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3.1 Introduction

To ensure the interoperability of modern broadband and integrated navigation
and communication systems, engineers need simulation tools capable of track-
ing electromagnetic transients on electrically large and complex, multiscale
and potentially nonlinearly loaded structures. In this context, marching-on-
in-time based time-domain integral-equation (MOT-TDIE) solvers provide
an increasingly appealing alternative to finite difference/element based sim-
ulation engines [1, 2]. Indeed, compared to the latter, MOT-TDIE solvers
automatically impose radiation conditions, do not require fields to be dis-
cretized throughout homogeneous volumes, and are highly immune to numer-
ical dispersion [3, 4]. Moreover, recent algorithmic advances have rendered
these solvers (a) well-conditioned and stable, (b) computationally efficient,
and (c) applicable to the analysis transients on geometrically complex struc-
tures. (d) Finally, MOT-TDIE solvers have been hybridized with various sub-
system simulators, thereby vastly expanding their application range.

1. Stability and conditioning: Modern MOT-TDIE solvers, in contrast to
their predecessors, are (almost always) stable. Indeed, during the past
decade, the stability of these solvers has steadily improved due to the
application of averaging/filtering techniques [5, 6], implicit time stepping
methods [7, 8], smooth and carefully tailored temporal basis functions
[7, 9, 10], and space-time Galerkin schemes [11]. Recently, time-domain
Calderón identities [12] and spatially-hierarchical schemes [13] were lever-
aged to precondition MOT-TDIE systems, thereby accelerating the con-
vergence of their iterative solution. These developments have enabled the
robust application of MOT-TDIE solvers to the analysis of transients
on structures modeled in terms of high-density/multiscale unstructured
meshes.

2. Acceleration algorithms: The computational complexity and memory re-
quirements of classical MOT-TDIE solvers scale very poorly. To remedy
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this solution, two accelerators were developed: the (multilevel) plane wave
time-domain algorithm (PWTD) [14–16] and the time-domain adaptive
integral method (TD-AIM) [17]. These accelerators permit the rapid eval-
uation of transient fields due to wideband source constellations, viz. the
fast computation of all space-time convolutions required by MOT-TDIE
solvers, thereby have enabled the MOT-TDIE analysis of transients on
structures involving in excess of one million spatial basis functions lasting
thousands of time steps, and this on readily available parallel computers.

3. Complex structures: Modern MOT-TDIE solvers, unlike their predecessors
which target simple perfect electrically conducting (PEC) structures,
apply to the analysis of electromagnetic transients on surfaces charac-
terized by impedance boundary conditions [18], surfaces buried in half-
space backgrounds [19, 20], dielectric/lossy/dispersive penetrable volumes
[21–23], and surfaces with wire attachments [24, 25]. These solvers per-
mit modeling of electromagnetic transients on real-world structures, e.g.,
complex platform-mounted and dielectric backed antennas and their feeds,
and quasi-optical devices.

4. Hybridization with subsystem simulators: Whereas historically MOT-
TDIE solvers were used primarily as stand-alone electromagnetic analy-
sis engines, recently they have been hybridized with various subsystem
simulators including circuit and [26, 27] cable solvers [25, 28–31], and
macromodeling tools [32]. This hybridization has rendered MOT-TDIE
solvers useful for analyzing field interactions with platforms carrying
cable-interconnected circuits, electronic components, and printed circuit
boards.

Without a doubt, fast MOT-TDIE solver technology is rapidly approaching a
stage of maturity permitting its widespread application to complex and real-
world engineering problems. This chapter summarizes some of the authors’
recent work in the field, much of which is rooted in the work of J.C. Nédélec
and co-workers [11, 33, 34]. Specifically, it describes recent progress in the
formulation and implementation of TD-AIM accelerated MOT-TDIE solvers,
viz. extensions of the frequency-domain adaptive integral method (AIM) [35]
and pre-corrected FFT algorithm [36] to the time domain, and demonstrates
the technology’s applicability to a host of real-world electromagnetic interfer-
ence (EMI) problems.

The remainder of the chapter is organized as follows. Section 3.2 introduces
the reader to FFT-accelerated MOT-TDIE solvers by contrasting the tech-
nology to FFT-accelerated frequency-domain and PWTD-accelerated time-
domain solvers. Section 3.3 describes several time-domain surface integral
equations, outlines classical MOT schemes for solving them, and describes
the TD-AIM accelerator (including its parallel implementation). Section 3.4
elucidates the hybridization of TD-AIM-accelerated MOT-TDIE solvers with
several subsystem simulators and demonstrates the versatility of the result-
ing hybrid simulators through their application to several real-world EMI
problems.
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3.2 FFT-Accelerated MOT-TDIE Solvers: A Perspective

The aforementioned PWTD scheme constitutes the extension of the
Helmholtz-equation fast multipole scheme [37–40] to the time domain. Its
development preceded that of the TD-AIM discussed here. How do these
schemes compare and why is there a need for a second accelerator? This
section answers some of these questions and places the development of the
TD-AIM into its historical perspective.

FFT schemes for accelerating the solution of frequency-domain (time-
harmonic) integral equations, such as the conjugate gradient FFT (CG-FFT)
method [41], frequency-domain AIM [35], and pre-corrected FFT algorithm
[36], provide an appealing avenue for tackling a broad class of surface scat-
tering problems. The classical iterative solution of frequency-domain integral
equations requires O

(
N2

s

)
operations per matrix-vector multiplication and

O
(
N2

s

)
bytes of memory; here, and in what follows, Ns denotes the number

of spatial basis functions that discretize the scatterer current density. Both
the CG-FFT algorithm and AIM reduce the computational complexity of a
matrix-vector multiplication by employing uniform spatial grids that facil-
itate the use of (spatial) FFTs for rapidly convolving source distributions
with Green functions. To this end, the CG-FFT algorithm assumes a uniform
scatterer discretization, whereas the AIM introduces a uniform auxiliary grid
that does not constrain the primary surface discretization. The AIM reduces
the above matrix-vector multiplication cost to O (Nc log Nc) operations and
the associated memory requirements to O (Nc) bytes, where Nc is the num-
ber of nodes of the auxiliary grid. For general three-dimensional (3D) sur-
faces devoid of geometric details, Nc ∼ N1.5

s ; for quasi-planar surfaces whose
transverse dimensions are much larger than their (fixed) height, Nc ∼ Ns.
The computational complexity and memory requirements of AIM-accelerated
solvers generally scale less favorably than those of multilevel fast multipole
ones [39, 40]. Nonetheless, the AIM often remains a viable alternative, es-
pecially when the structure under study is relatively small, quasi-planar, or
densely packed. The AIM also has the advantage of being immediately ap-
plicable to all problems involving Green functions that exhibit translational,
rotational, or reflection invariance [40]. Recently proposed higher-order meth-
ods [42, 43], which employ auxiliary uniform grids on facets to reduce Nc, and
effective parallelization strategies based on either domain decomposition [35]
or parallel spatial FFTs [44] further improve the viability of AIM-like solvers
for large-scale frequency-domain analysis.

The above picture carries over virtually entirely to the time domain. The
classical MOT solution of TDIEs requires O

(
NtN

2
s

)
operations and O

(
N2

s

)

bytes of memory; here Nt is the number of time steps in the simulation.
Recently, various extensions of the CG-FFT algorithm to the time domain
have been proposed [45–48]. Similar to their frequency-domain counterpart,
these algorithms assume a uniform discretization of the scatterer surface and
therefore are of limited use. This chapter describes the TD-AIM, i.e., the
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time-domain counterpart of the AIM; its predecessors and related methods
were outlined in [35, 49–53]. The TD-AIM has computational complexity and
memory requirements of O

(
NtNc

(
log Nc + log2 Ng

))
and O (NgNc), respec-

tively. Here, Ng denotes the maximum number of time steps for a pulsed field
to travel across the scatterer; for surface scatterers, Ng is generally propor-
tional to N0.5

s [48]. TD-AIM attains these efficiency gains by accelerating the
field computations as briefly described next and detailed in Sect. 3.3:

1. All space-time sources on the scatterer surface, which produce transient
fields, are locally projected onto a uniform auxiliary grid for each time
step.

2. The fields due to the resulting auxiliary-grid sources are computed every-
where on the grid via global, multilevel/blocked, space-time FFTs.

3. These fields are locally interpolated back onto the scatterer surface.
4. As this procedure is inaccurate when source and observer points reside

close to each other, near fields are computed classically and (pre-) cor-
rected for errors introduced through the use of global FFTs.

