
2

Decision Support in Design

Design is a problem solving activity. Decision making during the design ac-
tivity deals with highly complex situations. Decision-making methods can be
applied as techniques that are able to assist the designer in the design process.

2.1 Decision Making Process

Making a decision implies that there are alternative choices to be considered,
and in such a case the goal is not only to identify as many of these alterna-
tives as possible but to choose the one that best fits with specified objectives
(Harris, 1998).

For most familiar everyday problems, decisions based on intuition can
produce acceptable results because they involve few objectives and only one
or two decision-makers. In the engineering environment, problems are more
complex. Most decisions involve multiple objectives, several decision-makers,
and are subject to external review. The specific methods for decision support
are the key aspect in design practice.

A general decision making process can be divided into the following steps:

1. Problem definition
2. Requirements identification
3. Goal establishment
4. Evaluation criteria development

The process may return to a previous step from any point in the process
when new information is discovered. Thus, this repeats most of model of design
process, which is virtually the decision-making process.

2.1.1 Definition of the Problem

Problem definition is the crucial first step in making a good decision. This
process must, as a minimum, identify root causes, limiting assumptions, sys-
tem and organizational boundaries and interfaces, and any stakeholder issues.

Y. Avramenko and A. Kraslawski: Case-Based Design, Studies in Computational Intelligence

(SCI) 87, 25–48 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



26 2 Decision Support in Design

The goal is to express the issue in a clear problem statement that describes
both the initial conditions and the desired conditions. The problem statement
must however be a concise and unambiguous material. It is essential that the
decision-maker ensures what problem is going to be solved before proceeding
to the next steps.

Result: Problem statement – functions, initial conditions, desired state etc.

2.1.2 Identification of Requirements

Requirements are conditions that any acceptable solution to the problem must
meet. Requirements represent what the solution to the problem must do. For
example, a requirement might be that a process must produce at least ten
units per day. Any alternatives that produced only nine units per day would
be discarded. Requirements that do not discriminate between alternatives
need not be used at this time.

In mathematical form, these requirements are the constraints describing
the set of the feasible (admissible) solutions of the decision problem. It is very
important that even if subjective or judgmental evaluations may occur in the
following steps, the requirements must be stated in exact quantitative form,
i.e. for any possible solution it has to be decided unambiguously whether it
meets the requirements or not.

Result: List of absolute requirements.

2.1.3 Establishment of Goals

Goals are broad statements of intent and desirable programmatic values. Ex-
amples might be: reduce worker radiological exposure, lower costs, lower pub-
lic risk, etc. Goals go beyond the minimum essential requirements to wants
and desires. Goals should be stated positively (i.e. what something should do,
not what it should not do). In mathematical form, the goals are objectives
contrary to the requirements that are constraints. Because goals are useful in
identifying superior alternatives (i.e. define in more detail the desired state of
the problem), they are developed prior to alternative identification.

The goals may be conflicting but this is a natural concomitant of practi-
cal decision situations. During goal definition, it is not necessary to eliminate
conflict among goals nor to define the relative importance of the goals. The
process of establishing goals may suggest new or revised requirements or re-
quirements that should be converted to goals. In any case, understanding the
requirements and goals is important to defining alternatives.

Result: List of clearly formulated goals.

2.1.4 Generation of Alternatives

Alternatives offer different approaches for changing the initial condition into
the desired condition. Be it an existing one or only constructed in mind,



2.1 Decision Making Process 27

any alternative must meet the requirements. The decision team evaluates the
requirements and goals and suggests alternatives that will meet the require-
ments and satisfy as many goals as possible. If the number of the possible
alternatives is finite then it is possible to check one by one for meeting the
requirements. The alternatives vary in their ability to meet the requirements
and goals. If an alternative does not meet the requirements, three actions are
possible:

(1) The alternative is discarded.
(2) The requirement is changed or eliminated.
(3) The requirement is restated as a goal.

The infeasible alternatives must be deleted from the further considera-
tion, and the explicit list of the alternatives is generated. If the number of
the possible alternatives is infinite, the set of alternatives is considered as
the set of the solutions fulfilling the constraints in the mathematical form
of the requirements.

The description of each alternative must clearly show how it solves the
defined problem and how it differs from the other alternatives. A description
and a diagram of the specific functions performed to solve the problem will
prove useful.

Result: list of potential alternative solutions.

2.1.5 Determination of Criteria

Decision criteria, which will discriminate among alternatives, must be based
on the goals. It is necessary to define discriminating criteria to measure how
well each alternative achieves the goals. Since the goals will be represented
in the form of criteria, every goal must generate at least one criterion but
complex goals may be represented only by several criteria. If a goal does not
suggest a criterion, it should be abandoned. Each criterion should measure
something important, and not depend on another criterion. Criteria must
discriminate among alternatives in a meaningful way.

