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1    Overview 

 The coxsackie B viruses (CVBs) were identified as a unique enterovirus group on 
the basis of the characteristic disease they caused in suckling mice inoculated 
intracerebrally (Pallansch and Roos 2006). Sequence analyses have shown that 
echoviruses and many newer enteroviruses are closely related to the CVBs; as a 
result, these viruses are classified together in the species  Human enterovirus B  
(HEV-B; genus  Enterovirus , family  Picornaviridae ) (Stanway et al. 2005). 
Complete genome sequences are available for at least one representative of all 54 
recognized types within HEV-B, except EV78, and multiple genomes are available 
for some types (total  n  = 96) (Stanway et al. 2005) (http://www.picornaviridae.
com). Comparison of capsid sequence alignments and virion structures allows cor-
relation of capsid diversity with surface features, such as loops, the receptor can-
yon, and antigenic sites. Pairwise sequence comparisons and phylogenetic analyses 
can be used to rapidly identify and classify enteroviruses. Such analyses reveal that 
(1) enteroviruses are monophyletic by type only within the capsid region 
(Oberste et al. 1999); (2) the CVBs as a group are monophyletic in the capsid 
region (Hyypiä et al. 1997; Oberste et al. 1999; Pöyry et al. 1996), probably due to 
their shared use of the coxsackievirus-adenovirus receptor (other members of HEV-
B use different receptors); and (3) outside the capsid region, enteroviruses are 
monophyletic only by species (not by type), reflecting a high frequency of inter-
typic recombination within a species (Andersson et al. 2002; Brown et al. 2003; 
Hyypiä et al. 1997; Lukashev et al. 2003, 2004, 2005; Oberste et al. 2004a, 2004b, 
2004c, 2004d; Pöyry et al. 1996; Santti et al. 1999).  

2   Picornavirus Genomics 

 While the genetic basis of complex phenotypes, such as transmissibility, host range, 
and receptor usage may not be clearly understood, all intrinsic properties of a picor-
navirus must ultimately derive from the viral genome. The Genomics Age for 
eukaryotic virology began in 1981, with the publication of the complete genome 
sequence of poliovirus type 1 (Mahoney strain) (Kitamura et al. 1981; Racaniello 
and Baltimore 1981). This accomplishment permitted the direct mapping of geneti-
cally and functionally defined viral proteins and facilitated the development of 
reverse genetic systems to help probe the molecular details of poliovirus replica-
tion, translation, and protein function (Racaniello and Baltimore 1981; Sarnow 
1989; Semler et al. 1984; van der Werf et al. 1986). Similar approaches were 
quickly applied to studies of other virus families (Knipe et al. 2006), and other 
picornavirus genome sequences also followed soon afterward, representing all gen-
era of  Picornaviridae , and sometimes helping to define new genera (Cohen et al. 
1987; Doherty et al. 1999; Forss et al. 1984; Hyypiä et al. 1992; Krumbholz et al. 
2002; Oberste et al. 2003; Palmenberg et al. 1984; Stanway et al. 1984, 2005; Wutz 
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et al. 1996; Yamashita et al. 1998). The quantity and quality of picornavirus 
sequence data, and the ease with which it can be generated, have increased substan-
tially with the introduction of PCR and improvements in sequencing technology 
over the last 25 years (Fig.  1 ) (http://www.picornaviridae.com). 

 This chapter will discuss lessons learned from studies on nucleotide and amino acid 
sequence conservation and divergence among the CVBs, and related enteroviruses, 
focusing on members of the species HEV-B, with reference to other enterovirus species 
to illustrate specific points when necessary. It must be borne in mind that the available 
enterovirus sequences are generally derived from prototype reference strains or a small 
number of more recent clinical isolates. Each of these isolates represents only a 
temporal and geographic snapshot in enterovirus evolution and may or may not be 
representative of their particular serotype or of enteroviruses as a whole. Generalizable 
patterns may be discerned only from the careful analysis of a large number of sequences 
obtained from viruses with a wide temporal and geographic distribution. 