Just as the frequency-domain AIM is asymptotically less efficient than the
multilevel fast multipole method, the TD-AIM is asymptotically inferior to
the multilevel PWTD scheme. That said, as the TD-AIM relies solely on the
translational invariance of the Green function to achieve computational sav-
ings, it is applicable with little modification to problems involving lossy [53],
layered [19, 20], or dispersive media [54]. Furthermore, as subsequent sections
will show, it is relatively easy to implement and parallelize. Finally, TD-AIM
accelerated MOT-TDIE solvers trivially lend themselves to hybridization with
various subsystem simulators. In conclusion, for many problems of practical
interest, the TD-AIM is computationally efficient and effective; the method is
an attractive alternative to the PWTD algorithm.

3.3 FFT-Accelerated MOT-TDIE Solvers: Formulation
and Implementation

This section details the construction of FFT-accelerated MOT-TDIE solvers.
First, time-domain electric-, magnetic-, and combined-field integral equations
for analyzing electromagnetic scattering from PEC structures residing in an
unbounded homogenous medium are presented and their classical MOT-based
solution is reviewed. Next, the TD-AIM is introduced and its theoretical com-
putational complexity and memory requirements are explored. Also, a par-
allel implementation of the scheme is described. The section concludes by
describing numerical experiments that demonstrate the accuracy and parallel
efficiency of the TD-AIM accelerated MOT-TDIE solver.
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3.3.1 Time-Domain Integral Equations and Their Solution
via Marching-on-fin-Time

Let S denote the surface of a closed PEC body that resides in an unbounded,
lossless, homogenous dielectric medium with permittivity ε and permeability
µ. A transient electromagnetic field

{
Einc (r, t) , Hinc (r, t)

}
is incident on S;

it is assumed that this field is (approximately) temporally bandlimited to fmax

and that it vanishes ∀r ∈ S for t < 0. A surface current is induced on S that
in turn generates the scattered field

Esca (r, t) = −∂tA (r, t) −∇Φ (r, t), (3.1a)
Hsca (r, t) = ∇× A (r, t)/µ, (3.1b)

where ∂t represents the time derivative and A (r, t) and Φ (r, t) are the vector
and scalar potentials

A (r, t) = µ

∫∫

S

J (r′, t − R/c)
4πR

ds′, (3.2a)

Φ (r, t) = −1
ε

∫∫

S

∫ t−R/c

0

∇′ · J (r′, t′)
4πR

dt′ds′. (3.2b)

Here, J (r, t) is the surface current density, R = |r − r′| is the distance between
source point r′ and observation point r, and c = 1/

√
µε is the speed of light.

Enforcing the temporal derivatives of the fundamental boundary conditions
on the electric and magnetic fields tangential to S yields time-domain electric-
and magnetic-field integral equations (EFIE and MFIE). The combined-field
integral equation (CFIE) is a linear combination of the EFIE and the MFIE
[55, 56]. The time-domain EFIE, MFIE, and CFIE read

EFIE : −n̂ (r) ×
(
n̂ (r) × ∂tEinc (r, t)

)
= (3.3a)

−n̂ (r) ×
(
n̂ (r) ×

(
∂2

t A (r, t) + ∇∂tΦ (r, t)
))

,

MFIE : n̂ (r) × ∂tHinc (r, t) = (3.3b)
∂tJ (r, t) − n̂(r) ×∇× ∂tA (r, t)/µ,

CFIE : CFIE = η (1 − α) MFIE + αEFIE. (3.3c)

Here, n̂(r) is an outward directed unit vector normal to S and η =
√

µε is the
intrinsic impedance of the medium. The discussions hereafter will focus on the
CFIE; equations pertaining to the EFIE and the MFIE can be derived from
those for the CFIE by setting α = 1 and α = 0, respectively. The EFIE is
valid for open surfaces as well, whereas the MFIE and the CFIE are pertinent
to closed surfaces.
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To numerically solve the CFIE, J (r, t) is discretized using NsNt spatio-
temporal basis functions as

J (r, t) ∼=
Ns∑

k′=1

Nt∑

l′=1

Ik′,l′Sk′ (r) T (t − l′∆t). (3.4)

Here Ik′,l′ is an unknown expansion coefficient and ∆t = β/fmax is the time-
step size with typically 0.02 ≤ β ≤ 0.1. In what follows, the spatial and
temporal basis functions Sk′ (r) and T (t) are assumed local. For example, the
Sk′ (r) and T (t) can be Rao–Wilton–Glisson (RWG) functions [57] or their
higher-order extensions [58] and shifted Lagrange interpolants [7], respectively.
Furthermore, it is assumed that T (t) = 0 for t ≤ −∆t and t > Tmax, i.e., that
the temporal basis functions are (discretely) causal and of duration Tmax +
∆t. Finally, spatial discretization lengths on S are assumed to be of O(c∆t);
this assumption is valid whenever S is electrically large and devoid of small
geometric details. Upon substituting (3.4) into the CFIE (3.3c) and testing
the resulting equation with the spatial functions Sk (r) at times t = l∆t, NsNt

equations for the NsNt expansion coefficients result:

Z0Il = Vinc
l −Vscat

l = Vinc
l −

l−1∑

l′=max(1,l−Ng)

Zl−l′Il′ for l = 1, 2, . . . , Nt. (3.5)

The entries of the vectors Il′ and Vinc
l and those of the matrices Zl−l′ are

Il′
(
k′) = Ik′,l′ , (3.6a)

Vinc
l (k) =

∫∫

S

η (1 − α)Sk (r) · n̂ (r) × ∂tH
inc (r, t) (3.6b)

+αSk (r) · ∂tE
inc (r, t) ds

∣∣
∣
∣
t=(l−l′)∆t

,

Zl−l′
(
k, k′) = η (1 − α)

∫∫

S

Sk (r) · Sk′
(
r′

)
∂tT (t) ds (3.6c)

+η (1 − α)

∫∫

S

(n̂ (r) × Sk (r))

×∇µ

∫∫

S

∂tT (t − R/c)Sk′ (r′)

4πR
ds′ds

+α

∫∫

S

Sk(r) · µ
∫∫

S

∂2
t T (t − R/c)Sk′ (r′)

4πR
ds′ds

+α

∫∫

S

∇ · Sk(r)
1

ε

∫∫

S

T (t − R/c)∇′ · Sk′ (r′)

4πR
ds′ds

∣
∣
∣
∣
t=(l−l′)∆t

.

The integer Ng in (3.5) is defined such that Ng∆t approximates the longest
possible transit time of the field produced by a temporal basis function across
S: Ng = �(Rmax/c + Tmax)� where Rmax is the maximum distance between
any two points on S and �.� rounds to the smaller integer. It follows that only
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the matrices Z0 through ZNg are nonzero because the basis functions are local
and the Green function implicit in (3.5) is impulsive in time [53]. That is, the
fields radiated by currents on various parts of the scatterer at a given time step
interact with the scatterer for at most Ng time steps. Once the spatial and
temporal basis functions and the time-step size that support the frequency
content of the incident field are determined, the unknown coefficients in (3.5)
can be found recursively. First, I1 at time t = ∆t is found; this, in turn, permits
computation of Vscat

2 . This vector is then added to the tested incident field
Vinc

2 and (3.5) is solved for the current I2 at time t = 2∆t. At the next time
step, I1 and I2 are used to compute Vscat

3 , which together with Vinc
3 permits

the computation of I3, and so forth. This recursive solution algorithm is known
as the MOT scheme [59].

The dominant cost of the MOT method is the computation of the vectors
Vscat

l , which involves a space-time convolution of the currents with the Green
function for each time step l. Indeed, under the above assumptions, for l >
Ng, that is, as soon as the retarded fields from every part of the scatterer
reach all the other parts, the computation of a single Vscat

l requires O
(
N2

s

)

operations. Compared to the cost of computing Vscat
l , the cost of iteratively

solving (3.5) typically is insignificant because Z0 contains only O (Ns) nonzero
elements, i.e., it is highly sparse, and the iterative solution typically converges
in very few (<15) iterations. Thus, the goal of the TD-AIM is to accelerate
the computation of the fields on the right-hand side of (3.5), the classical
evaluation of which requires O

(
NtN

2
s

)
operations for all time steps.

