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Nilpotent Groups: Explicit Examples

In this chapter we list some of the (now numerous) calculations of zeta func-
tions of T-groups and Lie rings. The primary emphasis is on bringing into print
explicit calculations that have yet to be published. However, we aim this chap-
ter to be more than just a gallery of results. Hence we begin the chapter with
some details about how these zeta functions have been calculated.

2.1 Calculating Zeta Functions of Groups

Zeta functions of groups have been calculated using a number of different
methods. The first examples counted ideals in ¥-groups of class 2 and were
calculated by Grunewald, Segal and Smith in [32]. A key part of their work is
the formula [32, Lemma 6.1]

(G pl8) = Canpls) D 1A BI"*|G: X(B)|™*, (2.1)

B<A

where A = 75(G), G/A = 7% and X(B)/B = Z(G/B). Their calculations are
made by evaluating (2.1) for each group in turn. Although there are a few
general lemmas proved which help speed matters along, their methods are to
some extent tailored to each group individually. Nonetheless, their methods
suffice to calculate all but perhaps finitely many of the local factors (ap(s)
for every T-group G of class 2 and Hirsch length at most 6.

In [60], Voll uses (2.1) and the Bruhat-Tits building of SL,,(Q,) to compute
normal zeta functions of -groups whose centres are free abelian of rank 2 or
3. In particular, Voll computes the normal zeta function of all T-groups whose
centre is of rank 2, and confirms the functional equation (1.5). This work is
based on the classification of such groups by Grunewald and Segal [31]. For
centres of rank 3, the geometry of the associated Pfaffian hypersurface comes
into play. Provided the singularities of this hypersurface are in some sense
not too severe, Voll gives a formula for the local normal zeta function of L
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depending on the number of points on the Pfaffian hypersurface. A highlight
of this work is explicit expressions for the rational functions P;(X,Y) and
P,(X,Y) in the local normal zeta function of the ‘elliptic curve example’
(1.6).

A more general approach is used by Voll in [61], where he considers the case
where the Pfaffian hypersurface has no lines. Indeed this occurs generically
if the abelianisation has rank greater than 4r — 10, where r is the dimension
of the centre. Provided this Pfaffian is smooth and absolutely irreducible, the
functional equation (1.5) holds. Voll also gives in [61] an explicit formula for
the normal zeta functions of the class-2 nilpotent groups known as ‘Grenham
groups’, using a combinatorial formula for the number of points on flag vari-
eties. This formula is also employed by Voll in [58], where he gives an explicit
formula for the local zeta functions counting all subgroups in the Grenham
groups.

One key assumption Voll makes in [61] is that the associated Pfaffian
hypersurface has no lines. A forthcoming paper by Paajanen [49] presents
the first step in overcoming this obstacle. She considers the normal zeta
function of a class-2 nilpotent group Gs which encodes the Segre surface
S : x174 — 23 = 0. In particular, she calculates that

(Gsp(8) =Wo(p,p™°) + (p+ 1)*Wi(p,p~*) + 2(p + )Wa(p,p~)

for explicit rational functions W;(p,p~*), i = 0,1,2. The coefficients (p + 1)?
and 2(p + 1) arise from the geometry of S reduced mod p: being isomorphic
to PY(F,) x P1(F,) it has (p + 1)? points and 2(p + 1) lines.

Voll has also used combinatorial methods to yield an explicit expression
for the local normal zeta functions of the class-2 free nilpotent groups [62].
One key ingredient is an explicit expression for a sum of certain Hall polyno-
mials. Whilst there seems to be no simple formula for the Hall polynomials
themselves, a polynomial expression for the sum has been known for some
time.

One approach common to the work of Voll and Paajanen is to decom-
pose the local normal zeta function as a sum of rational functions with coeffi-
cients corresponding to invariants of a suitable algebraic variety. They are then
able to deduce functional equations by virtue of the fact that each individual
rational function with its coefficient satisfies the same functional equation.
In particular,

(G ()] =p® ¢S, L (9)
with the three rational functions above satisfying
Wo(X LYy = XYWy (X,Y),
Wi (X LYy h = X*YVRW (X,Y),
Wo (X~ LY ™H = XTY2W,(X,Y).

p—p~t

The ‘missing’ powers of X are provided by the coefficients (p+1)? and 2(p+1).
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2.2 Calculating Zeta Functions of Lie Rings

Most of the zeta functions presented in this chapter have been calculated by
the method of Lie rings, p-adic integrals and ad-hoc resolutions of singularities.
In particular, the zeta functions calculated in the theses of Taylor [57] and the
second author [64] were calculated this way. In particular, we shall work with
Lie rings instead of groups, and leave the reader to obtain the corresponding
results concerning groups via the Mal’cev correspondence. We shall also make
the assumption that our Lie rings are additively isomorphic to either Z¢ or
Zg, i.e. (additively) finitely generated and torsion-free.

Recall that (7 ,(s) = (fgz,(s). Given a Z,-Lie ring L with basis B =
(e1,...,eq) for L, calculating either of the zeta functions CE,[) or Cip is essen-
tially a four-stage calculation:

1. Constructing the cone integral.

2. Breaking the integral into a sum of monomial integrals.
3. Evaluating the monomial integrals.

4. Summing the resulting rational functions.

2.2.1 Constructing the Cone Integral

Let M be an upper-triangular d x d matrix M = (m, ;) with entries in Z,.
We may consider the rows my,. .. ,my of this matrix to be additive generators
of a submodule of L. This submodule will be a subring if

[m;, m;] € (my,...,my)z, forall 1 <i<j<d (2.2)
and an ideal if
[ei,mj] S <m17--~7md>Zp forall 1 <i,5<d. (23)

The following proposition and its proof gives us an explicit description of
the cone conditions, i.e. the conditions of the form v(f;(x)) < wv(g;(x)) for
1 <4 <. It is essentially Theorem 5.5 of [17].

Proposition 2.1. Let L be a Z-Lie ring with basis B = (ey,...,eq). Let V7
be the set of all upper-triangular matrices over Z, such that Zg M L®
Zy, and VpS the set of such matrices such that Zg M < L®Zy,. Then Vp<’
and VpS are defined by the conjunction of polynomial divisibility conditions
v(fi(x)) < v(gi(x)) for 1 < i < 1. Furthermore, the conditions defining V1
satisfy deg fi(x) = degg;(x), and those defining V;)S satisfy deg fi(x) + 1 =
deg g;(x).

Proof. Let my, ..., my denote the rows of the matrix M, C; the matrix whose
rows are ¢; = [e;,e;]. Let M’ denote the adjoint matrix of M and
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. -1 -1, -1 -1 -1
M = M’dlag(m2,2...mdyd,mgj?)...,md’d,...,mdd,l) .

Since M is upper-triangular, the (i, k) entry of M* is a homogeneous polyno-
mial of degree k — 1 in the variables m, , with 1 <r <s <k —1.

The rows of M generate an ideal if we can solve, for each 1 <i,j5 < d, the
equation

m;Cj = (Yij1,- -, Yija) M
for (yij1,---,Yija) € Z%. This rearranges to
m;C M = (ma 1Y g1y s M1 MadYijd)

for (yij1,. - ¥ija) € Zg. Set g%, (x) to be the k'™ entry of the d-tuple
miCth. gijk(x) is a homogeneous polynomial of degree k in the m, s, and
if we set f;jx(x) = mi1...myk, we obtain the conditions v(f; ;k(x)) <
v(g;7; (%)) with deg(fi ;.1 (x)) = deg(g;7; 1.(x))-

Similarly, the rows of M generate a subring if we can solve, for 1 < i <
J<d,

d
m; E ij‘Cr ]\4h = (ml,lyi’j,l, cee,Myn - md,dyi,j,d)
=Jj

for (yijis.--1Yijd) € Zg. Again, we set g;7; ,(x) to be the kP entry of the
d-tuple m; (Zd .mijr) M?. However, this time gfj 1 (%) is a homogeneous

r=j
polynomial of degree k + 1, so we obtain conditions v(fi;x(x)) < v(g;; (x))-
Furthermore, deg(f;,;x(x)) + 1 = deg(g;; (%)) 0

Whilst every subring or ideal H has a matrix M whose rows additively
generate H, these matrices are by no means unique. Multiplying a row by
a p-adic unit or adding a multiple of a row to another row above it may
change the matrix but does not alter the subring additively generated by
the rows. Each diagonal entry m; ; is unique up to multiplication by p-adic
units, hence the measure of values it can take is (1 — p=1)|m; ;|,. Each off-
diagonal entry m; ; is only unique modulo |my ;|,!. Hence the measure of
upper-triangular matrices generating H is (1—p~1)%ma 1]p|mazl2 ... [ma,ald-
Note that although m,; may vary, |m; |, is uniquely determined by H.

Finally, we note that the index of H is |my1mas ... magql,". Hence we
may write

(Lp(s)=(1 —pfl)fd/v Imig... md,d|;|m%,1 e mg,d|;1 du (2.4)

or
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(Lpls+d)=(1 —p‘l)‘d/v maa - maalplmiyt - omg g lpdp. (25)
P

Note that the translation in (2.5) is necessary. Equation (2.4) is not a cone inte-
gral since the constant (independent of s) term in the integrand has a negative
exponent. We complete the set of cone data by setting fo(x) =mq1...mad,
go(x) = m‘lifll co.mg_1,4-1 and D = {fo(x), go(x), ..., fi(x), g1(x) }. We there-
fore obtain the following result.

Proposition 2.2. Let L be a Lie ring additively isomorphic to Z¢, x € {<, <}.
There exists a set of cone integral data D = {fo,go,-.., fi,q such that, for
all primes p,

Gpls+d)=0-p ) Zp(s,p) .

Furthermore, deg fo = d, deg go = (g)

2.2.2 Resolution

Once we have constructed the cone integral, the next step is to break the
integral into a sum of integrals with monomial conditions. As mentioned in
the Introduction, resolution of singularities gives us one way of doing this, and
more importantly guarantees that this can always be done. Hironaka’s proof
of resolution of singularities of any singular variety defined over a field of char-
acteristic 0 has been refined by Villamayor, Encinas, Bierstone and Milman,
and Hauser amongst others to produce an explicit constructive procedure.
In particular, Bodnar and Schicho have implemented a computer program to
calculate resolutions. We refer the reader wanting to know more to Hauser’s
accessible article on resolution [34] and its comprehensive bibliography.

However, we shall not use resolution of singularities, for a number of rea-
sons. Firstly, the computer program of Bodnar and Schicho works best in
small dimensions, and we shall typically require resolutions of a polynomial
with a large number of variables. Secondly, we shall find that we do not need
to resolve all the singularities of the polynomial F' = Hf::o fi(x)gi(x). Singu-
larities lying outside V,’ do not need to be resolved. Thirdly, there are ‘tricks’
that can be applied to simplify the polynomial conditions and speed up the
process of decomposing the integral as a sum of monomial integrals. Some of
these will take advantage of the fact we are working over QQ,,, whereas reso-
lution is a general procedure for arbitrary fields of characteristic 0. A further
disadvantage of resolution is the highly technical language it is most rigor-
ously formulated in. We do not wish to alienate readers unfamiliar with this
advanced machinery.

Therefore, we resolve singularities in an elementary and ‘ad-hoc’ manner.
A collection of ‘tricks’ are used to simplify the conditions under the integral,
and when the conditions can be simplified no further we bisect the integral.
This bisection is achieved by choosing a pair of variables and splitting the
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domain of integration into two parts depending on which variable has the
larger valuation. Further ‘tricks’ and bisections may then be necessary to
reduce the integral into smaller and smaller pieces until all the pieces become
monomial.

The idea of bisecting the integral as described above has its origins in the
concept of a blow-up, an operation fundamental to the process of resolution
of singularities. Indeed, we shall refer to our bisections as ‘blow-ups’. Fur-
thermore, we can use ideas originating from algebraic geometry to provide
motivation for our choices of blow-ups. For example, suppose a non-monomial
factor of one of the cone conditions is of the form Pz; 4+ Qx}, for variables x;
and zj and nonzero polynomials P and (). Let us also assume z; and zj, have
nontrivial integrand exponent or feature somewhere in a monomial condition.
The polynomial F', being the product of all the cone data polynomials, has the
factors z;, 23, and Px;+Qxy, and therefore has a singularity with non-normal
crossings at x; = x = 0. A blow-up involving z; and z, will then replace
this polynomial factor with x;(P + Qz},) (where z = z;z}) or zx(Pz} + Q)
(where z; = z’x)) on the two sides of the blow-up. If P and @ are both
independent of z; and xj, then this trick reduces the sum of the total degrees
of the terms of the non-monomial factor. This trick is even more useful when
one of x; and z;, divides the other side of the condition, since the monomial
factor x; or x), introduced above will cancel out. Algebraic geometry therefore
provides inspiration for our method, but we do not totally rely on it.

Initially, the integrand and the left-hand side of each condition v(f;(x)) <
v(g;(x)) is monomial, and this is something we preserve. For brevity we also
write £i(x) | g:(x) instead of v(fi(x)) < v(g:(x)).

Examples of ‘Resolution’

To illustrate the concepts in the previous section, we present two example
calculation, where we construct the p-adic integral corresponding to a Lie ring
and in each case apply some ‘tricks’ and blow-ups to split it into monomial
integrals. The first example will illustrate the basic ideas, with some more
unusual and less obvious tricks employed in the second.