 HEV-B is composed of 56 serotypes - approximately half of all known enterovirus 
serotypes - and includes coxsackievirus A9 (CVA9), the coxsackie B viruses (six 
types: CVB1-6), the echoviruses (E; 28 types: E1-7, 9, 11, 13-21, 24-27, 29-33), and 
most of the newer, numbered enteroviruses (EV; 21 types: EV69, 73-75, 77-88, 93, 
97, 98, 100-101) (Stanway et al. 2005). Swine vesicular disease virus (SVDV) is also 
a member of HEV-B. SVDV infects and causes disease in pigs, but it is serotypically 
identical to CVB5 (Brown et al. 1973; Knowles and McCauley 1997; Zhang et al. 
1999). The CVB genomes vary in length from 7,389 nucleotides (CVB1, strain Japan) 
to 7,403 nucleotides (CVB2, strain Ohio-1 and CVB5, strain 2000/CSF/KOR), with 
the typical picornavirus genome organization of a single, long, open reading frame 
flanked by 5¢- and 3¢-nontranslated regions (NTRs) that function in viral replication 
and translation (Racaniello 2001). The range of genome lengths within HEV-B is 
7,389 (CVB1, strain Japan) to 7,453 (E9-strain DM) (Oberste et al. 2004a). 
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  Fig. 1  The cumulative number of picornavirus complete genome sequences, by year 
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2.1   5¢-NTR Diversity 

 The HEV-B 5¢-NTR sequences are 738-750 nucleotides long and differ from one 
another by 5%-23% (Oberste et al. 2004a). Nearly 50% percent of the 5¢-NTR resi-
dues are invariant among all of the viruses and almost 30% of the variable sites are 
concentrated in the hypervariable region, the 80-110 residues immediately upstream 
of the initiation codon (Oberste et al. 2004a). In the 5¢-NTR, the viruses in HEV-A 
and HEV-B are all closely related to one another and intermix without regard to 
species, forming enterovirus 5¢-NTR group II, whereas HEV-C (including the 
polioviruses) and HEV-D form group I (Brown et al. 2003; Hyypiä et al. 1997; 
Oberste et al. 2004a; Santti et al. 1999). A number of mutations that attenuate the 
cardiovirulent phenotype of certain CVB3 strains or the neurovirulence of poliovi-
ruses have been mapped to the 5¢-NTR (Dunn et al. 2000, 2003; Evans et al. 1985; 
Kawamura et al. 1989; Macadam et al. 1991) (see also the chapter by K. Knowlton). 
Structural elements that are important for the function of the internal ribosome 
entry site are well conserved among all enteroviruses (see also the chapters by 
Sean and Semler and Marchant et al.). While RNA secondary structures are the 
primary functional units of the 5¢-NTR, there also exist short segments of extraor-
dinarily high primary sequence identity (Oberste and Pallansch 2005). These short 
 segments have been exploited by numerous investigators as targets for molecular 
diagnostic assays, such as nucleic acid hybridization and RT-PCR (Oberste and 
Pallansch 2005; Rotbart and Romero 1995).  

2.2   3¢-NTR Diversity 

 The enterovirus 3¢-NTR, the site of initiation of negative-strand RNA synthesis, is 
required for efficient genome replication (Brown et al. 2004; Mirmomeni et al. 
1997; Rohll et al. 1995). The 3¢-NTRs of the HEV-B viruses are similar in length, 
102-109 nucleotides, and are 70%-99% identical to one another but only 42%-62% 
identical to those of representatives of other human enterovirus species (Oberste 
et al. 2006). While 3¢-NTR sequences vary widely among the various enterovirus 
species (Brown et al. 2003; Oberste et al. 2004a, 2004b, 2004c), the existence of 
highly conserved secondary structures suggests that these structures, rather than 
the primary sequences, are the functional unit involved in replication (Mirmomeni 
et al. 1997; Pilipenko et al. 1992; Pilipenko et al. 1996). The predicted structures 
consist of three stem-loops termed X, Y, and Z in HEV-A and HEV-B, two stem-
loops (X and Y) in HEV-C and HEV-D, and one stem-loop in the human rhinovi-
ruses (Mirmomeni et al. 1997). Stem-loops X and Y form a tertiary structure 
through a so-called kissing interaction of their loop residues (Melchers et al. 1997; 
Mirmomeni et al. 1997; Pilipenko et al. 1992). The Z domain is apparently dispen-
sable for replication in culture but may play a role in viral pathogenesis in vivo 
(Merkle et al. 2002).  
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2.3   Polyprotein 

 Picornavirus proteins are expressed from a single open reading frame, resulting 
in a polyprotein of approximately 2200 amino acids that is processed by viral 
proteases to yield the mature viral proteins (Racaniello 2001). The polyprotein 
is functionally divided into three regions: P1, P2, and P3 (Rueckert and 
Wimmer 1984). P1 encodes the virion structural proteins (capsid), while protein 
processing, replication, and host-cell interaction functions are encoded in P2 
and P3 (see Sect. 6).  

