
Chapter 2
Free Software and Open Source Business Models

Arnulf Christl

Abstract This chapter discusses the nature of free and open source software from
the perspective of business models that can be used to operate within this emerg-
ing industry. The focus in the chapter is on free and open source software in gen-
eral rather than on the specific geospatial domain, however this area of activity is
used in several places for reference and by example. The chapter also examines the
closed and proprietary complements of the free and open source world and contrasts
the rationale and behaviours of software developers and users within both market
places. While it is not the intention to set one or the other markets up as a straw
man, it is clear from the discussion that the free and open source alternatives have a
number of advantages in terms of developing high quality outputs that are respon-
sive to end user needs while embodying the principles of innovation and advancing
knowledge.

2.1 Introduction

One of the first questions often asked of business people working in the free soft-
ware industry is: “How do you make money if you give away the software for free?”
Typically, this question is followed by an exclamation mark and a quizzical look in
the eyes of the questioner that is meant to demonstrate that this is actually a very
good question. In fact, this question is not hard to answer, although it is hard to
convey a complete understanding of the answer to those working outside of the free
software industry. In part, this is due to the perception of software as a product that
is bought and owned, which is, itself, a concept that is learned by individuals at a
very young age during basic socialization within a free market economy. However,
there is more to software than just owning a copy of a product that can be legally
used. Specifically, all software products have associated installation, customization,
maintenance, training and upgrade needs, which vary considerably from product

Arnulf Christl
WhereGroup GmbH & Co. KG, Siemensstr. 8, 53121 Bonn, Germany; Open Source Geospatial
Foundation, Beaverton, OR, USA, e-mail: arnulf@osgeo.org, arnulf.christl@wheregroup.com

G.B. Hall, M.G. Leahy (eds.), Open Source Approaches in Spatial Data Handling. 21
Advances in Geographic Information Science 2, c© Springer-Verlag Berlin Heidelberg 2008



22 A. Christl

to product. This aspect of the computer software industry is substantially more
complex that the selling of usage license fees, as consumers never actually buy a
software product when they purchase it. Rather, they purchase a set of temporary
usage permissions that must be agreed to before the product can be legally installed
and used.

There are several reasons why it is important not to be impatient when people
ask the above question. The most important is that often the starting point of under-
standing the free software industry is often ignorance, and this can only be overcome
through education, removing ignorance and, even more importantly, removing false
interpretations and twisted logic that result from applying the wrong concepts to the
development and role of free software in a free market economy. The foremost of
these false interpretations is to think that software is the same as any other physical
good that can be traded. This chapter takes the view that this is not the case and
develops an argument that supports the reasons why.

There are strong economic arguments that make corporations want consumers
to believe that software is just another good. Terms like “commercial, off-the-shelf
software” convey the character of a product. There are many more examples how
to “personalize” software that is originally just a copy of a unique set of computer
readable instructions. In some cases a unique (license) key is added to make a copy
an individual, personalized entity. Sometimes software is even tied to hardware and
whenever the hardware breaks or has to be exchanged the software will not run any
more. All of this adds up to a fair amount of work that must be done to propagate
and sustain the notion of software being just another good.

In addition to the Free Software industry, there is a growing community of devel-
opers who work within the Open Source community. Their predilection to produce
and distribute source code for other developers to enhance has, in some cases, led to
a neglect of understanding the basic underlying concepts that are required to make a
living from using, deploying, developing, consulting, training and supporting soft-
ware. Hence, this chapter deviates somewhat from the spatial data handling context
of the remainder of this book and, instead, focuses on Free Software business mod-
els in general. Despite this, there is a clear spatial aspect of Free and Open Source
Software (FOSS) that is embodied in the globalization mantra “Think Global, Act
Local”. While FOSS is being developed actively all over the world, there still is a
need for direct, personal contact at the local level.

2.1.1 Disclaimer

This chapter describes FOSS as a legal concept on the one hand and as a devel-
opment philosophy on the other hand. To show the advantages that FOSS offers
to users, developers and businesses it is contrasted to proprietary models which
have dominated the public view on the software industry for at least the past twenty
years. Especially in the late 1990s proprietary software companies started actively
to antagonize the FOSS movement because it endangered the proprietary business



2 Free Software and Open Source Business Models 23

model. This fight was and is supported by heavily funded campaigns and seemingly
independent lobby organizations. The resultant spread of Fear, Uncertainty and
Doubt (FUD) of the FOSS movement emerged partly out of ignorance of the advan-
tages offered by alternative business, licensing and governance models, but it was
also purposefully engineered to discredit FOSS and its development communities.

It is important to keep in mind in the following discussion that any licensing
model of software is no proof of quality, regardless of whether it is free and open
or closed and proprietary. To achieve good results with FOSS business models, it
is not enough simply to apply an Open Source (OS) software license. Furthermore,
not all software that is licensed as FOSS is automatically any better than proprietary
software alternatives.

In February 2006 several leading FOSS communities bundled efforts to create
the Open Source Geospatial Foundation (OSGeo) to support and build the highest-
quality open source geospatial software tools possible. To achieve this, software
projects go through an incubation process within this organization prior to their re-
lease and licensing (http://www.osgeo.org/incubator/process/process.html). Hence,
there is a stamp of quality assurance that follows the same proven development
and governance models that this chapter endorses. While this is only one approach
to a development process that has business viability twinned with quality assur-
ance and standards adherence, it is an approach that has achieved some success
to date.

2.1.2 Business or Ethics and Both

There is a tradition to consider economics and ethics separately as though they are
incompatible concepts. Unfortunately many commercial activities are unethical but
completely legal, and sometimes the impression can arise that unethical but legal
business is the most lucrative and expedient path toward commercial success. The
seeming tensions between these concepts should be considered and a course charted
that is ethical and legal as well as being able to foster business development. In this
context, altruism is ethically high-valued and can therefore appear as remote from
business activities. Because OS and especially the Free Software movement seem at
first sight to be altruistic in intent, they are also regarded as being remote from viable
business models. However, this reasoning is wrong, first because FOSS development
does not have to be motivated by altruism, and second because business and ethics
do not have to mutually exclude each other.

This chapter identifies a common ground between the two seemingly opposed
perspectives and shows how to build a business with FOSS activities. The question
of whether an enterprise is ethical or behaves in an ethical way can probably not
be answered from a general viewpoint, and surely not in this short introduction
to business around the FOSS model. Thus, the chapter tries not to judge business
models but only to show which of them are viable in the long run.



24 A. Christl

2.2 Definitions of Software, Free Software and Open Source

This section provides an outline of the concepts described by the terms software,
Open Source and Free Software. The discussion is only cursory, however it is nec-
essary to go into some depth of understanding of the nature of software because it
is fundamentally different from the physical products that consumers normally pur-
chase. This discussion is necessary to gain an understanding of the business ideas
behind associated FOSS models. As noted earlier, the discussion is general in nature
and does not make a specific case for FOSS over other forms of software.

For practical reasons it is nowadays appropriate to abbreviate the activities of
interest as FOSS. However, to explain the concepts behind FOSS it is helpful to
consider the two aspects of FOSS separately. One is best described by the term OS
as it focuses on the development methodology. The other is better described by the
term Free Software (FS) as it regards the licensing model and legal background.
These basic concepts are explained in the next sections.

2.2.1 Software and Hardware

To understand the nature of software it is helpful to discuss the ways in which it
differs from hardware. There are more differences in the prefixes “soft” and “hard”
than similarities in the suffix “ware”.

Computer software cannot be executed (used) without hardware and vice versa.
Hence, it is fairly common not to see the two terms as separate concepts. When the
first computers were built the software was built alongside of them and there was
no such thing as an IT industry that thrived on producing only software. The first
computers consisted of tons of wires, bulbs and switches and were manufactured
by scientists and electronic engineers (such as the Zuse Z11, which sold only 5
computers in 1956 – see http://www.epemag.com/zuse/part7c.htm). Every computer
in that early era had its very own individual set of instructions.