It can be helpful to group together criteria into a series of sets that relate
to separate and distinguishable components of the overall objective for the
decision. This is particularly helpful if the emerging decision structure contains
a relatively large number of criteria. Grouping criteria can help the process
of checking whether the set of criteria selected is appropriate to the problem,
can ease the process of calculating criteria weights in some methods, and
can facilitate the emergence of higher level views of the issues. It is a usual
way to arrange the groups of criteria, sub-criteria, and sub-sub-criteria in a
tree-structure.

According to Baker et al. (2002), criteria should be

– Able to compare the performance of the alternatives.
– Complete to include all goals.



28 2 Decision Support in Design

– Operational and meaningful.
– Non-redundant.
– Few in number.

Usually no one alternative will be the best for all goals, requiring alter-
natives to be compared with each other. The best alternative will be the one
that most nearly achieves the goals.

Result: List of criteria representing the goals; collected criteria data for
each alternative.

2.1.6 Evaluation of Alternatives Against Criteria

Alternatives can be evaluated with quantitative methods, qualitative methods,
or any combination. Criteria can be weighted and used to rank the alterna-
tives. Both sensitivity and uncertainty analyses can be used to improve the
quality of the selection process. Experienced analysts can provide the neces-
sary thorough understanding of the mechanics of the chosen decision-making
method.

Every correct method for decision support needs, as input data, the eval-
uation of the alternatives against the criteria. Depending on the criterion,
the assessment may be objective, with respect to some commonly shared and
understood scale of measurement (e.g. money) or can be subjective (judgmen-
tal), reflecting the subjective assessment of the evaluator. After the evaluations
the selected decision making tool can be applied to rank the alternatives or to
choose a subset of the most promising alternatives.

Result: list of alternatives with defined measures of effectiveness.

2.1.7 Validation of Solution

After the evaluation process has selected a preferred alternative, the solution
should be validated to ensure that it is able to solve the problem identified.
It may happen that the decision making tool was misapplied. The comparison
of the original problem statement to the goals and requirements is performed.
A final solution should fulfill the desired state, meet requirements, and best
achieve the goals. In complex problems the selected alternatives may also
require for further goals or requirements modification and addition them to
the decision model.

Once the preferred alternative has been validated, it can be presented as
the final decision. A final result could report the decision process, assumptions,
methods, and conclusions recommending the final solution.

2.2 Decision Support Methods

Decision support techniques are rational processes/systematic procedures for
applying critical thinking to information, data, and experience in order to



2.2 Decision Support Methods 29

make a balanced decision when the choice between alternatives is unclear.
They provide organized ways of applying critical thinking skills developed
around accumulating answers to questions about the problem. Steps include
clarifying purpose, evaluating alternatives, assessing risks and benefits, and
making a decision. These steps usually involve scoring criteria and alterna-
tives. This scoring (a systematic method for handling and communicating in-
formation) provides a common language and approach that removes decision
making from the realm of personal preference or idiosyncratic behavior.

Depending on type of information used and way of achieving result
(decision-making) the design supporting methods can be distinguished on
three major approaches: Algorithmic, Knowledge-based inductive reasoning,
and Case-based reasoning. First approach relies on specific procedure (algo-
rithm, model) that transforms input to certain output; second method deals
with generalised domain knowledge to make a decision; third one considers
exemplary knowledge of designs.

2.2.1 Algorithmic Approach

The algorithmic design approach views the design process as the execution of
an effective domain-specific procedure that yields a satisfying design solution
in a finite number of steps. The main premise of this approach is that the
initial requirements are well-defined and there are precisely defined criteria
for determining whether or not an algorithm meets the requirements.

There exist a number of techniques which serve to optimize complex sys-
tems: exhaustive search, rapid search, mathematical programming. The search
techniques involve many search strategies, such as breath-first, greedy meth-
ods, branch and bounds, dynamic programming and so on (Siddal, 1982;
Dasgupta, 1989; Chandrasekaran, 1990). An exhaustive search generates an
enormous number of alternatives to be considered, therefore the application
of such techniques is limited. Search algorithms are judged on the basic of
completeness, optimality, time complexity and space complexity. Complexity
depends on the branching factor in the state space, and the depth of the
shallowest solution. The alternative to an exhaustive search is rapid search,
where a set of simple but arbitrary guidelines are adopted to limit the search
space. The greatest disadvantage of any rapid search method is that the best
solution might be out of the search space.

Mathematical programming techniques can be used to identify the poten-
tial design configuration based on the functional requirements. In general, in
these methods the solution to the problem is developed by solving a mathe-
matical model consisting of an objective function that is to be optimized and
a set of constraints representing the limitation of the resources (Siddall, 1982;
Braha and Maimon, 1998; Gani, 2004).