2.4   Capsid Sequence Diversity 

 The mature virion proteins, 1A-1D, are also known as VP4, VP2, VP3, and 
VP1, respectively (Rueckert and Wimmer 1984). The icosahedral capsid is 
composed of 60 copies of each of these proteins, five copies of VP1 at each 
fivefold axis of symmetry, and three copies each of VP2 and VP3 at each three-
fold axis, with VP4 internal to the capsid shell. The canyon surrounding the 
fivefold axis is the principal site of receptor interaction, with the dominant 
neutralizing epitopes arrayed on surface projections around the edges of the 
canyon. Most of the residues in these conformational epitopes are contributed 
by VP1 and VP2, but some are also contributed by VP3 (Huber et al. 1993; 
Mateu 1995; Reimann et al. 1991; Usherwood and Nash 1995). The capsid 
region is the most variable part of the polyprotein, both within and between 
species, whereas the non-capsid region sequences are much more highly con-
served (Fig.  2 ). Despite the overall divergence, there are short conserved motifs 
throughout the capsid, often in structurally important regions. The HEV-B 
capsid protein (P1) sequences vary in length from 848 to 868 amino acids 
(Oberste et al. 2004a). Capsid sequences of a given serotype are collinear, but 
there are often insertions or deletions when comparing sequences of strains of 
different types. VP1, VP2, and VP3 vary in length, between types, and between 
species, but VP4 is collinear for all enteroviruses and rhinoviruses. The length 
differences tend to accumulate in regions of known diversity among the entero-
virus capsid proteins - most of these variable regions are loops that are exposed 
on the surface of the virion, rather than being in the beta-barrel structural ele-
ments. The largest regions of high diversity are the VP2 puff region, the region 
surrounding the VP3 knob, both prominent surface projections, and the N- and 
C-terminal regions of VP1 (Fig. 2). The amino terminus of VP1 is buried in the 
native virion but changes conformation on virion uncoating, exposing an 
epitope that is highly conserved among all enteroviruses (Hovi and Roivainen 
1993; Samuelson et al. 1994). 

 Within HEV-B, the complete P1 sequences are at least 68% identical to one 
another (Oberste et al. 2004a), and viruses of the same type are generally at least 
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90% identical in complete capsid sequence (Oberste et al. 2001, 2005). The greatest 
sequence variation occurs in VP1, which varies by up to 43% among members of 
HEV-B (Oberste et al. 1999, 2004a). P1 sequences are monophyletic, both within 
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  Fig. 2  Human enterovirus polyprotein amino acid sequence variation.  a  Overall polyprotein 
diversity among human enteroviruses (all EV, HEV-A-C, CVB); HEV-D is not shown because 
there are only two complete genome sequences available. Amino acid sequence identity in a sliding 
window of ten residues is plotted as a continuous curve. The individual plots depict diversity 
among (i) CVB + SVDV, (ii) all HEV-B, (iii) all HEV-A, (iv) all HEV-C, and (v) all enteroviruses.  
b  HEV-B capsid diversity. Amino acid sequence identity in a sliding window of ten residues is 
plotted as a continuous curve.  Open circles  indicate regions that are in the receptor canyon of 
CVB3 (Muckelbauer et al. 1995).  Short vertical lines  indicate residues that form the a-helix and 
b-barrel structures of CVB3.  c  HEV-B P1 diversity. Amino acid identity is plotted vs nucleotide 
sequence identity for each pair of HEV-B sequences. The square bracket indicates the range of 
diversity among viruses of the same type 
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serotype and within species (Fig.  3 a) (Brown et al. 2003; Oberste et al. 1999, 
2004a, 2004b, 2004c). The HEV-B viruses differ from one another by up to 28% 
in VP2, 35% in VP3, and up to 30% in the VP4 sequences. The individual capsid 
proteins, VP1, VP2, and VP3, are also monophyletic by serotype and species, sug-
gesting that recombination is rare within the capsid.  

2.5   Nonstructural Region 

 Proteins derived from the P2 and P3 regions are involved in genome replication and 
protein processing, and some of these proteins are also involved in other important 
functions during viral replication, such as disruption of cellular processes. Most of 
these functions were determined using poliovirus, CVB3, or human rhinoviruses, 
but it is presumed that the proteins function similarly in most or all of the enterovi-
ruses. Many of the proteins are discussed in greater detail elsewhere in this volume, 
but they will be briefly introduced here. 