Only much later, with the emergence of the personal computer in the early 1980s,
was it possible to use one copy of software separately by one producer on the hard-
ware of another (IBM was one of the major facilitators of this process). This was a
sort of revolution that brought software its freedom of individual existence. How-
ever, this freedom did not last long because the newly emerged independent software
allowed for a highly scalable business model. The task of implementing a soft-
ware product only has to be funded once, but the results can be duplicated (copied)
infinitely often at practically no additional cost as this does not require the same
resources as the original product (essentially the creativity of the developer(s)).

To reduce the highly volatile and easily duplicable character of software it has
become common practice to “bundle” software with hardware, such that if the hard-
ware changes the software may stop running. The reason for this is not technical,
as the above described independence of software from hardware has reached a very
high level. Rather, the reason is that the license basically prevents changing the



2 Free Software and Open Source Business Models 25

configuration of the bundle. This confusion between hardware and software causes
all kinds of trouble in understanding FOSS concepts that are focused explicitly only
on software. However, hardware is a material concept, to which physical laws apply.
Software, on the other hand, is immaterial and therefore physical laws do not apply.

A few examples that help to demonstrate this are shown in Table 2.1. Following
the logic of this table, it is apparent that business models focusing on the availability
of physical goods cannot apply naturally to software. Hence, the definition of what
constitutes software in physical terms becomes difficult. To lessen the potential for
confusion, software vendors have invented a new term, the “software product”. This
is essentially an attempt to make software resemble a physical good. Once software
comes into existence it is naturally free of the limitations of physical availability
(regardless of whether it is titled a “product” or not) since its supply is virtually end-
less at zero or a very small marginal cost. After the software has been implemented,
all natural limits to its distribution are reduced to network connectivity costs or the
trivial costs of the physical media that it is published on.

Many problems result from regarding software as just another good, or a form of
solid ware, that is sold in boxes “off the shelf”. As software has no physical repre-
sentation and is made up of volatile bits and bytes, obviously other laws must apply.
Perhaps it would be more appropriate to stop using the term “software” altogether
and instead use something more appropriate like “nonware” or “technolyrics”. This
latter term nicely conveys two basic concepts inherent to software in that “techno”
refers to the technicality of the (non)-“thing” at hand, while “lyrics” address the
creative human component that the software is comprised of.

Table 2.1 Basic differences between hardware and software

Hardware Software

If hardware (or any physical good)
is sold the supplier suffers a loss
of that good that can be
compensated by payment.

If a copy of a software “product” is
sold or given away, the original
copy still exists. Hence, the
supplier suffers no physical loss
of the product because it is only
a copy.

If hardware breaks or ceases to
function beyond easy repair, it
becomes useless.

Software cannot break in the same
sense. A data carrier can be
scratched (for example a CD)
but the original of the software
is not affected.

Hardware cannot be duplicated.
Every copy needs the same
amount of raw material and
energy as any other. Copies of
complex hardware will always
be imperfect.

Software can be duplicated
completely. Each successful
copy of a software product is an
identical reproduction of the
original (the “raw material” is
the source code, it does not run
out).

Hardware can wear out, rust, or
decay, and will eventually break
and cease to function.

Software does not wear down, rust,
decay or break. It may fall out of
use, but it never loses its basic
functionality.



26 A. Christl

2.2.2 The Early Days of Software Development

In the early days of computing, the original and natural way to solve computing
problems was scientific collaboration. Every new software developed was based on
prior knowledge and added some new aspect to it. At this point in time there was
no need to use the term “Free Software”, since there was nothing to set this way of
creating software apart from anything else.

Original (free) software development was only slowly displaced by proprietary
thinking in the mid-1970s when it started to become economically viable to produce
software that was independent of hardware. One document that shows this emerging
line of thought incidentally is a letter sent by Bill Gates on February 3rd, 1976
(Gates, 1956). The content of this letter is void of the above inherent difference
of software and hardware and confuses fairness with business models. In fact, the
letter is not directed to the professionals of that time but to a group Gates describes
as hobbyists. It turned out later that these “hobbyists” were in fact the “users” around
whom Gates would create his business empire. In that same letter Gates asks: “Who
cares if the people who worked on it get paid?” The obvious answer is that in the
existing market economy model people need to take care of themselves and have
to work out a way to get paid before they start to work. This is the basic difference
between what makes a hobbyist a professional and it has nothing to do with fairness.
The process of turning software into “property” was gradual and came hand-in-hand
with a differentiation of hobbyists into users and developers.

2.2.3 The Open Source Development Model

Source code is the part of software that is human readable. It contains the informa-
tion that is required to enable the software to run. All changes to software (removing
errors, adding functionality, enhancements etc.) are done in the source code. Before
software can be executed by a machine the source code has to be transformed (com-
piled) into binary or object code. This process is typically irreversible. Once soft-
ware has been compiled it cannot be changed. Most end-user software nowadays
comes in a compiled binary format and is shipped without the source code. Without
the source code, software cannot be modified, repaired or enhanced and any control
over what the software does is significantly restricted.

Open Source (OS) and the associated logo are trademarks of the Open Source
Initiative (OSI) (http://www.opesource.org). Any software claiming to be OS has to
abide by the terms and conditions defined by the OSI. These terms and conditions
specify that the source code of open software must be published fully and without
restrictions. Anybody can take OS software and look into its inner workings, change,
improve and give away any number of copies to anyone else. Software is not seen
as a secret hidden inside a black box, but as a living resource from which more and
better software can be produced. OS licenses ensure that this concept is based on



2 Free Software and Open Source Business Models 27

a sound legal foundation. The legal background coincides almost completely with
that of the FS definition which is described later in this chapter.

The other factors that make up a good OS project concern governance, commu-
nication and organization. This chapter only touches upon the topics that make the
OS development model successful. A comprehensive set of instructions on how to
produce OS has been compiled by Karl Fogel at http://producingoss.org, and this re-
source is an absolute prerequisite for anybody who wants to understand the implica-
tions of opensourcing (as a verb) their software. A lot of trouble can be eliminated if
more people would educate themselves about these basic principles, including those
who feel the need to argue for or against OS models. Two key factors emerge from
Fogel’s guidelines on OS development, namely “publish early and release often”.

2.2.4 Publish Early

OS software is often started as a solution to a concrete problem. The sooner the
solution is published the better for the project in the long run. This is crucial for all
good OS software projects as it allows others to join the process at an early stage.
If the solution is good then others may also be able to use it and start to contribute.
Contributions can come in many different forms including actual software develop-
ment as well as funding, documentation, testing, even publicity or recommendations
of the software to other developers and users. The more people who pick up on the
idea, the more testing, enhancements and development the solution will experience.
Good communication right from the start is one of the crucial aspects of any OS
project and sets it apart from closed development.

It can also happen that there already is a solution or other groups who intend to
do the same things or have already progressed farther. In those cases it can save a
lot of time and money not reinventing the wheel by joining efforts on a common
project. It can also be an incentive to try and be better than the competing project, as
diversity is good for any natural development. Moreover, the traditional grassroots
process has a more spontaneous nature than a planned project that is organized from
top to bottom with traditional power structures.

2.2.5 Release Often

Rapid prototyping and agile computing paradigms are followed by many projects.
Publicly accessible code repositories allow developers and users alike to pick up
the latest changes on a daily basis and keep up to date. Changes are documented in
the repositories and distributed through special mailing lists so that anybody who
is interested can follow edits in the code base very closely. Software in general is
never finished and always buggy, and OS projects are no exception to this rule.
However, there is a higher likelihood that bugs in OS software will be resolved



28 A. Christl

quickly and corrections to the software are typically added as patches that can be
applied as regularly as desired. However, a proper software release is more than just
the latest code from the repositories. It should be a tested, approved and as stable
as is reasonably possible for public release. Release cycles should not be dictated
by commercial considerations or marketing dates. Still, as a general rule, releases
should come in a regular fashion and procrastination of release dates should be
avoided as much as possible.