In chemical engineering design mathematical programming techniques are
widely used. One of the targets in any industrial process design is to maxi-
mize the process-to-process heat recovery and to minimize the utility (energy)



30 2 Decision Support in Design

requirements. This goal can be achieved by utilizing Pinch Technology. This
technique presents a simple methodology for systematically analysing chem-
ical processes and the surrounding utility systems with the help of the First
and Second Laws of Thermodynamics. Pinch Analysis is used to identify en-
ergy cost and heat exchanger network (HEN) capital cost targets for a process
and recognizing the pinch point (Townsend and Linnhoff, 1983).

Another method utilised for process synthesis is the superstructure gener-
ation with following optimization (Grossmann, 1985). The advantage of the
approach is the rigorous analysis of features such as structure interactions and
capital costs. The disadvantage of the method is the need for a big compu-
tational efforts and the fact that the optimality of the solution can only be
guaranteed among alternatives considered a priori.

An incomplete, ill-structured design problem may be decomposed into one
or more well-structured components, and then the algorithmic methods may
be successfully utilized to solve each of these well-structured sub-problems.

2.2.2 Knowledge-Based Inductive Reasoning Approach

This approach to decision support is based on capturing knowledge of a certain
domain and using it to solve problems. The design is considered as a problem-
solving process of searching through a state-space, from initial problem state
to the goal state. Transition from one step to another is affected by applying
one of a finite set of operators, based on functional requirements and design
constraints (domain specific knowledge) and meta-rules (domain independent
knowledge).

Due to emphasis of knowledge, such computer systems are known as
knowledge-based or expert systems. The term ‘expert system’ is often used as
the input knowledge is usually acquired from human experts. When knowledge
is generally acquired through non-human intervention (computer methods),
the term ‘knowledge-based system (KBS) is more appropriate. The united
term ‘knowledge-based expert system’ (KBES) is further used to represent
both or combined methods of knowledge acquisition.

KBES is able to use previously defined rules to solve a new problem.
Inductive reasoning, implemented in KBES, means reaching conclusions about
a whole class of facts based on evidence on part of that class. KBESs are
examples of automatic problem-solvers that rely on domain-specific heuristics.

Such reasoning differs from algorithmic approach with following issues:

– Simulation of human reasoning about a problem domain, rather than mod-
elling the domain itself;

– Reasoning over representation of human knowledge, in additional to doing
numerical calculation or data retrieval;

– Suggesting a solution to a problem using heuristic or approximate methods
which, unlike to algorithmic solution, are not guaranteed to succeed;

– Capability to explain and justify solutions or recommendations to con-
vince that the reasoning result is correct.



2.2 Decision Support Methods 31

Algorithmic approach is the reasoning strategy which is guaranteed to
find the solution to whatever the problem is, if there is such a solution. For
the large, difficult problems with which expert systems are concerned, it may
be more useful to employ heuristics: strategies that often lead to the correct
solution, but which also sometimes fail. Humans use heuristics in their problem
solving. If the heuristic does fail, it is necessary for the problem solver to either
pick another heuristic, or know that it is appropriate to give up. In design
problems, there may be many millions of possible solutions to the problem as
presented. It is not possible to consider each one in turn, to find the right (or
best) solution; heuristically-guided search is required.

Some rules used for inductive reasoning in KBES may only express a proba-
bility that a conclusion follows from certain premises, rather than a certainty.
The items in the knowledge base must reflect this uncertainty, and the in-
ference engine must process the uncertainties to give conclusions that are
accompanied by likelihood that they are true. Assumptions – for instance,
about the reliability of a piece of evidence – may have to be abandoned part
way through the reasoning process.

Expert systems usually contain inference engine, knowledge base and two
interfaces to communicate with user and experts (Fig. 2.1). Knowledge based
system instead of expert interface includes knowledge generation part.

The inference engine is responsible for extracting appropriate rules from
knowledge base and generating new information. There are two main ways
for inference: forward chaining and backward chaining. The forward chain-
ing is used for problem-solving when data obtained from communication with
the user are the starting point. The system attempts to achieve conclusions.
A problem with forward chaining is that many goals are possible to achieve
whether useful or not. In contrast, backward chaining, often described as

Fig. 2.1. Expert system layout



32 2 Decision Support in Design

goal-directed reasoning, starts with a hypothesis or specific goal and then
attempts to find data from interaction with the use to prove or disprove the
conclusion. Whereas the forward chaining is often used in KBES developed for
design problems, backward chaining is specifically applicable to troubleshoot-
ing and control problems. These methods of inference can often be combined
in KBES.

An inference engine may also have the capability to reason in the presence
of uncertainty both in the input data and also in the knowledge base. The
major methods are Bayesian probabilities and fuzzy logic.

KBES approach is the base for many of the computer-aided design sys-
tems developed in recent years (Tong and Sriram, 1992; Wilke et al., 1998;
Nakayama and Tanaka, 1999). A review of knowledge-based methods for de-
sign tasks in chemical engineering has recently been presented by Li and
Kraslawski et al. (2004).

The knowledge-based inductive reasoning approach is very useful for solv-
ing tightly coupled, highly integrated design problems. However, when faced
with an original design problem with no previous rules to help it, expert sys-
tems are incapable of original creativity.