For the first example, we shall choose to count all subrings of the Lie ring

L= (21,202,203, 04,y1,Y2 : [T1,72] = y1, [71, 73] = yo, [v2, 74] = y2) .
In this case, the set V= is given by

VpS ={(mi1,mM12...,Mse) € Zil D fi(x) < gi(x) for 1<i<6},

where the six! conditions f;(x) | g;(x) are listed below:

! It is mere coincidence that there are six conditions in this case. Generally the
number of conditions obtained bears no relation to the rank of the underlying Lie
ring.
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ms5 | miimas
me.6 | mi1,2M44 ,
me.6 | m22M3.4 ,
me.6 | ma2My .4 ,
me,6 | M1,1M33 + M1 2m34 ,
ms 51M6,6 | mM1,1M2 2M5 6 — M1,1M2 3M5 5 — M1 2M2 4M5 5 + 1M1 4M2 2M5 5 -
These conditions are independent of m; 3 and m; ; for 1 <7 <4,5 < j <6.

For the sake of clarity, we shall relabel the remaining 12 variables as a, b, ..., [.
Thus,

(pls) =1 —p )L,

where
F= [ el gl
w
and W is the subset of (a,b,...,1) € Z;Q defined by the conditions
jlad, U|bi, l|dh, l|di, llag+bh, jl|adk—aej—0bfj+cdj.

We perform a blow-up with [ and d to remove the variable ¢. On one side of
the blow-up it disappears altogether, on the other its coefficient dj divides the
sum of the other terms of the polynomial:

1. v(l) < v(d): set d = d'l. The conditions [ | dh and [ | di become trivially
true, and we can also remove the term cd’jl from the last condition. Thus

D= [ el el Sl T du
jlad’l
1]bi
llag+bh
jllad kl—aej—bfj
Note that the exponent of |I|, is 25 — 7, as opposed to 2s —8 = (s — 2) +
(s —6). The discrepancy is caused by the dilation of the measure that the
change d = d’l brings about. By dividing the [ out of d, we have allowed
d' to take a greater measure of values in Z, than d. Hence we introduce a
Jacobean ||, into the integrand to balance out the dilation.
2. v(l) > v(d): set I = dl’ with v(I") > 1. This then implies I’ | h and I’ | 4.

To remove these two variable-divides-variable conditions, set h = h’l’ and

=1l
B= [ el el i
jlad
d|bi’
dl’|ag+bh'l

djl’|adk—aej—bfj+cdj
v(l')>1
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The last condition implies
dj | adk — aej — bfj (2.6)

and thus ! | ¢+ (adk — aej — bfj)/dj, so we shall set ¢ = ¢ — (adk — aej —
bfj)/dj. After this substitution, the conditions no longer imply (2.6), so
to avoid altering the value of the integral, we must explicitly enforce (2.6).
We can also set ¢/ = ¢l to remove the condition [ | ¢/. Hence

B= [l R el bl

jlad
d|bi’
dl'|ag+bh'l’
dj|ladk—aej—bfj
v(I')>1

In both cases we have removed c or ¢”” from the conditions and the number
of terms in the last condition has dropped from 4 to 3.

We play a similar trick on I; and Iy to remove f. By a stroke of luck it
turns out to also eliminate h from I; and A’ from Is:

1.1. v(l) < v(b): set b = b'l. Terms V'hl and —b' fjl disappear from the last
two conditions:

Lo — / lals =152l il 71 112> S s

jlad'l
llag
jlla(d kl—ej)

1.2. v(l) > v(b): set I = bl’ with v(I') > 1, and ¢ = i'l". Now b | ag and
bj | a(bd'kl" — ej) are implied by the last two conditions, so we set h =
Wl —ag/band f = f'l + a(bd'kl’ — ej)/bj. Again, we must introduce
explicitly the implied conditions.

a= [ laly R el S S

jlabd'l’
blag
bjla(bd kl' —ej)
v(l')>1

2.1. v(d) < v(b): set b=1Vd:

=l

jlad
dl’|ag
djla(dk—ej)
v(l’)>1
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2.2. v(d) > v(b): set d = bd’ with v(d') > 1, ¢ = d'i". Also bl’ | ag and bj |
a(bd'k—ej), so we can set h' = d'h’' —ag/bl’ and f = df'+a(bd'k —ej)/bj:

o= [ el Rl T du

jlabd’
bl’|ag
bjla(bd' k—ej)
v(l')>1
v(d)>1

All four of these integrals are very similar, and can be reduced to monomials
in the same way. For simplicity we shall consider only I 1.

1.1.1. v(j) < v(d’'kl): in this case, d'kl/j is an integer, so we may set e =
e +dkl/j:

D= [l el 2laly il bl o

jlad’l
llag

Fld'kl
llae’

1.1.2. v(j) > v(d'kl): set j = j'd’'kl with v(j") > 1:

Liio= / e A ol 7 1 Vi B Vb =TT

j'kla
llag
J'lla(l—ej")
v(3")>1

Since v(j’) > 1, v(1 — ej’) = 0. Thus

Baa= [ laly e Olaly Skl

j'kla

llag

i'lla
v(§)>1

In this case we can break up the initial integral into eight monomial integrals,
however larger examples may need to be broken up into many more integrals.
Evaluating these monomial integrals and summing gives us the local zeta
function counting all subrings in ge 4, which can be found below on p. 44.

The second example is more involved, and demonstrates some other tricks
which sometimes come in useful. We count ideals in the free class-3 2-generator
nilpotent Lie ring F3 2. This has presentation

<3317332ay72'1a22 : ['rhx?] =Y, [xhy] = z1, [any] = Z2> .
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Now
=i, () =(1— pH™° /W Imyal5™h . ims s |50 dpe

where W is defined by the conjunction of the following conditions:

ms3|mi1, maz|mia, Mm3z|moa, Mas|mir, Mmas|mss,
mss | Moo, Mss|mes, Mss|mss, mazmas|miimsy,
My aMss | M33Mas, M33May | M12M34 —M13M33 ,
™mM3,314 4 | M2 2134 — M2,31M33 , 144755 | TM1,1My4 5 — 1M1,2M4 4 ,
ms3,3M4 4M5 5 | mMy1,2M3,4My4 5 — M1,2M3,5M4 4 — 1T1,31M3,31M4.5 ,
M3 3Ma,aMs5 5 | M2 2M3 445 — M2 2M3 5Ma 4 — M2 3M3 3Ma 5
M3,3M4 4M5 5 | M1,1M3,4Ma5 — M1 1M3 5M4 4 — M1,3M3,3Ma4 -

We start by setting mq 1 = m’171m3,3, mie = m’172m373, Mmoo = m'2’2m3,3,
m33 = mj3my 4 and mo3 = mh3ms 5. Doing so ‘uses up’ five of the first
eight conditions. These conditions, and the changes that eliminate them, are
typical when calculating local ideal zeta functions. Variables mj 4, m1 5, ma24
and mgy 5 don’t feature among the above conditions. Relabelling the remainder
from a to k tells us that

F= =) el Rl
W/
where W is the subset of all (a, ..., k) € Z,)' satisfying

i‘a’ga k'|fZ, k|f.]a i‘bg—C, i|dg—€]€, 7;k‘|ag.j_ahi_Civ
ik | bgj — bhi —cj, ik |dgj — dhi—ekj .

Our focus is on the conditions and how to perform blow-ups to reduce the
conditions to monomials. We shall therefore neglect to track the changes to
the integrand.

We started the last calculation by aiming to remove a variable from the
integral. We cannot do the same here. Instead, we choose a blow-up between
i and j. Note that each term of the right-hand side of each of the last three
conditions above contains an i or a j. Where v(i) < v(j), we set i = ¢'j and
then h = b’ + gj’ to obtain that

o 1 tlag, k|fi, k|dh, i|bg—c,
Wl'{(a""’k)ezp'ﬂdg—ek, klah/ +c, k|bW +¢f |-

A blow-up with k£ and c¢ is the thing to do here. Where v(k) < wv(c), two
of the binomial conditions drop to monomial and a blow-up with ¢ and &
will suffice to reduce to monomials. However, more interesting things happen
when v(k) > v(c). Firstly, let’s set k = ck’ with v(k’) > 1, and then set
i =j3"k—bh/c
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c|bW , ilag, ck'|fi, ck'|dn,
Wioi=2¢ (a,...,k)€Z) ci|bg—c, i|dg—eck', ck'|ah +c,
v(k') > 1

Consider the last condition, ¢k’ | ah’ + c. Since v(k’) > 1, v(ck’) > v(c). This
implies that v(ah’) = v(c), so that ah’ | c. Set ¢ = ac’h':

alb, ilag, adbh'k|fi, adk |d,
Wiz =1 (a,....K) € Z i|bg—adhk’, il|ldg—acehk’,
|1+, vk)>1

k' | 1+ ¢ and v(k') > 1 imply that ¢/ = —1 (mod p), in particular ¢’ is a
unit. We set ¢/ = ¢’k —1 as well as b = ab’ and d = ad'k’. After some tidying,
we end with the following monomial conditions:

Wis={(a,....K)eZ} ilag, ab'k'|fi, i|ah’, v(k)>1}.
We now return to the second half of the initial blow-up. We have

k|f-]7 ilj|ag7 'I:/j|bg—C, j|dh_6”ka
Wy:= ¢ (a,...,k) € Z,} : k|d(g—hi'), i'k|bg—bhi—c,
i'k|ag—ahi’ —ci', v(i')>1

It is best not to do a blow-up at this point. Instead, we do a couple of changes
of variable. Firstly, we set ¢ = ¢’ + hi’. Note that this change will make two
conditions longer. Setting ¢ = ¢/ +bg’ and then ¢ = ¢’i’k gives us the binomial
conditions

k|dg,7 k|fj7 j|bh*C”]€,
Wo=< (a,....k)€Z): jldh—e"k, i'j|a(g +hi),
i'k]g(a—bi"), v@')>1

A blow-up between j and k will remove the first two binomial conditions. It
is then routine (although not trivial) to split the two parts into monomials.
Evaluating the resulting monomial integrals and summing yields ¢, , (s), on
p. 51. '

2.2.3 Evaluating Monomial Integrals

A p-adic cone integral with monomial conditions can be expressed as a sum
of integral points within a polyhedral cone in R™, and there are algorithms
for evaluating such sums. One such example is the Elliott—-MacMahon algo-
rithm described in [54]. However, the second author considered an alternative
approach, which appears to be more efficient for the monomial cone integrals
arising from zeta functions of Lie rings, but is not guaranteed to terminate.
This approach is to continue applying ‘blow-ups’ to further decompose
the monomial integrals until the conditions become trivial. One strategy for
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choosing blow-ups is to choose the two variables which appear most frequently
on opposite sides of conditions without appearing on the same side. It is not
difficult to automate this strategy, and in practice it has worked well, but it
is not difficult to construct integrals for which this strategy will fail.

Most of the ‘tricks’ described in the previous section are aimed at reducing
non-monomial conditions to monomials and so cannot be applied. The excep-
tion is that any conditions f;(x) | g;(x) where g;(x) is a single variable x; can
be removed by setting z; = z’; fi(x).

2.2.4 Summing the Rational Functions

The final stage is to sum the rational functions resulting from the trivial
integrals. Whilst being the most elementary, it can also be the most compu-
tationally intensive. Given a perhaps large collection of rational functions in
two variables, we must add them up. This sort of summation can easily be
performed by a computer algebra system such as Maple or Magma. Indeed
this is the approach used by Taylor [57]. However, we can make use of the fact
that these rational functions are of the form

P(X,Y)
[[ic, (1 — XeY?:)

for some bivariate polynomial P(X,Y) with a;,b; € N. Typically, many of
the factors of the denominator will cancel out once all the terms have been
summed. If there are a large number of rational functions, it is advantageous
to pick factors we believe will cancel, sum all the rational functions with
this factor in the denominator and then hope that the factor cancels in this
partial sum. We may then replace the rational functions we summed with the
partial sum and continue. With less factors in the denominator, the remaining
rational functions should sum more quickly.

2.3 Explicit Examples

For the rest of this chapter we give explicit expressions for the local zeta
functions of many Lie rings. We also list the functional equation satisfied by
these local zeta functions (where applicable), and the abscissae of convergence
of the corresponding global zeta functions. We also give the order of the pole
on the abscissa of convergence when it is not a simple pole. Unless we state
otherwise, the local zeta functions we present are uniform, i.e. are given by
the same rational function in p and p~—* for all primes p.

It may be noted that there are more zeta functions counting ideals than
all subrings. There are usually more conditions under a p-adic integral count-
ing ideals than under one counting all subrings, but the cone conditions for
counting ideals are simpler.
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The calculations involved are frequently long and tedious and were often
performed with computer assistance. Therefore we shall not provide proofs of
the calculations. This contrasts with the approach of Taylor [57], who does
provide proofs of his calculations in his thesis. One such proof runs to 40
pages. There are several zeta functions of comparable or greater complexity
presented in this chapter, and we simply don’t have the space to present the
proofs. Nonetheless we believe that all the zeta functions listed below are
correct. In particular, there shouldn’t have been any errors in transcription
since the IXTEX source for each zeta function was generated from the computer
calculations.

