic

time-scale of the process. The evaluation of this time-scale is still a rather

delicate point, where some arbitrariness enters the theory. In studying vari-
ous models an estimate has been successfully introduced, which combines the

evaluation of the time needed to join two successive conjugate points along a

geodesic (conjugate points are those points where the Jacobi field vanishes)

with another time-scale which can be inferred by means of dimensional argu-
ments. In [60] arguments are given which lead to the following two time-scales

Qs)y =0 (2.120)

dt T
= 2.121
T <ds> 2/Qo + 0q ( )
and 12
at\ 29, 20 Q)
= ~ 2.122
2 <ds> 6 VQ oo (2.122)

respectively, where [ is defined as [ = 1/,/0q, and Qy = <82kR>2E, o =
(kr)s,, whence 7 in I'q(t) = 704 8(t) is obtained by combining 7 with 7o
as follows

2 The Ricci curvature is the sum of the N—1 curvatures K, given in (2.113), relative
to the N — 1 planes spanned by a given vector v and N — 1 other (unit) vectors
orthogonal to v. In components, Kr = jokvlvk, where R}, are the components
of the Riemann curvature tensor.
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rh=2(t 4t . (2.123)

Whenever €(s) in (2.120) has a nonvanishing stochastic component, the
solution ¥ (s) is exponentially growing on the average [150]. By considering
the proper time parametrization as a function of the physical time ¢, the
estimate of the largest Lyapunov exponent from the physical time growth-
rate of [1)2(t) + ¥2(t)] is then given by

)+
¥2(0) +92(0)

The ratio ()2(t) +42(t))/(1)?(0) +12(0)) is computed by means of a tech-
nique developed by Van Kampen [150] and summarized in [60]. The main
point is to compute the time evolution of the second moments of ¥ and v, av-
eraged over the realizations of the stochastic process. In general, the solutions
of a stochastic oscillator equation as the one we are dealing with, are unsta-
ble. The envelope of an unstable solution exponentially grows in time with a
growth rate A which—with the aid of Van Kampen’s method—is found to be

1 40
)\(QOaUQaT) = ) <A_ 3AO> )

1
A= lim _ log

2.124
Jim (2.124)

40 5 1/3
A= (2047 + <3°) + (2037)2 . (2.125)

The quantities Qo = (kr)s,, 0o = (8°kg)x, and 7 can be computed as static,
i.e. microcanonical averages. Therefore (2.125) gives an analytic, though ap-
proximate, formula for the largest Lyapunov exponent independent of the
numerical integration of the dynamics and of the tangent dynamics.

An important remark is that this analytic formula for A is derived under
the geometric assumption of quasi-isotropy of the mechanical manifolds (for
details see [60]), but this assumption is inadequate to tackle those systems
whose mechanical manifolds are topologically nontrivial, in this case the the-
ory has to take into account the role of an additional instability mechanism
originating in the neighborhoods of the critical points of the potential function.

2.5 Numerical Results: Relaxation to Equilibrium
from Low-Frequency Modes

2.5.1 Observations of Diffusion: Numerical Determination of A

We have already discussed the early observations of periodicities among a few
low-frequency modes, at low energies, and their explanation in terms of beat
oscillations. We have also considered that solitons could be constructed from
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low-frequency mode initial conditions, which also produce the observed beats,
i.e. another way of looking at the same phenomenon. Instability of single soli-
tons in the mKdV equations was found to occur, for a given FPU-{ chain, at
about the same energy at which the interaction of the beat oscillations gener-
ates stochastic layers (the concept of resonance overlap), and at the instability
of an exact periodic solution. For large systems, at not too low energy, generic
initial conditions would be expected to lie in the stochastic portion of the
phase space and be able to diffuse to all portions of it by the Arnold diffusion
mechanism. A stochasticity threshold (ST), to observable positive Lyapunov
exponent, A, and (possibly) an observable time to equipartition, T,q, would
be expected. In Sect. 2.3, we have discussed the numerical determination of
the statistical quantities A and neg from which T, (or some fraction of it)
is found. In the higher energy regime, these and other statistical measures
of the diffusion have been explored in the late 1970s and 1980s, particularly
from the group in Firenze (see [50, 51, 52, 123, 128, 151]) and in Milano (see
[25, 48, 49, 152, 153]). Here, and in Sect. 2.5.2, we present some of the numer-
ical results, which are then used to guide further analytic studies. We restrict
our numerical observations, in these sections, mainly to initial conditions of
energy in low-frequency modes. The numerics starting from high-frequency
modes have a somewhat different character, and will be treated separately in
Sect. 2.6. Before presenting the results using the statistical measure, we first
present in Fig. 2.9, a series of mode spectra, for R = 8, N = 32, above the E.

log of energy
|

log of energy
|

* c . d

+
+
+ L T U P
TEed E saaaastaerasty FITHa T *
PR

log of energy
)

log of energy
LI"

~10 -10
0 8 16 24 32 0 8 16 24 32

Mode # Mode #

Fig. 2.9. Log of average energies at R = 8.0, N = 32 (F = 4) and four consecutive
times 7 = y(n/N)?*t/3,y = 3; a 7 = 2000, negg = 6.24; b 7 = 10,000, neg = 8.67;
c 7 = 40,000, neg = 18.99 and d 7 = 78,000, nesx = 25.48
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transition as found in Fig. 2.4. The increase in energy in some high-frequency
modes, specified from the selection rules, is well above the background, and
continues to increase with time, finally resulting in equipartition. Note that
the first frame in Fig. 2.9, with 7 = 2000, corresponds to N = 32 at R =8 in
Fig. 2.4. The time has been normalized to scale away the number of oscillators
in the chain. The values of n.g, at each time, are listed in the figure caption.

The early statistical results, for the FPU-§ chain with § chosen to be 0.1,
can be summed up with a graph from Pettini and Landolfi [50]. Choosing a
range of N from 64 to 512, and the initial cluster of low-frequency modes
Ak, with Ak/N fixed at 1/16, they numerically calculated A(t) and n(t) (see
Sect. 2.3.2). To calculate for times that were not as long as T,q they fitted
7(t) to the stretched exponential

_ fen(=(t/n), t<m,
URS P, (2:126)

with 7g taken as a measure of Tq. Their results for an asymptotic A and for
TR are shown together in Fig. 2.10, for a particular N and Ak, but confirmed
for other values of N and Ak with Ak/N = const.. As shown in the figure,
the slopes are power laws in ¢ = E/N, with a transition in the slope of A
from \ o €2 at low € to A o €2/3 at higher e. They interpreted this transition
as that from weak to strong stochasticity (the SST). The weaker scaling at
higher € was predicted from an assumption of a fully random process, which
might be expected to follow from strong mode overlap (see Sect. 2.8.1). We
note from (2.7) that the transition roughly coincides with the prediction of
mode overlap. Although not discussed in the original work, we also see the
scaling 7 o< €73, a scaling later confirmed for T, from extensive calculations
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Fig. 2.10. The relaxation time 7g and the maximum Lyapunov exponent A vs. the
energy per mode ¢ = E/N, for N = 128 and Ak = 4. Open circles and squares are
relaxation times, and closed circles are the Lyapunov exponents
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as presented in the following subsection. The A-scaling has been placed on a
firm theoretical basis, as described in Sect. 2.4.7, with the theory compared
to numerics in Sect. 2.8.2. Pettini and coworkers [61] have made extensive
calculations of A\(¢), using various initial conditions, for FPU-«, FPU-£, and
for the combination of the two, as given in (2.1). The FPU-« chain was
particularly useful to explore a transition from power-law dependence of A
on € to a condition in which A was not obtainable on computer accessible
time-scales, which they called the stochasticity transition (ST). Their inter-
pretation was that the ST gave a transition from essentially regular motion
to chaotic motion. However, numerical determinations of T, for the FPU-3
chain, as reviewed in the next section, interprets the more rapid increase of
Toq with decreasing € as a transition from power-law T,y o< €~¢ to exponential
Toq o exp(—ac®) variation of T, with ¢, as predicted by the Arnold diffusion
mechanism (see [55, 57, 58, 65, 121, 134]). We return to this unresolved ques-
tion of whether or not there is a transition at small € to regular motion (no
diffusion) after presenting the numerics here and in the next subsection.

The type of initial conditions typically used for the FPU-« system are
one or a few modes, for which both short-time and long-time dynamics are
observed. In Fig. 2.11 from Casetti et al. [61], we present values of A(e) on
log-log scales for three values of N = 32 (squares), 64 (triangles) and 128
(circles), starting from energy initially in the longest wavelength mode. The
dominant scaling of X o £5/3 is significantly weaker than the FPU-3 of A o £2.
At low values of e there is a clear drop-off to smaller values of A with a

1072 T T
25"
107 ¢ %% E
ot
/'/‘/
-
U S o
s 1 278
g 100 e E
- : F.-“—-j‘?
106 F ol .
F i
o
107 N .
&b
Vi
10°8 .5..l.....l P | N
1073 1072 107! 10°

Fig. 2.11. Lyapunov vs. €. Long-wavelength initial condition
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weak N-dependence, such that the drop-off occurs at larger ¢ for smaller N.
The results are slightly confused by an apparent resonant dip in A occurring
near ¢ = 1072, Another way of choosing initial conditions for measuring A
is random over oscillators, which is also random over modes. This places the
initial coordinates near equipartition to begin with, and therefore, should ap-
proximate the long-time average more rapidly. The results, shown in Fig. 2.12,
include two small N-values, N = 8 and 16, which cannot be compared directly
with the previous figure, and may also include some “small-N" effects. For
the cases of N = 32 (stars), and 64 (square stars), in the power-law regime,
the same scaling \ o £5/3 is found, agreeing with the previous figure. Again,
just considering the highest two N-values, the drop-off to significantly smaller
As have a scaling of e.N? ~ const. (or E.N = const.), where ¢. is the approx-
imate break from the main scaling. This separation by /N-value is much larger
than in the previous figure. We note parenthetically that the scaling of this
transition is the same as found for overlap of resonances in the FPU-f3 sys-
tem described in Sect. 2.4.1. We discuss these results further after obtaining
numerical values of T, in the following Subsection.