Knowledge-based expert systems are based upon an explicit model of the
knowledge required to solve a problem – so called second generation systems
(Clancey, 1985) using a deep causal model that enables a system to reason
using first principles. But whether the knowledge is shallow or deep an ex-
plicit model of the domain must still be elicited and implemented often in the
form of rules or perhaps more recently as object models. The tight problem of
KBES in many sectors is knowledge acquisition, often being referred to as the
knowledge elicitation bottleneck. To overcome this difficulty special informa-
tion techniques can be applied. The knowledge can be collected with decision
tree generated by various algorithms. Despite obvious advantages automotive
generation of knowledge base (decision tree) has several difficulties:

– Only classification problems can be addressed.
– Human interventions are still required to define attributes and original

knowledge matrix.
– When new examples become available it is necessary to rebuild the exist-

ing tree.

An expert system is purposed to perform at a human expert level in a
narrow, specialised domain. Thus, the most important characteristic of KBES
is its high-quality performance. A unique feature of an expert system is its
explanation capability. This enables the KBES to review its own reasoning
and explain its decisions. An explanation in expert system in effect traces the
rules fired during a problem-solving session.

KBES employs symbolic reasoning when solving a problem. Symbols are
used to represent different types of knowledge. Algorithmic approach always
performs the same operations in the same order, and it always provide an exact
solution (if it is principally possible). Unlike algorithmic approach, KBES do



2.3 Knowledge Engineering 33

not follow a prescribed sequence of steps. It permits inexact reasoning and
can deal with incomplete, uncertain and fuzzy data.

2.2.3 Case-Based Reasoning Approach

Case-based problem solving is based on the premise that a design problem
solver makes use of experiences (cases) in solving new problems instead of solv-
ing every new problem from scratch (Kolonder, 1993). Lansdown (1987) argues
that “innovation arises from incremental modification of existing ideas rather
than entirely new approaches”. Coyne et al. (1990) classify the case-based
approach into three activities: creation, modification, and adaptation. Cre-
ation is concerned with incorporating requirements to create a new prototype.
Modification is concerned with developing a working design from a particular
category of cases. Adaptation is concerned with extending the boundaries of
the class of the cases.

Case-based reasoning (CBR) solves new problems by adapting previously
successful solutions to similar problems. It has several features, which make
this approach different from KBES, namely:

– CBR does not require an explicit domain model and elicitation becomes
a task of gathering case histories.

– Implementation is reduced to identifying significant features that describe
a case, an easier task than creating an explicit model.

– Largely volumes of information can be managed.
– CBR systems can learn by acquiring new knowledge as cases thus making

maintenance easier.

A case-based reasoning approach can handle incomplete data: it is ro-
bust with respect to unknown values because it does not generalize the data.
Instead, the approach supports decision making relying on particular experi-
ences.

2.3 Knowledge Engineering

The described above approaches to decision support in design deal with knowl-
edge of certain organization. Different approaches have different knowledge
organizations. However, the process of acquisition, structuring and represen-
tation of knowledge precedes any reasoning activity and it can be regarded as
common for all approaches. This process is known as knowledge engineering.

There are two main views to knowledge engineering. The traditional view
is known as “Transfer View”. In this view, the assumption is to apply con-
ventional knowledge engineering techniques to transfer human knowledge into
artificial intelligent systems. The alternative view is known as the “Modeling
View”. In this view, the knowledge engineer attempts to model the knowledge



34 2 Decision Support in Design

and problem solving techniques of the domain expert into the artificial intel-
ligent system.

Knowledge engineering relates to the building, maintaining and develop-
ment of knowledge-based systems. It has a great deal in common with software
engineering, and is related to many computer science domains such as artifi-
cial intelligence, databases, data mining, expert systems, and decision support
systems.

Various activities of KE specific for the development of a knowledge-based
system:

(1) Assessment of the problem
(2) Development of a knowledge structure
(3) Implementation of the structured knowledge into knowledge-bases
(4) Acquisition and structuring of the related information, knowledge and

specific preferences
(5) Testing and validation of the inserted knowledge
(6) Integration and maintenance of the system
(7) Revision and evaluation of the system.

KE deals with the knowledge, and mainly with the structure (organization)
of knowledge. Therefore, the organisation of knowledge is a key element of KE.

2.3.1 Classification of Knowledge

Initial source of knowledge base is a set of data. Data refers to facts, codes,
marks and signals. Data is transformed by processing to information which is
organized to be meaningful to the object receiving it. Knowledge can therefore
be regarded as information which is understood and can be applied to get new
information (Fig. 2.2).

Knowledge can be derived from other knowledge. Priori perceived knowl-
edge can be transcribed to five primary types of content: facts, concepts,
processes, procedures, and principles (Clark and Chopeta, 2004).

