Elzbieta Malinowski - Esteban Zimanyi

Advanced Data
Warehouse Design

ISBN 978-3-540-74404-7 (©) 2008 Springer-Verlag Berlin Heidelberg

Errata

Due to an error that occurred during the production process, the figure citations for
Fig. 2.3.a-d on pp. 29-32 are incorrect. Figure 3.25 on page 102 and Fig. 7.1 on
page 312 are cut.
Furthermore, the captions of Fig. 3.27 on page 104, Fig. 3.31 on page 113 and of
Fig. 3.33 on page 115 appear twice. Table 5.2 on page 195 is not printed properly.
The correct pages are attached:

2.3 Logical Database Design 29

whereas the relational model is a logical model targeted toward particular im-
plementation platforms. Several ER concepts do not have a correspondence
in the relational model and must be expressed using the only concepts al-
lowed in the model, i.e., relations, attributes, and the related constraints.
This translation implies a semantic loss in the sense that data that is invalid
in an ER schema is allowed in the corresponding relational schema, unless
the relational schema is supplemented by additional constraints. In addition,
many such constraints must be hand-coded by the user using mechanisms
such as triggers or stored procedures. Furthermore, from the users’ perspec-
tive, the relational schema is much less readable than the corresponding ER
schema. This is crucial when one is considering schemas with hundreds of en-
tity or relationship types and thousands of attributes. This is not a surprise,
since this was exactly the reason for devising conceptual models back in the
1970s, i.e., the aim was to better understand the semantics of large relational
schemas.

" . - Academic staff
Participates Assistant Participates Research area

Employee no Employee no Employee no Employee no
Project id Thesis title Project id Research area
Start date Thesis description Start date Department id
End date Advisor id End date L
Project acronym Advisor first name Location
Project name Advisor last name
Project description Advisor email

(a) (b) () (d)

Fig. 2.3. Examples of relations that are not normalized

When one is considering a relational schema, it must be determined
whether the relations in the schema have redundancies, and thus may in-
duce anomalies in the presence of insertions, updates, and deletions. Consider
for example the relation Participates in Fig. 2.3a, which is a variation of the
relation with the same name in Fig. 2.2. We can easily verify that the informa-
tion about a project such as its name, acronym, and description is repeated
for each staff member who works on that project. Therefore, when for ex-
ample the description of a project is to be updated, it must be ensured that
all tuples in the relation Participates concerning that particular project are
given the modified description, otherwise there will be inconsistencies. Simi-
larly, the relation Assistant in Fig. 2.3b is also redundant, since the first name,
last name, and email address of every professor are repeated for all assistants
who have the same advisor. Consider now relation Participates in Fig. 2.3c, in
which the additional attribute Location stores the location of the project. Sup-
pose now that each location is associated with at most one project. In this
case, the location information will be repeated for each staff member that
works on the project of that location. Finally, consider the relation Academic

30 2 Introduction to Databases and Data Warehouses

staff Research area in Fig. 2.3d, where an additional attribute Department id
has been added with respect to the relation with the same name in Fig. 2.2.
Suppose that members of the academic staff works in several different de-
partments. Since the research areas of staff members are independent of the
departments in which they work, there is a redundancy in the above table.
Indeed, the information about the research areas of a staff member will be
repeated as many times as the number of departments in which he/she works.

Dependencies and normal forms are used to precisely describe the redun-
dancies above. A functional dependency is a constraint between two sets
of attributes in a relation. Given a relation R and two sets of attributes X
and Y in R, a functional dependency X — Y holds if and only if, in all
the tuples of the relation, each value of X is associated with at most one
value of Y. In this case it is said that X determines Y. The redundancies
in Figs. 2.3a,b,c can be expressed by means of functional dependencies. For
example, in the relation Participates in Fig. 2.3a, we have the functional depen-
dency Project id — {Project acronym, Project name, Project description}. Also,
in the relation Assistant in Fig. 2.3b, the functional dependency Advisor id —
{Advisor first name, Advisor last name, Advisor email} holds. Finally, in the re-
lation Participates in Fig. 2.3c, there is the functional dependency Location —
Project id. A key is a particular case of a functional dependency, where the set
of attributes composing the key functionally determines all of the attributes
in the relation.

The redundancy in the relation Academic staff Research areas in Fig. 2.3d is
captured by another kind of dependency. Given two sets of attributes X and
Y in a relation R, a multivalued dependency X —— Y holds if the value
of X determines a set of values for Y, independently of any other attributes.
In this case it is said that X multidetermines Y. In the relation in Fig. 2.3d,
we have the multivalued dependencies Employee no —— Research area, and
consequently Employee no —— Department id. It is well known that func-
tional dependencies are special cases of multivalued dependencies, i.e., every
functional dependency is also a multivalued dependency. A multivalued de-
pendency X —— Y is said to be trivial if either Y C X or X UY = R,
otherwise it is nontrivial.