2.5.2 Numerical Determination of T4 Scaling with e

Considerable numerical effort has gone into the determination of the scaling of
Ttq for the FPU-{ system and comparisons with systems with other force laws.
For the FPU-3, Deluca et al. [55, 57, 58], showed for a fixed e = E/N = 0.5,
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over a range of relatively large N-values, N = 256 — 4096, with a fixed per-
centage of initial modes, 8k/N = 1/16, that neg(t) fell on a universal curve,
i.e. was independent of N, and therefore of E. For these relatively large N-
values a previous weak dependence on N with 8k held constant, was partly
resolved by showing that neg(¢) has an initial transient, which mostly disap-
pears for larger values of neg. This is a reasonable consequence of phase space
ergodic mixing. With smaller values of N investigated in other studies, there
are significant weak N-dependences in the time to obtain equipartition. The
universal dependence of neg on 72 is illustrated in Fig. 2.13, where the time
is normalized to 7 = (B)3t. Since the times to equipartition become very
long as ¢ becomes small, only the largest values of € were integrated to T, at
neg = 0.65. Because of the universal nature of the result shown in Fig. 2.13,
the scaling of T,y with € should also be obtainable from a smaller value of
Neft, 5ay Neg = 0.4. This was done, finding t(neg = 0.4) < £73, but with
some suggestion of steeper scaling at the smallest ¢, interpreted in subsequent
longer integrations neg = 0.65 as a breakdown of power-law scaling if the
initial driving frequency becomes too small [65]. A heuristic calculation of the
observed scaling was given in [58], which we will summarize in Sect. 2.8.3.
The results of DeLuca et al. [58] were reexamined by Berchialla et al. [59] for
N = 511, again for t(neg = 0.4), obtaining =3 scaling with € in the same &
range as previously, but extended to smaller e-values where steeper scaling was
observed. In addition to the log-log plot, giving the t oc £~2 scaling over part
of the e range, a best-fit stretched-exponential dependence, t exp(afl/ 4,
was also plotted showing a good fit to the smaller values of €, as shown in
Fig. 2.14, with the vertical dashed lines indicating the range of the data from
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the DeLuca et al. [58] paper. (The values for € > 1 are considered to be above
the SST and not of interest in the comparison). These results will be dis-
cussed further, after presenting additional data from other oscillator chains.
An early comparison of the FPU-f chain with the ¢* chain was made by
Pettini and Cerruti-Sola [64]. Both oscillator chains have quartic nonlinear
potentials, but the ¢* quartic term is on-site, while the FPU-3 quartic term
is between oscillators. As already discussed in Sect. 2.2, the FPU-G chain is
simpler and easier to analyze. The early numerical comparison of the chains
covered long-wavelength (low-frequency), short-wavelength (high-frequency)
and intermediate-wavelength initial conditions. The recent theory, elucidat-
ing the more complex behavior, starting from high frequencies, had not been
developed, but some general observations could be made. For long-wavelength
initial conditions, at a given €, the time to equipartition was shorter for the ¢*
system than for the FPU-G system. The opposite held at short wavelengths
with T, shorter for the FPU-3 than the ¢* system. It generally took longer
to reach equipartition from short-wavelengths at a given €. We have already
discussed reasons for the different behavior and some short-time results in
Sect. 2.4.1. Numerical results for short wavelengths will be given in Sect. 2.5.
Here we present the detailed long-wavelength comparison as given in [65]. In
Fig. 2.15 we compare the scaling of Ty, () for the FPU-3 and ¢* chains, each
for two values of N. The nonlinear coefficient is g = 0.1 for both chains, and
m = 0.1 for the ¢* chain. Except for the FPU-3 chain with N = 500 (or 512),
the other cases used Ak/N = 1/16, as with the numerical results presented
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Fig. 2.15. Comparison of equipartition times for the FPU-8 [N = 128 (crosses),
N = 512 (triangles)) and the ¢* model (m = 0.1, N = 64 (squares), N = 128
(stars)]. The ¢? data with plusses are taken from [64]

in previous figures. For the N = 500,512 data, some Ak/N = 1/16 initial
conditions and some Ak = 8 (Ak/N = 1/64) initial conditions were used. In
all cases, the initial conditions used the lowest modes, equally excited. [For
the two pairs of FPU-( results, with large IV, at e = 0.5 and € = 1, the lower
points used Ak/N = 1/16 (N = 512) while the upper points used Ak = 8
(N = 500).] However, although there is some initial Ak/N dependence, the
main reason for the separation was due to a statistical (and perhaps physical)
anomaly that sometimes occurs at higher N-values. The criterion for deter-
mining Toq was the first time neg () = 0.65. As discussed in Sect. 2.3.2 there
are fluctuations on short time-scales which lead to neg = 0.65 at equiparti-
tion, but these fluctuations also appear on the neg(t) curves. Usually, neg(t)
crosses 0.65 and then fluctuates around that value. In the two upper values
of Ttq, discussed above, the first fluctuation occurred just below n.g = 0.65,
such that the first actual crossing was significantly later in time. Returning
to discussion of the main results, the central portions of all curves display
power-law scaling, with FPU-3 scaling giving Toq(FPU — ) o< e, This is
also seen when t(neg = 0.4) is used to determine the scaling. The somewhat
flatter scaling at large € is again interpreted as crossing the strong stochastic-
ity threshold (SST). For the ¢* chain the central portion of the e-values gives
Toq(¢*) oc €725, slightly flatter than the FPU-3 scaling. We will discuss this
difference, together with a heuristic calculation of the scaling in Sect. 2.8.3.
The Teq(€) slopes become steeper at the lowest values of . For the ¢* chain,
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comparing the values of Tyq for N = 64 (squares) with the values of N = 128
(stars), we see that for intermediate e-values the two curves lie close together,
agreeing with the expectations that T.q is a function of €, only, [58, 121], as
found in Sect. 2.8.3. However, at lower values of € we see that the N = 64
points break away from the N = 128 values, producing larger values of T,q
with decreasing €. This behavior was also found for the FPU system, and
understood in terms of a critical value of energy, E. for which the transition
occurs. If the value of E. is the same for all IV, as calculated in Sect. 2.4.1 for
the FPU system, then the value of . at which the transition takes place would
vary inversely with IV and therefore occur at a factor of 2 higher € for N = 64
than for NV = 128, as observed in the figure. The values of T, for the FPU
chain for N = 128 (crosses) and N = 512 and 500 (triangles), would have the
equivalent break at higher values of T, which were not numerically reached.
In Fig. 2.16, we plot Ty, on a log scale, vs. 1/¢, for N = 128 (stars) and for
N = 64 (squares). In the range in which the diffusion is exponentially slow
(Arnold diffusion), then from the exponential scaling with dwy,/Qp x 1/E,
if (2.54) is not satisfied, we expect to obtain a straight line for log(Teq) vs.
1/e if N is held constant. This is, indeed, found for 4 of the values, with a
transition between ¢ = 1072 and 5 x 1074, for N = 128, and between 2 x 1073
and 1072 for N = 64, indicating that the change in dependence occurs at a
fixed value of ¥ = E.

Because of the additional on-site parameter m, the numerical investigation
of the ¢* chain involves a larger parameter space than the FPU chain. We can
see from the linear mode frequencies, given in Sect. 2.2.2, that for m > 1/N,
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Fig. 2.16. Equipartition time for the FPU-8 model in the exponentially slow dif-
fusion regime
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Fig. 2.17. Trapping in an intermediate state before the relaxation to equipartition
begins, as illustrated by the time evolution of neg and nosc

the mode frequencies bunch together for long-wavelength modes, similar to
high-frequency bunching. The result, starting from long-wavelength initial
conditions, similar to what we shall see for both FPU-3 and ¢* at short
wavelengths, is that there is trapping in a group of closely coupled modes
that leads to a plateau in meg, before the continuation toward equipartion.
We illustrate the plateau in Fig. 2.17, calculating both neg and ngc, for typical
parameters with m = 1 and Ak/N = 1/16. The energy is distributed among
many oscillators, and a plateau at neg ~ 0.2 exists for a long time before
the rise to the equilibrium value of neg = 0.65. The nes plateau is similar
to an effect seen for initial conditions in short wavelengths as in Fig. 2.23.
However, the physics is quite different at short wavelengths, where the energy
concentrates into a few oscillators, which can be seen by comparing the nos.(t)
plots in Figs. 2.17 and 2.23. In Fig. 2.18 we scale T, to the best fit of ¢/m*™
which we will discuss in Sect. 2.8.3.

2.6 Numerical Results: Relaxation to Equilibrium
from High-Frequency Modes

2.6.1 Dynamical Studies of Self-Organization into Chaotic
Breathers and Their Interaction

In a systematic study of chaotic breathers (CBs) in a FPU oscillator chain
with periodic boundaries, starting from the boundary mode, that has 180
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Fig. 2.18. Rescaling of the equipartition time for the ¢* model; each symbol cor-
responds to a different m-value

phase shift between neighboring oscillators, Cretegny et al. [87] illustrated
the dynamics with a three-dimensional presentation first used by Burlakov
and Kiselev [83]. The result shown in Fig. 2.19a, with accompanying explana-
tory figures, shows on a gray intensity scale, the CBs emerging from the fastest
growing mode, moving spatially and interacting with one another, with the
larger CBs absorbing the smaller ones, until only a single moving CB re-
mains. Figure 2.19b, c illustrate this with time snapshots. Finally there is a
longer time period in which the CB can continue to grow by taking energy
from background modes with similar symmetry, but ultimately decaying to
an equipartition state, as seen in Fig. 2.19d. For this study an intermediate
value of € ~ 0.35 was used. This result is quantified with statistical measures,
which we save for the following section.

As already described in Sect. 2.4.6, it is not necessary to start from the
m-mode to obtain results of this nature. In fact, for fixed boundaries there is
no exact m-mode. More generic initial conditions with fixed boundaries were
used by Ullmann et al. (2000), obtaining results very similar to Fig. 2.19. For
example for N = 128, choosing v = 120, n = N + 1 — v = 9 initial peaks,
a result close to Fig. 2.19a was obtained, except that there is a competition
between the initially fixed number of peaks and the wavenumber of the fastest
growing mode. This roughly led to the result that, even for energies for which
Ny = Nk, /27 < 9 the number of initial CBs ng > 9. They also explored a
wide range of initial conditions, finding with N = 128, that proto-breathers
began to form for v > 80, and became fully formed CBs for v > 100. They
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Fig. 2.19. Evolution of the local energy E, along the chain. In panel a, the hori-
zontal axis indicates the position along the chain and the vertical axis corresponds
to time (time is going upward). The grey scale goes from E, = 0 (white) to the
maximum FE,-value (black). The lower rectangle corresponds to 0 < ¢ < 3000 and
the upper one to 5.994 x 10° < ¢t < 6 x 10°. Panels b, ¢, and d show the instanta-
neous F, along the N = 128 chain at three different times. Note the difference in
vertical amplitude

used a particular value of E = 50 (¢ = 0.39). This latter result was obtained
by direct observation of the spectrum, and also by the use of macroscopic
quantities, as described in the next subsection.

Various numerics of CB formation and decay were repeated in papers
employing the analytic methods using envelope functions, in order to compare
analytic formulae with numerical results. For example, for the FPU chain the
logarithmic rate of decay of the number of CBs 1/7 = ng'(dng/dt) was
constant at fixed energy, indicating that the time-scale for coalescence

8 ~ (npopup) " (2.127)
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with 73 o 7, preserved the constancy of the product CB densityx CB inter-
action cross-sectionx CB velocity during the coalescence [92]. At lower initial
energies, for the FPU chain, 75 oc E~2 [91], while at higher energies 75 oc E~!
[88]. These scalings are understood, and the underlying theory will be outlined
in Sect. 2.9.