Facts are specific and unique data or instance. Concept is a class of items,
words, or ideas. There are two types of concepts: concrete and abstract.
Process is represented by a flow of events or activities that describe how things
work rather than how to do things. There are normally two types: business
processes that describe work flows and technical processes that describe how
things work in equipment or nature. Procedures are series of step-by-step ac-
tions and decisions that result in the achievement of a task. There are two
types of actions: linear and branched. Guidelines and rules form principles.
It includes not only what should be done, but also what should not be done.
Principles allow one to make predictions and draw implications. Given an ef-
fect, one can infer the cause of phenomena. Principles are the basic building
blocks of causal models or theoretical models (theories).



2.3 Knowledge Engineering 35

Interpret 

Information 

Understand

Knowledge

Data

Fig. 2.2. Transformation data to knowledge

These contents can be used to create two categories of knowledge: declar-
ative and procedural, where the first comprises concepts and the second are
actions.

Declarative Knowledge

Declarative knowledge refers to representations of objects and events and how
these knowledge and events are related to other objects and events. They focus
on the why rather than the how. Declarative models include propositions and
schemata. Proposition consists of a predicate or relationship and at least one
argument. Schemata are higher-level cognitive units that use propositional
networks as their building blocks. These are often abstract or general in nature
that allows to classify objects or events as belonging to a particular class and
to reason about them. Schemata can be conceptional knowledge, plan-like
knowledge, and causal knowledge.

Concepts are simple schemata that represent a class of objects, events,
or other entities by their characteristic features. Concepts enable a person to
identify or classify particular instances (concrete object or event) as belonging
to a particular class. In a language, most words identify concepts and at least
to a certain degree, they are arbitrary in that they can be categorized in many
alternative ways.

Experts possess more powerful concepts in their domain than novices that
help them to solve problems. These concepts give them patterns for labeling
various memory states, which allow them to classify problems according to
their solution mode or deep structure. Where as novices typically classify
problems according to their surface structure or superficial feature.



36 2 Decision Support in Design

Plan-Like Knowledge is simple schemata that describe how goals are re-
lated in time or space. They allow us to understand events and organize func-
tions and actions. Plans are often referred to as scripts (or simple procedures)
because they represent routine sequences of events.

Causal Knowledge is complex schemata that link principles and concepts
with each other to form cause–effect relationships. They are able to interpret
events, give explanations, and make predictions.

Procedural Knowledge

Procedural models focus on tasks that must be performed to reach a particular
objective or goal. It is characterized as knowing how. Procedural knowledge
is often difficult to verbalize and articulate (tacit knowledge) than declarative
knowledge.

Procedural knowledge emphasizes hierarchical or information processing
approaches based upon productions. A combination of productions creates
production systems. Productions are the building blocks of procedural knowl-
edge and are composed of a condition and an action or IF and THEN state-
ment. A production system is a set of productions for cognitive processing.
It is characterized by the recognize-act cycle in which one production leads to
another production. There are two types of productions: rules and heuristics.
The difference between rules and heuristics is based on the validity and rigour
of the arguments used to justify them – rules are always true, valid and can
be justified by arguments; heuristics are the expert’s best judgments, may not
be valid in all cases and can only be justified by examples.

There also can be distinguished the specific class of knowledge, which stays
above of previous declared categories of knowledge, called meta-knowledge.

Meta-Knowledge

Meta-knowledge is knowledge about knowledge. More precisely speaking,
meta-knowledge is systemic problem and domain-independent knowledge
which performs or enables operations on another more or less specific domain-
dependent knowledge in different domains/areas of human activities. Meta-
knowledge is a fundamental conceptual instrument in such research and
scientific domains as, knowledge engineering, knowledge management, and
others dealing with study and operations on knowledge, seen as an unified ob-
ject/entities, abstracted from local conceptualizations and terminologies.

Examples of the first-level individual meta-knowledge are methods of plan-
ning, modeling, learning and every modification of a domain knowledge.
The procedures, methodologies and strategies of teaching, coordination of
e-learning courses are individual meta-meta-knowledge of an intelligent entity
(a person, organization or society). The universal meta-knowledge frame-
works have to be valid for the organization of meta-levels of individual meta-
knowledge.



2.3 Knowledge Engineering 37

Knowledge can be classified according to the origin of the knowledge. The
source of empirical knowledge is practical experience. Observations are made
when running the process. Theoretical knowledge is based on natural laws and
scientific theories. The third form of knowledge is subjective, experience-based
knowledge.

When describing certain domain, general and problem independent knowl-
edge is called background knowledge. If the background knowledge describes a
specific part of the domain it is called contextual knowledge. Episodic knowl-
edge is of narrative character. It records the story of something happened in
the past.

There are two levels of knowledge: shallow or deep knowledge. Shallow
knowledge can deal with very specific situations, whereas the deep knowledge
is a representation of all information of a domain.

2.3.2 Knowledge Acquisition

The objective of knowledge acquisition is to collect or elicit knowledge from
the experts and other sources and structure it in a certain way.