3.3.2 Time Domain Adaptive Integral Method (TD-AIM)

The space-time translational invariance of the Green function inherent in
(3.6c) can be exploited to rapidly evaluate Vscat

l for 1 ≤ l ≤ Nt. The scheme
presented here is a marriage between the fast time- and frequency-domain
integral-equation solvers in [53] and [35]. In [53], a fast scheme for evaluat-
ing the temporal convolution of the impedance matrices Zl−l′ with space-time
currents was introduced assuming that S was a uniformly meshed plate. Tem-
poral convolutions were evaluated via blocked (multilevel) FFTs while spatial
convolutions could be evaluated by a CG-FFT like scheme because of the uni-
form surface mesh used. In [35], a fast scheme for evaluating fields generated
by time-harmonic sources residing on an arbitrarily shaped and meshed sur-
face was described. The use of FFTs to evaluate these fields was facilitated
by introducing an auxiliary grid. Here, the extension of the scheme in [53] to
nonuniformly meshed surfaces using ideas similar to [35] is elucidated.

The TD-AIM embeds S within an auxiliary 3D Cartesian grid with
Nc = Ncx × Ncy × Ncz nodes. Node separation along the three Cartesian
directions ∆sx, ∆sy, and ∆sz are assumed identical and equal to ∆s for ease
of presentation; the effects of node separation on accuracy are investigated in
Sect. 3.3.6 but ∆s is always of O(c∆t). The TD-AIM computes Vscat

l in four
stages:
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1. At each time step, all primary sources on S are locally projected onto
the auxiliary grid. The auxiliary sources that are associated with a given
primary source are chosen to reproduce the transient fields of the pri-
mary source with high accuracy, at least for observation points that are
separated by more than a pre-specified distance from the primary source.

2. Future transient fields produced by these auxiliary sources are computed
at all the nodes on the auxiliary grid; this is achieved via global, blocked,
space-time FFTs.

3. The fields at the next time step are locally interpolated from the auxiliary
grid onto the primary surface mesh.

4. Near fields due to all primary sources on S are computed wherever needed
and (pre-) corrected for errors induced through the use of global FFTs in
Stage (2).

Specifically, the TD-AIM approximates each of the impedance matrices Z1

through ZNg as Zl−l′ ≈ ZFFT
l−l′ + Znear

l−l′ , where ZFFT
l−l′ and Znear

l−l′ account for
Stages (1)–(3) and Stage (4) of the algorithm, respectively. The matrices ZFFT

l−l′

can be expressed as

ZFFT
l−l′ = η (1 − α)

[
Γ†

x (t) Γ†
y (t) Γ†

z (t)
]

∗

⎡

⎣
0 GHy (t) −GHz (t)

−GHx (t) 0 GHz (t)
GHx (t) −GHy (t) 0

⎤

⎦ ∗

⎡

⎣
Λx (t)
Λy (t)
Λz (t)

⎤

⎦

+α
[
Λ†

x (t) Λ†
y (t) Λ†

z (t)
]
∗

⎡

⎣
GA (t) ∗ Λx (t)
GA (t) ∗ Λy (t)
GA (t) ∗ Λz (t)

⎤

⎦

+αΛ†
∇ (t) ∗ Gϕ (t) ∗ Λ∇ (t)

∣
∣
∣
∣
∣
t=(l−l′)∆t

, (3.7)

where Λx,y,z,∇ (t) and Γx,y,z (t) are sparse and time-dependent matricial pro-
jection operators, † represents a transpose, ∗ denotes a combined temporal
convolution/matrix multiplication, and the matricial GH,A,ϕ(t) propagate
onto all of the auxiliary-grid nodes (temporal derivatives of) magnetic fields,
magnetic vector potentials, and electric scalar potentials due to sources on the
auxiliary grid. In (3.7), the curl operator of (3.6c) is transferred onto neither
the spatial basis functions [60] nor the spatial testing functions [35]; rather,
is left on the Green functions to facilitate its numerical computation as de-
scribed in Sect. 3.3.4 and [61]. The various entities in (3.7) are discussed in
more detail below.

The matricial projection operators are constructed by choosing Mk points
on the auxiliary grid that each function Sk(r) is projected onto; denote this
set of points by Ck. These points can be chosen to reside inside or on the
surface of the smallest cube that snaps to the auxiliary grid and that encloses
Sk(r). Then, for each Sk(r), the Mk entries of the seven matricial projection
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operators Λx,y,z,∇ (t) and Γx,y,z (t) are selected such that the scalar fields
produced by x̂ · Sk (r) T (t), ŷ · Sk (r) T (t), ẑ · Sk (r) T (t), ∇ · Sk (r) T (t),
x̂ ·n̂ (r)×Sk (r) T (t), ŷ ·n̂ (r)×Sk (r) T (t), and ẑ ·n̂ (r)×Sk (r) T (t), “match”
those of the auxiliary sources for observers separated from the Sk(r) by several
grid lengths ∆s.

Two of the most commonly used criteria in determining the auxiliary
source amplitudes in frequency-domain AIM are moment matching [35] and
field matching [62]. The field-matching approach often results in better accu-
racy with little extra cost. The two approaches differ significantly, however,
when applied in a TD-AIM framework.

In the moment-matching approach, the auxiliary source strengths and tem-
poral signatures are chosen to reproduce the Mk multipole moments of the
original basis function. Because the moments are frequency independent, the
temporal signatures of the equivalent sources coincide with those of the tem-
poral basis functions. Moreover, because the temporal basis functions are, in
general, zero at sampling instants (except at t = 0), all ∗ operations in (3.7)
reduce to matrix multiplications. While the resulting coefficients are frequency
independent, the accuracy of the representation is frequency dependent.

In the field-matching approach, the coefficients and time signatures of
the auxiliary sources are chosen to replicate the transient fields radiated by
the original basis function on a near-field sphere. To this end, the discrete
Fourier transform of the radiated field is computed at a set of frequencies,
and at each of these frequencies the coefficients are found via least-squares
approximation. Then, samples of Λx,y,z,∇ (t) and Γx,y,z (t) are found by in-
verse discrete Fourier transformation. Because the best-fit coefficients are
frequency-dependent, the temporal signatures of the auxiliary sources may
differ from basis function to basis function and from auxiliary source point to
auxiliary source point. In addition, they are, in general, nonzero at sampling
instants. While the coefficients are frequency dependent, the accuracy of the
representation can potentially be made frequency independent.

Although the field-matching approach usually produces more accurate re-
sults for a given Mk′ , moment matching is more suitable for practical ap-
plications because it (a) automatically yields time-limited Λx,y,z,∇ (t) and
Γx,y,z (t), (b) allows more matrix-elements to be approximated accurately via
(3.7) (see below), and (c) needs fewer operations for multiplying ZFFT

l−l′ .
In (3.7), the entries of the sparse propagation matricial GH,A,ϕ(t) are
{
GHx (t, u, u′) ,GHy (t, u, u′) ,GHz (t, u, u′) ,GA (t, u, u′) ,Gϕ (t, u, u′)

}

(3.8)

=
{
µ∂x∂t, µ∂y∂t, µ∂z∂t, µ∂2

t , 1/ε
} δ (t − |r − ru′ |/c)

4π|r − ru′ |

∣
∣
∣
∣
r=ru

. (3.9)

where ru denotes node u on the auxiliary grid. Note that, to avoid singularities,
GH,A,ϕ (t, u, u′) ≡ 0. The efficient action of these matricial propagators on
equivalent source signatures via blocked FFTs is discussed in Sect. 3.3.3.
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The Mk point sources on the auxiliary grid can accurately reproduce the
transient fields of Sk (r) only for observers separated from the source by several
grid lengths ∆s. Their erroneous contributions to the fields at nearby observers
are corrected with the help of Znear

l−l′ matrices. The matrices Znear
l−l′ are sparse

approximations to Zl−l′ − ZFFT
l−l′ and are defined as

Znear
l−l′ (k, k′) =

{
0

Zl−l′ (k, k′) − ZFFT
l−l′ (k, k′)

if Rk,k′ > γ∆s,
if Rk,k′ ≤ γ∆s,

(3.10)

where, Rk,k′ is the minimum “grid-distance” between the auxiliary points
representing the functions Sk(r) and Sk′(r) [35], i.e.,

Rk,k′ = min
u∈Ck,u′∈Ck′

‖ru − ru′‖∞
= min

u∈Ck,u′∈Ck′
max (|xu − xu′ | , |yu − yu′ | , |zu − zu′ |) , (3.11)

and γ∆s is a threshold distance beyond which ZFFT
l−l′ represents the scattered

fields with the desired accuracy; in practice, 1 ≤ γ ≤ 6. In general, the larger
γ is the more costly and the more accurate the TD-AIM becomes.

3.3.3 Multilevel/Blocked Space–Time FFTs

In practice, the entries of the matrices ZFFT
l−l′ defined above are never evaluated.