Basically, there are two different ways to determine release dates. One release
type focuses on the availability of a defined set of new functionality that has been
added to the software, or whenever it becomes awkward to stay up to date by ap-
plying a large number of patches at once. The other type defines an interval within
which the next release is to be published. Depending on the amount of changes,
the version number will then be incremented. For a collection of patches only the
third version digit (the patch number) is increased. For changes or additions in func-
tionality the second version digit is raised and the third set back to zero. Only deep
functional changes, a complete re-engineering of the software and broken backward
compatibility will cause the first version number to be changed.

Many of these development basics have also been picked up in slightly modified
ways by large proprietary vendors who release patches and intermediary versions in
regular intervals, sometimes even on a daily basis.

2.2.6 Free Software Licensing Model

The other factor that makes the OS approach to software development successful is
the FS licensing model. It was developed in the early 1980s by Richard M. Stallman
(http://www.gnu.org) in response to the growing possessiveness of businesses with
respect to software developed by their employees. Stallman’s mission was to use
legal means to protect all intellectual work with a license that made sure that it
could not be enshrined as individual property.

Stallman used a straightforward legal approach to achieve this. First, the work
was put under copyright protection. This is the standard way to protect software or
any creative work under both national and international copyright conventions (such
as the international Berne Convention of September 9th, 1886 and its numerous
revisions through to the present). Legal measures can be taken to protect the interests
of the copyright holder. After having protected the software by a copyright covenant,
distribution terms were added that made sure that everybody could use, copy, give
away and modify the software – given that the changes are published using the
same license. Thus, all software that ever appeared under this license would remain
protected and tied to the same distribution terms.

Actually the requirement that all changes be tied to the same license was the
most confrontational aspect of Stallman’s license approach because it effectively
excluded all proprietary business models that “protect” code by hiding it from the
rest of the world. The most prominent example of this kind of license is the General



2 Free Software and Open Source Business Models 29

Public License (GPL) of the GNU project (http://www.gnu.org). This kind of li-
cense is sometimes called “viral” with reference to its potential to “infect” non-free
software. In the same mindset it could also be seen as a vaccination for software to
protect it from ever becoming proprietary. Another term frequently used to describe
the effect of this license is “copyleft”. It is symbolized as a reversed c in a full circle
like the copyright symbol, but mirrored. However, unlike the copyright symbol it
has no legal meaning.

2.2.7 From Free Software to Open Source and Back

One of the pivotal developments in the conceptualization of FOSS was the publi-
cation in 2001 of Eric of Raymond’s book, “The Cathedral and the Bazaar” (http://
catb.org/∼esr/writings/cathedral-bazaar/). In this book he summarized differences
between a distributed, rapid development methodology and the traditional water-
fall model. Specifically, he attributed the prior approach to OS and the latter to
proprietary development. At that time it actually appeared as if the bazaar was the
metaphor of the OS approach and that the only limitation for more commercial up-
take was the software freedom mindset introduced by Stallman.

In another article, Raymond started an ongoing debate about the ambiguity of
the term “Free” in “Free Software”, which in English language can be associated
with “gratis” as easily as with “freedom” (http://catb.org/∼esr/open-source.html).
In order not to discourage commercial businesses he proposed to start using the
term “Open Source” instead of “Free Software”. This caused friction within the
FOSS community finally leading to a schism that resulted in the creation of the OSI
and long debates with Free Software Foundation (FSF) activists.

Bruce Perens, an early Debian GNU/Linux lead, was the primary author of the
OS definition. This can be used to determine whether a software license can be
considered to be OS or not, according to the following principles:

1. Free Redistribution: the software can be freely given away or sold. (This was
intended to expand sharing and use of the software on a legal basis.)

2. Source Code: the source code must either be included or freely obtainable.
(Without source code, making changes or modifications can be impossible.)

3. Derived Works: redistribution of modifications must be allowed. (To allow legal
sharing and to permit new features or repairs.)

4. Integrity of the Author’s Source Code: licenses may require that modifications
are redistributed only as patches.

5. No Discrimination Against Persons or Groups: no one can be locked out.
6. No Discrimination Against Fields of Endeavor: commercial users cannot be

excluded.
7. Distribution of License: The rights attached to the program must apply to all to

whom the program is redistributed without the need for execution of an addi-
tional license by those parties.



30 A. Christl

8. License Must Not Be Specific to a Product: the program cannot be licensed only
as part of a larger distribution.

9. License Must Not Restrict Other Software: the license cannot insist that any
other software it is distributed with must also be open source.

10. License Must Be Technology-Neutral: no click-wrap licenses or other medium-
specific ways of accepting the license must be required.

The above terms of the definition of OS software are almost completely in line
with the definition maintained by the Free Software Foundation (http://www.fsf.
org/licensing/essays/free-sw.html). Hence, for all practical purposes Free and Open
Source Software go together well. What makes the real difference between FOSS
and proprietary software nowadays is the distribution terms, not the development
model. Thus, the concept of FOSS is better conveyed by the term Free Software and
its associated mindset.

2.2.8 Legalizing IT

The OSI lists 65 licenses (http://www.opensource.org/licenses/December 2007) that
comply with the above terms and conditions and can thus legitimately use the OS
trademark. These licenses cover a broad range from the restrictive Copyleft to more
permissive ones that also allow the code to be used and distributed under proprietary
terms and conditions. All of these licenses have gone through the OSI License Ap-
proval process (http://www.opensource.org/approval) and have a documented his-
tory of being applied to numerous OS software projects. Some of the licenses have
also been approved in court in different national jurisdictions. This comprehensive
repository is one of the references for the end user who wants to find out whether
the software of choice is protected by a known and proven license.

Parallel to the OSI website, the FSF website lists 64 licenses (http://www.fsf.org/
licensing/licenses/#SoftwareLicenses December 2007), many of which are also on
the OSI list. The FSF adds a short description to each license identifying 30 that
are compatible with the GNU GPL and 34 that qualify as Free Software licenses
but conflict with the properties of the GNU GLP. These licenses have gone through
the FSF Free Software Licensing and Compliance Lab which was informally estab-
lished in the year 1992 and was formalized in 2001. From an end user’s perspective
all licenses are legally applicable. For developers, the FSF recommends to use only
GNU compatible licenses as this allows developers to include and reference all soft-
ware that is protected by the GNU GPL license (roughly three quarters of all OS
projects).

These FOSS licenses are legal constructs that can be enforced in court. Hence,
there is no difference between proprietary and FOSS licenses with respect to the
legal power that can be exerted to enforce licensees to abide by the terms of the li-
cense. It is usually much harder for an individual (regardless of whether the individ-
ual is a user, developer or representing a business) to find independent information
about proprietary license schemes and their applicability than for FOSS licenses.



2 Free Software and Open Source Business Models 31

Proprietary licenses are usually not developed through a consensus process and can
be worded individually. Proprietary licenses can be and are changed at any time
by the issuer. The above listed references to approved FOSS licenses have higher
longevity, and are also a lot more stable and reliable.

The underlying general differences between proprietary and FOSS licenses be-
comes apparent when comparing license texts, especially with respect to the dis-
tribution terms. All proprietary licenses contain a lot of detail on what users are
not allowed to do, whereas FOSS licenses explicitly grant users a variety of rights.
These rights include the permission to copy, redistribute, re-engineer and modify
the software or any parts of it, and, most importantly, to give away the software to
be used by anybody else.