A normal form is an integrity constraint certifying that a relational
schema satisfies particular properties. Since the beginning of the relational
model in the 1970s, many types of normal forms have been defined. In ad-
dition, normal forms have also been defined for other models, such as the
entity-relationship model and the object-relational model. In the following, we
consider only four normal forms that are widely used in relational databases.

As already said, the relational model allows only attributes that are atomic
and monovalued. This restriction is called the first normal form. As we
shall see in Sect. 2.3.2, the object-relational model removes this restriction
and allows composite and multivalued attributes.

2.3 Logical Database Design 31

The second normal form avoids redundancies such as those in the table
Participates in Fig. 2.3a. In order to define the second normal form, we must
define the following concepts:

e A prime attribute is an attribute that is part of a key.
e A full functional dependency is a dependency X — Y in which the
removal of an attribute from X invalidates the dependency.

Now we can give the definition of the second normal form: A relation schema
is in the second normal form if every nonprime attribute is fully functionally
dependent on every key. As we can see, the table Participates above is not
in the second normal form, since Project acronym, Project name, and Project
description are nonprime attributes (they do not belong to a key) and are
dependent on Project id, i.e., on part of the key of the relation. To make
the relation comply with the second normal form, the nonprime attributes
dependent on Project id must be removed from the table and an additional
table Project(Project id, Project acronym, Project name, Project description)
must be added to store the information about projects.

The third normal form avoids redundancies such as those in the table
Assistant in Fig. 2.3b. In order to define the third normal form, we must define
one additional concept:

e A dependency X — Z is transitive if there is a set of attributes Y such
that the dependencies X — Y and Y — Z hold.

Now we can give the definition of the third normal form: A relation is in
the third normal form if it is in the second normal form and there are no
transitive dependencies between a key and a nonprime attribute. The table
Assistant above is not in the third normal form, since there is a transitive
dependency from Employee no to Advisor id, and from Advisor id to Advisor
first name, Advisor last name, and Advisor email. To make the relation comply
with the third normal form, the attributes dependent on Advisor id must be
removed from the table and an additional table Advisor(Advisor id, Advisor
acronym, Advisor first name, Advisor last name) must be added to store the
information about advisors.

The Boyce-Codd normal form avoids redundancies such as those in
the table Participates in Fig. 2.3c. Recall that in this case it is supposed that
there is a functional dependency Location — Project id. A relation is in the
Boyce-Codd normal form with respect to a set of functional dependencies F'
if, for every nontrivial dependency X — Y that can be derived from F, X
is a key or contains a key of R. The table Participates above is not in the
Boyce-Codd normal form, since the above functional dependency holds and
Location is not a key of the relation. To make the relation comply with the
Boyce-Codd form, the attribute Location must be removed from the table,
and an additional table LocationProject(Location, Project id) must be added
to store the information about the project associated with each location. Note
that all relations in Fig. 2.2 are in the Boyce-Codd normal form.

32 2 Introduction to Databases and Data Warehouses

The fourth normal form avoids redundancies such as those in the table
Academic staff Research area in Fig. 2.3d. A relation is in the fourth normal
form with respect to a set of functional and multivalued dependencies F' if,
for every nontrivial dependency X —— Y that can be derived from F, X
is a key or contains a key of R. The table above is not in the fourth normal
form, since there are multivalued dependencies from Employee no to Research
area, and from Employee no to Department id, and Employee no is not a key of
the relation. To make the relation comply with the fourth normal form, the
attribute Department id must be removed from the table, and an additional
table AcademicStaffDepart(Employee, Department id) must be added to store
the information about the departments in which a member of the academic
staff works.

2.3.2 The Object-Relational Model

As shown in the previous section, the relational model suffers from several
weaknesses that become evident when we deal with complex applications.

e The relational model provides a very simple data structure (i.e., a rela-
tion), which disallows multivalued and complex attributes. Therefore, in
a relational database, complex objects must be split into several tables.
This induces performance problems, since assembly and disassembly op-
erations using joins are needed for retrieving and storing complex objects
in a relational database.

e The set of types provided by relational DBMSs is very restrictive. It in-
cludes only some basic types such as integer, float, string, and date, and
uninterpreted binary streams that must be manipulated explicitly by the
user. Such a restricted set of types does not fit complex application do-
mains.

e There is no integration of operations with data structures, i.e., there is no
encapsulation, and no methods associated with a table.

e Since there is no possibility to directly reference an object by use of a
surrogate or a pointer, every link between tables is based on comparison of
values. Therefore, joins represent a bottleneck with respect to performance.