The dynamics of the ¢* chain has some significant differences from the
FPU dynamics. Nevertheless, the overall features have much in common. For
example, for the lowest mode of the envelope, n = 1 (v = 128), the devel-
opment of the parametric instability is quite similar for the ¢* and FPU,
provided the ¢* energy is a factor of 16 higher to account for the factor of
16 in the nonlinear term, with E o 1, in the energy range considered. The
initial nonuniform growth of the instability is shown in the time snapshots in
Fig. 2.20, and the coalescence shown in four time snapshots in Fig. 2.21.

By scaling either the energy or the time, the early development of the
instability can be obtained reasonably close to that in Fig. 2.20. Similarly, the
nearly complete coalescence into a single CB in Fig. 2.21d at t = 5000, can be
roughly compared with the localized state at ¢ = 2000 from the observation
of a residual second breather seen in Fig. 2.19a, and at t = 3000 in Fig. 2.19c.
Note that the faster evolution times in the FPU example reflect reasonably
well the effective higher energy.

2.6.2 Transitions and Time-Scales to Equipartition

To systematically study the transitions and time-scales for the creation of
breathers, their coalescence, and their destruction leading to equipartition,
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Fig. 2.20. Development of the fastest growing mode from the initial mode v =
128 (n = 1) for the ¢* model
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Fig. 2.21. Coalescence of a few chaotic breathers into primarily a single breather
fot the ¢* chain: a t = 300, b t = 1200, ¢ ¢ = 4000, and d ¢ = 5000

macroscopic quantities are most useful. We have introduced these macroscopic
quantities in Sect. 2.3.2 and used them to study the evolution from long-
wavelength modes to equipartition in Sect. 2.5.2. For long-wavelength initial
conditions the quantity neg is most useful, while nqs. gives little additional
information. In contrast, for short-wavelength initial conditions, in which the
intermediate CB state occurs, nes. is the most useful macroscopic indicator
but neg also serves a useful function; other macroscopic indicators can also be
used. In Fig. 2.22a we plot the evolution of nes(t) during the evolution, using
a linear time-scale, beginning after the multiple CBs have formed through
their coalescence time of about ¢ ~ 2 x 10%, and then through a longer time
interval to approximately t ~ 2.5 x 10°. Finally, an approximate equipartition
is reached at Tegq ~ 5% 10°, as the breather disintegrates, between t = 2.5x10°
and t = 5 x 10°. It is quite difficult to extract a definite Toq from nese, which
is most useful for describing the evolution of the CB states. We also present
the results for neg on a linear time-scale, but over twice the time period, in
Fig. 2.22b, observing that T, ~ 10°. The approximate numerical asymptotes
are slightly lower than the theoretical values, given in Sect. 2.3.2, which are
Nose = 0.74 and neg = 0.655.

The overall time dependence is better seen on a scale which is logarithmic
in time. We illustrate the full time dependence for the ¢* oscillator chain, in
Fig. 2.23, starting from the same initial conditions as in Figs. 2.20 and 2.21.
We note here that the asymptotes correspond more closely to the theoretical
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Fig. 2.22. Time dependence of a nesc and b neg. The horizontal lines are asymptotes

values. Again, most of the relevant information is contained in ngs(t). The
logarithmic dependence of the time-dynamics is seen by estimating that the
instability growth is in the range 30 < ¢ < 300, the breather formation and
coalescence between 300 < ¢ < 3 x 102, and the single breather exists between
3 x 103 < t < 3 x 10%. In the final decade the breather is destroyed, leading
to equipartition.

The scalings for short-wavelength initial conditions in the regions of lower
and higher energy density € can be obtained similarly to that in Sect. 2.5.2
for long-wavelength initial conditions. As for long wavelengths there is a tran-
sition between two distinct regions of power-law scaling with energy density
€ , the lower energy region which has steeper e-scaling, and the higher en-
ergy region with flatter e-scaling. Returning to the numerics of the FPU, in
Fig. 2.24 we plot neg vs. normalized time for a series of values of €, show-
ing that in the lower energy regime 0.33 < ¢ < 1.44 in Fig. 2.24a, the data
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Fig. 2.23. Time dependence of (a) neg and (b) nesc for the ¢* chain. The initial
energy density is e =2 and v =128 (n = 1)

collapses onto a single curve using e~2 as a normalizing factor. At very high
values of &, 103 < ¢ < 10% the dynamics has become purely random over the

mode space, and the weak normalizing factor e /% is observed (Fig. 2.24b).
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Fig. 2.24. In panel a [resp. b] the evolution of neg (t) vs. the rescaled time t (E/N)?
(resp. t (E/N)"*) is reported for different energy densities. Each curve in (a) [resp.
b] corresponds to the average over 20 (resp. 50) different initial conditions for a chain
with N = 512 sites. The dot-dashed line reported in (b) indicates the asymptotic
value neg ~ 0.655
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Fig. 2.25. Comparison of the equipartition time for the FPU and the ¢* lattice

The lower € scaling, starting from short wave-lengths, is different from the
£73 scaling obtained in Sect. 2.5.2 from long wave-lengths. Estimates for the
scalings, as well as values of T,q in the various regimes will be presented in
Sect. 2.9.2.

Finally, we compare in Fig. 2.25 the times to equipartition, for a few dis-
tinct initial conditions of the FPU and ¢* chains at relatively low values of &,
with NV = 128. All values of T, were taken at the first crossing (or touching)
of neg = 0.65. The slopes become steeper, for both chains and all initial con-
ditions, at the lowest values of €. This may be associated with the transition
to exponential scaling, as previously discussed for low-frequency initial con-
ditions. We also see the basic separation of a factor of 4 in € at a given T,
between the FPU and ¢* results, due to the difference in the nonlinear forces.
There are also more subtle differences, discussed in the original paper [94].

2.7 Numerical Results: Stationary Nonequilibrium
Properties

2.7.1 Numerical Studies of the Divergence of Heat Conductivity

As a result of a number of studies of the heat conductivity in FPU and di-
atomic Toda models the conductivity of long but finite chains diverges as

K(N) o< N%. (2.128)

In Table 2.1, we compare the available estimates of the exponent « determined
by different authors in various models and conditions. The acronym NEMD
refers to nonequilibrium molecular dynamics simulations, where the chain is
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in contact at its boundaries with thermal baths at different temperatures. The
heat conductivity is estimated by (2.10). The acronym GK indicates equilib-
rium simulations, where the chain is at equilibrium and the heat conductivity
is computed by the Green—Kubo formula: for an isotropic homogeneous solid
made of atoms placed on a regular cubic lattice of volume V' in d dimensions,
the thermal conductivity x is expressed as a scalar quantity (see [154])

1 t

lim [ dr lim V=YJ(7)-J(0)), (2.129)

K =
B 0 V

where kg is the Boltzmann constant; T, the temperature of the solid; ( ), the
equilibrium average; and J is the heat current vector.

This formula applies when the integral on the r.h.s. is finite. In a chain
of atoms, J is a scalar quantity and a divergent heat conductivity can be
signalled by the slow decay in time of the heat current autocorrelation function
(J(t)J(0)) ~ t=# with 8 < 1. In fact, the integral in (2.129) diverges. In
finite chains one expects that an exponential decay eventually sets in, so that
simulations should be performed for different chain lengths in order to be sure
to pick up the truly asymptotic scaling behavior.

A quantitative comparison with the nonequilibrium measurements, based
on the Fourier law (2.10), can be performed by noticing that energy propagates
with the constant sound velocity vs. This can be understood by, for example
looking at the spatio-temporal correlation function C(i,t) = (j;(¢)jo(0)) of
the local heat flux plotted in Fig. 2.26 (see [114]). Accordingly, one can turn
the time divergence of k as determined from the Green—Kubo formula into
a divergence with N by restricting the integral in formula (2.129) to times
smaller than the “transit time” Na/vs. This amounts to ignoring all the con-
tributions from sites at a distance larger than N. With the above estimate
of C, one obtains that £ o< N'=7 ie. a = 1 — . The latter exponent is the

25 -15

Fig. 2.26. The spatio-temporal correlation function C(i,t) = (ji(t)jo(0)) of the
local flux for the FPU-3 model. Microcanonical simulations, energy density 8.8



2 Dynamics of Oscillator Chains 91
Table 2.1. The estimated exponent « of divergence of the conductivity with size
N, as obtained from both nonequilibrium molecular dynamics (NEMD) simulations
and through Green—Kubo (GK) equilibrium studies. Only the significative digits are
reported as given in the quoted References

Model Reference o (NEMD) « (GK)
FPU-3 (113, 114]  0.37 0.37
FPU-a [115] ~ 0.4 -
Diatomic FPU r=2 [117] 0.43 compatible
Diatomic Toda r=2 [116]  0.35-0.37 0.35
[117] 0.39  compatible
Diatomic Toda =8 [117] 0.44 compatible
Diatomic hard points  [116] 0.35 -

one reported in the last column of Table 2.1. All numerical values there range
between 0.35 and 0.44, suggesting a nontrivial universal behavior. It is also
remarkable to notice the overall consistency among the results obtained with
different thermostat schemes (ranging from deterministic to stochastic ones).

In order to better appreciate the quality of the divergence rate that can
be numerically obtained, in Fig. 2.27 we have plotted the finite-length con-
ductivity (N) = JN/(T4+ — T_) vs. the number of particles in the FPU-3
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Fig. 2.27. Thermal conductivity of the FPU-3 model vs. lattice length N for T} =
0.11, 7— = 0.09. The inset shows the effective growth rate aes versus N. Circles
and diamonds correspond to free and fixed b.c., respectively
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model for fixed and free boundary conditions. In the inset, one can see that
the effective growth rate aeg, which corresponds to the logarithmic derivative
of k(N), is basically the same in both cases, despite the clear differences in
the actual values of the flux itself. The value of g seems to be quite close
to 0.4, a value which has been predicted by different theoretical approaches
(e.g., see [113]).

Once the divergence is clearly established, the next question concerns the
universality of the divergence rate. The discussion of this point involves con-
sidering a possible dependence on the temperature as well as on the leading
nonlinearities [115]. Both questions are addressed in Fig. 2.28, where x(N) is
computed in the FPU-a model at a relatively low temperature.