The restrictions that proprietary licenses have, in combination with the virtual
and easily copyable nature of software in general, lead to a high potential of crim-
inalization of the end users. FOSS licenses work the other way round by explicitly
defining what users are allowed to do, especially to copy, change, modify and re-
distribute the source code and object code or any part of it. Hence, using FOSS
licenses makes life easier for users and reduces the risk of breaching license terms
and breaking the law.

2.3 Life Cycle Versus Development Cycle

Figure 2.1 shows a conventional software life cycle model compared to the OS de-
velopment cycle model. The left hand side of the diagram shows some examples of
how the life cycle model is implemented in a proprietary environment and reference
to the right side shows how it compares to the OS development cycle.

Proprietary software vendors typically impose artificial life cycles on software to
force users to upgrade to newer versions. In fact, some licensing schemes have an
end date after which the software may not be used any more even if it would work
appropriately. Users then have no other choice other than to upgrade to a newer
version because the old version is no longer supported. Hence, it falls out of use and
the “death” suggested by the term “life cycle” is caused by marketing mechanisms
designed to keep the machine running.

Upgrading to new versions of software may require the payment of additional
fees, often on a regular basis, by signing a software maintenance contract. Such a
contract is intended to protect the user’s initial investment in acquiring the usage
license for a package. Without maintenance, the permission to use the software will
end after a period that is defined by the license issuer. This effectively means that the
initial cost of acquiring a usage license is lost. Hence, from this perspective the cost
is not an investment but a one time expenditure. This issue is especially important
in the spatial domain where there still is a heavy dependency between software and
data in the sense that many vendors implement proprietary (closed) data formats
that can only be read by the software they were created in.



32 A. Christl

Fig. 2.1 Development cycles
(Source: Arnulf Christl 2007, http://www.mapbender.org/presentations/AGIT/modified)

Proprietary software users usually have no mechanism to influence the direction
of development or new functionality that may be added to a package. This deci-
sion is taken in the best interest of the software vendor who may or may not take
into account what the users want. Major releases often require migration of data,
adjustment to new interfaces, and potentially migration of dependent software like
applications running on top of a database. In contrast, OS environments allow for a
faster iteration of development cycles because there is no profit-oriented marketing
overhead that has different interests in where development goes.

The overall objective of most proprietary software vendors is to maximize profit
(1) by selling as many license agreements to end users (8) as possible. The initial
product design will be thoroughly influenced by a preceding market analysis that
tries to predict the expected user behavior for the coming years.

After designing the “product” it goes into the planning and implementation
phases (2). This is where core development takes place and it is not different to
the FOSS development cycle. Test cycles start when the first beta version is ready
for release. It can be distributed to selected beta testers who, in some cases, may
have to pay for the privilege to be the first to be able to test the software. The hard-
ware industry, as an example, has a vital interest in testing their components with
the newest operating systems as soon as possible to be able to present compatible
hardware when the software is released to the market.



2 Free Software and Open Source Business Models 33

The beta testing cycle iterates for a predefined time that is scheduled accord-
ing to the marketing plan. Errors found during beta testing (4) may or may not be
resolved (5). This is up to the product management team that controls the overall
speed and path of development. Sometimes enhancements will not be implemented
immediately but deferred for the next version to make long term maintenance con-
tracts more attractive. There must be convincing arguments to make the user want
to upgrade to the newest version.

At some point in time the stable version will be released. Usually the release
date does not coincide with the software development being “finished”. There are
several reasons for this, the first being that software is always a work in progress and
never really is finished. Another reason is that the introduction of new software or a
major release change is a delicate undertaking. If it fails, the whole carefully planned
schedule is in danger of failing. Depending on the type of software, releases will
usually coincide with a major industry event, trade fairs or the period immediately
prior to Christmas. The time to release proprietary software to the market is when
end users are most receptive to chose it. There are plenty of examples where the
schedule did not work out as planned, and this is sometimes reflected in the product
name as a year number.

After launching the product vendors and resellers start to distribute the software
(8) and the whole process iterates (7) as long as the market analysis promises high
enough revenues for overall profit (1).

The overall objective (4) of the OS development cycle shown on the right hand
side of Fig. 2.1 generally focuses on producing stable software that solves a prob-
lem. The cycle starts because someone has a problem (1) that can be solved by using
software (2). If the solution is good it might attract more developers (3) and spawn
a new project.

In the OS realm the terms “developer” and “end user” are much less clear cut
than they are in a general sense. Every developer most of the time is also a user of
other software, be it an email client, Web browser, operating system, or database.
This is true regardless of whether the developer works in an open and free envi-
ronment or in a proprietary environment. Users are the most important factor when
testing software for usability and market acceptance. OS environments encourage
communication between users and developers, greatly reducing time-to-market for
new features and bug fixes. Because there is no explicit vendor role that divides de-
velopers from users they can interact more easily and participate in a collaborative
work process. This justifies using the much more appropriate term “participant” for
software developers and users alike.

A new software project will only come into existence and develop if enough
people participate. Many OS software projects get born, wither and die because
nobody uses them (6) and nobody has a reason to continue to develop them (5).
Software stays in use as long as this cycle continues to iterate. In a proprietary
environment this iteration can be kept going artificially for some time before the
software actually dies. On the other hand, this iteration can also be stopped at will
and at any time by the proprietary owner and copyright holder of the source code.
This often happens in the course of software acquisitions by proprietary enterprises



34 A. Christl

who then discontinue development. In contrast, it is less likely for this to happen in
the FOSS software development model because it is always possible to pick up the
latest available version and continue development. This is also the reason why OS
software is not threatened by corporate takeover or merger, and another reason for
the difficulties that large enterprises with an exclusive proprietary business model
are currently faced with.

2.4 FOSS Governance: Taking Back Control

The core of the proprietary business model is to maintain full control of software
development and explicitly to limit the users’ rights on the software. This means
that users have no control over how software is developed, not to mention when and
which new functionality is added or removed.

As noted earlier, a specific characteristic of the geospatial realm is the high de-
pendency of software on data. Without geodata, geoprocessing software is rendered
useless. A lot of spatial analysis needs to be able to process data across different
domains and thus potentially across different software architectures. The need to be
able to access datasets regardless of the hosting software environment is so strong
that it is becoming more and more difficult for proprietary vendors to create typical
vendor-lock-in situations by implementing closed formats.

FOSS governance models open up the development process by a group that takes
decisions in an open and transparent way. There are many different governance mod-
els depending on the history and size of the project, the intended target audience
and user groups. Small projects are often initiated by a single developer who is au-
tomatically in control of the code repository. As new developers join the project
the initiator might choose to open up governance or keep it centralized. Quite a
few projects can flourish perfectly well under a centralized model if the head is a
good leader. One such project is the Geospatial Data Abstraction Library (GDAL
http://www.gdal.org/) started by Frank Warmerdam in the late 1990s (see Chap. 5
of this text). As GDAL became more and more important to many other projects and
businesses, its governance was opened and a project steering committee was created
(currently with five members). This ensures that development of the project is not
controlled by the interests of one individual.

Other projects such as Mapbender (http://www.mapbender.org/), initially started
in 2001 as proprietary software that was implemented and owned by a single com-
pany, namely CCGIS, which was the forerunner of the Where Group (http://www.
wheregroup.com). After releasing it as FS under the GNU GPL license in 2003 the
development process gradually changed. A formal project steering committee was
then created to allow enterprises and users who made heavy use of the software to
join this group. When Mapbender became a formal OSGeo project it went through
the OSGeo Incubation Process (http://community.osgeo.org/incubator/process/ pro-
cess.html), which included a thorough revision and enhancement to the governance
model. Currently, members representing companies, users and individual devel-
opers form the Mapbender steering committee (http://www.mapbender.org/index.
php/PSC).