Rather, discrete convolutions of the form

l−1∑

l′=max(1,l−Ng)

ZFFT
l−l′ Il′ (3.12)

are evaluated by discretizing the temporal convolutions inherent in (3.7). It
then becomes clear that Stage (2) of the TD-AIM calls for the evaluation of
discrete convolutions of the form

l−1∑

l′=max(1,l−Ng)

GH,A,ϕ
l−l′ ĨH,A,ϕ

l′ . (3.13)

Here GH,A,ϕ
l−l′ = GH,A,ϕ (t) ∗ T̃ (t)

∣
∣
∣
t=(l−l′)∆t

and T̃ (t) is a function that inter-

polates the auxiliary source samples ĨH,A,ϕ
l′ (typically, although not necessar-

ily, T̃ (t) = T (t)). The FFT-acceleration scheme for evaluating these discrete
temporal convolutions exploits the spatial Toeplitz structure of the above
operators as well as that of their temporal arrangement implicit in (3.5) to
accelerate these multiplications via blocked four-dimensional (4D) FFTs. In
what follows, the mechanics of this operation are demonstrated; for the sake
of brevity, only scalar potential contributions are considered.
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Ĩφ
13

Ĩφ
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Fig. 3.1. Computation of the scalar potential contribution in (3.13). At each time
step l, row l of the matrix-vector multiplication has to be computed. Rather than
computing the multiplication row-by-row as in the MOT method, one of the blocked
aggregates indicated by squares is multiplied at each time step. Causality is not
violated: only past currents are used to find the present and future fields

To our knowledge, the use of space–time FFTs for solving time-domain in-
tegral equations was first proposed in the context of a global solution scheme,
i.e., one that does not march in time but instead solves for all space–time un-
knowns simultaneously [45]. Nevertheless, space–time FFTs can also be used
while marching in time by employing the multilevel/blocking framework of
[48] or [53]; the latter was originally proposed in [63]. In this chapter, the
scheme of [53] is adopted because of its simplicity. Figure 3.1 illustrates the
mechanics of computing the scalar potential on the auxiliary grid for the first
16 time steps. Denote the matrix in Fig. 3.1 by Gϕ; for future reference, de-
note the corresponding magnetic field and vector potential matrices by GH

and GA, respectively. To compute, for example at time step eight, the scalar
potentials generated by J(r, t) on S, the block matrix comprising the leftmost
seven matrices on row eight of Gϕ, i.e., [Gϕ

7 ,Gϕ
6 , . . . ,Gϕ

1 ], has to be multiplied
by the vector [Ĩϕ†

1 , Ĩϕ†
2 , . . . , Ĩϕ†

7 ]†. Note that Gϕ (and its extension to all Nt

time steps) is block-Toeplitz on four levels; the temporal Toeplitz structure is
immediately visible in Fig. 3.1 and the 3D spatial Toeplitz structure of each
of the matrices Gϕ

l−l′ follows trivially from their construction. Therefore, Gϕ

can be rapidly multiplied by a vector using 4D FFTs. When operating within
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an MOT framework, however, the current vectors Ĩϕ
8 , Ĩϕ

9 , . . . , Ĩϕ
Nt

are unknown
at time step seven; moreover, multiplication of the entire Gϕ by the vector
[Ĩϕ†

1 , Ĩϕ†
2 , . . . , Ĩϕ†

7 , Ĩϕ†
8 , . . . , Ĩϕ†

Nt
]†(with Ĩϕ

8 , Ĩϕ
9 , . . . , Ĩϕ

Nt
filled with zeros) to com-

pute the scattered fields at time step eight is clearly inefficient (as a similar
procedure would have to be repeated each and every time step). Neverthe-
less, there exist various space–time submatrices of Gϕ that are themselves
block-Toeplitz on four levels and that can be multiplied by current coefficients
without violating causality. That is, only currents that are already known are
required to multiply these submatrices when marching in time. These sub-
matrices are the aggregates of the individual matrices Gϕ

l−l′ indicated by the
square boxes superimposed on Gϕ in Fig. 3.1 and are further referred to as
block aggregates. Stage (2) of the TD-AIM computes future scattered fields
by multiplying these block aggregates with current vectors.

The cost of multiplying the block aggregates varies from time step to time
step. For example, at time step nine, the scheme calls for the multiplication
of a block aggregate of size 8Nc × 8Nc, whereas at time step ten only a
matrix of size Nc ×Nc is multiplied. Furthermore, larger block aggregates are
multiplied less frequently. For example, the 4Nc × 4Nc block aggregate in Gϕ

is multiplied only once for every eight time steps, whereas the Nc×Nc block is
multiplied once for every two time steps (Fig. 3.1). Using this scheme, future
scattered fields are constructed partially at each time step, and the complete
scattered field at a given time step is available only at that time step. That is,
at each time step, temporal chunks of past auxiliary current coefficients are
transformed to the spectral-frequency domain, multiplied with (the 4D FFTs
of) the corresponding block aggregate in Fig. 3.1, and then inverse transformed
to produce temporal chunks of future scattered fields.

It is important to note that the largest nonzero block aggregate in Gϕ

contains only O(Ng) block rows and columns. That is, Fig. 3.1 should not
be interpreted to imply that the size of the largest block aggregate in Gϕ

scales as O(Nt); indeed, the impulsive nature of the Green function renders
the very large block aggregates zero. This implies that the number of different
square boxes is only �log2 Ng� + 1, with the largest one of size 2�log2 Ng�Nc ×
2�log2 Ng�Nc. Thus, the largest temporal FFT size is proportional not to the
duration of the analysis but to the maximum transit time across the scatterer.

3.3.4 Computational Cost and Complexity/Comparison
to Other Time Domain Methods

Stages (1), (3), and (4) of the algorithm require O (NtNs) operations because
each of the seven projection matricials Λx,y,z,∇ (t) and Γx,y,z (t) as well as
each near-field matrix Znear

l−l′ contains at most O (Ns) nonzero elements, and
because Znear

l−l′ matrices are zero for l − l′ > lnear, with lnear ∼ (γ∆s)/(c∆t).
The sparsity of the projection matrices follows directly from the fact that
each basis function Sk (r) is represented by a fixed number of Mk nodes on
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the auxiliary grid where Mk is independent of Ns. That each near-field cor-
rection matrix contains no more than O (Ns) nonzero entries and that only
a fixed and small number of the Znear

l−l′ matrices are nonzero follows from the
following facts: (a) γ is independent of Ns, (b) the temporal functions T̃ (t)
are localized, with c∆t on the order of the discretization length on S, and
(c) the free-space Green function is impulsive in nature. Therefore, each basis
function communicates with at most O(1) of its neighbors through the near-
field correction matrices. Because the projection and near-field matrices are
so sparse, the computational cost of the algorithm is dominated by that of
Stage (2), i.e., the multiplication of the matrices GH,A,ϕ

l−l′ by vectors of past
coefficients of auxiliary sources.

To estimate the computational cost of Stage (2), recall that there are
�log2 Ng� + 1 different nonzero block aggregates in GH,A,ϕ. The ith block
aggregate, i = 0, 1, . . . , �log2 Ng�, is of size 2iNc × 2iNc and can be mul-
tiplied in O

(
Nc

(
log Nc + 2i log 2i

))
operations using space–time FFTs by

storing the currents and fields in the spectral domain (k space). Notice
that the above complexity estimate is significantly lower than that result-
ing from a straightforward application of a 4D FFT, which would require
O

(
2iNc log

(
2iNc

))
operations. The complexity is reduced by observing that

the spatial FFTs need not be repeatedly computed. (This observation is also
important for parallel efficiency as discussed in Sect. 3.3.5.) For example, at
time step nine, spatial FFTs of auxiliary current coefficients at time steps
one through eight are needed, but those of steps one through seven are al-
ready computed at previous time steps. Hence, the number of spatial FFTs
can be minimized by pre-computing the 3D forward spatial FFTs of each
matrix GH,A,ϕ

l−l′ , by computing 3D forward spatial FFTs of the currents only
at the previous time step, and by computing 3D inverse spatial FFTs of the
fields only at the next time step. Because the ith block aggregate is multi-
plied once every 2i+1 time steps, the per-time step cost of multiplication is
O

(
Nc

(
log N0.5i+1

c + log 2i/2
))

. Thus, the total computational complexity of
Stage (2) is

Nt

�log2 Ng�∑

i=0

O
(
Nc

(
log N0.5i+1

c + log 2i/2
))

= O
(
NtNc

(
log Nc + �log2 Ng�2

))
. (3.14)