One can see that changes in the temperature gradient, without modify-
ing the average T = (T4 + T_)/2, modify the effective conductivity only
at relatively small sizes. Moreover, the two sets of measures corresponding to
AT = 0.1 and 0.02 (triangles and circles, respectively) approach each other for
N larger than 103. In both cases (V) increases linearly with N for N < 103
and no sizeable temperature gradient forms along the chain. Both facts hint
at a weakness of anharmonic effects up to this time/length scales. This is con-
firmed by the comparison with the results for a pure harmonic chain (with the
same setup and same parameters) that exhibit a clean linear growth of x with
N (see the solid line in Fig. 2.28) and a few-percent differences in the initial
size range. The fact that x is smaller for larger AT can be thus attributed to a
stronger boundary scattering that reduces the conductivity. From the inset of
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Fig. 2.28. Thermal conductivity of the FPU-a model vs. lattice length N. Triangles
and circles refer to AT = 0.1 and AT = 0.02, respectively. The solid line corresponds
to the linear divergence observed in a harmonic chain with the same temperatures.
The inset shows the effective divergence rate aeg vs. IN for the data corresponding
to full circles
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Fig. 2.28, one can only conclude that for chain sizes up to O(10%) the exponent
« seems to approach the value 0.4, although nothing prevents the possibility
that it converges to a larger value. In particular, there is evidence that the
scaling properties of £(IN) in the FPU-a model exhibit much different features
with respect to the FPU-£ model, at least in the explored range of temper-
atures and sizes. Recent theoretical estimates based on the mode-coupling
approach, indicate that, as a matter of symmetry, heat conductivity in the
FPU-a and - models should diverge with different values of the exponent
in (2.128). Moreover, these values are supposed to represent the two univer-
sality classes characterizing the power-law divergence of the heat conductivity
for any FPU-like model (including more phenomenological nearest-neighbor
potentials, like the Lennard-Jones ones). It must be pointed out that such a
theoretical prediction is very difficult to be checked numerically. Typically, fi-
nite size/time effects, as those observed in the FPU-a model, are found to last
over extremely long integration times and for very large system sizes which
do not allow one to confirm or disprove the theoretical expectations. Anyway,
a power-law divergence of the heat transport coefficient is always present in
such a class of models, although in finite systems the value of the exponent «
varies significantly with temperature and size. It is worth mentioning that this
could be a relevant point for what concerns possible comparison with experi-
ments, performed on almost-one-dimensional systems, like carbon nanotubes
or polymers.

Finally, we want to discuss the role of the boundary resistance in connec-
tion with the temperature dependence of conductivity. In fact, an interesting
application of (2.128) has been proposed with reference to the FPU-3 model
[155]. There, it has been empirically found that the bulk conductivity scales
with V and T as

ag—1 ~
H:{l.ZN T-1 (T ~0.1) (2.130)

2NeTY4 (T > 50)

According to kinetic theory, the conductivity can also be expressed as Kk =
LvsC,,, where £ is the mean free path of phonons. Since C, and vs are almost
constant and of order 1 in a wide temperature range, ¢ ~ k. Hence, at low
temperatures the boundary jumps dominate the thermal profile up to the size
N. that can be estimated according to (2.130). At low temperatures this effect
is very strong with N, ~ (2¢/7)(1/1=®) while smaller boundary resistances
are found at large temperatures, with N, ~ (2eT%/4)(1/1=%) where ¢ is the
energy density.

2.7.2 Force Laws That Predict Classical Heat
Conductivity:Coupled-Rotors, Ding—a—Ling and Klein—Gordon
Chains

A simple example of a classical-spin one-dimensional model with nearest
neighbor interactions has a potential
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V(z)=1—-cosz, (2.131)

i.e. is a chain of N coupled pendula. It has been extensively studied [151, 153,
156] as an example of a chaotic dynamical system that becomes integrable
both in the low- and high-energy limits, when it reduces to a harmonic chain
and to free rotors, respectively. In the two integrable limits, the relaxation to
equilibrium slows down very rapidly for most of the observables of thermody-
namic interest (e.g., the specific heat: see [151, 156]). As a consequence, the
equivalence between ensemble and time averages is established over accessible
time-scales only inside a limited interval of the energy density €. Here, we
focus our attention mainly on heat conduction in the strongly chaotic regime.

It has been shown that, contrary to the expectations, this model exhibits
a finite conductivity in spite of the existence of an acoustic branch in its
spectrum in the harmonic limit [157, 159]. Simulations have been performed
for Ty = 0.55, T = 0.35, and chain lengths ranging from N = 32 to 1024 with
fixed boundary conditions and Nosé—Hoover thermostats [157]. The equations
of motion have been integrated with a fourth order Runge—Kutta algorithm
and a time step At = 0.01. The results, reported in Fig. 2.29 clearly reveal
a convergence to a value of x approximately equal to 7 (see the circles). The
dotted line is the best fit with the function a 4+ b/N and indicates a constant
k for N — oo. This is the first system where normal heat conduction was
convincingly ascertained in the absence of a local potential and was confirmed
by calculating an exponential decay of heat flux correlation appearing in the
Green-Kubo formula (2.129).

e 55 »w%
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N

Fig. 2.29. Conductivity x vs. chain length N as obtained from nonequilibrium
molecular dynamics. Clircles correspond to the rotator model with temperatures
T+ =0.55 and T_ = 0.35. The dashed line represents the best fit with the function
a + b/N. The shaded region represents the uncertainty about the conductivity on
the basis of the Green—-Kubo formula
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One explanation of the striking difference in the transport behavior exhib-
ited by the model compared to, for instance, the FPU models is to notice that
the pair potential V' (g;4+1 —¢;) possesses infinitely many equivalent valleys. As
long as (gi+1 — ¢;) remains confined to the same valley, there is no reason to
expect any qualitative difference with, for example, the FPU-3 model. Phase
slips (jumps of the energy barrier), however, may very well act as localized
random kicks, that contribute to scattering of the low-frequency modes, thus
leading to a finite conductivity. In order to test the validity of this conjecture,
one can study the temperature dependence of k for low temperatures when
jumps across barriers become increasingly rare. The data plotted in Fig. 2.30
indicate that the thermal conductivity behaves as k & exp(n/T') with n ~ 1.2.
The same scaling behavior is exhibited by the average escape time 7 (see tri-
angles in Fig. 2.30) though with a different  ~ 2. The latter behavior can
be explained by assuming that the phase slips are the results of activation
processes. Accordingly, the probability of their occurrence is proportional to
exp(—AV/T), where AV is the barrier height to be overcome. The behavior
of 7 is thus understood, once we notice that AV = 2. In the absence of phase
slips, the dependence of the conductivity on the length should be the same as
in FPU-G model, i.e. kK & N, with o =~ 0.4. In the presence of phase slips, it
is natural to expect that the conductivity is limited by the average distance N
between consecutive phase slips. Under the further assumption of a uniform
distribution of the slips, their spatial and temporal separation has to be of
the same order, thus implying that x(7") exhibits the same divergence as 7
for T — 0, though with a different rate x ~ exp[aAV/T]. Therefore, at least
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Fig. 2.30. Thermal conductivity & vs. the inverse temperature 1/7" in the rotor
model (open circles). Triangles correspond to the average time separation between
consecutive phase slips in the same system
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on a qualitative level, one can indirectly confirm that phase slips are respon-
sible for the normal heat transport. However, there is a discrepancy between
the observed and the expected value of the exponent n (1.2 vs. 0.8). We now
consider the class of models whose Hamiltonian contains a local “substrate”
potential U(g;). This means that translational invariance breaks down and
the total momentum is no longer a constant of the motion. Accordingly, the
dispersion relation is such that w(k) # 0 for k£ = 0.

The so-called “ding-a-ling” model was first introduced as a toy model for
a one-dimensional plasma [158]. It can refer in different contexts to : (i) a
set of identical charge-sheets embedded in a fixed neutralizing background;
(ii) a system of harmonic oscillators with the same frequency and equilibrium
positions sitting on a periodic lattice and undergoing elastic collisions that
exchange their velocities. Notice that in the low-energy limit, it reduces to a
set of independent harmonic oscillators with equal frequency (no dispersion).
A modified version of this model, where the harmonic oscillators (say the even-
numbered particles) alternate with free particles of the same (unit) mass, was
later introduced for studying heat transport [119]. The free particles are only
constrained to lie between the two adjacent oscillators. The Hamiltonian can
be symbolically written as

N
Z p; +wiqi] + “hard point core” (2.132)
!

where w; = w for even [ and zero otherwise. A common feature of this class
of models is that within collisions the motion of the particles can be deter-
mined analytically so that the basic requirement is the computation of the
occurrence times of the collision events. Therefore, the dynamics naturally
reduces to a discrete mapping. For an isolated system (e.g., a chain with pe-
riodic boundary conditions) the dynamics depends only on the dimensionless
parameter £/(wa)? where ¢ is the energy per particle and a the lattice spac-
ing. The dynamical behavior of the model was studied by fixing ¢ = 1 and
changing w [119]. When w and N were large enough the dynamics was found
to be strongly chaotic and soliton-like pulses are sufficiently attenuated [160].
This renders the model a good candidate to check the validity of Fourier’s law.

The Fourier law was first confirmed with the performance of a series of
non-equilibrium simulations, where the freely moving end-particles were put
in contact with two Maxwellian reservoirs. The average flux J was then com-
puted by summing the amounts of energy 8FE exchanged with one of the
reservoirs in all collisions during the simulation time. The average tempera-
ture gradient was estimated with a linear fit (to get rid of boundary effects).
By evaluating the thermal conductivity as a function of the lattice length up
to N =18 for T4 = 2.5, T7_ = 1.5 and w = 1, it was concluded that x(N)
attains a constant limiting value for N > 10 (see Fig. 2.31). After having es-
tablished the existence of a finite value of the transport coefficient, the value
of k was compared with the result of linear response theory, using a Green—
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Fig. 2.31. Thermal conductivity of the ding-a-ling model. Size dependence of « for
w=1and £ = 1.5 (from [162]). In the inset an expanded view is presented in the
range of sizes considered in [119]

Kubo formula (see [161]). In summary, all these studies provided a convincing
numerical evidence that the heat conductivity is finite in this model. In par-
ticular, it was shown that the energy transport is diffusive for large values of
w (typically, larger than 10), while the linear response estimate was found to
agree with numerical simulations. Much later, these results were essentially
confirmed by a detailed series of simulations with longer chains and in a wider
parameter range of the “ding-a-ling” model [162]. However, the temperature
profile exhibits a nonlinear shape (see Fig. 2.32) different from the typical
linear temperature profile predicted by the Fourier law.

Careful numerical studies performed on the original Dawson model [161]
have confirmed the validity of Fourier’s law in a wide temperature range. Be-
sides direct nonequilibrium simulations with Maxwellian thermostats and the
Green—Kubo formula, these studies implemented an efficient transient method
that allowed them to explore the high-temperature regime (T' > 3), where,
because of the nearly integrable dynamics, a slow convergence of the averages
with time and/or size is observed. In the low-temperature limit (7" < 0.1) it
was also proved that the heat conductivity vanishes as exp(—1/4T), in agree-
ment with numerical results. Numerical evidence of finite thermal conductivity

1.8

1.6 1 1 1 1
0 02 04 06 08 x 1

Fig. 2.32. Temperature profile for the ding-a-ling model, w = 2 (see [163])
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was also found in a modified ding—a—ling model where the harmonic potential
is replaced by a gravitational one [163].