2 Free Software and Open Source Business Models 35

Independent of the governance model chosen for a FOSS project, the license
terms always allow a project to be developed in a different direction than that
planned by the group initially in control. This process can be detrimental to project
development and can lead to the dilution of effort. One such example is the Java
Unified Mapping Platform (JUMP) that is currently maintained by several different
communities including:

• http://openjump.org/
• http://jump-project.org/
• http://www.vividsolutions.com/jump/
• http://www.saig.es/en/kosmo.php
• http://deegree.sourceforge.net/src/demos.html
• http://jump-pilot.sourceforge.net/.

To avoid this kind of dilution of resources, successful projects must put a lot of
effort into meeting the needs of users, developers and businesses and to run and
operate the project with an open and transparent governance style.

2.4.1 Decisions in a Voting Processes

A good example for an open, collaborative governance model is the MapServer
project (see Chap. 4 of this text). It started as a research project that was later
joined by a private company, DM-Solutions Group (http://www.dmsolutions.ca/),
as well as individual contractors. The project is very successful and has grown a
large community with very different needs. To be able to address better the broad
spectrum of requirements, a formal entity was needed. The first official Request for
Change (RFC 1, http://mapserver.gis.umn.edu/development/rfc/ms-rfc-1/) describes
how this new MapServer Technical Steering Committee determines membership,
and makes decisions on MapServer technical issues.

The voting system is very common throughout OS projects. In brief, the technical
team votes on proposals on the developer mailing list server. Proposals are available
for review for at least two days, and a single veto is sufficient to delay progress
though ultimately a majority of members can pass a proposal. The following steps
describe this process in detail:

1. Proposals are written up and submitted on the mapserver-dev mailing list for
discussion and voting, by any interested party, not just committee members.

2. Proposals need to be available for review for at least two business days before
a final decision can be made.

3. Respondents may vote “+1” to indicate support for the proposal and a willing-
ness to support implementation.

4. Respondents may vote “−1” to veto a proposal, but must provide clear reason-
ing and alternate approaches to resolving the problem within the two days.

5. A vote of −0 indicates mild disagreement, but has no effect. A 0 indicates no
opinion. A +0 indicate mild support, but has no effect.

6. Anyone may comment on proposals on the list, but only votes from members
of the Technical Steering Committee will be counted.



36 A. Christl

7. A proposal will be accepted if it receives +2 (including the proposer) and no
vetos (−1).

8. If a proposal is vetoed, and it cannot be revised to satisfy all parties, then it
can be resubmitted for an override vote in which a majority of all eligible voters
indicating +1 is sufficient to pass it. Note that this is a majority of all committee
members, not just those who actively vote.

9. Upon completion of discussion and voting, the proposer should announce
whether they are proceeding (proposal accepted) or are withdrawing their pro-
posal (vetoed).

10. The Chair gets a vote.
11. The Chair is responsible for keeping track of who is a member of the Technical

Steering Committee.
12. Addition and removal of members from the committee, as well as selection of

a Chair should be handled as a proposal to the committee.
13. The Chair adjudicates in cases of disputes about voting.

Interaction and communication is achieved by using public mailing lists (http://
lists.umn.edu/archives/mapserver-dev.html), forums, wikis, IRC chats, conferences
and meetings. Especially, public mailing list archives contain a wealth of meta in-
formation about a project’s past development, current health, and might even allow
some predictions about its future. The main reason why many developers are not
yet consciously involved in OS development methodologies is because they work in
environments in which the underlying proprietary business model relies on software
being treated like a scarcity, and its inner workings as a secret. Any public or open
voting system would simply not work with this business model.

2.4.2 Limitations of Retail FOSS Business Models

Both OS and, especially, FS are frequently associated with a general anti-business
ideology. From the limited perspective of a proprietary software vendor this might
seem true because selling individual license usage agreements for software that is
also available for download at essentially no cost at all is difficult, if not impossible.

In the early days of OS, business was recognized mainly as a gift economy (see
Raymond, 2001), which did not scale well and lacked a solid foundation for en-
terprise businesses. Most information published around OS business models still
focuses on the traditional approach in which an enterprise wants to make money
by producing one particular (“their own”) software. This only works for software
that can be distributed in a retail style as a commodity allowing for high scalability
and keeping the price per unit low. Each unit is an enabling technology that through
its use will generate an added value that is higher than the individual cost, or else
there would be no reason to purchase the software. The overall revenue generated by
leveraging this enabling technology is a multiple of initial licensing costs, as Bruce
Perens shows with the example of Microsoft:



2 Free Software and Open Source Business Models 37

Microsoft is a tool-maker, and the effect of the tool-maker on the economy is tiny next to
the economic effect of all of the people who are enabled by the maker’s tools. The sec-
ondary economic effect caused by all of the people and businesses who use an enabling
technology is greater than the primary economic effect of the dollars paid for that tech-
nology. And of course the same is true for Open Source software. Perens, Feb. 16 2005
(http://perens.com/Articles/Economic.html)

The results of this approach are recipes to make a profit by slightly bending Free
and Open definitions or by combining them with proprietary models from the outset.
Koenig (2004) identifies seven strategies to generate business and leverage OS:

• The Optimization Strategy
• The Dual License Strategy
• The Consulting Strategy
• The Subscription Strategy
• The Patronage Strategy
• The Hosted Strategy
• The Embedded Strategy.

These business strategies usually involve mixing proprietary and FOSS-based
models, or are a vehicle to enhance business generated by selling hardware. They
are hybrid business models derived from the needs of large enterprises and, for the
most part, do not apply to small scale businesses or to highly specialized areas like
the geospatial domain.

These niches are better addressed by small and medium-sized enterprise (SME)
approaches and especially by pure service providers. From this perspective FOSS
allows the adherence to much more attractive business models because it is a lot eas-
ier to provide services for a software without restrictions concerning its distribution
than when distribution is restricted in some way. This distinction is probably the
most important between proprietary (retail) and FOSS (services) business models.
It also shows that the focus does not lie on one specific software but on the potential
to use any software from the FOSS world to build specific solutions. However, this
grassroots-oriented approach does not scale well for large enterprises.

Another reason for the general trend to associate FS with an anti-commercial at-
titude is that IT companies still rely heavily on proprietary business models and do
not recognize the advantages offered by FOSS. Large companies with a long tradi-
tion of selling software usage licenses have an infrastructure that has been optimized
mainly to market products. By releasing their software under a FOSS license they
would destroy this source of income and would go out of business quickly. There-
fore measures have to be taken to ensure that the proprietary business model will
survive long enough to build a more reliable business model that can also take the
specialties of FOSS into account.

Nonetheless some large enterprises have also started to embrace OS and use it
to enhance their business portfolio. In many cases these efforts still ignore the fun-
damental aspects of FS licensing schemes and governance models and only try to
make a profit from using OS (for example the GNU Linux operating system) instead
of proprietary third party software (like the Microsoft Windows operating system).



38 A. Christl

Depending on the targeted market, services around software make up an increas-
ingly larger share of potential revenue than income generated through collecting
usage licenses fees. In the consumer market, scalability is so high that individual
license costs can be kept at a relatively low level. Specialized software with smaller
markets cause higher costs per installation making it more difficult to keep license
fees on a low enough level not to scare away potential customers. Especially in the
geospatial realm, additionally, a lot of professional expertise is required to get the
software to run with the data and interact with other components. This is true re-
gardless of the underlying software licensing scheme, and in this respect there are
no inherent advantages for the application of either proprietary or FOSS licenses.