For quasi-planar surfaces, Nc ∼ Ns, while for general 3D surface scatter-
ers Nc ∼ N1.5

s . Therefore, because Ng ∼ N0.5
s , the total number of opera-

tions of TD-AIM scales as O
(
NtNs log2 Ns

)
for quasi-planar surfaces and as

O
(
NtN

1.5
s log2 Ns

)
for general surfaces. The memory requirements of the TD-

AIM is dictated by the largest block to be FFTed, which requires O (NgNc)
bytes of storage space, i.e., O

(
N1.5

s

)
bytes for quasi-planar surfaces and

O
(
N2

s

)
bytes for general 3D surfaces.
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Next, to quantify the performance of TD-AIM for the three surface inte-
gral equations in (3.3), the number of spatial FFTs required for solving each
one is counted. By computing and storing the spatial FFTs of the propaga-
tion matrices GA,ϕ

1 , . . . ,GA,ϕ
Ng

prior to time marching, a total of 2Ng + 4Nt

forward and 4Nt inverse spatial FFTs are computed for the EFIE. Similarly,
3Ng + 3Nt forward and 3Nt inverse spatial FFTs are required for the MFIE.
A straightforward combination for the CFIE would thus require 5Ng + 4Nt

forward and 7Nt inverse spatial FFTs. In our implementation, the number
of spatial FFTs required for the CFIE is reduced to 2Ng + 4Nt forward and
4Nt inverse spatial FFTs using an approach similar to that in [61]. The CFIE
cost is reduced by observing that both the EFIE and the MFIE kernels are
formulated in terms of the vector potential A (r, t), and that each Cartesian
component of the temporal derivatives of A (r, t) are available on the uni-
form mesh at the end of Stage (2). Consequently, the MFIE contributions
can be obtained from the EFIE computations without any additional FFTs,
i.e., space–time samples of ∇× ∂tA (r, t) are computed from the space–time
samples of ∂2

t A (r, t) using a higher-order finite difference approach and nu-
merical time integration. (The time integration translates to a trivial complex
scalar multiplication in the time-harmonic formulations.) The time integral
is evaluated efficiently in the time-marching context by storing the value of
the integral at each auxiliary point at the previous time step and adding to it
at each time step. Hence, the CFIE computation requires the same number
of spatial (and temporal) FFTs as that of the EFIE and a total of O (NtNc)
extra operations and O (Nc) extra storage.

A comparison with other time-domain schemes is in order. Irrespective
of the nature of the scatterer, the CPU cost and memory requirements of
classical MOT solvers scale as O

(
NtN

2
s

)
and O

(
N2

s

)
, respectively. There-

fore, the CPU and memory costs of the TD-AIM scheme always scale better
than those of classical solvers, with the exception of the TD-AIM memory
cost for 3D surfaces, which scales only on par with that of classical MOT
solvers. In [46, 47] algorithms that ignore the temporal Toeplitz structure
of (3.5) and employ only spatial FFTs were considered. The computational
complexity of those schemes when applied to Stage (2) scales as O (NtNcNg),
i.e., as O

(
NtN

1.5
s

)
for quasi-planar surfaces and as O

(
NtN

2
s

)
for general sur-

faces (under the above delineated conditions). Therefore, the CPU cost of the
present algorithm always scales better than time-domain schemes that use
only spatial FFTs. The memory requirements of those schemes, however, are
of the same order as those of the present algorithm. Finally, the CPU and
memory requirements of general purpose, multilevel PWTD schemes scale as
O

(
NtNs log2 Ns

)
and O (NgNs), respectively [16]. Therefore, when compared

to multilevel PWTD acceleration, the TD-AIM asymptotically scales worse
for general 3D surfaces and has the same computational cost for quasi-planar
structures. Nonetheless, in our experience, TD-AIM remains competitive with
multilevel PWTD for 3D surfaces up to tens of thousands of spatial unknowns,
and generally outperforms it for quasi-planar structures.
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3.3.5 Parallelization

The practical bottleneck of the TD-AIM is its memory requirements. Com-
pared to its frequency-domain counterpart, the TD-AIM requires O (Ng) times
more memory because it needs to store the temporal history of sources to com-
pute retarded fields throughout the auxiliary mesh. To moderate the impact
of this memory bottleneck, this section presents a TD-AIM parallelization
strategy targeting distributed memory computers that communicate via mes-
sage passing. While the TD-AIM scheme’s memory apetite serves as the main
motivation behind the parallelization effort, parallel efficiency is not ignored
and load balancing and scalability issues are also addressed.

The following approach to parallelization is based on the balanced distri-
bution of the uniform grid and the FFT operations related to it among the P
available processors. Because zero-padding (doubling) is required to multiply
a (block-)Toeplitz matrix via FFTs, all 4D FFTs are done on arrays of size
at most 2Ncx × 2Ncy × 2Ncz × 2Ng (the temporal array size varies from time
step to time step), which are either derived from the blocked aggregates in
GH,A,ϕ or are the zero-padded currents and fields on the auxiliary grid. To
reduce the memory demand per processor, the arrays are distributed among
the processors by one-dimensional (1D) slab-decomposition: each processor
stores 2Ncx/P × 2Ncy × 2Ncz = 8Nc/P spatial entries over time as depicted
in Fig. 3.2. Because now only part of the auxiliary grid is available to each

Fig. 3.2. One-dimensional slab-decomposition for P = 6. The auxiliary mesh is of
size Ncx × Ncy × Ncz (z dimension is not shown) and is distributed by dividing the
x dimension into slabs. Due to doubling, each processor stores Ncx/3× 2Ncy × 2Ncz

spatial entries over time
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Fig. 3.3. Stage (1) of the algorithm: parallel projection onto the uniform mesh.
Here, P = 6, Ncx = 18, and Ncy = 12 (z dimension is not shown). Only the part
of the uniform mesh that is projected to by the active processors is shown. Three
RWG functions and the related nodes are highlighted. Each processor projects all
the RWG functions that affect its section of the mesh

processor, all four stages of the algorithm should be modified accordingly as
illustrated in Figs. 3.3 and 3.4 and described below.

1. At time step l, each processor projects the current density Il−1 onto its
section of the auxiliary grid (Fig. 3.3). Because approximately half of the
processors do the projection and because the primary mesh is not uniform,
the distribution of this effort among processors is unbalanced. Nonethe-
less, this does not significantly affect the parallel efficiency because of the
minute amount of CPU resources required to compute local projections
as compared to FFTs.

2. The space–time FFTs are computed in parallel using the FFTW library
[64]. Specifically, each processor computes two-dimensional (2D) FFTs in
the y and z dimensions of its section of the zero-padded current-arrays
(Fig. 3.4a). Next, all arrays are transposed, which requires an all-to-all
processor communication. Finally, each processor computes FFTs in the
x dimension to complete the spatial FFTs [44, 52, 64] (Fig. 3.4b). Hence,
the auxiliary current coefficients at time (l − 1) ∆t is transformed to the
spectral domain (kspace). These spectral-domain arrays are stored to
minimize repeated computations and communication. Then, the proces-
sors concurrently compute temporal FFTs at each of their 8Nc/P spatial
nodes according to the blocking scheme of Sect. 3.3.3 to transform the
current to the spectral-frequency domain (Fig. 3.4c). Next, each proces-
sor multiplies its part of the transformed currents and block aggregates
to obtain a part of fields in the spectral-frequency domain. Once these
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(a)

(b)

(c)

Fig. 3.4. Stage (2) of the algorithm: parallel space–time FFTs. Here, P = 6, Ncx =
18, and Ncy = 12 (z dimension is not shown). (a) Each processor computes six FFTs
of size 24 in the y dimension. This is followed by an all-to-all communication step
that transposes the arrays. (b) Each processor then computes four FFTs of size 36
in the x dimension for the transposed arrays. (c) Temporal FFTs, the size of which
depends on the time step, are computed. Here, each processor computes 144 FFTs
of size 4
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fields are found, the above steps are reversed: Each processor computes
inverse temporal FFTs to find temporal chunks of future fields in the
spectral domain (kspace), and these partial future fields are added to
those obtained from previous time steps at each one of the 8Nc/P spatial
points. Finally, the inverse spatial FFTs of the fields only at the next
time step are computed to obtain the complete field in the space–time do-
main at time l∆t. As described here, the computational cost of Stage (2)
is O

(
NtNc

(
log Nc + log2 Ng

)
/P

)
and its per-processor memory require-

ment is O (NgNc/P ). Because there are only two global communications
for transposing the arrays at each time step, the total communication cost
is O (NtNc). The work in this stage is equally distributed if Ncx/P and
Ncy/P are integers.

3. Similar to Stage (1), each processor interpolates the fields on its section
of the auxiliary grid to the surface mesh, that is, the processors consider
all the unknowns on the primary mesh that are affected by their sections
of the arrays.