The Klein—Gordon lattices are another important class of models with a
substrate potential, where the interparticle potential is harmonic:

N 9 1
H=> [;Tln +U(@) + ,Clar = Ql)z] : (2.133)
=1

The first and most complete study of the transport problem in this class of
models has been carried out for the Frenkel-Kontorova potential [164].

Ulz) = —Us cos<27;$) . (2.134)

The model can be interpreted as a chain of either coupled particles in an
external periodic field or torsion pendula subject to gravity. In the latter case
a = 27 and ¢; represents the angle with respect to the vertical direction: it
can be read as the discretized (and nonintegrable) version of the well-known
sine-Gordon field equation.

Besides energy, the dynamics admits a further conserved quantity, the
winding number P, which is an integer defined by the boundary condition
qi+N = qi + aP. In the particle interpretation, P represents the number of
potential wells, while for the pendula it can be viewed as the degree of built-in
twist in the system. Thermal conductivity was computed numerically in the
general case of nonvanishing winding number, with three different methods: (i)
attaching two heat baths; (ii) through the Green—Kubo formula; (iii) by adding
an external field . All the methods give consistent results and clearly indicate
that the thermal conductivity is finite. These results were later confirmed
by further numerical studies [165], which investigated the dependence of the
transport coefficient on the lattice length (for P = 0). Similar conclusions
were drawn for a more general version of the Frenkel-Kontorova model with
an anharmonic inter-site potential [166].

In order to illustrate the type of behavior observed in this class of models
Fig. 2.33 shows some data for the ¢* chain

a o by
= ) 2.1
U(x) 5% +4x (2.135)

In panel (a), we present a case of fast convergence to a small k value for
a single-well potential; panel (b) refers instead to a low-temperature regime
characterized by large thermal conductivity.

Evidence of a finite conductivity for the case a = 0 has been reported in
[167, 168]. Two further examples were analyzed, the sine-Gordon and bounded
single-well potentials:

1
Ulw) = coshz =1, Ulx) =, (1 — sech’z) (2.136)

representatives of the classes of hard and soft anharmonicity, respectively. In
both cases there is numerical evidence for finite thermal conductivity [169].
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Fig. 2.33. Thermal conductivity vs. chain length in ¢* chains with Nosé-Hoover
thermostats. Panel a refers to the single well case [a = b =1 in (2.135)] the results
have been obtained for C' = 1, T+ = 8, and T_ = 6. The shaded region represents
the value obtained from the Green—Kubo formula with its statistical uncertainty.
Panel b refers to the double-well case (a = —1, b = 1) for an average temperature
T = 0.37 and a temperature difference 0.002. The dashed line is just a guide for
the eyes

2.8 Analytical Calculations and Estimates: Scaling
Estimates for A and for T, from Low Frequencies

2.8.1 Random Matrix Approximation in the Strong Mode Overlap
Regime

The numerical computation of the energy density (¢ = E/N) scaling of the
largest Lyapunov exponent for the FPU-# model has put in evidence the
existence of a crossover between two scaling laws: A\(g) oc €2 at low-energy
density, and A(g) o £2/3 at larger ¢ values [60], reaching on an asymptotic
value at large energy of \ oc !/4.

This transition has been called [64] the Strong Stochasticity Threshold
(SST), and it has been ascribed to the (smooth) transition between a regime
of weak chaos and a regime of strong chaos. Even if the system is prepared
far from energy equipartition, corresponding to the crossover energy density
€. there is a transition between slow and fast relaxation to equipartition;
the relaxation time approximately constant for energy densities greater than
€¢, but steeply growing with decreasing the energy density below this value.
Although the relaxation phenomenology depends on the details of the initial
conditions, they always group into two families separated by .. For example,
below ¢, the initial excitation of high-frequency normal modes results in a
slower relaxation to equipartition with respect to the initial excitation of low-
frequency modes, but this situation is reversed above . [64]. We can estimate
the e-scaling of \ to a transition from weak to strong chaos from a random
matrix approximation (RMA) for the tangent dynamics, which approximately
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accounts for the high-energy scaling of A\, whereas the extrapolation of such
a scaling law to lower energy increasingly overestimates the actual values of
A [53, 64].

The RMA assumes the absence of correlations: for a flow this can be as-
sumed if the sampling time is not too short and if the dynamics itself mimics a
true random process. It then appears reasonable to consider as strongly chaotic
the dynamical regime where the RMA accounts for the A(¢) scaling and to
consider weakly chaotic the dynamical regime where the RMA largely over-
estimates A(¢). In [53, 64] it has been suggested that in the strongly chaotic
regime phase space diffusion occurs across resonances (and is therefore a fast
diffusion entailing a fast mixing) thanks to the coalescence of the stochas-
tic layers, generated near the resonant surfaces. At variance, below the SST,
the widths of the stochastic layers could be such that the resonance overlap
ceases—or is considerably reduced—so that phase space diffusion should be
constrained to occur along tortuous paths, along resonances, in a definitely less
efficient fashion; this qualitative picture has been given an interesting quan-
titative confirmation in [170]. Here the relaxation times of the weakly chaotic
regime measured in [53] have been analytically estimated with a very good
accuracy by means of a theoretical approach closely resembling the so-called
quasi-linear theory of diffusion in plasma physics, a theory of slow diffusion
applicable when chaos is not fully developed.

The numerical integration of a Hamiltonian flow consists in recursively
computing the symplectic coordinate transformation [g;(t), p;(t)] — [q:(t +

7—)7 Y23 (t + T)]

ai(t+7) = q(t) + mpi(t)
pi(t+7) = pi(t) + 7F;[q(t + 7)) (2.137)

where F; = —0V(q)/0q" are the forces and ¢ = (qi,...,qn). The Jacobian

matrix
I 71
J(Q) = <TQ ][—FTZQ) (2.138)
of the discretized flow is symplectic, i.e

JTEJ=F

E:(Qﬂg).

Here T is the N x N identity matrix and € is the Hessian of the potential
part of the Hamiltonian: ;; = —9?V (q)/9¢;0q; and 7 is a discretization time
(for instance the time integration step). J is a 2N x 2N symplectic matrix
which maps a vector £(t) tangent to the flow at time ¢ into a vector &(t + 7),
that is: (¢ +7) = J(t)&(t). Using Oseledec’s multiplicative theorem [171], an
approximation of X is given by

where
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NI < €7(0) [TT=s /™ (0] - [Ty J(ake)) ] €(0) 1/2>

n—oco nT £1(0) - £(0)

(2.139)
Now, if with a suitable time sampling the dynamics mimics a good random
process then both Q and J can be considered as random matrices. For the
FPU-8 model, the matrix 2 can be expressed as the sum of a tridiagonal
constant matrix o and of an implicitly time-dependent tridiagonal matrix
Q. The matrix elements of { contain combinations of terms like (gi+1 — ¢;)*.
In the random matrix approximation, the hypothesis of 8-correlation in time
is made for the fluctuating part Q of Q, i.e. (Q;(k7)Qi;(I7)) = (Vij/7)Oki-
The average (-) in (2.139) is carried over different realizations of the random
matrix process. The theoretical computation of (2.139) yields [53]

A~ 723418, (2.140)

where + is defined as

N

Y= ]1[ Z (g1 — @:)* = ((gi=1 — 0)*))*) - (2.141)

=1

By computing a statistical ensemble average of v(g), one finds (g) ~ &2
in an intermediate e-range, as outlined below. Thus, from (2.140), A ~ £2/3 if
€ is not too large and if 7 is independent of €. We remark that this result is
not asymptotic. The microcanonical measure should be used, but the canoni-
cal measure can equivalently work at large N. The canonical configurational

partition function
N
1\ (n8\ " o®n 7
I D_
(2><2> P sp ) T2\ Mg |

where « is a dummy parameter multiplying the harmonic part of the FPU
potential, D_;/, is a parabolic cylinder function, n = 1/T" (kg = 1) is the
inverse of the average kinetic energy per particle which is, within a good
approximation, proportional to & thus  ~ 1/¢. The ensemble average (v) is
then given by

o=zt (), ) T () G

and using the asymptotic approximation D_; 5(z) ~ exp(—z?/4)z~1/2(1 —
3x2/8 + ---) that holds good at z >> 0 one immediately gets

(1)) ~ €.

At high e, where the above expansion for D_, /5 worsens, the exponent 2 is
lowered and consequently also the 2/3 exponent of A(e) is lowered. In fact,

zZ§ =
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the numerical results for A(¢) and the analytic results worked out by means
of the geometric approach, outlined in Sect. 2.4.7 and applied to the FPU-g3
model in Sect. 2.8.2, give at high € the asymptotic scaling \(g) ~ g'/4.

In conclusion, the transition from the low-energy density scaling A(g) ~ &2
to the scaling A(¢) ~ £2/3 is attributed to the transition from two different
regimes of chaoticity because the A(g) ~ £2/3 scaling is accounted for by the
RMA for the tangent dynamics at moderately high e values.

2.8.2 Geometric Calculation of A for FPU-3

A completely analytical computation of A(¢) has been performed—in the
N — oo limit—for the FPU B-model using the geometric method sketched
in Sect. 2.4.7. As we shall see below, the agreement is strikingly good. Par-
ticularly noticeable is the fact that the analytic values of A check with the
numerical ones within errors of few percent in a range of six orders of mag-
nitude both in € and A, with no adjustable parameters. The analysis follows
[60] and has been reviewed in [42].

The geometric quantities appearing in (2.125), that is Qy and o, written
in the Eisenhart metric assume the simple form

Qo = (kr)zp = ]1]<AV>EE7 (2.142)
o= ki, = o (AV))n, —(AV,) . (2143

where AV is the euclidean Laplacian of the potential function V(q).

Now, the microcanonical ensemble averages of Kr(q) and of its variance
can be computed in terms of the corresponding quantities in the canonical
ensemble as follows. The canonical configurational partition function Z(n) is
given by

Z(n) = /dqe*ﬂV@, (2.144)

where dg = Hfil dg;. The canonical average (KR)can Of the Ricci curvature
Ky follows as

(Kewn = 120)) [ g Knla)e " (2.145)

From this average, we can obtain the microcanonical average of Kr, (KRr)s,,
in the following (implicit) parametric form [172]

(KR)sp (1) = (KR)can ()

1_13[
2n N On

— <KR>EE (E) (2146)

e(n) = log Z(n)]
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Note that (2.146) is strictly valid only in the thermodynamic limit; at finite
N, (Kr)ss (1) = (Kr)ean(n) + O( }).