The advent of computer calculations has also led to zeta functions with
the numerator and denominator of large degree. We have confined some of
the larger numerator polynomials to Appendix A. However, there are four
excessively large polynomials which we have chosen not to include since we
do not feel the extra 23 pages they would require would be justified. Further
details may be obtained from the authors on request.

Many of the examples will satisfy a functional equation of the form

CLp(5)] = (1) p" ¢, (s) (2.7)

for all but perhaps finitely many primes p. However, there are a small number
that don’t. When we say that a local zeta function ‘satisfies no functional
equation’; we mean that it satisfies no functional equation of the form (2.7).

The Lie rings we shall be considering can be presented conveniently by
giving a basis and the nontrivial Lie brackets of the basis elements. Most
of these Lie brackets will be zero, so we make the convention that, up to
antisymmetry, any Lie bracket not listed is zero.

p—p~?!

2.4 Free Abelian Lie Rings

Let L = Z%, the free abelian Lie ring of rank d. Then

d-1
< ;
G =) =]l -,
i=0
where ((s) is the Riemann zeta function. Hence this function is meromorphic
on the whole of C. In particular, the Tauberian Theorem (Theorem 1.8) men-
tioned in the Introduction allows us to deduce that if a,, is the number of
subgroups of index n in Z2, then
n 2
™
2o~
i=1

a result which seems remarkably difficult to obtain without the machinery of
zeta functions.
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In [22] it is shown that for any finite extension G of the free abelian group
7%, the zeta functions ((s) are all meromorphic. This is proved by relating
the zeta functions to classical L-functions that arise in the work of Solomon,
Bushnell and Reiner. The zeta functions of the 17 plane crystallographic
groups, also known as the ‘wallpaper groups’, were calculated by McDermott
and are listed in [22].

We shall see that many of the zeta functions have a factor similar to the
local factor of (za(s). It is therefore convenient to use the notation

Gonp) = TL (s~ (2.8)

where (,(s) = (1 — p~*)~! is the p-factor of the Riemann zeta function.

2.5 Heisenberg Lie Ring and Variants

Let H be the free class two, two generator nilpotent Lie ring. This is the Lie
ring of strictly upper-triangular matrices

0Z7Z
Us(Z)y=1002%Z
000
It is given by the presentation

H={z,y,z:[z,y] =2) ,

where, as mentioned above, [z, z] = [y,2] = 0. For n > 2, let H™ denote the
direct product of n copies of the Heisenberg Lie ring.

Theorem 2.3 ([32]).
Grip(8) = (a2 p(5)Gp(3s = 2)
Gip(8) = (a2 p(5)Gp (25 — 2)G(25 — )G (35 —3) "
These zeta functions satisfy the functional equations
Gl ==, (8)

= _p3_38<§[’p(8) N

<
CH,p (8) pop—1

The corresponding global zeta functions have abscissa of convergence af_( =
a% = 2, with C%(s) having a double pole at s = 2.
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Theorem 2.4 ([32, 57]).
C'f(z,p(s) = (zap(5)Cp(3s — 4)2@7(53 —5)¢p(5s — 4)71 )
G p(8) = Cuo p(8)Gp(25 — 4)2Gp(25 — 5)°( (35 — 5)(p(35 — T)(p(35 — 8)
X Wi (p,p™°)
where W§2 (X,Y) is
1-XY3 —3X°Y? — XTY? 4+ X°v* — Xv* — X®Y® 4+ 3X%y° —2X'Y®
+X10Y6 4 3X11Y6 +3X12Y6 4 2X13Y6 +X14Y6 —X14Y7 +X15Y7
_ X14Y8 4 X15Y8 _ X15Y9 _ 2xlﬁy9 _ 3X17Y9 _ 3X18Y9 _ X19Y9
+ 2X18Y10 o 3X20Y10 +X21Y10 +X20Y11 o X24Y11 +X22Y12
4 3X24Y12 +X25Y12 _ X29Y15 .
These zeta functions satisfy the functional equations

— p157105<§27p(8) ,

= P0G, ).

G p(5)]

G 5)|

p—p~1t

p—p~1t

The corresponding global zeta functions have abscissa of convergence a§2 =

oz%z =4.
Theorem 2.5 ([57]).
oo p(8) = Cao p(8)Gp(35 — 6)° (55 — T)Gp(Ts — 8)(p(8s — 14) W3 (p,p™")
where W.3,(X,Y) is
1-3X0Y5 +2X7Y° + XOV7 —2X7Y7 4+ X12y® — ox13y® 4 ox 13y 12
_ XUMyl12 4 ox19y13 _ x20y 13 _ 9 x19y15 | 3x20y15 _ x26y20

This zeta function satisfies the functional equation

<7<1]3,p(5) = _p36715s<’)§1‘3,p(8) )

p—p?!
The corresponding global zeta function has abscissa of convergence 0@3 = 6.
Theorem 2.6 ([64]).

(o p(8) = Czo p(8)Gp (35 — 8) (55 — 9)¢p(Ts — 10)¢y (85 — 18)¢, (95 — 11)
X (p(10s — 20)(p(11s — 27)W5a (. p~°)
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where the polynomial W§4 (X,Y) is given in Appendiz A on p. 179. This zeta
function satisfies the functional equation

47214,1,(3) = P66_2OSC§4,p(5) :

p—p~?t
The corresponding global zeta function has abscissa of convergence a§4 = 8.

Theorem 2.7. Let (K : Q) = 2, R be the ring of integers of K and L =
Us(R). Then

1. If p is inert (of which there are possibly infinitely many) then
CEp(8) = Czap(8)Gp(5s — 5)Gp(65 — 8)(1 +p* 7).
2. If p is ramified (of which there are only finitely many) then
Cop(8) = Caap(5)Gp(35 — 4)Gp(5s — 5) .

3. If p is split then Us(R ® Z,,) = Us(Z,) x Us(Z,) and we already have a
calculation of this factor from Theorem 2.4 above.

For all split or inert primes p, this zeta function satisfies the functional equa-
tion

CEp(s)]
whereas for p ramified,
CEp(s)]

The corresponding global zeta function has abscissa of convergence aj = 4.

= PSTCE (s),

i :p157125<§7p(5) )

Taking the Euler product of all these factors we can represent the global
zeta function in terms of the Riemann zeta function and the Dedekind zeta
function (x(s) of the underlying quadratic number field K (as observed in
Corollary 8.2 of [32]):

Corollary 2.8.
(1 (5) = Cza(s)C(5s — 4)C(5s — 5)Cx (35 — 4)/Cxc (55 — 4) - (2.9)

Theorem 2.9 ([32, 57]). Let L = Us3(R3) be the Lie ring of 3 X 3 upper
triangular matrices over the ring of integers Rs of a algebraic number field K
of degree 3 over Q.

1. If p is inert in R3, then
Cf,p(s) = CZB,p(S)gp(ZS —8)(p(8s — 14)(p(9s — 18)WL<],in(p»P_S)
where

WELXY) =1+ XV + XY+ XP2y® + XPPy® 4+ x¥y'>
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2. If p ramifies completely in R3 (i.e. if (p) = p> for some prime ideal p),
then

CEp(8) = (20, (8)Gp(3s — 6)Gp(Ts — 8)Gp(8s — 14) (1 +p ) .
3. If p ramifies partially in R3 (i.e. if (p) = p>q for prime ideals p # q),
i (8) = (2o p(8)(p(3s — 6)°Cp(Bs — T)p(Ts — 8)(p(8s — )W (p,p %),
where
Wi (X, V) =1- XY+ XTY° - XTYT — XPy® 4+ xPPy1?
_ xl4y10 | x20y15
4. If p splits completely in Rs3:
CEp(8) = o p(8)Gp (35 — 6)° (55 — T)Cp(Ts — 8)Cp(8s — L)W (p,p™°),
where WESC =W (X,Y) given above on p. 35.

5. If p splits partially in Ry (i.e. (p) = pq for prime ideals p # q):
CEp(8) = Czo p(5)Gp(35 — 6)Cp(55 — T)Cp(Ts — 8)Cp(65 — 12)¢y(8s — 14)
X Wiep®p),
where
WEL(X,Y) =1 L XOY5 _ x6yT _ xl2y8 _ yldyl2 _ y20y13
1 X20y15 | 263720

For all primes that do not ramify, this zeta function satisfies the functional
equation

CEp(s)]

The corresponding global function has abscissa of convergence aj = 6.

- — _p36715s<1<11)p($) .

Remark 2.10. 1. Cases 3 and 5 can only occur if the field K is not a normal
extension of Q.
2. As with the case with a quadratic number field, the p-local normal zeta
function does satisfy a functional equation even when p ramifies. If f, is
the ramification degree of p in K, then

CEp()| o= —pP TR (s)

for all primes p.

It is possible to write the global zeta function of L in terms of Riemann
zeta functions, the zeta function of the number field and Euler products of
these two variable polynomials. However, the end result is not as neat as (2.9):
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Proposition 2.11. If (K : Q) = 3, R is the ring of integers of K and L =
Us(R) then

(7(s) = Cao ()¢ (Bs — T)C(Ts — 8)((8s — 14)¢x (3s — 6) [ [ Wi, (. p7°)

where

Wf,in(X7 Y)(1—X7Y5)  ifpis inert in R,

1— X14y10 if p ramifies completely in R,

WEP(X, Y)= WEYP(X,Y) if p ramifies partially in R,
Wi (XY) if p splits completely in R,
Wi (X,Y) if p splits partially in R.

2.6 Grenham’s Lie Rings

The next examples are calculations made by Grenham in his D.Phil. thesis [28]
of zeta functions of Lie rings G,, with the following presentation:

Gn = (2,21, -, Tn1, Y15+ s Yn—1: |Z,xi] =y (1 <i<n-—1)) .

These Lie rings are class-2 nilpotent. Go = H, the Heisenberg Lie ring
again. Grenham calculated ngmp(s) and ngmp(s) for n < 5. They all have the
form of products of local Riemann zeta functions together with one of the
palindromic polynomials.

Theorem 2.12 ([32, 28]).
CGyp(8) = Cza,p(8)Gp(35 — 3)7Cp(3s — 4) (55 — 6)C(65 — 6) 7,
(G (5) = G2 ()G (25 = 4)Gp(25 = 5)G, (35 — 6)W, (0. p™°) |
where
W5 (X,Y) =1+ X%Y? 4 X*y? — X*y3 - X°y? — X®y®
These zeta functions satisfy the functional equations
G p(s)] = —p"7CG H(5)

CGn(9) = P07, (9) -

p—p~1

p—p~1!

The corresponding global zeta functions have abscissa of convergence O‘Ss =

0453 = 3, with Cgi (s) having a double pole at s = 3.
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Theorem 2.13 ([28]).

CGap(8) = Cza,p(5)Gp(3s — 6)Cp (55 — 10)p(7s — 12) W (p.p~*)

where
WG(X,Y)=1+X"Y?+ X°V3 4+ X®Y5 4+ XOY° + X13y® |
and

(G, p(8) = Czs p(8)Cp(25 — 5)Cp(25 — 6)C(25 — T)(p (35 — 10)Gp(4s — 12)
x Wg,(p.p™")
where ng (X,Y) is
1+ X4Y? + X°y?2 4+ XOv? — X5y3 — XOy3 — X7y3 + X8y? 4 X3
_ XOy4 _ x10y4 _ xlly4 _ xly6 _ x15y6 _ 16y 6 4 x16y T 4 x1Ty 7
o X18Y7 o X19y7 o X20Y7 +leQyS Jr‘)(*201/*8 +X21Y8 JrXv25y*10 .

These zeta functions satisfy the functional equations
21—11:
Cgi,p(s)‘ =P chqzl,p(s) )

G5 S MO

p—p~1t

p—p~1t

The corresponding global zeta functions have abscissa of convergence 0‘34 =

aa =4, with §gS4 (s) having a double pole at s = 4.
Theorem 2.14 ([28]).
5L p(8) = Czs p(8)Cp (35 — 8)(p(55 — 14)(p (s — 18)(, (95 — 20) W5l (p,p~°)
where W5l (X,Y) is
1+X5Y3+X6Y3+X7Y3+X10Y5 +X11Y5—|—2X12Y5—|—X13Y5 +X15Y7
+X16Y7 +X17y7 +X17y8 —|—X18Y8 +X19Y8 +X21Y10 +2X22Y10
+ X23y10 + X24Y10 + X27y12 + X28Y12 + X29Y12 + X34Y15
and

<§5,p(8) = CZE’,p(S)Cp@S - G)CP(QS - 8>Cp(25 - 9)§p(3s - 14)(}?(45 - 18)
x Gp(5s = 20)Gp(s — 2) 7' WG (p,p™7)

where ngs (X,Y) is
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1+ XY + X'Y? + X°V? + XOV? 4 2X7Y? 4+ X°Y? + XY? + 2X10Y?
+ XY 4 2X12Y3 4 XBY? 4 XYt pox Myt 42X Y 4+ X Oy
—|—X17Y4 + 2X17Y5 +X18Y5 4 2X19Y5 +X20y5 _ X18Y6 _ X20Y6
+ XY 0 4 2XPY0 42Xy 0 4 2XY 0 + XPYO - XY T —2x YT
_ 2X24y7 _ 2X25Y7 _ X26Y7 + X27Y7 + X29Y7 _ X27Y8 _ 2X28Y8
_ X29Y8 _ 2X30Y8 _ X30Y9 _ X31Y9 _ 2X32Y9 _ 2X33Y9 _ X35Y9
o X34Y10 o 2X35Y10 o X36Y10 o 2X37Y10 o X38Y10 o X39Y11
_ 2X40Y11 _ X41Y11 _ X42Y11 _ X43Y11 _ X45Y12 _ X47Y13 .