 Protein 2A is a cysteine protease that cleaves in  cis  to liberate the P1 protein 
from the genome polyprotein (Ryan and Flint 1997; Toyoda et al. 1986) and is also 
involved in shutoff of host-cell protein synthesis (Kräusslich et al. 1987); however, 
the precise mechanism of host-cell shutoff has not been fully resolved (Belsham 
and Jackson 2000). The 2B protein plays a role in RNA replication by participating 
in the formation of membranous replication vesicles (Aldabe and Carrasco 1995) 
and intracellular transmembrane pores (van Kuppeveld et al. 2002); these mem-
brane alterations may also contribute to release of mature virions (van Kuppeveld 
et al. 1995, 1997a,1997b). Vesicle formation has also been attributed to 2BC and 
2C (Aldabe and Carrasco 1995; Cho et al. 1994). 2C has RNA-binding, NTPase, 
and cysteine-rich sequence motifs that are highly conserved (Gorbalenya et al. 
1988, 1989; Gorbalenya and Koonin 1989); the RNA-binding motif facilitates 
binding of 2C or 2BC to the 3¢ end of negative-strand RNA (Banerjee and Dasgupta 
2001; Banerjee et al. 1997, 2001; Klein et al. 1999; Mirzayan and Wimmer 1992, 
1994) and the cysteine-rich motif is involved in binding zinc (Pfister et al. 2000), 
but the role of the NTPase activity remains unknown. 

 Proteins derived from the P3 region provide the major enzymatic activities 
of the viral replication complex, contributing the primer protein, 3B (VPg), 
probably in the form of 3AB which is known to associate with intracellular 
membranes (Datta and Dasgupta 1994; Semler et al. 1982; Towner et al. 1996), 
as well as the RNA-dependent RNA polymerase (3D and/or 3CD) (Flanegan 
and Baltimore 1977), VPg uridylylation activity (3D) (Paul et al. 1998, 2000), 
and determinants involved in RNA binding and interaction with cellular proteins 
that are recruited into the viral replication complex (3C and or 3CD) (Andino 
et al. 1990a, 1990b; Blair et al. 1998; Herrold and Andino 2001; Parsley et al. 
1999). The 3C and 3CD proteins also provide the chymotrypsin-like serine 
protease activity that is responsible for the majority of viral protein processing 
(Ryan and Flint 1997). 
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  Fig. 3  Phylogenetic relationships based on aligned HEV-B amino acid sequences. Trees were 
constructed separately for P1 (a), P2 (b), and P3 (c), using the neighbor-joining algorithm imple-
mented in MEGA, version 3.1 (Kumar et al. 2001), with the JTT substitution model (Jones et al. 
1992); they are plotted to the same scale for each region. The  scale bar  indicates the number of 
amino acid substitutions per site 
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 Because of the extensive RNA recombination that occurs outside the capsid-
coding region, the CVB nonstructural proteins cannot be considered separately 
from those of the other viruses in HEV-B; that is, all members of HEV-B draw their 
P2 and P3 regions from a common genetic pool that is constantly exchanged by 
RNA recombination within a given capsid lineage (Andersson et al. 2002; Lindberg 
et al. 2003; Lukashev et al. 2003, 2004, 2005; Oberste et al. 2004a, 2004d; Santti 
et al. 1999). The non-capsid proteins are fully collinear among all of the HEV-B 
viruses (P2 = 578 aa; P3 = 756 aa). The P2 and P3 regions are highly conserved 
within HEV-B, more so than among members of other human enterovirus species 
(Fig. 2) (Brown et al. 2003; Oberste et al. 2004a, 2004b, 2004c). The 2A proteins 
are the most variable in P2-P3, differing by up to 19% within HEV-B. The 3B pro-
tein also varies by up to 18% (two amino acid differences, of 22 total), but the other 
mature nonstructural proteins (2B, 2C, 3A, 3C, and 3D) vary by no more than 14% 
(3A), and there are numerous examples of identical amino acid sequences for some 
nonstructural proteins among viruses of heterologous serotypes (Oberste et al. 
2004a). The deduced 2C and 3D protein sequences are the most highly conserved, 
with no more than 6% variation in either protein. 