Contrary to the computation of (Kg), which is insensitive to the choice
of the probability measure in the N — oo limit, computing the fluctuations
of Kg, i.e., of (8’Kg) = (KR — (KR))?), by means of the canonical or mi-
crocanonical ensembles yields different results. The relationship between the
canonical—i.e. computed with the Gibbsian weight e #”—and the micro-
canonical fluctuations, is given by the Lebowitz—Percus—Verlet formula [172]

2 e ? [O(Kr)can(n)]”
(8°KR)x,(e) = (8°KR)can(n) — ey [ on ] , (2.147)
where 2 ori
cy = —T]’V <87>70a“ (2.148)

is the specific heat at constant volume and 1 = n(g) is given in implicit form
by the second equation in (2.146).
For the FPU-/ model, the Ricci curvature, written in the Eisenhart metric,

simply reads
N

Kr=2N+63> (qi41—a)° - (2.149)
i=1
Note that Ky is always positive. By taking advantage of the analytically
known form of Z(n) for the one-dimensional FPU-3 model, one can exactly
compute the analytic expressions of the microcanonical averages of (2.146)
and (2.147) in the N — oo limit. With Qo and oq one computes 7 and,
substituting Qo(g), oa(e), and 7(g) into (2.125), we finally get A(g), which is
reported in Fig. 2.34. As anticipated at the beginning of the present Section,
the analytic values of A are in excellent agreement with the numerical ones.
Other systems for which good results have been obtained are coupled ro-
tators [60], as shown in Fig. 2.35, classical XY Heisenberg models [173], ¢*
models [141, 174], and the “mean-field” XY model [175], although some ad-
justments are necessary in these cases, mainly related with the nontrivial
topology of the mechanical manifolds.

2.8.3 Estimates of Time to Equipartition with Strong Arnold
Diffusion

In the energy regime in which the diffusion from a chaotic low-frequency
driving resonance can efficiently couple to a high-frequency resonance, i.e.
when the ratio of the driving to the driven frequencies wg /8w, ~ 1, an analytic
estimate of the equipartition time can be made [58]. The estimate predicts
a scaling Tq < e73, ¢ = E/N, independent of E and N separately, for the
FPU-{S chain. The method has also been applied to estimate the equipartition
time for energy placed initially in short-wavelength (high-frequency) modes,
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Fig. 2.34. Lyapunov exponent A vs. energy density ¢ for the FPU-3 model with 3 =
0.1. The continuous line is the theoretical computation according to (2.125), while
the circles and squares are the results of numerical simulations with N respectively
equal to 256 and 2000

obtaining a scaling Teq ~ 72 [92]. These scalings agree with those found
numerically, and furthermore give values of 7., well within a factor of 10 of
the numerical values. The basic method of making the estimation is outlined
below.

The assumption is that there is an effective number of driving modes 6k,
dependent on the total energy, that transfer energy efficiently through the
Arnold diffusion mechanism, i.e. satisfying (2.50). Considering that E. ~
E/8k, then the number of interacting modes 8k is, from (2.50),

8k = pBE (2.150)
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Fig. 2.35. Lyapunov exponent A vs. energy density ¢ for the one-dimensional XY
model. The continuous lineis the theoretical computation according to (2.125), while
full circles, squares, and triangles are the results of numerical simulations with N,
respectively, equal to 150, 1000, and 1500. The dotted line is the theoretical result
where the value of Qg entering (2.125) has been corrected in order to empirically
account for nontrivial configuration space topology
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where p is of order unity. The procedure is then to calculate the rate that
energy is extracted from the modes containing energy, to be distributed among
all modes, with an integration over time until all modes have equal energy
(at equipartition). Since the energy is spread among many modes, we can
take the energy to be primarily in the linear part of the Hamiltonian. To
be specific we consider the case of transfer from long wavelengths to short
wavelengths.

The change in the linear energy E; = (1/2)(P? + w?Q?) of a driving low-
frequency mode ¢, can be calculated from the action-angle form of the Hamil-
tonian by taking the derivative with respect to the angle 6;

dE; [ —28 o
dt - (N+1>Wz Z B(ZvjahlahQ)

jshi,he
Vwiwjwpiwpa LI In Ino sin ;ang (§, hi, ha) (2.151)

where ang(j, h1, ho) is a product of cosines of the angle variables. The notation
h1l and h2 explicitly indicates that the energy transfer occurs between a low-
frequency beat oscillation and a high-frequency mode difference oscillation
through the Arnold diffusion mechanism. In the above equation, the sum-
mation is over indices j, h1, and ho for a given 7. The only terms to trans-
fer energy to high-frequency modes are the ones where j = i, since then
the product of the two low-frequency angles does not have a fast phase
associated with it. Additionally, the selection rule requires that B = 0
unless

%+ hy +hy = 2N +2, (2.152)

which reduces the index to a single sum. This result for a single low-frequency
mode 7 is an estimate for the average energy decay rate, which, from (2.151)
is

dB;  (28\ PE
@ =" <N) wi'y EiBn (1), (2.153)

where w; = mi/N. Since 8k low-frequency modes, assumed to have energy,
couple to 8h high-frequency modes with 8k = 0h, the cross couplings imply
each high-frequency mode is coupled on average to 8k /4 low-frequency modes.
The effect of the interaction of the phases between driving modes, when more
than one driving term exists, has not been studied. The simplest assumption
is that the effect from each low-frequency driving resonance is independent.
Setting w; = BE/N (i = dh/2 = BE/m), and dividing by E;, we obtain, an
average, for each mode in the package

dE; B (BE
El' 7T<

2
- N) Ep (t)dt . (2.154)
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Integrating (2.154) in time, with E;(t) varying from E/8k at ¢ = 0 to the
equipartition value E/N at the final time T one obtains

Q)0 . s

The final step in the approximation is to estimate the value of fOT En(tdt
at T = Teq, a time of “near-equipartition.” The quantity Ej(f) appears in
an integral, so that its exact form is not required. For a diffusive process in
which the amplitudes of the modes increase with /2, we might expect the
mode energies to increase linearly with ¢, Ep, (t) ~ (¢/T)(E/N), such that the
time dependence is independent of N. This is found to be approximately true,
numerically, over most of the evolution to near-equipartition. Other forms of
the time dependence of E} lead to only small numerical differences. Evaluat-
ing the integral with the assumption of linear time dependence of Ej,(t) we
obtain

2w s
Toq >~ (ﬁE/N)B In (25E/N) . (2.156)

The numerical coefficient is only a rough estimate. Equation (2.156) exhibits
a basic scaling of T' < (N/E)3. The scaling has been checked numerically, by
rescaling the time as shown in Fig. 2.13. This scaling was also found by plotting
the time to reach neg/N = 0.4 against E/N. However, it was also pointed
out that a “best fit” stretched exponential also fit the data (see Fig. 2.14).
One can also compare the magnitude of Teq in (2.156) with the numerics.
From Fig. 2.15, taking E/N = 0.05 we find T, ~ 107. Considering the many
approximations, this value is reasonably close to the value of T, ~ 3 x 107
obtained from (2.156).

The same calculation method can be modified to determine the scaling and
estimate the value of T.q from high-frequency mode initial conditions. The
beat frequency in this case is the difference between the breather nonlinear
frequency and the linear-mode frequencies, which are again proportional to
Be as in the above analysis. However the high frequency is w; ~ 2 and thus
a factor of fe is removed from the drive, which gives the basic scaling of
Teq o (B)~2. This scaling was confirmed numerically, and the theoretic and
numerical values were again in reasonable agreement for high frequencies [92,
93, 94], as summarized in Sect. 2.9.2.

As previously noted, on-site potentials, as in the ¢* chain, involve addi-
tional complications, and the comparisons were correspondingly less definitive.
In particular, in [65] the m-scaling was estimated from the calculation to be
related to the € scaling by the factor €/m?, in contrast to the numerical re-
sult found in Fig. 2.18 which suggested ¢/m?7 = const. to produce the best
scaling.
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2.9 Analytical Calculations and Estimates: Scaling
Estimates from High Frequencies

2.9.1 Estimate of Coalescence into Single Chaotic Breather

It is not possible to make a complete quantitative calculation for the very
complicated process of chaotic breather coalescence; however, arguments have
been made for the FPU chain [91, 92] and for the ¢* chain [94] that predict the
scaling of the coalescence time with energy density. We review the main ar-
guments without details. The coalescence time-constant 7 is estimated from

the standard description
1

B = , (2.157)
npopvB
where ng = k,,N/27 is the initial number of breathers formed earlier in
time by the instability, which scales with 1, , vp is scaled by application
of the virial theorem to a moving breather and op is scaled from the Born
approximation. For the FPU chain, the asymptotic scalings at small and large
amplitude for each factor, are

Ym Ym 2, small amplitude
"B %X const. YB X const. B Y large amplitude
(2.158)

such that, taking the product in (2.157), we obtain a coalescence rate scaling
with amplitude
B o Pt (2.159)

essentially independent of the amplitude. Since numerically one can use energy
as our independent variable, v,, can be related to E through the breather
equilibria, as given in the above references, which vary from low to high energy,
giving 1, o< EY/? and 1, x E'/*, for the FPU—§ at low and high energies,
respectively. (The ¢* proportionalities are similar but not exactly the same).
Using the proportionalities above, for the FPU-£ in (2.159), we obtain

—2 .
5 x {E small amplitude (2.160)

E~!large amplitude

The results in (2.160) have been nummerically verified at the higher amplitude
in [88] with some indication also of the steeper low amplitude scaling. The
¢* chain has slightly different scaling and also some additional complications
as discussed in the original paper [94]. It was also noted in that paper that
np is not necessarily determined by the fastest growing unstable mode, for all
initial conditions. In fact, most of the FPU numerics were performed with an
initial mode v = 120, for which ng ~ 9, initially, independent of 1,,,. However,
since most initial conditions were taken at sufficiently large 1, such that ng
is approximately constant, as calculated from the fastest growing mode, the
scaling was the same for the two cases.
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2.9.2 Estimate of Time to Equipartition

As already mentioned in Sect. 2.8.3, an estimate of the 7., can be made,
starting from high frequencies, using the same general procedure, as used
there, for initial low frequencies. The main differences are

(i) That the stochastic beat frequency g is given by

QB = WB — Wh , (2161)

the difference between the breather frequency wp and the high freequencies
wh, where wy, ~ 2, and from (2.89), wp ~ (4+6512,)/2. The beat frequencies
can be calculated analytically, but are quite complicated over the range of
energies explored numerically. A good approximation was found to be

Qp ~ 0.28Eg , (2.162)

which was used in the calculation [92].
(ii) For faster than exponential Arnold diffusion the CB energy Ep needs to
be sufficiently large that

Qp/dw; > 1 (2.163)

with the minimum dw; = 7/N at low frequencies. Since this value is much
larger than the minimum dwy,, the energies required to obtain stochastic dif-
fusion from high to low frequencies is also larger, as seen numerically.