These zeta functions satisfy the functional equations
—14
<§5,P(S)| = _p36 ' S<g<]57p(s) ’

(s = —p*7%¢5 (s).

p—p~1

p—p~1t

The corresponding global zeta functions have abscissa of convergence a§5 =
ozgs =5, with CgSE) (s) having a triple pole at s = 5.
In [61], Voll has given an explicit expression for ¢5 (s), and in a forthcoming

paper, gives a similar expression for ngn p(s). In particular, he proves that

Theorem 2.15. Letn > 1. Then for all primes p, ngn p(s) and an,p(s) satisfy
the functional equations

<g<lmp(s)|p_)p_1 = —p( )~ (Bn-1)s S,L,p(s) :
< 2n—1Y__ n—1)s ~<
CJ,HP(S) — = _p( 5 1) —(2n—1) Ciﬂ,p(s) )

Grenham proved that the abscissa of convergence of Cén (s) is n. Voll gives in
[61] an expression for the abscissa of convergence of ngn (s), which agrees with

an expression previously derived by Paajanen. In particular, a§6 (s) =19/3.

2.7 Free Class-2 Nilpotent Lie Rings

Let F5,, denote the free nilpotent Lie ring of class two on n generators. F» 5
is the Heisenberg Lie ring once again.

2.7.1 Three Generators

Theorem 2.16 ([32, 57]). Let the Lie ring Fs 3 have presentation
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<$1>$2,$3,yl»y2a93 . [.’I]],JJQ] = Y1, [.171,3}3] = Y2, [.1727.'1}3] = y3> .

Then

Gy p(8) = (2o p(8)Gp(35 — 5)Cy (55 — 8)¢p(65 — NWiE (.0 ™*)
where

Wi (X,Y) =1+ X33+ XV3 + X0y + X7y 4+ X0y
and

Céj)p(s) = (z5.5(8)Cp(25 — 4)(p(25 — 5)(p(25 — 6)(p(35 — 6)(p(35 — 7)
X Cp(3s — 8)Cy(4s — 8)'WE (p,p~*)

where Wi L(XY) s

1+ X324+ X4Y? + X5y2 — x4y3 — X°y3 — X6y3 — XTy4 — X%v*
o X10Y5 o X11Y5 o X12Y5 +X11Y6 +X12YG +X13Y6 +X16Y8 .

These zeta functions satisfy the functional equations
CFoap(5)

CFyap(9)

_ p15_9SC§2737p(8) ,

— <
_ p15 65Cﬁ273’p(3) .

p—p~1

p—p~?!

The corresponding global zeta functions have abscissa of convergence (1;2 ,=3

<
ap,, = 7/2.

The zeta function counting all subrings is interesting since the abscissa
of convergence is not an integer and is strictly greater than the rank of the
abelianisation of G. This was the first such example calculated at nilpotency
class 2.

2.7.2 n Generators

In [62], Voll gives an explicit formulae for the local ideal zeta functions of Fs ,,
for all n. We shall not replicate Voll’s explicit formulae for these functions,
but we shall state some corollaries he deduces. Put h(n) = in(n + 1), the
rank of Fy .

Corollary 2.17. The local zeta functions Cﬁz‘mp(s) are uniform, i.e. are given
by the same rational function in p and p—* for all primes p.
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Corollary 2.18. The local ideal zeta function of Fy,, satisfies the local func-
tional equation

n h(n) — n n)s
G () = (—1)hp(")=tlmtms ()

p—p~t

for all primes p.

Corollary 2.19. The abscissa of convergence of Cﬁz (s) is

aﬁu :max{n7 () — ) (n+.j)+1 je{l,....(5) - 1}}

h(n) = j
and C;’Qn(s) has a simple pole at s = alﬂm.

In particular, F, 5 has abscissa of convergence a§2 , =5l /10. Indeed, this
is the first Lie ring whose local ideal zeta function is known to have abscissa
of convergence strictly greater than the rank of the abelianisation.

2.8 The ‘Elliptic Curve Example’

Theorem 2.20 ([60]). Let E denote the elliptic curve y*> = 23 — x. Define
the nilpotent Lie ring Lg by the presentation

[x1,74] = y3, [z1, 5] = Y1, [71, T6] = Yo,
Lg={(x1,...,2%6Y1,Y2, 3 : [T2, Z4] = Y1, [T2, T5] = V3,
[96373?4] :yz,[m,%] =N

Then, for all but finitely many primes p, the local zeta function of Lg is given
by
L p(8) = Cz0,p(8)Cp (55 — T)Gp(Ts — 8)(p(9s — 18)p(8s — 14)
X (Pi(p,p™") + |E(Fp)|Pa(p,p™7))

where

|E(Fp)| = [{(z:y:2) e P*(Fp) : y°z = 2® — x2” }|,
P(X,Y)=(1+XYVT+ XTY7 + X12y® 4 x13y8 4 Xy15)(1 - X7Y?),
Py(X,Y) = XY®(1 - YY) (1 + X13Y®) .

In [13] it was shown that this zeta function is not finitely uniform, thus an-
swering in the negative a question posed by Grunewald, Segal and Smith in
[32] that seemed ‘plausible’. However, there was some doubt as to whether
this zeta function would satisfy a functional equation similar to that satisfied
by other local ideal zeta functions of Lie rings of class 2. The dependency on
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the number of points mod p on an elliptic curve did cast some doubt on this.
However, it can easily be checked that

P(X LY H=X"Y"2p(X,Y),
Py(X LY )= XY 2P (X,Y).

Together with the functional equation of the Weil zeta function applied to
|E(F,)|, this yields

Corollary 2.21 (Voll [60]). For all but finitely many primes p,

CEew(®)],pr = P (9) -

2.9 Other Class Two Examples

We start with a number of Lie rings which appear in [32].

Theorem 2.22 ([32]). Let G(m,r) denote the direct product of Z" with the
central product of m copies of the Heisenberg Lie ring H. Then G(m,r) has
Hirsch length 2m +r + 1.

iy p(8) = Czmer p(8)Gp((2m+ 1)s — (2m + 7)) .
Form <2,

Gty p(5) = Coree p(8)Gp(25 — (7 +2))Gp(25 — (1 +3))Gp(3s — (r +3)) 7",

Gy p(5) = Corea p(8)Gp(35 — (1 +4))Gp(35 — (1 +6))G(35 — (r + 7))
X Wi (:07°)

where

WC?(%) (X,Y)=1+ XTHoY3 _ xrby4 _ xrtbyd _ xr+Ty4 . xri8y4

4 Xr+8Y5 + X2r+13y8 )

These zeta functions satisfy the functional equations

Cé(m,r),p(s) ‘

<
Gommyr#)]

S 2l g
p—p~ ! = (_1)2 + +1p( 2 ) (4mtr+1) Cé(mw),p(s) s

mar 2m+4r+1\ _ m-r g <
e (—1)2m+ +1p( B —(@mer+1) Gy p(8) (M =1,2).

The corresponding global zeta functions have abscissa of convergence aé(m ry =

2m+r for allm € Nyg, r € N andag(mr):2m+rform€{1,2},TEN.
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Theorem 2.23 ([32]). Forr € N,

CGayxzr p(8) = Carra(8)Gp(3s — (1 +4))¢p(5s — (2r +6))(1 g3y
CGixzrp(8) = Gupro(5)G (28 = (r + 4))y(25 = (r +5))Gp(3s — (27 +6))
% Wixw(pm_s) ;
where
W5z (0, %) = 1+ X H3Y2 4 xridy2 — xrtdys _ xrioys _ x2ri8ys

These zeta functions satisfy the functional equations

T T —(r s
Goxzr®)| = (0G5 (s),

< r+5 (") —(r s <
gg—sxzr,p(s)‘pﬂpfl (s ()

The corresponding global zeta functions have abscissa of convergence OzSSXzT =

<
ag,xzr =T+ 3.

The calculations of the ideal zeta functions were made by Grunewald, Segal
and Smith in [32]. Note that they use the more cumbersome notation Fs 3/(z)
in place of G3.

Theorem 2.24 ([32, 64]). Let

96,4 = <$1,$2,$37$47y1,1& : [Svl,xz] =Y, [3517533] = Y2, [3527954] = y2> .

Then
Cov o p(8) = Cza p(5)¢p(35 — 4)(p(5s — 5)¢p(65 —9)¢(Bs —9)
C;m,p(s) = CZ“,p(S)Cp@S - 5)Cp(33 - 5)<p(35 - 7)Cp(33 - S)Cp(43 - 9)
X Cp(48 - 11)Cp(58 - 12)Wg%74(p7p_8) 3
where WQEM(X, Y) is given in Appendiz A on p. 180. These zeta functions

satisfy the functional equations

< —
<96,4,P(8)‘pap,1 =p 96,4,P §
< _ 15—65 <
Goan(®)] L =P7TG L (s).

, . . q
The corresponding global zeta functions have abscissa of convergence Ngoy =

<
g = 4.
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In [32], this Lie ring is given the more cumbersome name Fy3/(z) - Z. For
brevity we have changed the name. The new name is borrowed from the
classification of nilpotent Lie algebras of dimension 6 mentioned in Sect. 2.14
below.

Let T, denote the maximal class-two quotient of the Lie ring of unitrian-
gular n X n matrices. T;, has presentation

(1, Ty Yty ey Yt & [Ty Tig) =y for 1 <i<m—1) .

T, is the Heisenberg Lie ring once again, and T35 = G3, whose zeta functions
are given in Sect. 2.6.

Theorem 2.25 ([57, 64]).

(7 (8) = Cza p(5)¢p(35 = 5)*Cp(5s — 6)(p(5s — 8) (65 — 10), (75 — 12)

x Wz (p,p~°),

where W5 (X,Y) is
1 +X4Y3 o X5Y5 +X8Y5 o X8Y6 _ X9Y6 o XlOYS o X12Y8 o X13Y9
+X13Y10 _ 2X14Y10 +X14Y11 +X15Y11 _ X16Y11 _ X17Y11 +2X17Y12
_ X18Y12 +X18Y13 +X19Y14 +X21Y14 +X22Y16 +X23Y16 _ X23Y17
+X26Y17 *X27Y19 *X31Y22

and

Ci,p(s) = (24 p(8)Gp(2s — 5)2Cp(23 - 6)2Cp(35 —6)Cp(3s — S)QCp(?)S -9)
X (p(ds — 12)¢y(5s — L)W (p,p~*)

where the polynomial WTE (X,Y) is given in Appendiz A on p. 180. These zeta
functions satisfy the functional equations

Gl yr = PG (0.

p—p~1t
< —75 <
Cﬁ,p(s) =" 7S<f4,p(s) :

p—p~1t

The corresponding global zeta functions have abscissa of convergence oy =
4

<
ar, = 4.

2.10 The Maximal Class Lie Ring M3 and Variants

The most well-understood zeta functions of Lie rings are those for Lie rings
of nilpotency class 2. However, as we move to higher nilpotency classes, there
is much less in the way of theory to help us. In particular, as we mentioned



46 2 Nilpotent Groups: Explicit Examples

in Chap. 1, the Mal’cev correspondence can be avoided for nilpotency class 2.
There is no such shortcut in higher nilpotency classes.

Taylor [57] was the first to calculate the zeta functions of a class-3-nilpotent
Lie ring, and since then the second author has greatly enlarged the stock of
examples at class 3.

In some sense, the ‘simplest’ Lie rings of nilpotency class n are the Lie
rings M,,, with presentation

M, ={z,21,22,...,2p : [2,2;] = 2441 fori=1,...,n—1) .

In particular, H = M. We now consider M3 and some variations.

Theorem 2.26. For r € Z,

Cq (s) = CZT+27p(S)<p(3S —(r+ 2))@,(48 —(r+ 2))Cp(55 —(r+3)
Mgz XZ",p Cp(t—)s — (r n 2)) ,

and

Cl\g/lst",p(S) = (g2 5(8)Cp(25 — (r +3))(p(3s — (1 +5))(p(3s — (2r +4))
X Cplds — (2r + 6)) Wi 7o (P,p™°) ,

where

WEP’XZT <p’p—s) -1 + XT+2y2 4 XT+3y2 _ Xr+3y3 _ Xr+5y4 + X27‘+6y4
_ 2x2r+6y5 _ 2x2T+7y5 4 X2T+7y6 _ X3T+8y6
o X3T+10y7 +X3T+10Y8 +X37‘+11y8 +X4T+13y10 )

These zeta functions satisfy the functional equations

r T _(r s
= (1) +4p( = (r+9) Rz (5

<
Cngzr,p(S) -

T ) T S
= (—1)r i) s es L (s)

<
CI\/[SXZ’",p(S) -

: : ; < _
The corresponding global zeta functions have abscissa of convergence ayy o 7 =

O‘J%/ngzr =r+ 2, with C§13 (s) having a quadruple pole at s = 2.

The zeta functions counting ideals or all subrings in Mj3 were first calculated
by Taylor in [57]. The second author generalised the results to M3 x Z" for
reN.