4. The near-field interactions are corrected in parallel. Let aNs denote the
number of nonzero elements of the Znear

l−l′ matrices, i.e., the number of
near-field corrections. To multiply the Znear

l−l′ matrices in parallel, the
nonzero elements are distributed among the processors using a column-
based decomposition, i.e., each processor stores and multiplies approxi-
mately aNs/P matrix elements plus or minus one column of the matrices.
Hence, each processor stores a short history (lnear time steps) of parts of
the primary currents that correspond to its columns of Znear

l−l′ .

Once all four stages of the TD-AIM algorithm are completed at a given time
step l and Vscat

l is formed, (3.5) is solved in parallel for the current density at
the next time step. Because Z0 matrix in general has O (Ns) nonzero elements,
the communication cost dominates the parallel solution time, which does not
exhibit good scalability, and hampers the overall parallel efficiency [65]. The
solution time becomes sub-dominant, however, as the problem becomes elec-
trically large, i.e., as Ns, Nc, and Ng increase.

3.3.6 Accuracy and Computational Complexity Verification

This section presents numerical examples that demonstrate the operation of
the TD-AIM accelerated MOT-TDIE solver. First, two matching approaches
are compared. Then, the computational complexity, memory requirements,
and parallel efficiency of the accelerated solver are examined by simulating
two types of scatterers that represent the best- and worst-case scenarios for
the algorithm, viz. plates and spheres. In all simulations, the temporal basis
functions are fourth-order Lagrange interpolants [7], and the MFIE contri-
butions, when needed, are computed using the numerical scheme presented
in Sect. 3.3.4, with a fifth-order accurate temporal integration and a fourth-
order accurate central differencing scheme. All the results in this section were
obtained on cluster of 1-GHz Pentium III processors with 1 GB of memory.
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Matching Accuracy

To investigate the accuracy of the moment- and field-matching approaches, the
interaction between two RWG functions is computed and the error incurred by
the TD-AIM is examined. A flat RWG basis function Sk′ (r) that is anchored
at the origin supports an impressed current Sk′ (r) e−2(πfmaxt−12)2/9, where
fmax quantifies the maximum frequency of interest and more than 99.997% of
the Gaussian pulse’s power is at frequencies below fmax. The fields radiated
by this basis function are measured on another flat RWG function Sk (r)
(Fig. 3.5). The auxiliary grid is centered at x = 0.5∆sx, y = 0.5∆sy, and
z = 0.5∆sz, where ∆sx, ∆sy, and ∆sz are the grid spacings. The relative
energy error in the tested fields is defined as

∆AIM =

[
Nt∑

l=1

(
Vscat

l (k) − Vscat,AIM
l (k)

)2
/

Nt∑

l=1

(
Vscat

l (k)
)2

]0.5

, (3.15)

where Vscat
l is given in (3.5) and

Vscat,AIM
l =

l−1∑

l′=max(1,l−Ng)

ZFFT
l−l′ (k, k′) Il′ (k′). (3.16)

Figures 3.6 and 3.7 present ∆AIM as a function of the center-to-center distance
between Sk′ (r) and Sk (r). For the results presented in both figures, fmax = c
(λmin = c/fmax = 1m), ∆t = 1/ (30c) (β = 1/15), in order to capture the
significant part of the pulse for even the farthest interaction, Nt = 250, and
the number of dipoles is 8 and 64. In Fig. 3.6, ∆sx = ∆sy = ∆sz = λmin/20 =
5 cm while in Fig. 3.7, ∆sx = ∆sy = ∆sz = λmin/40 = 2.5 cm. In both figures,
the time-basis functions are approximate prolate functions [9, 10] that exhibit
excellent time- and band-limitedness properties allowing accurate evaluations
of the integrals in (3.6c). In the field-matching approach these functions are
also used to interpolate the samples of the time signatures. In Figs. 3.6b and
3.7b, the near-field sphere on which the fields are matched is chosen to be at
50 cm. Taken as a whole, Figs. 3.6 and 3.7 show that the error made by (3.7) for
both moment- and field-matching approaches decreases as the auxiliary-grid

x

z

∆sx

∆ sy

sz∆
5 cm

5 cm

Fig. 3.5. The RWG functions and some of the auxiliary points used
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Fig. 3.6. Relative energy error ∆AIM for the RWG functions in Fig. 3.5 as a function
of their center-to-center distance for ∆sx = ∆sy = ∆sz = λmin/20 = 5 cm. (a) The
multipole moments are matched from zero up to order one (8 dipoles) and up to
order three (using 64 dipoles). (b) The fields are matched on a near-field sphere at
50 cm using 8 and 64 dipoles
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Fig. 3.7. Relative energy error ∆AIM for the RWG functions in Fig. 3.5 as a function
of their center-to-center distance for ∆sx = ∆sy = ∆sz = λmin/40 = 2.5 cm. (a) The
multipole moments are matched from zero up to order one (using 8 dipoles) and up
to order three (using 64 dipoles). (b) The fields are matched on a near-field sphere
at 50 cm using 8 and 64 dipoles

spacing becomes smaller. These figures also show that the moment-matching
approach produces results accurate enough for practical applications. Even
though field-matching results in more accurate matrix elements, because of
the reasons detailed in Sect. 3.3.2, moment-matching is utilized in the hybrid
solver for simulations presented in Sect. 3.4. A more detailed error analysis of
moment-matching approach for time-domain surface integral equations (in-
cluding CFIE) can be found in [17].
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Computational Complexity Verification

The theoretical computational complexity, memory requirements, and par-
allel efficiency of the TD-AIM were derived in Sects. 3.3.4 and 3.3.5. Here,
the scheme’s practical efficiency is evaluated by analyzing scattering plates
and spheres. In what follows, all scatterers are centered at the origin of the
coordinate system, and plate side-lengths and sphere diameters are denoted
Lp and Ls, respectively. Scattering from square plates is analyzed using the
EFIE, whereas scattering from spheres is analyzed using the CFIE (α = 0.4).
The TD-AIM parameters are chosen to minimize the CPU time and memory
product while ensuring that a relative root-mean-square RCS error with re-
spect to a frequency-domain method-of-moments (MOM) solver, which uses
the same mesh as the TD-AIM accelerated MOT-TDIE solver, is less than
0.01.

Figure 3.8a,b plot the average TD-AIM wall-clock time per time step (i.e.,
the total wall-clock time spent to construct Vscat

l divided by Nt). Figure 3.9a,b
plot the corresponding measured peak memory requirement of the algorithm
which also includes operating system overhead. The figures show the parallel
efficiency of the algorithm as the surface areas of the plates and spheres are
increased 625 and 144 times, respectively, i.e., Lp varies from 1 to 25m and
Ls varies from 1 to 12 m. Both the CPU time and the memory requirements
of the algorithm exhibit good parallel efficiency as the size of the scatterers
increase. The computational complexity of TD-AIM with respect to the num-
ber of surface unknowns Ns is verified in Fig. 3.10a,b using the data points
in Fig. 3.10a,b: The total CPU time per time step and the memory require-
ments of TD-AIM are computed by multiplying the data points in Fig. 3.10a,b
with the corresponding number of processors P . Thus, if the implementation
had ideal parallel efficiency all the data points for a given Ns would coincide
in Fig. 3.10. The computational complexity of the implementation is in good

(a) (b)

Fig. 3.8. Average wall-clock time to compute Vscat
l at each time step for (a) plates

and (b) spheres. Dashed lines are ideal speed-up tangents
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(a) (b)

Fig. 3.9. Observed peak storage requirement among all processors for (a) plates
and (b) spheres. Dashed lines are ideal speed-up tangents

(a) (b)

Fig. 3.10. TD-AIM versus MOT for plates and spheres. (a) Computational com-
plexity. The lines are parallel to N2

s , N1.5
s , and Ns log2 Ns. (b) Memory requirement.

The lines are parallel to N2
s , N2

s , and N1.5
s

agreement with the trends predicted in Sect. 3.3. Figure 3.10a,b also compare
the computational demands of TD-AIM with those of a classical (parallel)
MOT scheme: The TD-AIM accelerated MOT-TDIE solver outperforms the
classical one for as little as Ns ≈ 500 for plate and Ns ≈ 2, 500 for sphere
simulations.