(iii) However, this is partly cancelled by the fact that wp in (2.162) does not
depend on a mode frequency that varies as N ~!. Because of the absence of the
additional factor the resultant scaling is Teq o< €2, rather than the Tpq o< €73
scaling for low energies. We do not repeat the calculation, which is, after these
modifications, similar to that presented in Sect. 2.8.3, with the final result for

the FPU-f3 chain [92]
807 [ BE\ °
Ty =~ . 2.164
197 5 (N) (2.164)

The scaling of e~2 has been checked numerically [88] with the absolute numer-
ical time approximately a factor of 5 longer that that predicted by (2.164).

A similar calculation has been performed for the ¢* chain [94]. There are
some additional complications, and the resultant scaling is not precisely &2
but varies with somewhat steeper scaling for the lowest values of . We have
already seen these results numerically in Sect. 2.6.2. These difficulties have
been considered, resulting in a more complicated estimate for the scaling of
Teq(e) than that given in (2.164) for the FPU-§ chain.

Another question that arises is whether for high-frequency initial condi-
tions there is a clear transition, with increasing energy from T,q x €72 to
weaker € scalings as found for low-frequency initial conditions. Clearly there
is a change of scaling at higher specific energy, as observed numerically in an
extreme case, shown in Fig. 2.24. There is also numerical evidence for such
transitions for both the FPU-3 and ¢* chains in Fig. 2.25. The transition has
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not been investigated in detail, to determine whether it is relatively sharp, i.e.
a SST, or more diffuse. Since 75 oc e~ and Teq o 72, one would expect some
type of significant transition at an e sufficiently high that the two time-scales
cross, such that a CB is not formed. Extrapolating the data in, for the FPU-3
chain with E varied and N = 128, the cross-over occurs at € ~ 4.5 (8 = 0.1).
But this range of € has not been numerically investigated. For the more com-
plicated ¢* chain there is no numerical evidence for a SST, but again there
have been no computations in the e-range for which such a transition might
be expected.

2.10 Conclusions and Final Comments

It often happens that the failure of numerical or experimental results to sub-
stantiate theoretical predictions leads to the productive development of new
physics. So it was with the Fermi-Pasta-Ulam (FPU) problem in which a
one-dimensional chain of masses was connected to its nearest neighbors by
nonlinear restoring forces (2.1). Enrico Fermi initially suggested the problem
as a method of confirming his prediction that the nonlinearity would lead to
equipartition among the degrees of freedom, therefore leading to a dynamical
underpinning for statistical mechanics. However, the coupled differential equa-
tions, numerically integrated on a first-generation large digital computer, gave
the seemingly contrary result that the energy initially placed in the lowest of
the harmonic normal modes resulted in periodic (or near periodic) energy os-
cillations among the first few modes (see Fig. 2.1). The oscillations were soon
explained from perturbation theory as the nonlinear beating among neigh-
boring modes, but the fundamental question of whether equipartition would
eventually be reached was not answered. The early attempts to analyze the
dynamics led to better ways of employing perturbation theory and to better
understanding of nonlinear mode coupling.

The most celebrated result, following the lack of confirmation of statistical
properties of the FPU dynamics, was the development of soliton theory. In an
attempt to understand the apparent stability of recurrences Norman Zabusky
and Martin Kruskal found a Taylor expansion of the discreteness, valid for
long-wavelength modes, that recovered partial differential equations different
from the original nonlinear spring which produced the discretized chain of
oscillators. The resulting equations are the Korteveg—de Vries (KdV) equation
for the FPU-a chain with cubic nonlinearity, and the modified Korteveg—
de Vries (mKdV) equation for the FPU-{ chain with quartic nonlinearity.
Nonlinear equations of this and related types had been known to have stable
traveling solutions where the dispersion and nonlinearity balance to produce
constant amplitude and propagation velocity. An arbitrary initial condition,
such as the lowest linear mode on the FPU-{ chain breaks up initially into a
set of structures each having a steady traveling solution with its own velocity.
Remarkably, these structures are sufficiently stable that they pass through one
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another without breaking up, and the observed recurrences can be interpreted
in terms of their superpositions. But these results did not improve on the best
perturbation calculations and are clearly limited to long-wavelength (low-
frequency) modes by the approximations which led to (2.6). Partial differential
equations have an infinite number of freedoms, such that general integrability
from arbitrary initial conditions requires an infinite number of invariants of
the motion. The real excitement came when it was shown that such an infinite
set of invariants exists and the new field of soliton theory and applications was
born. A single initial nonlinear mode solution of the mKdV equation is found
to become unstable as the energy is increased. A linearization around the
nonlinear structure predicted the unstable wave numbers and growth rates,
and showed that the values correspond to the observed mode growth for the
same discretized structure on the FPU-4 chain (see Sect. 2.4.3). The result
in which one soliton decomposes into a finite number is not inconsistent with
general soliton theory, but the instability gives us insight into the dynamics
that leads to chaotic motion and, ultimately, to equipartition.

Another important consequence of the numerical and theoretical work,
which attempted to both explain the original results and extend them to
other energies, initial conditions, and force laws, was that of relating high-
dimensional oscillator chain dynamics to low-dimensional chaos theory. The
development of KAM theory by Kolmogorov, Arnold, and Moser showed that
despite the lack of global integrals of the motion in generic systems of two or
more degrees of freedom (which in fact, motivated Fermi’s initial FPU study),
for small perturbations from integrable systems most of the phase space could
still be regular. But countering this, another result by V. I. Arnold showed
that generic systems of three or more degrees of freedom had stochastic res-
onance channels in the phase space that could reach close to any portion of
the phase space. Furthermore, a heuristic understanding of high-dimensional
systems indicated that the fraction of the phase volume that is stochastic
increases with increasing number of freedoms. Investigation of the rates of
diffusion through the stochastic web indicated that the “Arnold diffusion”
was normally exponentially slow in the perturbation parameter, but could
become large if the perturbation became large (see [15], Chap. 6). The results
suggested that, for N freedoms and with fixed perturbation strength (fixed
energy density), near equipartition would probably be obtained with increas-
ing N (the thermodynamic limit), but the time-scales might be exponentially
long and unapproachable computationally.

In addition to the low-dimensional theory that contributed to the under-
standing of high-dimensional Hamiltonian dynamics, the development of sta-
tistical measures were essential to the numerical investigations that elucidated
the system behavior. Although various methods have been useful, the most
important have been the calculation of Lyapunov exponents for the separation
of neighboring trajectories, and the information entropy which qualitatively
computes the number of modes taking part in the dynamics (see Sects. 2.1.6
and 2.3). To obtain equipartition it is necessary for the dynamics to be ergodic.
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Mixing, which implies ergodicity, is a property that holds if all trajectories are
on the average exponentially separating (positive KS entropy). This cannot
be exactly true for a divided phase space, and thus it might be qualitatively
stated that, if almost all of the space has positive KS entropy, then for prac-
tical purposes equipartition will be reached. Because the criterion depends on
exponentially diverging trajectories, an obvious set of quantities to be exam-
ined are the Lyapunov exponents, giving the separation of trajectories, with
positive values indicating exponential separation of trajectories, i.e. chaos.
The numerical calculation of Lyapunov exponents has been used extensively
to test for chaotic motion, as we have reviewed in Sect. 2.5.

Although the calculation of Lyapunov exponents is important in finding
a necessary condition for obtaining equipartition, a more direct quantity for
determining if equipartition is actually reached, and also for determining the
time-scale to reach it, is the information entropy (see Sects. 2.1.6 and 2.3).
Along with other statistical tools, computations of the information entropy
have been the backbone of the numerical observations, as we have reviewed
in Sects. 2.5 and 2.6. As described in Sect. 2.3.1, the information entropy can
be calculated for either modes or oscillators, with the mode description being
most useful if the initial conditions are from long wavelengths (low frequen-
cies); the numerical results are given in Sect. 2.5. The oscillator description
is most useful from short-wavelength (high-frequency) initial conditions, with
numerical results in Sect. 2.6.

An important early breakthrough in understanding the onset with in-
creasing energy of observable chaos, and the approach to equipartition on
numerically observable time-scales, was made by the application of Chirikov’s
“overlap criterion” to the FPU system by Izrailev and Chirikov. The some-
what heuristic criterion was very useful in finding transitions from localized
to extensive chaos in low-dimensional chaos. Estimates in the FPU system
were made both for long wavelengths and for short wavelengths to determine
the “overlap” of neighboring modes. However, numerical results demonstrated
that mode overlap of long-wavelength modes is not a necessary condition for
equipartition but approximates a transition between weak and strong stochas-
ticity (the SST). The result for short-wavelength modes is neither necessary
nor sufficient. It predicts easy overlap at short wavelengths due to mode crowd-
ing, while numerics show consistently that equipartition is more readily ob-
tained from long-wavelength than from short-wavelength initial conditions.

A partial resolution of the discrepancy between numerical observations of
transitions to observable equipartition and the analytic “overlap” estimates
came with the recognition that resonances among groups of modes would sat-
isfy an overlap criterion at much lower energies than overlap of the neighboring
modes directly. We have described the method of calculating this behavior,
both for the FPU-3 chain with quartic nonlinearity, and the FPU-« chain
with cubic nonlinearity, in Sect. 2.4.1. The results agree with numerical ob-
servations, predicting that packets of long-wavelength modes can overlap, once
the energy is above a threshold, and determining scaling of the packet with
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energy and semi-quantitively determining its size. The scaling of the packet
size can also be predicted by applying dimensional arguments to the partial
differential equation approximation.

However, local interaction does not give a complete picture of the pro-
cesses by which equipartition can be reached on numerically observable time-
scales. To know how energy escapes from a mode packet at low frequencies
requires the understanding of the Arnold diffusion mechanism in which energy
can be transferred along resonances from long-wavelength to short-wavelength
modes. We have briefly described this condition in Sect. 2.4.1, but a complete
understanding requires a careful reading of the original work (see [55]). Once
the criterion for strong (nonexponentially slow) Arnold diffusion is well satis-
fied, an estimate of the scaling of the time to equipartition can be made, valid
in the thermodynamic limit. We gave a summary of the estimation method in
Sect. 2.8.3 which agrees well with numerical results for the FPU-73 oscillator
chain, as presented in Sect. 2.5. The scaling of the equipartition time with
the inverse third power of the energy density, Toq o< €2 also agrees well with
numerical results from the FPU-a chain and for the ¢* chain which has an
onsite quartic potential.

A calculation of the Lyapunov exponent as a function of the energy density
can also be made using concepts from the geometrization of Hamiltonian me-
chanics. We have reviewed the theory in Sect. 2.4.7 and presented the specific
calculation for the FPU- oscillator chain in Sect. 2.8.2. A complete exposi-
tion of the geometric method and its specific application to the FPU-3 has
been given in a review [42]. From the definition in (2.5), the Lyapunov expo-
nent is determined by a long-time average, and is thus applicable from any
initial condition. The comparison is most easily made with numerics starting
from near-equipartition, which minimizes the effect of transients. By using
this method, the scaling of A o €2 was determined for the FPU-3 in the re-
gion of energy density for which T,q o< e73 and the transition to the strong
stochasticity regime, where the diffusion is across resonances, was also deter-
mined. Remarkably, the theoretically determined absolute values of A\ are in
excellent agreement with the numerical values.