Theorem 2.27 ([64]).

Clx g p(8) = Caa,p(8)Gp (35 — 4)% G (4s — 4) (55 — 5)Cp (65 — 5)C,(Ts — 6)
x Cl)(gs - 10)W7-<t]><M3(p>pis) )
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where Wi, 1 (X,Y) is

1—2X%Y° 4 X5Y5 — X4Y0 + X4y7T — 2X5Y 7 4+ X8YY —2Xx9%Y? 4+ 3x9y !
_ 2X10Y11 +X9Y12 +X10Y13 +X13Y14 +X14y15 _ 2X13Y16 +3X14Y16
_ 2X14Y18 +X15Y18 _ 2X18Y20 —|—X19Y20 _ X19Y21 +X18Y22

o 2X19Y22 + X23y27 )

This zeta function satisfies the functional equation

gf(XMg,p(S” = *P21714SC§xM37p(3) .

p—p~1t
: ; ; < —
The corresponding global zeta function has abscissa of convergence ayy, . =4.

Theorem 2.28.

CEZXM?”I)(S) = (26 p(8)(p(3s — 6)3Cp(45 —6)Cp(55 — T)¢p(6s — T)(p(7s — 8)
X (p(8s — 8)(p(8s — 14)(p(9s — 9)(p(9s — 14)(p(10s — 15)
X (p(11s — 16)¢, (125 — 21)W7f('2xM3 (p,p~°)

for some polynomial Wﬁzng (X,Y) of degrees 113 in X and 85 in' Y. This
zeta function satisfies the functional equation

C’:]{2><M31p(s) :p45_198C§2X]V]37p(8) .

p—p!
. . . 4 .
The corresponding global zeta function has abscissa of convergence ay» s, = 0

Theorem 2.29.

it aMyp(8) = Czt,p(8)Gp(25 — 2)Gp(35 — 4)2(p(4s — 4)¢p (55 — 5)¢ (65 — 5)
X Cp(7s = 5)Gp(7s — 6)Cp(8s — 6)Cp(9s — 7)¢p(9s — 10)
% Cp(10s — 10)¢,(11s — 11)¢p(125 — 12)C, (135 — 15)
X Wi, (0,07°)
for some polynomial W;3. 1, (X,Y) of degrees 84 in X and 95 in Y. This

zeta function satisfies the functional equation

28—18
CEgXMa,p(S)| =D S<]<]\J3><M37p($) .

p—p~1t

The corresponding global zeta function has abscissa of convergence ozf\]/fs s =4
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Theorem 2.30. Let the Lie ring Ms Xz Ms have presentation

(21, 22, w1, w2, 1, T2,y : [21, w1] = X1, [22, Wa| = T, [21, 1] = ¥y, [22,22] = ¥) .

Then

CIT]/Ig XzMg,p(S) = CZ“,;D(S)C;D(SS - 4)2Cp(55 - 5)Cp(75 - 4)(:17(85 - 5)(;0(95 —6)
X (p(12s — 10)VV1\<413><Z]\/[3 (p,p~ %),

where Wyp 2 (X,Y) is

1— X5 —2X*Y® + XPV® 4+ X1Y? — 2X°Y? 4 XBy 1?2 — 2X9y 12

+ 3X9Y13 _ 2Xloyl3 + X10Y14 + X9Y17 + X14Y17 + X13Y20 _ 2xl3y21
4 3X14Y21 o 2X14Y22 + X15Y22 o 2X18Y25 + X19Y25 + X18Y26

_ 2X19Y26 _ X19Y29 —|—X23Y34 )

This zeta function satisfies the functional equation

CE:iXZI\/I:‘Sap(S)‘pHp_l = _p21_17sglf/[3><ZM3,p(S) .

The corresponding global zeta function has abscissa of convergence agy, . , =4

2.11 Lie Rings with Large Abelian Ideals

As we saw in Sect. 2.6, Voll has calculated (5 (s) and Cgén_’p(s) for all n > 2.
The Lie rings G,, have an abelian ideal of corank 1 (and thus of infinite index),
and it is likely that this large ideal makes it easier to get a grasp on the
structure of the lattices of ideals/subrings. Indeed the Lie rings M,, have this
property too. In this section we consider some further Lie rings of nilpotency
class 3 with this property.

Theorem 2.31 ([64]). Let the Lie ring L3 3y have presentation
<27 w1, W2,T1,T2,Y1,Y2 - [Z,’U)l] =T, [2«'711)2] = T2, [Z,.Tl] = Y1, [27332] = 3/2> .
Then
CL<(3,3),p(5) = (75 p(5)(p(3s — 4)(p(4s — 5)(p(5s — 6)(p (65 — 7)(p(7s — 6)

x (p(85 — 10)¢p(9s — 12)¢, (115 — 12)¢,(4s — 4) ™!
X Wi, o @077,
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where WL<](3,3> (X,Y) is
14+ X°Y? 42Xy — X1Y° + X0V + XOV® — X0y 4+ XY — XOv*®
+2X8Y® _ x8y9 _ x10y9 _ x9y10 4 x12y10 _ x10y 11 _ yi2y11
_ xByl12 _ yl2y13 _ xldy13 9y 16y13 _ 9y 15y 14 yldy 15 16315
_ X18y15 L 9x 16y 16 _ y18y16 _ x 19y 16 _ x18y17 _ o x20y17 | y18y/18
4+ X20y18 _ x21y 18 | x19y/19 | x20y19 22319 | o x20y20 | x22y720
+oX2y2l 4 x22y 21 gy 24y 21 | y22y22 L x24y22 4 x26y22 4 o y25y-23
4 oXx2y24 | x20y24 | y28y24 | x2Ty25 | y28y26 4 x30y26 _ x28y27
4+ X3ly?27 4 xB30y28 | x32y28 _ 9 yB32y29 | y34y29  x3ly30 4 y34y30
_ xB4y31 _ y34y32 | x36y32 o y36y33 _ y37y34  y40y37

This zeta function satisfies the functional equation

21—-15
<§(3)3),p(8) = _p S<[<,](3‘3),p(s) °

p—p!
The corresponding global zeta function has abscissa of convergence oy =3
Ls,3)

The second author also considered what happens when you delete generator
yo from the presentation above:

Theorem 2.32 ([64]). Let L3 be given by the presentation
(z, w1, w2, T1, 2,y : [2,w1] = 21, [2, w2] = 22, [z,721] = y) .
Then

Cf(m),p(s) = (23 .p(5)(p(3s — 4)(p(4s — 4)(p(5s — 5)(p(5s — 6)(p(6s — 6)
X Cp(9s —IHWE  (p,p7")

where WES (X,Y) is

2)
1 +X3Y3 _ X4Y5 _ X6Y7 _ X7Y7 +X8Y7 _ X8Y8 _ X9Y9 _ XlOyQ
+X10Y10 7X11Y10 +X10Y11 7Xllyll +X11Y12 *X14Y12 +X13Y13
_ X14Y13 +X14Y14 +X15Y14 +X17Y16 +X18Y17 +X20Y18 _ X21Y21
_ X24Y23
and

CLS(M)J)(S) = (g5 p(5)(p(25 — 4)(p (25 — 5)%¢,(3s — 7)(p (35 — 8)(p(4s — 10)
x Gp(5s — 12)WE  (pp™*),
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where VVLS(3 N (X,Y) is

L+ X°Y2 4+ X1Y2 = XTY? - XOV? 4+ XOY? + XTY? —2X 7Y —2xtY!

+ X7Y° —2X 10y — 3X YO 4+ XY O 4 XPPYO —2x By — 3x 1Y °
+X13Y7 +X14Y7 +3X15Y7 _ 2X16Y7 _ X17Y7 _|_X16Y8 +X17Y8
+2X18Y8 + 2X18Y9 + 2X21Y9 + 2x2lyl0 +X22Y10 +X23Y10 _ X22Y11
_ 2X23Y11 + 3X24Y11 + X25Y11 + X26Y11 _ 3X25Y12 _ 2X26Y12

+ X27Y12 + X28Y12 o 3X28Y13 o 2X29Y13 + X30Y13 o 2X31Y14

_ 2X32Y14 +X32Y15 —|—X33Y15 _ X34Y15 _ X35Y15 —|—X35Y16 —|—X36Y16
4 X39Y18 .

The local zeta function counting all subrings satisfies the functional equation

< 15—6s ~<
CL_(3Y2)7p(S) :p ° SC[_/(SQ),p(S) *

However, the local ideal zeta function satisfies no such functional equation.

The corresponding global zeta functions have abscissa of convergence af(3 o =
< . < . ’

AL 5q = 3, with CL*(312>(5) having a quadruple pole at s = 3.

p—p~1

The zeta function counting ideals was the first calculated which satisfied no
functional equation of the form (2.7).

A couple of Lie rings similar to L3 2) were also considered. Their ideal
zeta functions also satisfy no functional equation of the form seen numerous
times before.

Theorem 2.33.

<7<1]><L(3,2)7p(5) = (25 p(5)(p(35 = 5)(p(35 — 6)(p(4s — 6)Cp(5s — 7)(p(5s — 10)
X (p(6s — T)(p(65 — 10)¢p(7s — 8)Cp(Ts — 12)(,(8s — 12)
% Cp(95 — 14)C,y(9s — 17)¢,(11s — 19)¢, (135 — 20)
X (p(13s — 23)WﬁxL(3’2) (p,p™°)
for some polynomial W7'<C]><L(3,2) (X,Y) of degrees 150 in X and 97 in'Y . This

local zeta function satisfies no functional equation. The corresponding global
: : < _
zeta function has abscissa of convergence O Ligay =

Theorem 2.34. Let the Lie ring L3 22y have presentation

< . [Zawl] =1, [Zan} = 1'23>
2, W1, W2,W3,T1,T2,23,Y : .

[z, w3] = x3,[2,21] =y
Then
Chanzyw(8) = Cza,p(8)Gp(25 = 3)p(3s — 6)Cp(5s — T)Cp(5s — 10)¢, (65 — 10)
x Gp(75 — 12)C,(8s — 12)¢, (95 — 17)¢p(135 — 23)
X W @07,



2.12 Fio 51

where W7
(3,2,2)

tion satisfies no functional equation. The corresponding global zeta function
has abscissa of convergence o =4
(3,2,2)

(X,Y) is given in Appendiz A on p. 181. This local zeta func-

2.12 Fj,

On p. 40 we considered the zeta functions of the free class-2 nilpotent Lie rings.
The second author has added the zeta functions of the class-3, 2-generator
nilpotent Lie ring.

Theorem 2.35 ([64]). Let the Lie ring F3 o have presentation
(21,22, Y1, 21, 22 ¢ [T1, 2] = Y1, [w1,91] = 21, [22,01] = 22) .
Then
Cian(8) = G2z p(8)Gp(35 — 2)(p(4s — 3) (55 — 4)%¢,(7s = )W ,(p,p ")
where Wi (X,Y) is
1+X2Y4 o X2Y5 o X4Y7 o X6Y9 7X8Y11 +X8Y12 +X10Y16 ,
and
Céz’p(s) = (22 (5)Gp(25 — 3)Cp(25 — 4)(,p (35 — 6)Cp(4s — 8)(y(5s — 8)
X CP(55 - 9)W§32 (papis) )
< .
where Wg (X,Y) is
1+ X7Y2 4+ XPY? - X3Y? + X1Y? 4+ 2X°YV3 — 2XPy* + 2X7Y* — 2X7YP
_ 2X8Y5 _ X9Y5 _ XlOYG _ X11Y6 _ X10Y7 _ X13Y7 _ 2X12Y8
o X13Y8 o X14Y8 o X15Y8 +X13Y9 o X16Y9 +X14Y10 +X15Y10
+X16Y10 + 2X17Y10 +X16Y11 +X19Y11 +X18Y12 +X19Y12 +X20Y13
+ 2X21Y13 4 2X22y13 o 2X22Y14 + 2X24Y14 o 2X24Y15 _ X25Y15
—|—X26Y15 _ X26Y16 _ X27Y16 _ X29Y18 )

These zeta functions satisfy the functional equations
C;]a,zyp(s) = _plo_losggs,mp(s) ’

< 55 <
CFyp(5) = "7, (5) -

p—p~1t

p—p~!
The corresponding global zeta functions have abscissa of convergence af., =2,
3,2

<
ap,, = 5/2.
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Theorem 2.36 ([64]).
i axzp(8) = Gz p(5)Gp(35 — 3)Gp(4s — 4)Gp (55 — 5)Cp(55 — 6)C,(7s — 8)
X WE, ,xz®,p7")
where Wi 7(X,Y) is
14 X34 _ x3y5 _ x6y7 _ x8y9 _ xllyll , xllyl2 | xliyl6
This zeta function satisfies the functional equation

CFyoxzp(5) = PTG, Lz (5) -

p—p~t

The corresponding global zeta function has abscissa of convergence a§3 LxZ =3

2.13 The Maximal Class Lie Rings M, and Fily

We saw above that Mj is in some sense the simplest Lie ring of nilpotency
class 3. The Lie ring My can be defined in a similar way, and in some sense it
is the simplest of nilpotency class 4. The M,, family of Lie rings are filiform,
in that the nilpotency class is maximal given the rank.