The first step of knowledge acquisition is to collect all the potential sources
of knowledge. They are text book written specifically in the domain, research
and technical reports, journal articles, reference manuals, case studies, opera-
tional procedures and organizational policy statements. Availability of docu-
ments may vary; in some domain there may be many available, and in others
none at all. The reports and books contain factual knowledge; they are often
detailed, precise and well structured but are not always relevant to knowledge
acquisition task. Often, the analysis of significant amount of documents is
highly time-consuming. The range of problems which textbooks examine and
solve is always smaller than the range of problems that a human expert is
master of.

Knowledge can also be obtained from discussion with organization per-
sonnel like projects leader and consultants. The most important branch of
knowledge acquisition is knowledge elicitation – obtaining knowledge from
domain experts.

Expert knowledge includes:

– Domain-related facts and principles
– Modes of reasoning
– Reasoning strategies
– Explanations

Two kinds of knowledge can be elicited from experts:

– Explicit knowledge is the knowledge which the domain expert is able to
articulate.

– Tacit knowledge is the knowledge which the domain expert is not conscious
of having but does exists as proved by expert’s known capability of solving
problems in the domain.



38 2 Decision Support in Design

Explicit knowledge is easy to elicit from experts since it is mainly factual in
nature. Tacit knowledge is difficult to identify and elicit but it is essential for
successful development of knowledge-based systems. Knowledge obtained from
experts have following features: incomplete – experts may forgot, superficial –
exerts often cannot go to details, imprecise – experts may not know exact
detail, inconsistent – when expert fall into contradictions, incorrect – when
experts may be wrong.

Such features could rise a lot of problems in creation of knowledge base.
Needs in communication with experts as well as in retrieval data from various
documents exists more or less in all approached for decision making support.
But the acquired knowledge have to be interpreted and translated into the
rules and heuristics in the KBES approach, which is also time-demanding
task. In contrast to, CBR approach relies only on set of acquired information
(even not knowledge in many cases).

In addition to manual methods of knowledge acquisition there are auto-
mated methods whereby the computers are used. Using a computer for a
knowledge acquisition overlaps with software engineering problems.

2.3.3 Software Engineering versus Knowledge Engineering

Software engineering provides the mechanisms for validating the implementa-
tion of well specified algorithms. Human–computer interaction provides analy-
sis and design techniques based on prototyping of the user interface to address
aspects of systems where the risks are associated with the users’ needs, or the
system usability. Data engineering addresses the permanent storage of large
amounts of data and the efficient retrieval of the relatively small portion
required for any process. In contrast, knowledge engineering addresses the
structure of complex but ill-defined processes where the solution to defining
the process is to define the knowledge involved in the process explicitly in a
knowledge-based system (KBS).

Conventional software development follows the waterfall life cycle model.
This requires complete system requirements at the start of development.
Errors later in development can be fixed at little cost; errors at the start of de-
velopment incur large costs. If the risks of failure of the project are associated
with the efficiency of the implementation of a system this is appropriate. If
the risk of a project failing is due to the uncertainty of the algorithms to per-
form the functions required, user requirements or enterprise objectives then
an approach which is flexible at the start of the process is appropriate.

Conventional software engineering approaches produce efficiently imple-
mented code to execute algorithms to perform required functions which will
always produce the correct outcome for correct input. The knowledge engi-
neering approach allows users and experts to describe requirements and meth-
ods to perform the required functions at a high level close to the one in which
they think about the task: the Knowledge Level. These can then be presented
back to them for validation of the content, and modification.



2.3 Knowledge Engineering 39

If algorithms to perform the required functions cannot be determined then
heuristics which produce correct outcomes sufficiently often for some task
requirements can be used – there may not be sufficiently detailed domain
theory to supply algorithms so human expertise in the domain can be used.

If heuristic knowledge cannot be acquired which produces correct out-
comes sufficiently frequently then the project should be terminated – there
may not be domain expertise to acquire. Since this possibility continues after
initial problem definition (including feasibility studies) into the acquisition of
knowledge, then staged contracting should be used to protect the client, and
the commitments made by the developer.

Knowledge engineering differs from conventional software engineering
mainly at the early stages of the life cycle when user requirements and func-
tional methods (or knowledge) are being acquired. The tools for implemen-
tation, user interface design, testing, maintenance and updating systems may
differ, but the principles which govern all software systems are the same.
Therefore, although the early stages of knowledge acquisition will involve a
knowledge engineer and a (or more) domain experts, later stages will involve
software engineers for implementation/integration.

2.3.4 Knowledge Representation

Knowledge representation (KR) is the study of how knowledge about the world
can be represented and what kinds of reasoning can be done with that knowl-
edge. Important questions include the tradeoffs between representational ad-
equacy, fidelity, and computational cost, how to make plans and construct
explanations in dynamic environments, and how best to represent default and
probabilistic information

A variety of ways of representing knowledge in a knowledge base have been
developed over the years.