A further characteristic of spatial data is their longevity. Spatial data are persis-
tent and do not easily migrate from one system to another. Often, the act of migrat-
ing data is a lot more expensive in terms of work load than what initial licensing
costs plus long term maintenance costs of the underlying software add up to. The
migration from proprietary to FOSS-based environments opens up a source of in-
come focused on FOSS. The subsequent professional operation of the infrastructure
is another traditional source of income that also applies for proprietary software.

2.4.3 Hybrid Proprietary/FOSS Business Models

Anybody can use FS to make a profit by using it for commercial activities or by
providing services. As noted earlier, there are no legal complications in using FOSS
licenses in a business or commercial context (http://www.ibm.com/developerworks/
opensource/newto/#8). This also includes software that has been protected by Copy-
left licenses (for example the GNU GPL). The only limitation is that it is not allowed
to bundle and resell modified versions without opening the corresponding modified
sources.

Large enterprises with a long history of selling software usage licenses have a
difficulty in adopting FOSS business models because they operate complex software
product design, marketing and distribution networks. The technical need has been
rendered obsolete by the emergence of the Internet as a distribution platform. In
the professional environment, the need for costly marketing campaigns is reduced
due to most information being available ubiquitously via the Internet, newsgroups,
domain communities and so on. In this regard the fact that FOSS licensing models
have created new fields for commercial activities that are not focused on selling
boxes but on providing services is a distinct advantage.

International Business Machines (IBM, http://www.ibm.com) has recognized
this development and over the past years has developed a hybrid business model.
IBM offers services for many OS software components and installs a growing share
of hardware with the GNU Linux operating system, Apache webserver, MySQL
database and PHP scripting language (LAMP) stack and distributes the Firefox
Web browser, OpenOffice.org suite and so on with their retail hardware. The release
of the integrated development environment Eclipse (http://www.eclipse.org/) as FS



2 Free Software and Open Source Business Models 39

further opens up the developer market. IBM can make revenue within this market
as a proprietary software vendor with its specialized development extensions. Be-
sides this proprietary business model, IBM is also the largest software patent holder
worldwide.

The business model of Oracle Corporation (http://www.oracle.com/) focuses on
selling proprietary software usage licenses and on dominating the market by acqui-
sition of other companies. Nonetheless Oracle has started to develop an OS plan
with the argument that this reduces costs and increases stability for its customers.
The corresponding text on the companies Web page reads:

Today, many customers are using Oracle together with open source technologies in mission-
critical environments and are reaping the benefits of lower costs, easier manageabil-
ity, higher availability, and reliability along with performance and scalability advantages.
(http://www.oracle.com/technologies/open-source/index.html December 2007).

Applying these positive attributes to the competing OS database system Post-
greSQL (http://www.postgresql.org/) shows how difficult it can be only to adopt a
partial OS strategy.

Another Oracle strategy to address the growing OS economy is to address di-
rectly the developer and Internet Service Provider (ISP) markets. The release of the
gratis version of Oracle (XE, express edition) is intended as an incentive for devel-
opers (OS and proprietary alike) to implement software that runs exclusively on top
of the Oracle database. This will enlarge the overall market share for Oracle and
bind new customers through vendor-lock-in. This kind of commercial activity does
not leverage or support FOSS, neither does it add much to the revenue generated by
selling licenses but it does help to grow market share.

The geographic information system (GIS) company ESRI Inc. also operates on a
proprietary business model and generates revenue by selling software usage licenses
and maintenance contracts. ESRI also supports the use of OS software components
but almost exclusively from other domains and in limited ways, for example as an
alternative to proprietary operating systems, software development environments or
the Web server. Geospatial OS software, on the other hand, is in direct competi-
tion with ESRI’s software and associated business model. Using the OS database
PostgreSQL instead of the proprietary equivalent from the Oracle Corporation will
reduce overall costs for the user. But at the same time it also opens up the potential
of PostGIS (http://www.postgis.org) to ESRI users which might lead to fewer users
favoring the proprietary equivalent offered by ESRI.

ESRI is also a shareholder of the company 52N (http://52north.org/) that has
been founded to promote the conception, development and application of FOSS4G
software for research, education, training and practical use. The governance model
of the software released by 52N is still evolving and currently comprises a dual li-
censing scheme with the GNU GPL and a proprietary license. This allows members
of the consortium to package the software together with proprietary components.

One outstanding example of a large proprietary enterprise in the geospatial realm
that has gone partially OS with its own software is Autodesk Inc. It has released a
completely rewritten version of its formerly proprietary software MapGuide as OS
(http://www.osgeo.org/mapguide) and donated the code to OSGeo to underline its



40 A. Christl

commitment (see Chap. 7 of this text). In this context OSGeo serves as an indepen-
dent legal entity to which community members can contribute code, funding and
other resources, secure in the knowledge that their contributions will be maintained
for public benefit.

Another OS initiative by Autodesk is the Feature Data Object (FDO) project
(http://fdo.osgeo.org/). This is an application programming interface (API) for ma-
nipulating, defining and analyzing geospatial information for a variety of spatial
data sources, where each provider typically supports a particular data format or data
store. Here one of the strategic difficulties is caused by the strong ownership restric-
tions that Autodesk enforces for its proprietary computer assisted design (CAD)
data formats and the growing need of the geospatial community to access, read and
write CAD formats.

Marketing hybrid business models is very difficult because these models have
to cover the gap between FOSS and proprietary sources of income. Most hybrid
models only last for a transition period and have to undergo constant changes.

2.4.4 FOSS Services Business Models

Commercial activities around FOSS have a service character that is also applicable
to most proprietary software. However, it is a lot easier to perform services using
FOSS because license terms do not restrict distribution of the software. Addition-
ally businesses explicitly focusing on leveraging FOSS will also help to further and
support FOSS software development and the surrounding community. This is why
hybrid models over time tend to erode the proprietary components. The main areas
of FOSS business in the geospatial realm comprise:

• Education and Training
• Consultation
• Installation and Maintenance and Support
• Core development, implementation of new features.

Each of these services can be performed exclusively or in a value chain that
covers all aspects from the inception of a software project through to long-term
maintenance. FOSS can add value to all of these services instead of taking away
potential sources of income as might appear at first sight. To complete this chapter,
the following sections describe the detail of each service type and map it to real
world examples in the geospatial FOSS domain.

2.5 Education and Training

Education and training are traditional ways to make a living within the knowledge
domain. The basic idea with this form of activity does not really differ when training
users of either proprietary or FOSS licensed software. The business model behind



2 Free Software and Open Source Business Models 41

training is straightforward. Participants pay a direct cost for the time that the trainer
spends teaching the software.

Using proprietary software in training may raise costs due to additional license
fees and reduce the potential income for the trainer and both the company providing
the training and also the institute receiving the training. However, since training is a
precondition to efficient use of software most proprietary vendors have a special ed-
ucational licensing program that reduces these costs. Starting at elementary school
level and going up to university and research institutes, proprietary software vendors
grant usage licenses at reduced fees or for no cost at all.

The reasoning behind giving away software licenses to students for free is
straightforward. Specifically, it allows them to become educated using a specific
brand of software and whenever trainees complete their education and move into a
position where they can influence decisions for or against a software package they
will naturally tend to recommend the software they know best. This also justifies
why proprietary vendors spend considerable effort and costs on the preparation of
tutorials and related educational material.

This motivation is much less pronounced in the FOSS world as competition with
other projects has less of an economic advantage. The drawback of this relaxation
of the competitive edge is that considerably less effort (if any at all) goes into the
preparation of training materials and coursework. One major critique of OS software
has always been the lack of good documentation and training materials. Some voice
the opinion that this is being done on purpose and is a covered up business model
(Fotescu 2007). However, the reason is more likely to be embodied in the competing
demands that are put on participants within the OS community.

The obvious solution to this deficiency is to apply the same collaborative princi-
ples that make OS work in general produce coursework, tutorials and documenta-
tion. However, unfortunately, even in education, proprietary mindsets have recently
started to spread.