Theorem 2.37 ([57]). Let the Lie ring My have presentation

(2,21, 2,23, 4 1 [2,21] = @2, [2, 22| = 3, [2, 3] = 24) .
Then

CEM)(S) = (z2,p(8)(p(3s — 2)(p (55 — 2)(p(Ts — 4)(p(85 — 5)(,(9s — 6)
X Gp(11s = 6)Gp(125 — )G (65 — 3) 7 Wig, (p,p™°)

where Wy; (X,Y) is
1+ X2Y* = XPY5 4+ X3YP — X?Y 0 4+ 2X%Y0 — X3y7 — X°y? 4 X010
_ 2X5Y11 _ X7Y13 _ X8Y13 + X7Y14 _ X8Y14 _ X8Y15 _ X9Y15
4 X9Y16 o ngl7 - X10Y17 4 2ngl8 o X10Y18 4 X10Y19 o 2X11Y19
+X10Y20 +X11Y20 _ X11Y21 +X11Y22 +X12Y22 +X12Y23 _ X13Y23
+X12Y24 +X13Y24 +2X15Y26 o X14Y27 +X15Y28 +X17Y3O o 2X17Y31
—|—X18Y31 _ X17Y32 —|—X18Y32 —X18Y33 —X20Y37

and

Citap(8) = C22.p(8)Gp(25 — 3)(p(25 — 4)¢p (35 — 6)¢p(4s — 7)¢p(4s — 8)
x (p(Ts — 12)Wip (p,p°)



2.13 The Maximal Class Lie Rings M4 and Fily 53

where WJ\%@ (X,Y) is

1+ X°Y?+ X%Y? - X3Y? + X1Y° 4 2X°Y? - 2X0y* + XTy* — 2X7YP

_ X8Y5 + X9Y5 _ 2X9Y6 _ 2X10Y6 _ X11Y6 T X10Y7 _ 2X12Y7

—X13Y7+X13Y8 —X14Y8 —X16Y9 +X15ylo +X17Y11 _X18yll

+X18Y12 + 2X19Y12 _ X21Y12 +X20Y13 + 2X21Y13 4 2X22Y13

_ X22Y14 + X23Y14 + 2X24y14 _ X24yl5 + 2X26Y15 _ 2X26Y16

_ X2Ty16 4 x28y16 _ y28y1T | 20317 | x3ly19
These zeta functions satisfy the functional equations

Citap (5)] =PG5

< — <
Grupl®)| =27, ().

p—p~t

p—p~?
The corresponding global zeta functions have abscissa of convergence 041<\'44 =2,
ayp, =5/2.
Theorem 2.38 ([64]).

Cﬁ4xz,p(5) = (z3,p(8)Cp(35 — 3)(p(5s — 3)(p(Ts — 5)(p(8s — T)(p(9s — 8)

X Cp(11s — 8)(p(125 — 9)(p(6s — 4)_1W1\</]I4><Z(p7p_s) )

where Wy (X, Y) is
1+ XY — X35 + X*Y° - XPY0 42Xy — X*YT — XTY? + x8y'10
_ 2X7Y11 _ X9Y13 _ X11Y13 + X10Y14 _ X11Y14 _ X11Y15 _ X12Y15
4 X12Y16 o X12Y17 o X13Y17 + 2X12Y18 o X13Y18 4 X14Y19 o 2X15Y19
+X14Y20 +X15Y20 _ X15Y21 +X15Y22 +X16Y22 +X16Y23 _ X17Y23
+X16Y24 +X18Y24 +2X20Y26 o X19Y27 +X20Y28 +X23Y30 o 2X23y31
+X24Y31 _ X23Y32 +X24Y32 _ X24Y33 _ X27Y37 .

This zeta function satisfies the functional equation

Cﬁ4XZ,p(S) :p157155<]<]\/[4><Z,p(5) :

p—p!
The corresponding global zeta function has abscissa of convergence O‘J<\]/I4xZ =3.
My is not the only filiform Lie ring of nilpotency class 4, up to isomorphism:

Theorem 2.39 ([64]). Let the Lie ring Fily have presentation

<Z73317$2,3337$4 : [2,371] = T2, [2,1‘2] = I3, [27!103] = T4, [5617962] = $C4> .
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Then

C1§i14,p(5) = CZz,p(S)Cp(:)’S —2)¢p(55 = 2)¢p(7s — 4)(p(85 — 5)(p(9s — 6)
X (p(10s — 6)¢p (125 — )W), (0,0 ~°)

where W (X,Y) is

1+ X" — X?Y5 4+ XPYP — XY 0 4+ X3y — X3y7 — XPy? — XOy!0

_ X6yl _ x6y12 | x6y13 _ xTyl13 _ x8yl13 _ x8yld | xTyl5

4+ X8Y15 _ox9y 15 | x8Y17 4 x9y 17 _ x10y17 | y9y19 4 y10y19

L oX1y20 | oxlly 2l xlly22 4 ox12y22 4 ox13y23  x13y24

4 XMy24 | x13y25 | yl4y25 | w15y 25 o yl4y 2T | g y15y27
_ox15y28 | x16y28 _ y15y29  y16y20 | x17y20 oy 17330 4 x18y-30
_ X183l _ yl8y32 _ xI8y33 _ y20y35 4 x20y36 _ x21y/36 | y20y-37
_X2YRT o x21y38 | y23ya2

This local zeta function satisfies no functional equation. The corresponding
global zeta function has abscissa of convergence 041§ﬂ4 = 2.

Despite repeated efforts, we have been unable to calculate (1%14 p(s). My is the
only Lie ring of nilpotency class 4 whose zeta function counting all subrings
we have calculated.

Theorem 2.40 ([64]).

be1114 XZ,p(s) = (23 ,p(8)Cp(35 = 3)(p(5s — 3)(p(7s — 5)(p(8s — T)(p(9s — 8)
X CP(IOS - 8)(13(128 - 9)WF<'1114 xZ(papis) )

where Wi, (X,Y) is

1+ X°Y* = XPYP 4 XYP - XY O+ XYO - XY - Xy - X7y

_ X8Y11 _ X8Y12 +X8Y13 _ X9Y13 _ X11Y13 _ X11Y14 +X10Y15

+ X11Y15 _ 2X12Y15 +X11Y17 +X12Y17 _ X13yl7 + X12Y19 +X14Y19
+X15Y20 +2X15Y21 - X15Y22 + 2X16Y22 +X17Y23 +X18Y23 o X18Y24
+ X19Y24 _ X18Y25 +X19Y25 + X20Y25 _ 2X19Y27 + 2)(20)/27

o 2X20Y28 +X21Y28 o X20Y29 o X22Y29 +X23Y29 o 2X23Y30 +X24Y30
_ X24Y31 _ X24Y32 _ X24Y33 _ X27Y35 —|—X27Y36 _ X28Y36 + X27Y37

_ X28y37 —|—X28Y38 +X31Y42 .

This zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence agy 5 = 3.
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2.14 Nilpotent Lie Algebras of Dimension < 6

A complete classification of the nilpotent Lie algebras over R of dimension
< 6 is given in [44].2 We cannot hope to classify nilpotent Lie rings additively
isomorphic to 7% for some d < 6, but we can at least use a classification over
R to produce Lie rings over Z which are guaranteed be non-isomorphic. For
each Lie algebra, Magnin gives an R-basis and a list of nonzero Lie brackets
of the basis elements. The structure constants of each nilpotent Lie algebra
L listed in [44] are (fortunately) all in Z. Hence we can form Lie rings over Z
(or Z,) by taking the Z-span (or Z,-span) of the basis given.?

This approach has led to many new calculations of ideal zeta functions of
Lie rings of rank 6, and some others arising from a Lie ring of rank 5:

Theorem 2.41 ([64]). Let the Lie ring gs 3 have presentation

<.T17.’172,£E3,$4,.’L'5 : [-771;372] = T4, [.%‘171‘4] = Ts, [3727173] = $5> .

Then

3wz o(8) = Carva p(8)Gp(3s — (r +3))Gp(5s — (r +4)) |
CESSEHP(S) = (z2,p(8)p(25 — 4)(p(35 — 4)(p(3s — 6)¢p(6s — 11)(p (65 — 12)
x We (0:07°)

95,3

<
where W, ,

(X,Y) is

14+ X°Y? - X2 4+ X°V? — XOV* 4 XTY! 4+ X%y - 2XTY® — 2X°Y?

_ X9Y5 +X8Y6 +X9Y6 +X10Y6 _ X10Y7 _ 2X11Y7 _ 2xl2y7 +X11Y8
+X12Y8 _ X14Y8 _ X15Y8 +X15Y10 +X16Y10 _ X18Y10 _ X19Y10

+ 2X18Y11 4 2X19Y11 +X2OY11 —X20Y12 _ X21Y12 _ X22Y12 +X21Y13
+ 2X22Y13 + 2X23Y13 _ X22Y14 _ X23Y14 +X25Y14 _ X25Y15 +X26Y15
o X27Y16 o X30Y18 )

These zeta functions satisfy the functional equations

r TS _(p s
o n(8) = (~1)rtoplET)=OH e ()

p—p~?
< _ . 10—5s,<
C95,37:0(8) -1 p Cgs,a,;ﬂ(s) :
p—p
The corresponding global zeta functions have abscissa of convergence ozg< L=
5,3

<

gy 5 = 3.

2 The classification was first given in [46], but we refer to [44] as this article is likely
to be more accessible.

3 We have permuted some of the bases of the Lie algebras from [44]; the bases we
give are those that make the calculations of the zeta functions easiest.
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Theorem 2.42.
Cf(xgw,,p('s) = CZ5,p(5)<p(35 - 5)2<p(55 - 6)2§p(75 - 7)Cp(55 - 5)71
x (p(Ts —6)71 .

This zeta function satisfies the functional equation

C;](XG&&P(S) = p28_168C§X95,37P(8) :

p—p~?
The corresponding global zeta function has abscissa of convergence a7<']t><95 ,=0.

Theorem 2.43.

CGoxgs.aw(8) = Gzo,p(8)Cp(35 — 6)Cp(3s — T)Gp(5s — T)Gp(5s — 8)¢p(5s — 12)
X Cp(7s —9)(p(Ts — 14)(,p(9s — 15)¢,(11s — 16)
X Wg<;]3><g513 (p’p—s) s

where W£Xg5 L(X,Y) is given in Appendiz A on p. 182. This zeta function
satisfies the functional equation

45—19
Cg<]3><95,3yp(s) =p S<g<3><95,37p(8) :

p—p!
The corresponding global function has abscissa of convergence aggxgr , =6
9y

We write gg,, for a Lie ring whose presentation is taken from that of the
nth Lie algebra in the list in [44]. We have already seen several examples of
rank 6, g6,1 = L(3,2), 86,3 = F23, 96,4 = F2,3/(2) - Z and gg 5 = Uz(Rz) where
Ry is the ring of integers of a quadratic number field. g 2 = M5, whose local
zeta functions we have been unable to calculate.

Theorem 2.44 ([64]). Let the Lie ring g ¢ have presentation
(@1,... @6 : [T1, 2] = @4, [x1, 3] = @5, [21, T4] = 6, [w2, 73] = we) -

Then

;‘6,1,(5) = (25 ,p(5)(p(35 — 4)(p (55 — 5)(p(5s — 6)(p(65 — 6)(p(Ts — 8)
X Cp(9s —1)W (p,p~°) ,

where W3 (X,Y) is

96,6
1 +X3Y3 _ X6Y7 _ XSYS _ X9y9 _ 2X11Y10 _ X14Y12 —|—X14Y14
—X15Y14 +X15Y15 +Xl7y16 +X17Y17+X19Y17+X20Y19 +X21Y19
_ X21Y20 +X22Y20 _ X25Y24 _ X28Y26 .

This local zeta function satisfies no functional equation. The corresponding

; ; -
global zeta function has abscissa of convergence Qge s =3
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Theorem 2.45 ([64]). Let the Lie ring g7 have presentation

<m1a s, T6t [371’-773] = T4, [$17$4] = Ts5, [1'27-753] = -TG> .

Then

C;mp(s) = (25 ,p(5)(p(3s — 4)(p(4s — 3)(p(5s — 5)(p(55 — 6)(p(65 — 6)
X Cp(78 - 7)WB<€]',7(p7p_s) )

where W3 (X,Y) is

d6,7
1 +X3Y3 _ X3Y5 _ 2X6Y7 _ X7Y8 _ X9Y9 _ X10Y10 +X9Y11 _ X10Y11
+ 2X10Y12 +X12Y14 +X13Y14 +X13Y15 +X16Y16 o X16Y19 o X19Y21 )

This local zeta function satisfies no functional equation. The corresponding

; : -
global zeta function has abscissa of convergence Qge, = 3.

Theorem 2.46 ([64]). Let the Lie ring g s have presentation
(T1,. @6 ¢ [T1, 02 = 23 + T4, [71, T3] = X5, [¥2, 24] = w6)

Then

(;,S)p(s) = (25 p(5)(p(3s — 3)(p(4s — 3)(p(5s — 5)(p(65 — 6)(p(Ts — 7)
X (85 = 8)(1+p' " )Wl (p,p™"),

where W3 (X,)Y) is

96,8
1— XY +X2y?2 - X372 + X374 + X4y —2Xx3Y5 — X°Y% 42Xy
+ XOy6 —2X°Y7 — 2X6YT 4 3X0V® —4XTYY +4X8Y 10 — 4x%vH!
o XlOyll 4 X9Y12 Jr4)(105/12 o 4X11Y13 4 4X12Y14 o 3X13Y15
+ 2X13Y16 + 2X14Y16 _ X13Y17 _ 2X15y17 + X14Y18 + 2X16Y18
o X15Y19 o Xlﬁylg +leﬁyQO o X17Y21 +)(18er2 o X19Y23 )

This zeta function satisfies the functional equation

< _ 15—12s 4
96,8717(5) p—p—1 =p ’ Qe,svp(s) '

The corresponding global zeta function has abscissa of convergence a?m =3.