The commonly used methods for knowledge representation are production
rules, frames, semantic networks, ontology and objects.

Production Rules

They express the relationship between several pieces of information. The rules
are conditional statements that specify actions to be taken or advice to be
followed under certain sets of conditions.

Each production rule implements an autonomous piece of knowledge and
can be developed and modified independently of other rules. However, when
combined, a set of rules may yield better results that the sum of results of
the individual rules and independency is lost. It must be taken into account
when adding new rules to a current knowledge base to avoid conflicts.



40 2 Decision Support in Design

Frames

They are templates for holding clusters of related knowledge about a partic-
ular object. They are able to represent the attribute of an object in a more
descriptive way that is possible using production rules. The frame typically
consists of a number of slots which, like attributes, may or not contain a value.

Semantic Network

Because any knowledge incorporates concepts and will be expressed using
terms, the interdependencies between knowledge and language are essential
for the definition itself.

A semantic network is a directed graph consisting of vertices, which rep-
resent concepts, and edges, which represent semantic relations between the
concepts. Such networks involve fairly loose semantic associations that are
nonetheless useful for human browsing. It is possible to represent logical de-
scriptions using semantic networks such as the existential graphs or the re-
lated conceptual graphs. These have expressive power equal to or exceeding
standard first-order predicate logic. The semantic networks can be used for
reliable automated logical deduction. Some automated reasoners exploit the
graph-theoretic features of the networks during processing.

One can consider a mind map to be a very free form variant of a semantic
network. By using colors and pictures the emphasis is on generating a semantic
net which evokes human creativity. However, a fairly major difference between
mind maps and semantic networks is that the structure of a mind map, with
nodes propagating from a centre and sub-nodes propagating from nodes, is
hierarchical, whereas semantic networks, where any node can be connected to
any node, have a more heterarchical structure.

Ontology

An ontology is a knowledge model that represents a set of concepts within
a domain and the relationships between those concepts. The word ontology
means “the study of the state of being”. An ontology describes the states
of being of a particular set of things. This description is usually made up of
axioms that define each thing. It is used to reason about the objects within
that domain.

Ontologies generally describe:

– Individuals: the basic objects
– Classes: sets, collections, or types of objects
– Attributes: properties, features, characteristics, or parameters that objects

can have and share
– Relations: ways that objects can be related to one another
– Events: the changing of attributes or relations



2.3 Knowledge Engineering 41

The individuals in an ontology may include concrete objects such as ta-
bles, automobiles, molecules, and reactor, as well as abstract individuals such
as numbers and words. Actually, an ontology need not include any individu-
als, but one of the general purposes of an ontology is to provide a means of
classifying individuals, even if those individuals are not explicitly part of the
ontology.

Classes may contain individuals, other classes, or a combination of both.
Ontologies vary on whether classes can contain other classes, whether a class
can belong to itself, whether there is a universal class (that is, a class con-
taining everything), etc. The classes of an ontology may be extensional or
intensional in nature. A class is extensional if and only if it is character-
ized solely by its membership. If a class does not satisfy this condition, then
it is intensional. While extensional classes are more well-behaved and well-
understood mathematically, they do not permit the fine grained distinctions
that ontologies often need to make.

A partition is a set of related classes and associated rules that allow objects
to be placed into the appropriate class. If the partition rules guarantee that
an object cannot be in both classes, then the partition is called a disjoint
partition. If the partition rules ensure that every concrete object in the super-
class is an instance of at least one of the partition classes, then the partition
is called an exhaustive partition.

Objects in the ontology can be described by assigning attributes to them.
Each attribute has at least a name and a value, and is used to store information
that is specific to the object it is attached to. The value of an attribute can
be a complex data type.

An important use of attributes is to describe the relationships between
objects in the ontology. Typically a relation is an attribute whose value is
another object in the ontology. The most important type of relation is the
subsumption relation (knows as is-a). This defines which objects are members
of classes of objects.

The addition of the is-a relationships has created a hierarchical taxonomy;
a tree-like structure that clearly depicts how objects relate to one another.
Another common type of relations is the Meronymy relation (written as part-
of ) that represents how objects combine together to form composite objects.
The examples of described relation types are represented in Fig. 2.3.

As well as the standard is-a and part-of relations, ontologies often include
additional types of relation that further refine the semantics they model. These
relations are often domain-specific and are used to answer particular types of
question.

Knowledge Representation Languages and Ontology Analysis

One of the developments in the application of KR has been the proposal
(Minsky, 1981) and development (Brachman and Schmolze, 1985) of frame-
based KR languages. While frame-based KR languages differ in varying



42 2 Decision Support in Design

Fig. 2.3. Meronymy (a) and subsumption (b) relations examples

degrees from each other, the central tenet of these systems is a notation based
on the specification of objects (concepts) and their relationships to each other.
The main features of such a language are:

– Object-orientedness. All the information about a specific concept is stored
with that concept, as opposed, for example, to rule-based systems where
information about one concept may be scattered throughout the rule base.