 Diversity of the nonstructural proteins is probably constrained by enzyme struc-
ture/function, as enzymes tend to be more sensitive to mutation than are structural 
proteins. In P2 and P3, the interspecies phylogenetic diversity (e.g., HEV-A vs 
HEV-B) is similar to P1, but the intraspecies diversity is much lower (Fig. 3). 
Unlike the P1 region, P2 and P3 sequences are not monophyletic by type and the 
CVBs are not monophyletic as a group. In P2 and P3, sequence monophyly can be 
taken as evidence of epidemiologic linkage, provided surveillance is sufficiently 
sensitive; that is, two viruses that share nearly identical sequences in this region 
must have diverged very recently from a common ancestor, as recombination has 
not yet occurred. For example, the SVDVs are monophyletic as a group in P2, but 
delinked from CVB5s (Fig. 3b), and SVDVs remain monophyletic in P3 (Fig. 3c), 
suggesting that they emerged as a swine pathogen following a single introduction 
(Zhang et al. 1999). Similarly, a group of Cuban CVA9 isolates are monophyletic 
in P1 and P2 but not in P3 (Fig. 3b,c), indicating that they are beginning to diverge 
from one another by recombination with other HEV-B strains that are cocirculating 
in Cuba (Fig. 3c).  

2.6    Cis -Acting Replication Element 

 A distinct RNA structural element, the  cis -acting replication element ( cre ), has 
been shown to be required for enterovirus replication (Goodfellow et al. 2000; 
Rieder et al. 2000). The poliovirus  cre  is a four-part stacked stem and conserved 
loop located in the region encoding 2C. The AAACA motif in the loop, which is 
required for  cre  function (Goodfellow et al. 2000; van Ooij et al. 2006), is com-
pletely conserved among all of the enterovirus 2C sequences (Brown et al. 2003; 
Oberste et al. 2004a, 2004b, 2004c). The expanded and generalized version of this 
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motif, RN 
3
 AARN 

6
 R, which models stem 1 of Goodfellow et al. (2000) as part of 

the loop (Yang et al. 2002), is also conserved. The structure of the predicted stem 
region is also well conserved among enteroviruses, with complete sequence conser-
vation of a five-base-pair stem immediately adjacent to the 14-residue loop (Brown 
et al. 2003).   

3   Conclusions 

 In all enterovirus species, nucleotide sequence evolution is largely the result of 
recombination and synonymous substitutions, resulting in relative conservation 
of the encoded polypeptide sequences, except in the capsid region where diversity 
is almost exclusively driven by nucleotide substitutions, with amino acid sequences 
relatively conserved within a type, but highly variable between viruses of different 
types. If recombination occurs at all within the capsid, the evidence is quickly 
obscured by rapid accumulation of nucleotide substitutions. With the exception of 
viruses of known epidemiologic linkage, all serotypes with multiple complete 
sequences show evidence of recombination; therefore, all enterovirus strains can be 
considered recombinants relative to nonlinked strains. 

 While non-capsid sequences may influence pathogenicity or tropism (e.g., by 
affecting replication or translation), the principal identity of an enterovirus (its 
antigenic structure, receptor binding, etc.) is controlled by the capsid. In general, an 
enterovirus might be viewed as a capsid sequence in search of non-capsid sequences 
of the highest fitness to provide a selective replicative advantage. The 5¢-NTR and 
P2-P3-3¢-NTR sequences of a given isolate represent only a snapshot of that partic-
ular isolate or of a closely related lineage, within a narrow temporal and geographic 
window. This view of the role of recombination in enterovirus evolution would 
predict that the specific genomic combinations and sequences in the P2-P3 regions 
of the prototype strains from 50 years ago are not likely to be present in currently 
circulating strains of the same serotype. Conversely, sequences related to those of 
a given prototype strain may be found in different serotypes within the same species 
among currently circulating enteroviruses. The observed genomic sequences agree 
well with these predictions. The designation of a serotype prototype strain is purely 
arbitrary, but it provides a context for the analysis of other clinical isolates of that 
serotype. That is, the prototype strains are simply a snapshot in time, arbitrarily 
chosen as a reference.  

4   Future Directions 

 Despite recent progress in enterovirus genomics, there are many areas in which 
additional genomic studies can enhance our understanding of enterovirus basic 
biology and disease association. Genomic sequences from a large collection of 



Comparative Genomics of the Coxsackie B Viruses and Related Enteroviruses 43

 isolates of a given type (or related types, e.g., the CVBs) with well-characterized 
clinical outcome/disease will facilitate fine-scale mapping of genetic determinants 
that contribute to virulence. The combination of more capsid sequences and addi-
tional three-dimensional virion structures will permit comparative mapping of 
receptor interaction sites and broaden our understanding of virus-host interaction at 
the cell surface. Large-scale comparative genomics of wild strains, as well as 
directed cell-based and cell-free in vitro studies, will help develop a better under-
standing of the factors that facilitate and constrain enterovirus recombination. 
Finally, better methods to rapidly generate complete genome sequences, especially 
directly from original clinical material, will make all of these studies easier, 
cheaper, and more practical.   
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