2.5.1 Creating Course Materials

During development of a software typically only basic technical documentation is
created. Some development environments and languages render this kind of docu-
mentation automatically. In all cases it is created by experts (developers) and in-
tended to be used by experts (other developers).

Universities are highly scalable resources of education, but there is little incen-
tive for professors to organize their students to produce thorough documentation and
tutorials for any software that they create or contribute to in their coursework as long
as a well known set is already available from a proprietary vendor. In the meantime,
professional trainers create documentation for software packages, but they will not
do it for free. They either have to charge more money for individual classes to re-
cover the cost of creating the documentation, or to have a budget to cover startup
costs.



42 A. Christl

One way to create excellent course materials is to do it collaboratively. The doc-
umentation produced by the developers is the basis on which professional trainers
can produce course material. This course material is published along with the soft-
ware package and can be used, extended and enhanced for free. University courses
are ideal places for thorough peer review, and enhancements can go back into the
course material. During university courses, it is often required to create homework
which can be integrated into the larger curriculum. Practical exercises and (scien-
tifically) verified solutions round up the effort that collectively has the potential to
create an excellent source of tried and tested documentation and practical exercises.

Professional trainers can supplement their practical exercises to improve the
training materials with real-world aspects that would also help to put some reality
into university-based curricula. Yet again, all of this is only possible if all documents
created during these work flows are published under license with no restrictions in
the distribution terms. Two of the better known examples are the Creative Commons
license family and the GNU Free Documentation License (GNU FDL).

There are good examples in the geospatial world that demonstrate how this
approach can work. The software project GRASS (http://www.osgeo.org/grass)
has excellent educational resources due to its long term involvement with uni-
versity education (see Chap. 9 of this text). Other projects that are more deeply
embedded in the software architecture of many FOSS4G projects like PostGIS
need more technical and less scholarly documentation and training materials. In
this case the documentation is created and is maintained by the project itself
(http://www.postgis.org/documentation/).

2.5.2 Audiences and Participants

There are three distinct audiences for training each with individual business oppor-
tunities, namely:

• Software developers, experts and trainers
• Professional users
• University and scholarly education
• Proprietary think trap.

The first group can make a living out of providing training, consultation, cus-
tomization and development of software. Individuals in this audience are usually
capable of processing all required information around a software package without
the need for a trainer. Instead, their background knowledge and experience gives
them the capability to acquire the knowledge about a new software package through
self-training. Good software documentation will help them get started more easily.
If the documentation is poor or locked away, the software will not be used or dis-
tributed as widely as it might be. The competitive advantage for the software project
is that developers and experts act as multipliers.



2 Free Software and Open Source Business Models 43

The second group spends money. It is the audience that actually needs informa-
tion and background to software packages to help them solve their problems. They
might not have the expertise that developers have or lack the time to learn through
use and experimentation. They are prepared to invest in learning how to use the soft-
ware to solve explicit problems that they need to solve efficiently. If this comprises
learning how to use the software within a short time frame through professional
trainers, then they will adopt this approach. This type of individual or group train-
ing requires a trainer of a high level of proficiency, and justifies higher prices.

University and scholarly audiences comprise students and professors. Software
itself is becoming an important asset for conveying information and helps students
learn. Additionally, competence in software helps students to qualify for the job
market upon graduation. However, professors need to invest time in software devel-
opments in order to keep up to date, otherwise the chances are high that they will
not help disseminate new ideas and may paradoxically become obstructions to the
process of knowledge growth and dissemination.

This kind of learning is slow but thorough. There is time to enhance details,
ask critical questions beyond the daily chores of coding, and do research. During
courses, written work and, increasingly, multi-media content are created. All of this
work can become a valuable part of an overall software project if it is protected by
a free and open license and published online. Technologies to do this are Wikis,
collaborative books, content management systems, document management systems
and so on.

The fourth audience is often explicitly targeted by proprietary vendors with spe-
cial license rates. Vendors perceive this subvention as a long term investment. This
is because, as previously mentioned, students who have learned how to use one
package of software will tend to use that package when they start to work in the
professional market.

2.5.3 Providing Teaching

More than anything, the costs of a trainer vary by location. A local trainer in Brazil
will be able to offer much better conditions than somebody coming to Brazil from
Germany, the United States or Australia. Simply not having to travel half way
around the world will reduce the overall costs of training. Among the other benefits
of operating locally, bills do not need to be issued across borders, taxation issues
are easier, and people can meet more easily to prepare the teaching materials. Many
local points of presence are required to offer teaching in native languages, hence
this is a good opportunity for local service providers.

There are topics and software packages where the expertise initially lies with
one or only a few individuals. This is the unique selling proposition (USP) that
these individuals can exploit until the innovation has disseminated. The expertise
is naturally first adopted by prior scholars. This competitive advantage allows an
individual or a company to be one step ahead of the others, however it is lost or at



44 A. Christl

least reduced during training. Thus, it is necessary to stay ahead of the rest of the
world, which is only possible by continually increasing capabilities and expertise.

Exploiting a single temporary advantage (leading know-how) is not a good foun-
dation for a long-term business model. Rather, it is more sustainable in the long-term
to maintain technical advantage through ongoing innovation and ingenuity, which is
one of the driving factors in FOSS models.

Teaching or training can be as diverse as the requirements of the trainees. De-
pending on the type of or approach to training that is adopted, it can be useful either
to implement a hands-on learning environment, lecture using static presentations, or
work with a combination of both. In general, there are three distinct ways to educate
in the use of software:

1. Introductory information. This type of teaching helps to orientate trainees, and
provides a high level overview of relevant topics. It is usually conducted by indi-
viduals who are used to giving presentations focusing on one topic. Conferences
are an ideal framework for this kind of teaching.

2. Dedicated software courses: This approach usually teaches trainees how to use
one software package, or it has a distinct focus on one topic. This form of train-
ing is usually named after the software or topic. For example, in the case of
“MapServer training” people will expect to learn how to use the MapServer soft-
ware package. In the “Multi Band Satellite Imagery Analysis” course, people
will expect to learn how to do just that, potentially with several different soft-
ware packages.

3. Problem-driven workshops. This approach typically addresses one particular
problem and ideally results in an ad hoc solution that precisely addresses the
problem at hand. This type of training blends into consultation.

2.6 Consultation

Complex geospatial information, analysis and data acquisition frequently involve
the use of several different software packages and the integration of different data
sources. No single software package solves all problems. Increasingly, the term
geospatial is taken to mean a way of looking at things with a perspective that
takes location into account. Within this domain different software packages can,
more often than not, be used to produce almost identical results with the same data.
Sometimes it will be advantageous to use one package over the other. However, in
many cases the evaluation process for selecting which package to use can be quite
complex.

This is where professional consultation is important. This form of employment
is possibly one of the best paid hourly rate jobs within the IT industry. The reason
is that educated decisions have to be taken within a restricted time period and need
to take a variety of factors into account. The education and training required to be
able to make the right decision need the investment of a lot of time and money, as
a wrong decision can have significant consequences for many years. Hence, good



2 Free Software and Open Source Business Models 45

consultation can be expensive, yet it is attractive from a business perspective both
to the client and the consultant given its potential long term implications.

Taking software into operation for a customer involves considering many param-
eters. This is not special to FOSS but to software in organizations in general. The
amount of money required for proprietary usage licenses usually only makes up a at
most a third of what is needed for the overall effort required to install and maintain
complex software systems. The cumulative costs resulting from using inappropri-
ate software and the losses caused by unproductive employees over time can reach
much higher levels than the initial acquisition cost of a proprietary license.