3.4 Hybridization and Applications to Challenging
EMI Problems

Even though the TD-AIM accelerator renders stand-alone MOT-TDIE field
solvers useful for analyzing transient fields on electrically large and multi-
scale platforms, these solvers are of little use when these platforms carry
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cable-interconnected subwavelength scale, and potentially nonlinear electronic
subsystems. To characterize field interactions with such structures, the hy-
bridization of MOT-TDIE field solvers with specialized subsystem simulators
is called for. For example, to facilitate the efficient analysis of real-world EMI
problems, MOT-TDIE field solvers should be hybridized with a circuit solver
that computes node voltages and branch currents in nonlinear lumped-element
circuits, a cable solver that computes voltages and currents along multiconduc-
tor transmission lines, and modules that facilitate the macromodel description
of electronic subsystems.

This section elucidates the hybridization of MOT-TDIE field solvers with
subsystem modelers and demonstrates the versatility of the resulting hybrid
simulator through its application to real-world EMI problems.

3.4.1 Hybridization with Circuit Solvers

It is well-known that electrically small components can be effectively and ac-
curately modeled as (nonlinear) lumped-element circuits using modified nodal
analysis (MNA)-SPICE solvers [66–68]. MNA enforces Kirchhoff’s equations
on non-ground nodes and solves the resulting nonlinear system of equations
for non-ground node voltages and voltage source currents.

Recently, TDIE-field solvers were hybridized with MNA-circuit solvers and
applied to the analysis of transient field interactions with electrically large
platforms loaded with nonlinear lumped-element circuits [26, 27]. Hybridiza-
tion of field and circuit solvers (i.e., combining the MOT and MNA systems)
results in a coupled nonlinear system of equations that is solved simultaneously
for all field and circuit solver unknowns via Newton–Raphson. The parallel
scalability of the hybrid simulator is maintained by distributing the field and
circuit solvers’ computational work to two separate groups of processors [27].
This simple but effective parallization strategy results in near-ideal scalability
since these groups of processors communicate only during the iterative solu-
tion of the coupled system. Additionally, this separation strategy allows for
the separate development and optimization of field and circuit solvers.

3.4.2 Hybridization with Cable Solvers

Under transverse electromagnetic (TEM)-like propagation assumption, fields
along multiconductor transmission lines are represented by voltage and cur-
rent waves satisfying the well-known transmission-line equations [69, 70]. A
1D TDIE is obtained by enforcing the boundary conditions relating voltages
and currents at the transmission-line terminations. The standard MOT recipe,
which originally was developed for solving 3D TDIEs pertinent to scattering
problems, is used to solve the 1D TDIEs describing transmission-line signal
propagation. The lossy and dispersive nature of the guided-wave propagation
along the transmission line is accounted for by using the pertinent Green
function. The TDIE-cable solver’s computational bottleneck is the evaluation



88 H. Bağcı et al.

of excitation voltages and currents, which requires the convolution of Green
functions with the “past” voltages and currents. The computational complex-
ity of this operation, which scales as O

(
N2

t

)
, is reduced to O

(
Nt log2 Nt

)

using the FFT acceleration algorithm of [53]. The main advantage of this ac-
celeration scheme is that it applies regardless of the method used for obtaining
the Green function (measurements, direct time-domain computation, Fourier
transformation of frequency-domain models).

The TDIE-field solver was hybridized with TDIE-cable and MNA-circuit
solvers and applied to the EMI analysis of electrically large, real-world prob-
lems involving coaxial and unshielded multiconductor cables [25, 30]. Con-
nectors and loads that terminate the cables are assumed to be electrically
small and modeled with lumped element circuit networks; node voltages and
branch currents on these circuits are computed using the circuit solver. The
hybrid simulator solves the coupled system of equations, which is obtained by
combining the two MOT and the MNA systems, simultaneously for all field,
cable, and circuit unknowns. The same parallization strategy is followed; the
cable solver’s computational work is assigned to the circuit solver’s group of
processors.

3.4.3 Incorporation of Macromodelers

Macromodels are reduced multiport transfer function representations of elec-
tronic subsystems that would require large circuit networks if modeled using
lumped elements [71, 72]. They have long been employed in circuit solvers to
reduce computational costs and avoid loss of accuracy in system-level analysis.
Gains in CPU time and memory are attained by using recursive convolution
algorithms and reduced-order model generation techniques [73–77].

In practice, macromodels can be connected to ports of subsystems modeled
either by the circuit- or field-solver component of the hybrid simulator; hence,
they need to be interfaced with both solvers simultaneously. However, the in-
tegration of the commonly used admittance parameter macromodels – or any
other macromodel defined by a single set of network parameters – with each
solver requires a separate treatment, because the field-solver unknowns are
current quantities, while the circuit-solver unknowns are voltage quantities.
The effective incorporation of the macromodels with fast hybrid simulators
requires the identification of associated computational bottlenecks in the solu-
tion of the resulting coupled system of equations and the use of fast recursive
convolution schemes to overcome these bottlenecks [32].

3.4.4 Applications

In the applications presented below, all the structures are excited by
plane waves and/or “delta-gap” voltage sources. Electric fields Einc (r, t) of
p̂-polarized plane waves propagating in the k̂ direction and voltages V inc (t)
of localized sources are expressed as
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Einc (r, t) = p̂E0Gmod

(
t − r · k̂/c

)
, (3.17a)

V inc (t) = V0Gmod (t) , (3.17b)

where E0 and V0 are the electric field peak and voltage amplitudes, and
Gmod (t) = e−(t−tp)2/2σ2

cos (2πfc (t − tp)) is a modulated Gaussian signa-
ture function with modulation frequency fc, delay tp = 8σ, duration σ =
3/ (2πfbw), and bandwidth fbw. This choice of parameters guarantees that
more than 99.997% of Gmod (t)’s power resides inside the frequency band
[fmin = fc − fbw, fmax = fc + fbw] . All simulations were carried on a cluster
of 2-GHz Apple G5 processors.

Monopole Antennas Mounted on a Car

The hybrid simulator is used in the EMI analysis of three antennas mounted
on a 1984 Chevrolet Camaro Z28 (Fig. 3.11a): Two 10 cm long monopole an-
tennas M1 and M2 and one 50 cm long monopole antenna M3 are mounted on
the mirrors and near the rear of the car, respectively (Fig. 3.11b). Antennas
M1 and M2 are connected to voltage sources using 15 cm long cables T1 and
T2, and antenna M3 is connected to a 50-Ω load located inside an electronic
shielding box in the trunk using a 1.20 m long cable T3 (Fig. 3.11b). Cables
T1, T2, and T3 are RG-58 coaxial cables with foam polyethylene dielectric
filling, outer shield radius ao = 0.1524 cm, inner shield radius ai = 0.1397 cm,
and wave speed cCBL = 0.78c. Cables T1 and T2 are embedded within the
mirror cavities; hence, they only interact with external fields via their ter-
minations. Cable T3 interacts with external fields along its shield as well
as via its terminations. Cable T3’s shield transfer impedance is given by
T̂ i (f) = R0 [(1 + j) (ao − ai) /δ] / sinh [(1 + j) (ao − ai) /δ] + j2πfLa, where
δ =

√
1/ (πfσµ) is the skin depth, σ = 5.0 × 107 S m−1 is the conductiv-

ity, µ = µ0 is the permeability, R0 = 14.3mΩm−1, and La = 1.0 nH m−1

[78]. The two voltage sources connected to cables T1 and T2 have V0 = 1 V,
fmin = 0.4GHz, fc = 0.8 GHz, and fmax = 1.2GHz. The simulation is car-
ried out for Nt = 2, 000 time steps with ∆t = 55 ps. The current density on
the surfaces modeling the car, the electronic shielding box, the exposed cable
T3 and the voltages on the cable loads are modeled by 128 976 surface, 667
wire, 44 junction basis functions and 6 circuit unknowns, respectively. The
number of cable unknowns is six. Coupling of the external and guided fields
is realized at 55 points. The temporal basis functions used for discretizing
the 3D and 1D TDIEs are prolate-based band-limited interpolant with 8∆t
half-width [9, 10], and third-order Lagrange polynomial [7], respectively. The
TD-AIM kernel matches up to third-order moments, γ = 6, ∆sx = 40.84 cm,
∆sy = 40.84 cm, and ∆sz = 53.37 cm; this choice of TD-AIM parameters
results in Nc = 192 × 81 × 35 auxiliary grid points. Figure 3.12 presents the
transient coupled voltages observed at node 1 (Fig. 3.11b) due to radiation



90 H. Bağcı et al.

(a)

(b)

Fig. 3.11. Monopole antennas mounted on a car. (a) Dimensions of the car. (All
dimensions are in meters.) (b) Locations of the monopole antennas and descriptions
of their feed networks
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Fig. 3.12. Transient voltage observed at node 1 (Fig. 3.11b) due to external fields
radiated by the short monopole antennas
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(a) (b)

(c) (d)

Fig. 3.13. Snapshots of the transient currents on the surfaces modeling the car,
the antennas, and the exposed coaxial cable (in dB scale) at (a) ∆t = 6.6 ns, (b)
∆t = 9.9 ns, (c) ∆t = 13.2 ns, and (d) ∆t = 26.4 ns

from monopoles M1 and M2. Figure 3.13a–d present snapshots of the current
density on the surfaces modeling the car, the antennas, and the exposed coax-
ial cable at different time instances. The hybrid simulator required 120 GB of
memory and 40 m to fill the matrices and 1.46 h to find the solution using 121
processors (120 for the field solver, 1 for the circuit and cable solvers).