Theorem 2.47 ([64]). Let the Lie ring g9 have presentation

<-7717 -, T6t [-T],J?Q] = T4, [1‘171‘4] = Ts5, [l‘l,l'g] = Te, [-Tan4] = -776> .



58 2 Nilpotent Groups: Explicit Examples

Then
C;g,p(s> = CZ?’,p(S)Cp(E)S —5)(p(65 — 6)Cp(8s — 7)(p(8s — 8)(p(14s — 15)
x Wae  (p,p7%)

where W3 (X,)Y) is

96,9

14+ X% 4+ X7 - X°Y? + XY 4+ X0V 4+ X7y - XOv® — XY
+X9Y9 +X10Y10 _ X9y11 _ XlOyll +X11y11 _ X10Y12 _ X11Y12
+X12Y12 _ X11Y13 +X13Y13 _ X12Y14 _ X13Y14 _ X13Y15 +X13Y16
_ XMyl6 _ x15y16 | x16y16 _ x16y 17 _ x16y18 _ x17y18 | x16y719
— X18y19 4 x17y20 _ x18y20 _ x19y20 4 y18y21  x19y21 _ x20y21
+X19Y22 +X20Y23 _ X22Y23 _ X23Y24 JrAXv22y25 JrXv23y26 Jr)(25y27
_ X26y27 +X26Y28 +X26Y29 +X29Y32 .

This zeta function satisfies the functional equation

< _ A 15—-12s 4
<96,9,P(s) pop1 =p SCQG.,QJD(S) '

The corresponding global zeta function has abscissa of convergence oz;s s =3

Theorem 2.48 ([64]). Let v € Z\ {0,1} be a squarefree integer. Let the Lie
ring ge,10(y) have presentation

. o [1‘1,1‘2} = T4, [.2?1,3?4] = T¢, [.Tl,xg] = Ts5,
DO (g, w3] = we, w2, 4] = axs + Bre ’
where
x ifvy=2,3 (mod 4),
azs + Bre = Y5 f“Y_ ( )
i(y—=Das+x¢  ify=1 (mod4).

Then, if p is inert in Q(/7),
Catrop(8) = 22 (5)Cp (35 — 3)Gp (55 — 4)Gp (55 — 5)¢p(65 — 6)
X (p(8s — 8)(p(8s — 6)71@0(105 -8)7".

If p splits in Q(\/7) and either

e v=1 (mod4) andpti(y—1), or
e y#1 (mod4),

then
;Ym(v)’p(s) = (75 p(8)(p(3s — 3)(p(4s — 3)(p(5s — 5)(p(6s — 6)(p(7Ts — 7)
X (p(8s —8)(1+p' " )Wei [(p,p™°)
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where W3 (X,Y) is given above on p. 57. For all but finitely many primes,

96,8
the local zeta function satisfies the functional equation

15—-12s (8)

< —
CQS,IO('Y):p(S) pop1 =P g6,10(7),p

Theorem 2.49 ([64]). Let the Lie ring gs 12 have presentation

(T1,...,26 ¢ [x1, 23] = 5, [01, 5] = @6, [w2, 4] = T6) -

Then

Coriap(8) = (22 p(8)Gp(3s — 4)Gp (65 — 4)Gp (Ts = 5)Cp(Ts —4) 71,

(oo (8) = Ca1,p(5)Gp(25 = 5)¢p(35 — 5)Gp(3s — 6)¢p(4s — 8)(y(4s — 9)
X (p(Bs = 12)¢y (65 — 12)¢p(65 — 13)(p(Ts — 16)¢y(s — 2)
X Wee L, (0,p7%),

96,12

where VVQS&12 (X,Y) is given in Appendiz A on p. 183. These zeta functions
satisfy the functional equations

Gt anl®)]
Coonon )|

— p15713s<g<;y127p(8) ,

= p1576sg§6.12,p(8) :

p—p~?t

p—p~t

; ; : -
The corresponding global zeta functions have abscissa of convergence Qge 1o =

<
ags,lz =4.

It can easily be seen that ge 12 is the direct product with central amalgamation
of H with Mj.

Theorem 2.50.

Chxgonap(8) = C28,p(8)Gp(35 — 6)2(p(55 — T) (65 — 6)¢p(Ts — T)(p(85 = 7)
X Cp(9s = 8)Gp(1ls — )W, o (p.p™7)

where W3 (X,Y) is

Hxgs,12
1-X0Y® — X0 — XOv® 4 X0y —2XTy? + Xy —ax By
+ 2X13y12 _ X14Y12 + 2X13y13 _ X14Y13 +X14Y14 + 2X13Y15
_ X14Y15 Jrle4y16 JrAXvQOylé‘. Jrle4y17 JrXvZOylS Jr‘X—ZOYM) _ 2X19Y20
+ 2X21Y20 _ X20Y21 _ X20Y22 _ X26Y23 _ X20Y24 _ X26Y24 —|—X26Y25
_9X2Ty?2 | x26y26 | x26y27 _ 9 x27y27 | x26y28 o x2Ty28
4 2X27y29 _ X28Y29 T 2X33Y31 _ X34y31 + X34y32 + X34Y33 + X34Y35
_ x40y40
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This zeta function satisfies the functional equation

36—18
Cﬁx%,lz,p(s) =-p SC':]‘XQGJ%P(S) :

p—p~1

The corresponding global zeta function has abscissa of convergence O‘7<1]><g6 1, =0.
Theorem 2.51 ([64]). Let the Lie ring ge 13 have presentation

<$17--~71'6 : [$1,~’62] = Ts, [1‘1,133] = T4, [9317964] = Zg, [$27$5] = 136> .

Then

C;J&p(s) = (23 p(8)Cp(3s — 1) (5s — 6)p (65 — 4)(p(Ts — 5)(,(9s — 8)
X We (0:p7°),

96,13

where W3 (X,Y) is

96,13
1 +Xdy3 o X4Y7 o X7Y9 o XSle - X11Y12 +X12Y16 +X15Y19 .

This zeta function satisfies the functional equation

C;,m,p(s) :p15_14SC;3,13,p(8) :

p—p~1t

; ; - T _
The corresponding global zeta function has abscissa of convergence ag, ., = 3.

Theorem 2.52 ([64]). Let v € Z be a nonzero integer, and let gg 14(7y) have
presentation

<l‘1, s X6t [xl,l“?,] = T4, [561,96‘4} = Tg, [3327963] = Ts, [$2,$5] = 7$6> .

Then, for all primes p not dividing -y,

Gt o (5) = 29 p(8)Gp (35 — 3)Gp(35 — )G (55 — 6)G, (65 — 3)y(7s — 5)
X (65 — 6) ¢y (7s —3) 71

If pt, the local zeta function satisfies the functional equation

C<] 15—14s < (8)

96,14(7),p S) p—p—1 =P 96,14(7),p

For~ = £1, the corresponding global zeta function has abscissa of convergence

< _
a96,14(i1) =3.

The following proposition has a routine proof which we do not repeat.

Proposition 2.53. For v1,v2 # 0, let g6,14(71) and ge14(72) be defined over
any integral domain or field R. Then gs14(71) = g6.14(72) iff 11 = u?y2 for
some u € R*.
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It can also be shown that the local zeta functions depend only on the power
of p dividing . We therefore have the following

Corollary 2.54. Let v € Z be a nonzero integer. Then g¢14(77) Z 86,14(—7)
but (ot oy (8) =Gt ()
g6,14(7) g6,14(—"7)

The classification of six-dimensional Lie algebras has also given rise to
some new calculations in nilpotency class 4. In particular, the second author
found the following:

Theorem 2.55 ([64]). Define the two Lie rings ge15 and ge17 by the pre-
sentations

[71,25] = 26, [12, 23] = 26

(1, 2] = x4, [X1, 24] = 5,
[1,25] = we, [T2, 23] =26 /|

w1, ] = @3+ @y, [0, 4] = 5,
96,15 = <$1,$27$3,$4,$5,$6 :

96,17 = <$17$27$3»$4,$5,$6 :

Then

C;,IS;P(S) = C;.lmp(s) = CZ:57P(S)CP(35 - S)CP(48 - B)CP(GS - 4)CP(75 - 5)
X (p(9s = 8)Wgi . (p,p™7) , (2.10)

96,15

where W3 (X,Y) is

96,15
1-X%Y2 + X2 — XYT — XTY? + X7y — X8yt 4 Xy e

This zeta function satisfies the functional equation

C;,lsﬁp(s) = p157168C;i,15>P(8) '

p—p~1

; ; ; a
The corresponding global zeta function has abscissa of convergence Qg 15 = 3

It follows from the classification [44] that g¢15 % g6,17, but an appeal to a
classification is not an enlightening proof. To be sure, we verify

Proposition 2.56. gs 15 and ge,17 are not isomorphic.

Proof. The rank of the centraliser of the derived subring is invariant under iso-
morphism. Firstly, g 15 = (y3+v4,Ys, Ys), which has centraliser (y3, y4, ¥s, ¥s)-
Secondly, g6 17 = (%4, 5, 2¢), which is centralised by (x2, 3, 24,5, 76). Thus
96,15 Z 96,17 O

The only other calculation at nilpotency class 4 this classification leads to
is the following;:
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Theorem 2.57 ([64]). Let the Lie ring gs 16 have presentation

[-’L‘l,l‘g] = T4, [1‘1, 1‘4] = Ts5, [.271,.’1)5] = x67>

<{IJ1,$2,£U37£C471'5,{E6 : [332,333] =z, [1‘2,.734] = 1

Then
e (8) = Cz3 p(8)Gp(3s — 3)Gp(5s — 4)Gp (65 — 3)Gp(Ts — 5)Gp(Ts — 3) 7" .
This zeta function satisfies the functional equation

<9<(]s,1647(s) - p15_17scg<;,167]0(8) '

The corresponding global zeta function has abscissa of convergence oz;G 6 =3

p—p~1

2.15 Nilpotent Lie Algebras of Dimension 7

The Lie algebras of dimension 7 over algebraically closed fields and R were
first classified successfully by Gong [26]. Once again, the structure constants of
each Lie algebra are all rational integers. This includes the six one-parameter
families, providing we restrict the parameter to Z. Hence we can also use this
classification to obtain presentations of Z-Lie rings of rank 7.

We write gpame for the Z-Lie ring corresponding to the Lie algebra with the
label (name) in [26]. For example, gi3s7r corresponds to (1357F) in [26]. The
digits are the dimensions of the terms in the upper-central series, and the suffix
letter (when shown) distinguishes non-isomorphic Lie algebras with the same
upper-central series dimensions. We have encountered some of these Lie rings
before, in particular gi7 = G(3,0), gara = Gu, @37 = Ty, gi3ra = M3z xz M3
and gog7a = L3 3). Furthermore, some of them arise as direct products with
central amalgamation: gi57, @257k, g1457A and gi457p are the direct products
with central amalgamation of H with g5 3, F3 2, My and Fils respectively.

We saw above that ge 15 and ge,17 are non-isomorphic yet their ideal zeta
functions are equal. Amongst those calculations in rank 7 we have so far com-
pleted, there are no less than seven pairs of normally isospectral Lie rings. We
do not provide proof that the Lie rings are non-isomorphic, instead referring
the curious reader to [26].

Theorem 2.58. Let the Lie ring goya have presentation
(x1,x9, X3, T4, T5, Tg, T7 : [T1,X2] = g, [T1, T4] = X7, [T3, T5] = T7) .
Then
o a0 (8) = (25 p(8)Gp(3s — 5)(p(5s — 6)(p(7s — 10)¢p(8s — 10)~F
This zeta function satisfies the functional equation

< _ 21—12s <
CEl27A,p(S)| =P S<927A7P(5) :

The corresponding global zeta function has abscissa of convergence a;’zm =35.

p—p~1
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Theorem 2.59. Let the Lie ring gorp have presentation
(w1,...,27 1 [21, 2] = w6, [1, W5] = @7, [0, 23] = 27, [X3, 24] = 76) .

Then

(oo (8) = (25 p(8)(p(5s — 5)(p (55 — 6)(,(Ts — 10)(,(10s — 10) 7" .

This zeta function satisfies the functional equation

< _ L 21-12s 44
Cg27B)p(S)|p—>p_1 =bp GC212712~J7(8) :

The corresponding global zeta function has abscissa of convergence oz;zm =5.
Theorem 2.60. Let the Lie ring gs7c have presentation

(@1,..., 27 ¢ [T, 2] = @5, [T2, T3] = @6, [22, T4] = 27, [w3, 74] = w5) .
Then (g »(s) = (T, ,(8) (p- 45).
Theorem 2.61. Let the Lie ring gs7p have presentation

(@15 27 ¢ [0, 22] = @5, [21, 23] = 27, [T2, W4] = 27, [23, 24] = W6)

Then

Cornp(8) = Cza 5(5)p(3s — 5)(p(5s — 6)Cp (65 — 10)(, (75 — 12)Ws (p,p~°)
where Wil (X,Y) is

1+X4y3 4 X8Y6 +X9Y6 _ X9Y8 _ XlOyS _ X14Y11 _ X18Y14 .
This zeta function satisfies the functional equation

< _ 21—11s <
(:937D;P(S)‘ =-p GC937D;P(S) .