The dynamics of the evolution from short wavelengths (high frequencies) is
quite different than from the long wavelengths. The evolution, starting from a
high-frequency mode initial condition, occurs at higher energy and on a slower
time-scale than from energy initially in a low-frequency mode. A partial un-
derstanding of the increased stability of high-frequency modes comes from
the analysis of breather-like structures on discrete systems that admit exact
breather solutions. High-frequency mode initial conditions have symmetry of
neighboring oscillators close to that of localized exact breathers. The result-
ing dynamics consists of three stages. First, there is an initial stage in which
the mode breaks up into a number of breather-like structures. Second, on a
slower time-scale, these structures coalesce into one large unstable structure,
called a chaotic breather (CB). Third, the CB slowly disintegrates, result-
ing in equipartition. Since a single large CB closely approximates a stable
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breather, the final decay stage, toward equipartition, can be very slow. If the
energy was placed in the highest frequency mode, with a periodic boundary
condition that has strict alternation of the amplitudes from one oscillator
to the next, the configuration is stable up to a particular energy at which
a parametric instability occurs, leading to the events described above. How-
ever, the nonlinear evolution does not depend on special initial conditions,
but generically evolves from any high-frequency mode initial condition that
has predominately the alternating amplitude symmetry. One does not know,
in this generic situation, whether there exists any true energy threshold to
achieving equipartition. However, as discussed extensively with respect to
low-frequency mode initial conditions, the practical thresholds refer to ob-
servable time-scales. The scaling with energy density of the time to equiparti-
tion is estimated for high-frequency initial conditions from the beating of the
breather with the background, using the procedure developed to calculate the
equipartition time from low-frequency initial conditions. The result gives the
numerically observed scaling to equipartition of Teq o €72, and reasonable
quantitative agreement with the numerically determined values.

Considerable insight into the behavior of a nonlinear oscillator chain, start-
ing from high-frequency mode initial conditions, can be obtained by introduc-
tion of an envelope function for the displacements of the oscillators. The initial
conditions for the envelope function only contain significant long-wavelength
perturbations. For the envelope function, an expansion is then possible to ob-
tain a nonlinear partial differential equation (PDE) which approximates the
behavior of the discrete system. Low-order expansions of this type produce
PDEs that have integrable solutions in the form of envelope breathers, anal-
ogous to the solutions produced from low-frequency initial conditions. Higher
order terms destroy the integrability, but we find, as expected, that discretized
oscillator chains form localized structures that approximate the breathers on
continuous systems, but are weakly unstable. The process by which the CBs
coalesce into a single CB has also been estimated theoretically. On average,
the large structures absorb energy from the smaller ones, as expected from
general theoretical considerations. The time constant for coalescence into a
single CB is estimated from the relation 75 = (nBUUB)’l where np is the
breather number, o is a collision cross-section for absorption, and vg is a
characteristic breather velocity. Using this procedure in the numerically in-
vestigated energy range, reasonable agreement with the numerical scalings of
T8 o €1 is obtained. The numerical results are presented in Sect. 2.6 and the
analytic estimate for comparison to the numerics in Sect. 2.9.

To explore which processes are generic and which model dependent, it
is necessary to investigate other oscillator chains which are related to the
FPU chain but have significantly different parameters. The discretized Klein—
Gordon equation with quartic nonlinearity (the ¢* model) is such a chain.
The FPU-S chain, with only an intersite potential, is translationally invari-
ant (except for boundaries) and it is energy-rescalable on a single parameter.
In contrast, the ¢ chain has an additional on-site potential which adds a
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parameter [compare (2.1) with (2.9)], and is therefore more complicated to an-
alyze and explores a larger parameter space. Nevertheless, a comparison of the
¢* chain to the FPU-# chain reveals similarities and explainable differences.
For a small-value linear on-site restoring force m = 0.1, of the individuals os-
cillators, the linear frequencies of most modes are similar in the ¢* and FPU
chains. Starting from long-wavelength (low-frequency) modes the numerical
calculations of Teq(e) show similar behavior of the two chains, having power-
law behavior, depending only on € over a wide range of £, and N-dependent
transitions at low ¢ to values of T,y that may increase exponentially with
decreasing e. For larger m (but m < 1) the value of ¢ required to achieve
a given T,q is much larger with strong m-scaling, which can be qualitatively
predicted from a heuristic argument. For short wavelengths (high frequencies)
the behavior of the two chains is similar and a simple argument predicts that
the same value of T,y can be obtained for ¢* as for the FPU if the ¢* value of
€ is a factor of 4 larger. The reasoning is that since the phases of neighboring
oscillators alternate for the FPU, the quadratic term is factor of 16 larger,
which is larger by a factor of 4 in energy; thus the energy in ¢* should be a
factor of 4 larger to bring T4 into correspondence. The predicted factor of
4 separation for the higher values of ¢ (higher E) is found when the scaling
follows =2 for both potentials, but the separation becomes larger as the ¢*
potential scaling becomes steeper at low energy densities, due to additional
correlations.

The knowledge that nonlinear oscillator chains, such as the FPU, pro-
duced stochastic dynamics, encouraged the idea that they would reproduce
the Fourier heat law. But this was not the case. The configuration for study-
ing heat conductivity is different from that for studying equipartition, in that
the former is not a closed conservative system, but must be connected to heat
baths which emit and absorb energy. Since the steady state is not an equi-
librium, the dynamics involves short-time effects. The lack of normal thermal
conductivity for the FPU-3 chain was found to be due to the excitation of
nonlinear waves, which were not diffusive. Momentum conservation in the
FPU chains is a key ingredient in preventing the stochasticity from produc-
ing the required diffusive energy flow. This led to the exploration of models
which included substrate potentials, such as various Klein—Gordon models,
which do produce normal heat conduction when their dynamics is primarily
stochastic. The history of these developments is given in Sect. 2.1.10, and the
basic theoretical ideas and numerical results are given in Sect. 2.7.

So what do we know about the generic properties of oscillator chains and
their implications for physics; and what are the outstanding problems that
have not been fully addressed? First, we can say that Fermi’s original intu-
ition about the role of nonlinear dynamics in underpinning statistical physics
has essentially been proved correct. For large systems (approximating the
thermodynamic limit) and at reasonably large energy densities, generic non-
linear oscillator chains with nearest neighbor coupling dynamically exhibit
stochastic diffusion leading to equipartition among oscillators and modes in
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isolated systems. Over a wide range of energy densities the Lyapunov expo-
nents, measuring the exponential separation of trajectories, and the resulting
times to achieve equipartition are both proportional to inverse power laws
of the energy density, but with different exponents. For the most thoroughly
studied FPU-f chain, these power laws have been calculated in various ap-
proximations that have yielded good agreement with numerics in the ranges
of oscillator number and energy density for which computers can yield nu-
merical results. Geometrical methods have been used to accurately predict
the scaling of the Lyapunov exponent with energy density for both weak and
strong diffusion, and the transition between the two regimes.

The transient dynamics, starting from a variety of initial conditions at
either long or short wavelengths, can be quite complicated, but is also rea-
sonably well understood. Again, referring to the most-studied FPU-3 chain
from long-wavelength modes, the formation of mode packets on short time-
scales is numerically observed and theoretically understood. The relationship
with soliton formation and soliton instabilities has also been established. The
understanding of the role played by the web of resonance channels in phase
space, and the Arnold diffusion through the web to transport energy among
modes, is qualitatively understood, and the three resonance model for diffu-
sion has been successfully used to predict the observed numerics. From short-
wavelength modes, parametric instability coalescence into chaotic breathers,
which ultimately dissipate, is seen numerically and the scaling of its time-scale
with energy density (or energy) can be predicted. For other oscillator chains
there are differences and additional complications which are generally qual-
itatively understood. The FPU-« chain is a lowest order approximation to
the integral Toda chain and is therefore more stable, having a plateau in neg
during the time that the FPU-a Lyapunov exponent tracks the decay of the
Lyapunov exponent for the Toda chain (whose asymptotic value is zero). The
similarities and differences between the FPU-3 and ¢* chains are also seen
numerically and qualitatively understood. These detailed dynamical processes
are very interesting from the general perspective of nonlinear dynamics. How-
ever, their significance for physical problems has not been explored in any
detail.

Less understood are the transitions at fixed N as e is decreased. For
large values of N, and starting from generic long-wavelength initial condi-
tions, one expects transitions from inverse power-law scaling to exponential
scaling, when the diffusion is through decreasingly thin channels. Some nu-
merical hints of this behavior have been seen in the FPU-3 and ¢* chains, but
the time-scales become exponentially long so that numerical results become
increasingly difficult to obtain. There are also special initial conditions for
which no diffusion occurs, an example being the m-mode with periodic bound-
ary conditions for an energy below the border of parametric instability. Other
situations are not so clear, particularly for small IV, where numerical observa-
tions do not distinguish between initial conditions lying on regular orbits and
lying on stochastic orbits for which the stochasticity is unobservable.
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Another area of uncertainly is the relation between the inverse power-law of
T.q o £3 for various oscillator chains, and the diffusion through the stochastic
channels. For the FPU-g system, starting from long wavelengths, the universal
s-shaped curve of neg vs. log(e3t) (see Fig. 2.13) must consist of a complicated
averaging over many increasingly fine resonance channels as equipartition is
approached. No theory exists to explain the shape of this curve. The lack of
explanation of the detailed evolution of this macroscopic parameter points
to the difficulty in understanding detailed microscopic dynamics in problems
with many degrees of freedom.

For what concerns the problem of heat conduction, the most puzzling
question to be answered is the universality of the power-law divergence of
heat conductivity for FPU-like chains. Since numerics is unable to yield con-
clusive results, one can only hope that a theoretical approach, such as rigorous
hydrodynamic theory of transport in FPU-like chains, could provide the ex-
planation.

Finally, we remark that even in the simplest many-degree-of-freedom sys-
tems, with the FPU-a and FPU-8 systems being prime examples, rigorous
results that are also useful in making quantitative calculations are difficult
to obtain. From the core material of this review, it is evident that numerical
calculations underpin our understanding of the dynamics and validate our
analytic calculations. For regions of the parameter space in which numerical
calculations are not practical, extrapolation can be useful, but the uncertainty
of relying on answers from calculations grows with increasing extrapolation
and our understanding becomes less secure. Clearly, there remain challenges
for theorists to obtain results that are both rigorous and useful for calcula-
tions, and for numerics to be extended into the areas of uncertainty.
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