Vendor-lock-in can bind users to a specific software package for a long time,
and prevent it from being substituted with other software, even if it becomes appar-
ent that the system in use causes problems. Further, migration from one software
system to another often raises numerous problems (e.g., converting data, changing
workflows). Thus, consultation should always focus on using software that imple-
ments open standards and can be used easily in conjunction with software from other
sources (see Chap. 1). Another advantage of the FOSS approach is its transparency
and the possibility to start using it without initial expense.

2.6.1 Installation, Maintenance and Support

Installation of desktop applications can be straightforward, but in some instances
they can also be somewhat daunting, especially if the application is unpackaged or
if the application does not comply with the IT-security policies of an existing en-
vironment. Depending on the type of software and system environment under con-
sideration, business models based on performing installations can be very different.
For example, for server software it may be necessary to compile special versions
that fit neatly into the customer’s existing environment.

The maintenance of operating environments can be performed by client staff
(who need to be educated and trained), but increasingly this level of maintenance
is also outsourced to service providers. The complexity of geospatial data and
processing in part is due to the niche character of the software. There is little
or no scalability potential in spatial data infrastructures as each focuses on spe-
cific domains of interest. The emerging spatial software stack of OSGeo can be
used to build a foundation for geoprocessing capabilities but the interaction of the
components first has to be designed and then implemented within the existing ar-
chitecture. This level of implementation and its maintenance typically require a rel-
atively high level of knowledge, and support contracts can help to consolidate an
infrastructure as well as reduce the requirement for deep internal knowledge among
clients.

Support contracts are more flexible than pure maintenance contracts in that they
can be used to maintain the system or to enhance features or extend functionality.
Much of what is typically provided as first level support can be obtained through
mailing lists for free but this cannot be fixed in a formal contract. Second level



46 A. Christl

support requires more knowledge of the application of the software in use and is
requested by integrators or other service providers, who either provide first level
support themselves, or are bound to provide guarantees which need to be covered
by back-to-back agreements.

Third level support needs intricate knowledge of the inner workings of software
and is often provided by the core development teams of software projects. This level
of support can also help to leverage development of the software in the direction that
is needed by the customer.

The business model is, again, straightforward. The client reports a problem that
is solved by the service provider. Agreements to limit excessive support hours can
vary from contract to contract as there are no general rules as to how these work. In
many cases clients buy a support quota that is worked off by the service provider on
request.

2.6.2 Software Development

Software development is the core of what is commonly associated with FOSS ap-
proaches. This aspect of work is probably the most difficult activity to make a living
from. This is at least true for software developed in the FOSS4G realm, as it is
a niche activity rather than a commodity. The scalable commodity type of spatial
applications has been picked up amazingly fast by large Internet companies leav-
ing little room for new software, but opening up a whole new secondary market of
application mashups that are based on the new geospatial commodities.

There are different development methodologies that vary depending on what lan-
guage the software is implemented in, and what kind of solution is addressed. Many
FOSS projects start as any grassroots movement, namely as modest contributions
of coding that solve specific problems of relatively limited scope. If such software
solves a problem and people use it, then it has the potential to improve and grow.
Once it has reached a certain level of acceptance, or is being used in professional
contexts, chances are high that it will be further improved and consolidated. Over
time, the software and the people involved in implementing it will mature, and de-
velopment methods will accordingly professionalize. If the software is a complex
package or involves many dependencies, sooner or later it will be necessary to or-
ganize it in order for the software to be sustainable in the long-run. The job of
organizing and coordinating good development is usually not visible on the outside
(the user’s perspective) of a software package. Thus, it is hard to argue for money to
support the development effort.

Generic code that can be used for many purposes and does not address only one
need or solve one problem is the most difficult aspect of development to find funding
for. Usually, this kind of development has to be cross-financed from implementing
features that are often transparent to end users. The only way to argue for a generic
approach is to be completely transparent about the required development, and to
explain why the resources invested in developing generic software will pay off in the



2 Free Software and Open Source Business Models 47

long run. This is also a task that usually cannot be performed by a single developer.
Rather, it needs project-level organization and, at best, an independent contact point
for the project. In the FOSS4G world, this task can be taken on by a project or
technical steering committee, that consists of a group of developers and power users
who share the responsibility to “run” the project.

The independent contact point can also be a professional who problem solves
for a fee (for example by making a support contract). In many cases the solution
provider will be part of the development group of that software, but this is not a
requirement. The ubiquitous availability and unconditional accessibility of FOSS
allows anybody to enhance, repair and improve it, for money or out of any other
motivation they may have (personal gratification in solving a hard-to-solve problem,
peer accolades etc.).

In the FOSS community, depending on the license and the development contract,
the implementer should or even must give the enhancement back to the rest of the
world unencumbered by proprietary licenses. This is also in the interest of the cus-
tomer because it enhances the chance that his/her extension will become part of
the main software, and thus be available along with updated versions of the main
software without additional implementation effort.

If the source code is locked away as-is in a proprietary environment, there is a
natural monopoly that accrues to people who have access to the source code, hence
those who can will contribute to its development. This inevitably results in less
diversity and it ignores the potential of achieving the highest quality by opening up
the code to the scrutiny of the maximum number of peer reviewers. Thus, the chance
to implement longevity and robustness is foresaken.

As a client it is easy to adopt the quickest and (from a short-term perspective)
cheapest solution. This will invariably be a hack. If the problem can be solved with
a hack and afterwards the implementation falls out of use (e.g., one-time converter
software), then this is a perfectly appropriate way to operate. Even then it makes
sense to publish the snippets and fragments of code that led to that solution, enabling
others to profit from the work that has already been done. To stay with the example
of the converter, it will help people to convert their data into the new format more
easily, which might produce follow-ups on the software around the new format.
One such example noted earlier is the GDAL project which has a long history of
collaborative development and gives generic access to a broad range of different
formats.

The project hack appears to be the better solution for the short-term from the
viewpoint of the customer and end-user because it is cheaper and addresses the
immediate problem directly. However, in most cases it will pay off in the long-
term to implement a generic solution because of the above arguments. This insight
often reveals itself to the customer only after he/she has encountered a few painfully
hard brick walls of frustration. It can be difficult to lend somebody who has gone
through this frustration a helping hand and still insist on FOSS being the better
concept. Thus, it is very important first to educate the customer of the implications
of a specific strategy, and then provide good consultation evaluating the advantages
of each implementation option.



48 A. Christl

2.7 Conclusion

This chapter has provided a review of free and open source business models and
contrasted them against their counterparts from the closed and proprietary world
of software development. The chapter started by providing definitions of software,
free software and open source as a backdrop to the subsequent discussion. A dif-
ferentiation was made between hardware and software as this is fundamental to the
differing business models that can be adopted. The OS development model was then
discussed and several of its underlying premises were noted. This was followed by
consideration of the Free Software licensing model, and the relationship between
the two was discussed. The body of the chapter examined the life cycle and de-
velopment cycle of free and open source software and proprietary software, and
concluded with a comprehensive review of the business orientation, rationale and
limitations of the free and open source software community. In this discussion the
education and training markets and the role of consultant services were given special
consideration.

References

Christl A (2007) <http://www.mapbender.org/presentations/AGIT/modified>
Fotescu R (2007) The sorry state of the Open Source today, <http://beranger.org/feature/

sorryfeature.php> 28 July 2008
Gates W (1976) Open letter to hobbyists, Homebrew Computer Club Newsletter, 2, 1, p.2
Koenig J (2004) Open Source Business Strategies <http://kp.cospa-project.org/retrieve/1537/

opensourcebusinessmodels.pdf> 29 July 2008
Perens, Brue (2005) <http://perens.com/Articles/Economic.html>
Raymond E (2001) The Cathedral and the Bazaar: musings on Linux and Open Source by an

accidental revolutionary, O’Reilly Media Inc., Sebastapol, Ca.



http://www.springer.com/978-3-540-74830-4