- ; : T
The corresponding global zeta function has abscissa of convergence ag, =~ = 4.

p—p~1t

Theorem 2.62. Let the Lie ring g137 have presentation

(21, 22] = T35, [21, 25) = 27, [T2, 74] = x7,>

<$U1,.’I]27.'IJ3,!E4,I‘5,.’L'6,.’IJ7 : [I3 ‘T4} = Tg [gg3 1‘6] = X7
) ) )

Then C;37B7p(8) = Cﬁg XzMg,,p(s) (p' 48)'

Theorem 2.63. Let the Lie rings gis7c and g137p have presentations

[$17$2] = Ts, [.%'1,.274] = Tg, [37171'6] = 7,
[z, 23] = e, [x3, 25] = —7 :

[71, 22] = x5, [T1, 24] = 26, [T1, 6] = 27,
To, T3] = Xg, [T, T4] = 27, [X3,25] = —x7 /

g137¢ = <T/1,~~~,ﬂf7 :

g137D = <171,-~-,$73 [
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Then

C;WCJJ(S) = <9<]137D7P(S) = <Z47p(5)<p(35 - 4)Cp(55 - 5)Cp(65 - 9)(1)(75 —4)
X (p(9s — 6)(p(11s — 10)¢p(12s — 10)
X (p(16s — L)Wl (p,p™%) ,

gi37C

<
where ngc

(X,Y) is

1— X4Y8 +X5Y8 _ X9Y8 _ X5Y9 _ X9Y11 _Xlole +X9yl3 _ XlOyl3
+X13Y15 _ X14Y15 _ X10Y16 +X14Y16 _ X15Y16 +X10Y17 _ X11Y17
+X15Y17 +X14Y19 —X15Y19 +X19Y19 +X15Y20 +X19y20 +X14y21
+X15Y21 _ X16Y21 _ X15Y22 +X16Y22 +X18Y23 +X19Y23 _ X20y23
*X18Y24 *X19Y24 +3X20Y24 +X15Y25 *X23Y26 +X24Y26 +X19Y27
_ X19Y28 +X20Y28 +X21Y28 _ X23Y28 _ X24Y28 +X25Y28 _ X25Y29
_ X20Y30 +X21Y30 _ X29Y31 _ 3X24Y32 +X25Y32 +X26Y32 +X24Y33
_ X25Y33 _ X26Y33 _ X28Y34 4 X29Y34 4 X28Y35 _ X29Y35 _ X30Y35
_ X25Y36 _ X29Y36 _ X25Y37 + X29Y37 _ X30Y37 _ X29Y39 4 X33Y39
7X34Y39 +X29Y40 o X30Y40 +X34Y40 +X30Y41 o X31Y41 +X34Y43
_ X35Y43 + X34Y44 4 X35Y45 4 X39Y47 4 X35Y48 _ X39Y48 + X4OY48
o X44Y56 .

This zeta function satisfies the functional equation

< _ 21—17s <
<g137c,17($)| =P S<Q137C,P(S) :

The corresponding global zeta function has abscissa of convergence 04;1370 =4.

p—p~t

Theorem 2.64. Let the Lie rings g147a and g1478 have presentations

g147A = <x1,...,x7 : 1, @2] = 4, [o1, ¥a] = 5, 21, 3] = $7’> ;

1,3 =T €X1.2 =X
9147B—<l’1,...,x7: , 73] 5, (1, 4] 7,> '

Then

;474;,1)(8) = 9<]147B7P(s) = (z4,p(8)Cp(35 — 4)(p(3s — 5)(p(5s — 8)(p(Ts — 6)
x (p(6s —8)71 .
This zeta function satisfies the functional equation

_ 21—16
C;MA;P(S) | =-p SC;MAW(S) '

The corresponding global zeta function has abscissa of convergence a;‘mA =4.

p—p~1t
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Theorem 2.65. Let g157 have presentation
(T1,... 27 ¢ [21, 2] = T3, [T1, 23] = @7, [T2, T4] = 7, [25, 6] = T7) .
Then
Corarp(8) = Cz5 p(8)Cp(35 — 5)(p(7s — 6) .
This zeta function satisfies the functional equation

< _ 21—15s <
C91157A,p(8)| =-p SC9157A7:D($) :

The corresponding global zeta function has abscissa of convergence a;m =35.

p—p~1t

Theorem 2.66. Let the Lie Ting go47s have presentation
(T1,..., 27 ¢ [21, 0] = @4, [1, 23] = @5, [11, 4] = 26, [X3, 5] = 27) .

Then

ngzug,p(s) = CZS,p(*S)Cp(?’S - 4)<p(45 - 3)Cp(53 - 5>Cp(53 - 6)<p(65 - 5)
X Cy(65 — )G (Ts — 6)Gy(Ts — T)G (85 — )Gy (85 — 8)
X (p(9s — 10)¢p(9s — 11)(,(10s — 9)(p(10s — 11)¢,(11s — 10)
x (p(11s — 12)¢p (125 — 12)¢, (135 — 13)¢p(s — 1) 72
x (p(28 —2) "W (p,p~%)

g247B

for some polynomial Wy (X,Y) of degrees 1238 in X and 128 in' Y. This

zeta function satisfies the functional equation
_21-15s 44
C924713,p(8)| =P SC9247B7:D($) :

. . ; 1
The corresponding global zeta function has abscissa of convergence ag, = 3.

p—p~1t

Theorem 2.67. Let the Lie rings gos7a and gosrc have presentations

gos7A = (T1,..., 27 : [T1, 2] = 23, [T1, 23] = T, [21, 5] = 27, [X2, T4] = w6) ,
g257C = <$1, sy L7t [331,332] = 3, [961,333] = T6, [$27$4] = Ze, [$2,1‘5] = ﬂ?7> .
Then

(o n(8) = G o(5) = Caa p(8)Gp(3s — 5)Cy (55 — 6)Cy (55 — 8)(y(Ts — 9)
x W (p,p™%),

g257A

where

4y,3 9y,8 13,10
W;WA(X,Y):lJrXY - XYY" XY .
This zeta function satisfies no functional equation. The corresponding global

i ; S
zeta function has abscissa of convergence ag, . = 4.
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Theorem 2.68. Let the Lie ring gos7s have presentation

(T1,. .27 0 [21, T2] = @3, [0, T3] = 6, [71, T4] = 7, [W2, 5] = 77) .

Then
C£1<]257E;,p(5) = CZ4,P(S)CP(3S - 4)Cp(45 - 4)<p(55 - 6)<p(63 - 9)Cp(7s -9)
X (p(8s —10)¢,(125 — 15)Wai  (p,p~°) ,

where W (X,Y) is

1— X4Y5 +X5Y5 o 2X9Y8 _ ngg _ X13Y10 +X13Y11 o X14Y11

+ 2xl3yl2 _ 2xl4yl2 + X14Y13 _ X15yl3 + 2xl8yl5 _ X19Y15

+ X18Y16 +2X19Y17 _ X20Y17 +X23Y18 _ X22Y19 + X23Y19 _ X23Y20
+2X24Y20 +X24Y21 +X28Y22 - X27Y23 o X28Y23 +X29Y23 o 2X28y24
4 ngy24 _ X33Y27 _ X33Y28 _ X33Y29 _ X38Y30 + X37Y32 4 X42Y35 .
This zeta function satisfies no functional equation. The corresponding global

; ; a
zeta function has abscissa of convergence ag, . = 4.

Theorem 2.69. Let gosrk have presentation

(T1,... 27 ¢ [21,22] = @5, [71, 5] = @6, [T, T5] = 7, [v3, 24] = T7) .

Then
Qisnop(s) = 424710(5)@7(35 - 4)Cp(45 - 4)4})(53 - 5)Cp(65 - 5)Cp(7s — 6)
X CP(7S - S)Cp(gs - 1O)Wg<2]57K (p’p—s) )

where W (X,Y) is

1— X4 _ X5y7 _ X8y? _ x8y10 | ySyll _ xl0y1l | x9y12
Lox12y18 _ x18y18 4 x18y14 | ox18y15 x4yl yI3y16 4 o y1dyl6
L XMylT _ xlayls | xl5y18 | 18yl | ylTy20 4 x19y20 | x19y21
L x19y22 _ x22y24  x23y26 | yx2Ty31

This zeta function satisfies the functional equation

< _ 21—14s <
<g257K,p(S)|p_>pfl =P SCst?K,p(S) :

. . . a
The corresponding global zeta function has abscissa of convergence ag, . = 4.

Theorem 2.70. Let the Lie Ting g1357a have presentation

z1 X7 (21, 22] = 24, [w1, 24] = @5, [71, 5] = 27,
TN [, x3] = @, [0, w6] = @7, [103, 4] = —207 )
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Then
;35“4,(5) = (74 (5)Cp(3s — 4)(p(5s — 5)(p(Ts — 6) .
This zeta function satisfies the functional equation

_ 21—19s
C9<]1357A,P(S)| =-p é<9<1357A,P(8) :

. } , 4 _
The corresponding global zeta function has abscissa of convergence ag,, .. =4.

p—p~1t

Theorem 2.71. Let the Lie rings g13578 and g1357c have presentations

(21, %2] = 4, [21, 24] = 25, [71, 75] = 27 >

f1s578 = <x17 T (T2, 23] = x5, [13, 24] = —27, [T3, 6] = 27

[:I:lu 372] = T4, [.T17.’L'4] = Ts5, [.’17171'5] =x7,
g1357C¢ = \ T1,...,27: (T2, 23] = =5, [T2, 24] = 27,
(€3, 24] = =27, [13, 26] = 27

Then

Carsornp(8) = Cararop(8) = Cz2 p(8)Cp(3s — 4)(p(5s — 5)(p(Ts — 4)(p(9s — 6)
x Cp(1ls — 10)Gp(16s — )W (p.p~7) ,
where W2 (X,Y) is

913578
1— X4Y8 +X5Y8 _ X5Y9 _ ngll +X9Y12 _ X10Y12 _ X10Y16
+X10Y17 o X11Y17 +X14Y19 o X15Y19 +X15Y20 +X15Y25 +X19Y27
_ X19Y28 +X21Y28 _ X25Y36 .
This zeta function satisfies no functional equation. The corresponding global

; ; < _
zeta function has abscissa of convergence ag, .. = 4.

Theorem 2.72. Let the Lie rings g1357c and gi13s7u have presentations

(21, 22] = @3, [21, 24] = W6, [11, T6] = 77
= €T P i
91357G < Lyeeos X7 (w2, 23] = w5, [x2, 25] = @7 ’
[:m,xz] = r3, [:chm] = ¢, [$17$6] = 7,
g1357H = { T1,...,T7: [332,203] = s, [362,335] = X7, [3727956] =7,
[x37x4] = —T7
Then

Corasran(8) = Cargsmp(8) = Cz2 p(8)Gp(3s — 4)Gp(4s — 3)Gp (58 — 5)¢p (55 — 6)
X Cp(65 — 6)Cp(7s — 4)Cp(Ts — T)(p(8s — 5)
X (p(9s — 6)(p(10s — 9)(p(11s — 8)(,(12s — 10)
X Gp(12s —1)WH - (p,p )

91357G
where Wg<1]357c (X,Y) is given in Appendiz A on p. 184. This zeta function
satisfies no functional equation. The corresponding global zeta function has

. < —
abscissa Of convergence ag1357G = 3.
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Theorem 2.73. Let g14574 have the presentation
(1,... 27 : [T1, 2] = T5, [21, 25] = wg, [T1, T6] = X7, [T3, 4] = T7) .
Then
(o (8) = Cat ()G (35 — 4)y (45 — 4)Gy(55 — 5)G,(Ts — 4),(95 — 6)

% (,(10s — 9)¢,(11s — 10)¢, (125 — 10)¢, (155 — 10)
X (p(16s — 1)W], . (p,p™°)

g1457A

where W2 (X,Y) is given in Appendix A on p. 186. This zeta function

i 91457A .
satisfies the functional equation
< __,21—18s,<
91457A7P( )|p*>p71 =-p 91457A7ZD( ) '
, . . 4 B
The corresponding global zeta function has abscissa of convergence ag,, .. =4.

Theorem 2.74. Let g14578 have presentation

1 Z7: [$1)$2] :$5,[Z‘17$5] :.’I;67[$U1,.’L'6] =x7,
et (T2, x5] = 27, [T3, 74] = 27 '

Then

C;%m,p(s) = (z4,p(8)Gp(3s — 4)(p(4s — 4)(p(5s — 5)(p(Ts — 4)(p(9s — 6)
% (105 — 9)¢p(11s — 10)¢, (125 — 10)¢,(165 — 11)
X Wi (@:27%)

91457B

where W2 (X,Y) is given in Appendiz A on p. 187. This zeta function

914578
satisfies no functional equation. The corresponding global zeta function has

. < —
abscissa of convergence g s = 4
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