PC Enclosures in a Cockpit

The hybrid simulator is used in the EMI analysis of three RG-58 coaxial ca-
bles connecting three PCs located inside an airplane cockpit. All of the PCs
have identical outer dimensions and two of them, which are close to the floor
of the cockpit, contain a mother board and two daughter cards (Fig. 3.14a,b).
The two daughter cards are identical in size; the daughter card, which is closer
to the back of the cockpit (first card), is connected to the mother board via
eight pins, and the other one (second card) is connected via one pin (see [79]
for detailed description of the card configuration). One coaxial cable T1 con-
nects the feed points (pins) of the second card in the two PCs. Two cables
T2 and T3 connect the two PCs on the right and are terminated with 75-Ω
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(a)

(b)

Fig. 3.14. PCs located in a cockpit. (a) Dimensions of the cockpit and the external
plane wave excitation. (All dimensions are in meters.) Although not shown in the
figure, the back of the cockpit is closed during the simulations. (b) Dimensions of
the PC boxes (all have identical sizes) and the coaxial cables. (All dimensions are
in centimeters.)
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resistors (Fig. 3.14b). The lengths of cables T1, T2, and T3 are 74, 30, and
30 cm, respectively. Surfaces modeling the floor and the seats, the surface sep-
arating the nose cavity from the rest of the cockpit, the surface at the back
of the cockpit, and the surfaces modeling the daughter cards inside the PCs
are assumed resistive with 377-Ω impedance. The structure is illuminated by
a plane wave incident on the cockpit nose with E0 = 3, 000 V m−1, k̂ = x̂,
p̂ = ẑ, fmin = 0.9 GHz, fc = 1.7 GHz, and fmax = 2.5 GHz (Fig. 3.14a).
The simulation is carried out for Nt = 1, 600 time steps with ∆t = 33 ps.
The current density on the surfaces modeling the cockpit, the PCs , the card
configurations and the voltages on the cable loads are modeled by 284 179
surface, 152 wire, 136 junction basis functions and 6 circuit unknowns, re-
spectively. The number of cable unknowns is six. Coupling of the external
and guided fields is realized at 158 points. The temporal basis functions used
for discretizing the 3D and 1D TDIEs are prolate-based band-limited inter-
polant with 8∆t half-width [9, 10] and third-order Lagrange polynomial [7],
respectively. The TD-AIM kernel matches up to third-order moments, γ = 5,
∆sx = 15.43 mm, ∆sy = 15.93 mm, and ∆sz = 15.93 mm; this choice of
TD-AIM parameters results in Nc = 200 × 100 × 90 auxiliary grid points.
Figure 3.15a,b present the transient coupled voltages observed at nodes 1 and
2 (Fig. 3.14b) due to the plane wave excitation and Fig. 3.16a,b show that
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Fig. 3.15. Transient voltages observed at nodes (a) 1 and (b) 2 due to plane wave
excitation
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Fig. 3.16. Frequency-domain voltages observed at nodes 1 and 2: (a) real and
(b) imaginary parts of voltage at node 1; (c) real and (d) imaginary parts of the
voltage at node 2
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(a) (b)

(c) (d)

Fig. 3.17. Snapshots of the transient currents on the surfaces modeling the cockpit,
the PCs, the card configurations, and the coaxial cables (in dB scale) at (a) ∆t =
8.25 ns, (b) ∆t = 13.2 ns, (c) ∆t = 15.675 ns, and (d) ∆t = 18.15 ns

frequency-domain voltages observed at these obtained by the hybrid simula-
tor agree well with those obtained by a similar frequency-domain simulator.
Figure 3.17a–d presents snapshots of the current density on the surfaces mod-
eling the cockpit, the PCs, the card configurations, and the coaxial cables at
different time instances. The hybrid simulator required 310 GB of memory and
31 m to fill the matrices and 2.14 h to find the solution using 201 processors
(200 for the field solver, 1 for the circuit and cable solvers).

RG-58 and UTP-CAT5 Cables Located on an Aircraft

The hybrid simulator is used in the EMI analysis of RG-58 and UTP-CAT5
cables located on a Beechcraft King Air 250 aircraft (Fig. 3.18a). A 1m long
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(a)

(b)

Fig. 3.18. RG-58 and UTP-CAT5 cables on an aircraft. (a) Dimensions of the air-
craft and the plane-wave excitation. (All dimensions are in meters.) (b) Description
of the cable-cable-card connections

RG-58 coaxial cable connects the feed pin of the PC’s second daughter card
and the first conductor of the 5m long UTP-CAT5 cable located inside the
wing cavity (Fig. 3.18b). The PC box enclosing the card configuration has six
ventilation slots permitting the interaction of external fields with the card
configuration. The UTP-CAT5 cable consists of four pairs of dielectric-coated
conductors, which are held together by a dielectric cable jacket. The cable’s
per-unit-length parameters were extracted using a 2D MOM solver [80] and
detailed in [81]. The exposed RG-58 coaxial cable interacts with the external
fields via its terminations and along its shield while the UTP-CAT5 cable
is embedded within the wing cavity and interacts with the external fields
only via its terminations. All UTP-CAT5 cable’s conductors (except the first
conductor, which is connected to the RG-58 cable) are terminated with 50-Ω
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resistors. The structure is illuminated by a plane wave incident on the nose
of the aircraft with E0 = 3, 000 V m−1, k̂ = x̂, p̂ = ẑ, fmin = 20 MHz,
fc = 135 MHz, and fmax = 250 MHz (Fig. 3.18b). The simulation is carried
out for Nt = 1500 time steps with ∆t = 0.3 ns. The current density on the
surfaces modeling the aircraft, the PC, the card configuration, the coaxial
cable and the voltages on the cable loads are modeled by 45 175 surface,
23 wire, 64 junction basis functions and 20 circuit unknowns, respectively.
The number of cable unknowns is 18 (2 for the RG-58 and 16 for the UTP-
CAT5). Coupling of the external and guided fields (of the RG-58 cable) is
realized at 10 points. The temporal basis functions used for discretizing the
3D and 1D TDIEs are prolate-based band-limited interpolant with 8∆t half-
width [9, 10] and third-order Lagrange polynomial [7], respectively. The TD-
AIM kernel matches up to fifth-order moments, γ = 5, ∆sx = 10.52 cm,
∆sy = 9.59 cm, and ∆sz = 10.52 cm; this choice of TD-AIM parameters
results in Nc = 135×180×42 auxiliary grid points. Figure 3.19a,b present the
transient coupled voltages at the source-end terminations of the UTP-CAT5’s
second and third conductors due to the plane wave excitation. Figure 3.20a–d
present snapshots of the current density on the surfaces modeling the aircraft,
the PC box, the card configuration, and the coaxial cable at different time
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Fig. 3.19. Transient voltages at the source-end terminations of the UTP-CAT5
cable’s (a) second and (b) third conductors
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(a) (b)

(c) (d)

Fig. 3.20. Snapshots of the transient currents on the surfaces modeling the
aircraft, the PC box, the card configuration, and the coaxial cable (in dB scale)
at (a) ∆t = 45ns, (b) ∆t = 60ns, (c) ∆t = 75ns, and (d) ∆t = 90 ns

instances. The hybrid simulator required 70 GB of memory and 30 m to fill
the matrices and 2.85 h to find the solution using 46 (45 for the field solver, 1
for the circuit and cable solvers) processors.

3.5 Conclusions

This chapter presented a review of progress in fast MOT-TDIE solver tech-
nologies for analyzing electromagnetic transients with a specific focus on
the application of TD-AIM accelerators. A parallel version of the TD-AIM
accelerated MOT-TDIE solver that was hybridized with circuit, cable, and
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macromodel simulators was applied to several real-world EMI problems. Our
simulations demonstrate that MOT-TDIE solvers are approaching a stage of
maturity and becoming an appealing alternative to finite difference/element
based simulation technologies.
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Maxwell instationnaires par une méthode de potentiels retardés. PhD
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