During the 1980s, a considerable amount of research addressed the issue
of relaxing the assumption that relations must satisfy the first normal form.
Many results for the relational model were generalized to such an extended
model, called non-first-normal-form model, or NFNF or NF2 model (e.g.,
[11, 262]). Such research has been introduced into the database standard
SQL:2003 [192, 193] under the name of the object-relational model. In ad-
dition, current database management systems such as Oracle, Informix, DB2,
and PostgreSQL have also introduced object-relational extensions, although
these do not necessarily comply with the SQL:2003 standard.

The object-relational model preserves the foundations of the relational
model, while extending its modeling power by organizing data using an object

102 3 Conventional Data Warehouses

representing the situation where several members of a dimension participate in
the same instance of a fact relationship. A common example used to represent
this situation is an analysis of clients’ balances in bank accounts, as shown in

Fig. 3.25.

Client

Client id
Client name
Client address

Time [—— Account © Agency
Date info Account_no Z Agency name
Day of week Type % Address
Weekday flag (Balance) Description ~ Area
Weekend flag Opening date g No. employees
Season

Fig. 3.25. Multidimensional schema for analysis of bank accounts

Since an account can be jointly owned by several clients, aggregation of
the balance according to the clients will count this balance as many times as
the number of account holders. Let us consider the example in Fig. 3.26. At
some point in time T1, we have two accounts Al and A2 with balances of,
respectively, 100 and 500. As shown in the figure, both accounts are shared
between several clients: account Al between C1, C2, and C3, and account
A2 between C1 and C2. The total balance of the two accounts is equal to
600; however, aggregation (for example, according to the Time or the Client
dimension) gives a value equal to 1300.

Time Account Client Balance
T A1 C1 100
T A1 Cc2 100
T1 A1 C3 100
™ A2 C1 500
T A2 C2 500

Fig. 3.26. Example of double-counting problem for a multivalued dimension

104 3 Conventional Data Warehouses

Client

Client id
Client name
Client address

Account
holders

Time Account @ Agency
Date Financial Account no ‘§ Agency name
Event info Type = Address
Weekday flag Description x Area
Weekend flag Opening date g No. employees
Season
(a) Creating two fact relationships
Client
Client id
Client name
Client address
Time S Account o Agency
. >
Date info Account_no B Agency name
Event Type £ Address
Weekday flag Balance Description ~ Area
Weekend flag Opening date § No. employees
Season

(b) Including a nonstrict hierarchy
Fig. 3.27. Decomposition of the fact relationship in Fig. 3.25

since the two fact relationships represent different granularities, queries with
drill-across operations are complex, demanding a conversion either from a finer
to a coarser granularity (for example, grouping clients to know who holds
a specific balance in an account) or vice versa (for example, distributing a
balance between different account holders). Note also that the two schemas in
Fig. 3.27 could represent the information about the percentage of ownership

3.6 Logical Representation of Hierarchies 113

e Normalized tables or snowflake structure: each level is represented
as a separate table that includes a key and the descriptive attributes of
the level. For example, using Rules 1 and 2a of Sect. 3.5.2 for the Product
groups hierarchy in Fig. 3.4 gives a snowflake structure with tables Product,
Category, and Department, as shown in Fig. 3.31a.

e Denormalized or flat tables: the key and descriptive attributes of all
levels forming a hierarchy are included in one table. This structure can be
obtained in two ways: (1) denormalizing the tables that represent several
hierarchy levels (for example, including in one table all attributes of the
Product, Category, and Department tables shown in Fig. 3.31a), or (2) map-
ping a dimension that includes a one-level hierarchy according to Rule 1
(for example, the Store dimension in Fig. 3.2 may be represented as shown
in Fig. 3.31Db).

Product > Category Store
Product key Category key Store key
Product number Category name Store number
Product name Description Store name
Description Department fkey — Store address
Size Manager name
Distributor Sales group district
Category fkey Sales group region
Department City name
Department key C?ty population
Department name City area
Description State name .
State population
State area

Major activity

(a) Snowflake structure (b) Flat table

Fig. 3.31. Relations for a balanced hierarchy

Normalized tables are used in snowflake schemas (see Sect. 2.7). They
represent hierarchical structures better, since every level can be easily distin-
guished and, further, levels can be reused between different hierarchies. Ad-
ditionally, this representation can easily manage heterogeneity across levels
[129], i.e., it allows different levels of a hierarchy to include specific attributes.
For example, the Product, Category, and Department tables in Fig. 3.31a have
specific attributes. This data structure allows measures to be aggregated us-
ing, for example, the SQL group by, roll-up, or cube operators (see Sect. 2.6.3).
Further, in some applications, snowflake schemas can improve system perfor-
mance in spite of requiring join operations between the relations representing

3.6 Logical Representation of Hierarchies 115

bank X
\ |
branch 1 branch 2 branch 3
\
[|
agency 11 agency 12 PH agency 31 agency 32 ‘
ATM 111 ATM 121 PH PH PH PH

Fig. 3.32. Transformation of the unbalanced hierarchy shown in Fig. 3.5b into a
balanced one using placeholders

4. The unnecessary introduction of meaningless values requires more storage
space.

5. A special interface needs to be implemented to hide placeholders from
users.

Employee € Financial entity <—

Employee key Entity ke

Employee id Entity name

Name Entity type

Address Address

City Model

State Money capacity

Title Area

Position No. employees

Salary Min. capital

Gender Max. capital

Marital status Manager

No. children Headquarters

Supervisor fkey Parent fkey
(a) (b)

Fig. 3.33. Relational implementation of the recursive hierarchies shown in Fig. 3.6

Recall from Sect. 3.2.1 that recursive hierarchies are a special case of
unbalanced hierarchies. Mapping recursive hierarchies to the relational model
yields parent-child tables containing all attributes of a level, and an addi-
tional foreign key relating child members to their corresponding parent. Figure
3.33a shows the table representing the recursive hierarchy shown in Fig. 3.6a.

5.4 Temporal Support for Levels 195

Table 5.2. Temporality types of the MultiDim model

Temporality |Levels|Attributes| Measures| Parent-child
types relationships

LS v X X v

VT X v v X

TT v v v X v

LT v v v v

5.4 Temporal Support for Levels

Changes in a level can occur either for a member as a whole (for example, in-
serting or deleting a product in the catalog of a company) or for attribute val-
ues (for example, changing the size of a product). Representing these changes
in a temporal data warehouse is important for analysis purposes, for example
to discover how the exclusion of some products or changes to the size of a
product influence sales. As shown in Fig. 5.6, in the MultiDim model, a level
may have temporal support independently of the fact that it has temporal
attributes.

LS Product LS Product Product
Product number Product number Product number
Name Name Name
Description Description Description
Size Size Size
Distributor v Distributor Vi Distributor

(a) Temporal level (b) Temporal level with (c) Nontemporal level
temporal attributes with temporal attributes

Fig. 5.6. Types of temporal support for a level

Temporal support for a level allows a time frame to be associated with
its members. This is represented by including the symbol for the temporality
type next to the level name, as shown in Fig. 5.6a. Various temporality types
are possible for levels. Lifespan support is used to store the time of existence
of the members in the modeled reality. On the other hand, transaction time
and loading time indicate when members are current in a source system and
in a temporal data warehouse, respectively. These three temporality types can
be combined.

On the other hand, temporal support for attributes allows one to store
changes in their values and the times when these changes occurred. This is

312 7 Designing Spatial and Temporal Data Warehouses

Determine Document
Identify users » : »| requirements
analysis needs e
specification

(a) Requirements specification phase

Add
spatial/temporal
support |
Develop initial Check data Develop final
' > availability & » schema & refine
schema < _ :
specify mappings mappings

(b) Conceptual-design phase

Fig. 7.1. Steps of the analysis-driven approach for spatial and temporal data
warehouses

warehouse and to determine the analysis needs, which are collected in the
second step. The information gathered and the corresponding metadata are
documented in the third step and serve as a basis for the next phase.

The conceptual-design phase (Fig. 7.1b) starts with the development of the
initial spatial-data-warehouse schema. Note that this schema already includes
spatial elements, since we assume that the users are able to refer to spatial data
when expressing their specific analysis needs. Therefore, we follow the lower
path of Fig. 7.1b. In the following step, it must be determined whether the
data is available in the source systems, and the corresponding mappings with
data warehouse elements are established. Note, however, that external sources
may be needed if the required spatial support does not exist in the source
systems. During the last phase, the final schema is developed; it includes
all data warehouse elements, for which the corresponding data exists in the
source systems (whether internal or external). Additionally, the corresponding
mappings between the two kinds of systems is delivered.

We now illustrate this approach with our risk management application.
In order to determine the analysis requirements, a series of interviews was
conducted, targeting users at different organizational levels, i.e., from senior
risk experts to field surveyors who inspect damage after a hazard event. From
these interviews it was established that owing to the increasing number of
hazard events, a reclassification of the various risk zones and land use zones
had to be performed. The various analysis scenarios that were elicited were
as follows:

1. The evolution in time of the extent and frequency of hazard events for the
various types of risk zones (red, blue, and white) in different land plots.

2 Springer
http://www.springer.com/978-3-540-74404-7

Advanced Data Warehouse Design

From Conventional to Spatial and Temporal Applications
Malinowski, E.; Zimanyi, E.

2008, XXI, 435 p., Hardcover

ISEN: 978-3-540-74404-7