– Generalization/Specialization. Long recognized as a key aspect of human
cognition (Minsky, 1981), KR languages provide a natural way to group
concepts in hierarchies in which higher level concepts represent more gen-
eral, shared attributes of the concepts below.

– Reasoning. The ability to state in a formal way that the existence of
some piece of knowledge implies the existence of some other, previously
unknown piece of knowledge, is important to KR. Each KR language
provides a different approach to reasoning.

– Classification. Given an abstract description of a concept, most KR lan-
guages provide the ability to determine if a concept fits that description,
this is actually a common special form of reasoning.

Object orientation and generalization help to make the represented knowl-
edge more understandable to humans, reasoning and classification help make
a system behave as if it knows what is represented.



2.3 Knowledge Engineering 43

It is important to realize both the capabilities and limitations of frame-
based representations, especially as compared to other formalisms. To begin
with, all symbolic KR techniques are derived in one way or another from First
Order Logic, and as a result are suited for representing knowledge that does
not change. Different KR systems may be able to deal with non-monotonic
changes in the knowledge being represented, but the basic assumption has
been that change, if present, is the exception rather than the rule.

Two other major declarative KR formalisms are production systems and
database systems. Production systems allow for the simple and natural ex-
pression of IF-THEN rules. However, these systems have been shown to be
quite restrictive when applied to large problems, as there is no ordering of
the rules, and inferences cannot be constrained away from those dealing only
with the objects of interest. Production systems are subsumed by frame-based
systems, which additionally provide natural inference capabilities like classi-
fication and inheritance, as well as knowledge-structuring techniques such as
generalization and object orientation.

Database systems provide only for the representation of simple assertions,
without inference. Rules of inference are important pieces of knowledge about
a domain.

What makes up a specific domain ontology is restricted by the repre-
sentational capabilities of the meta-model – the language used to construct
the model. Each knowledge representation language differs in its manner and
range of expression. In general, an ontology consists of three parts: concept
definitions, role definitions, and further inference definitions.

The concept definitions set up all the types of objects in the domain. In
object oriented terms this is called the class definitions, and in database terms
these are the entities. There can be three parts to the concept definitions: con-
cept taxonomy, role defaults and role restrictions. The taxonomy is common
to most knowledge representation languages, and through it is specified the
nature of the categories in terms of generalization and specialization. Role de-
faults specify for each concept what the default values are for any attributes.
Role restrictions determine for a concept any constraints on the values in
a role, such as what types the values must be, how many values there can
be, etc.

A role is an attribute of an object. In object-oriented terms it is a slot,
in database terms (and even some KR languages) it is a relation. Roles
which represent relationships are unidirectional. A role definition may have
up to three parts as well: the role taxonomy which specifies the generaliza-
tion/specialization relationship between roles; the role inverses which provide
a form of inference that allows the addition of a role in the opposite direction
when the forward link is made; and the role restrictions where the role itself
may be defined such that it can only appear between objects of certain types
(domain/range restrictions), or can only appear a specified number of times
(cardinality restriction).



44 2 Decision Support in Design

The final part of an ontology is the specification of additional inference that
the language provides. Examples of this are forward and/or backward chaining
rules, path grammars, subsumption and/or classification, demons, etc.

Knowledge Engineering must address the issue of reliable methodology to
meet the practical engineering objectives it now has. Secondly, the systems
produced through knowledge engineering methods must be able to re-use not
only abstract ideas, but also implementation level knowledge. To do these is-
sues of portability and interoperability must be addressed. A consequence of
addressing these two issues could be to lose the apparent freedom provided
by expert systems and to become bound by the formalities of software engi-
neering. To avoid this, knowledge engineering must maintain its influence on
user interfaces and the ability of KBS to explain their reasoning.

2.4 Decision Supporting Systems

Decision making in design often requires access to and the processing of a large
amount of data and logical relations which (due to the nature of the problem)
cannot or should not be replaced by the intuition of decision maker. In many
design situations it is not a small task to examine even the possible range
of feasible alternatives. In the context of decision support, the problem is a
situation description in which information is missing. The goal is to complete
the situation description until the demand for information is satisfied. The
use of computers for processing situations leads to implementing a Decision
Supporting System.

A Decision Supporting System (DSS) is a supportive tool for the manage-
ment and the processing of large amounts of information and logical relations
that helps a decision maker (design engineer) to extend his vision and thus
help to reach a better decision. In other words, a DSS can be considered as a
tool that performs the task of data processing and provides relevant informa-
tion that enables a design engineer to concentrate on the part of the decision
making process that cannot be formalized.

Because there are many approaches to decision-making and because of the
wide range of domains in which decisions are made, the concept of DSS is very
broad. A DSS can take many different forms. In general, a DSS is an informa-
tion system that provides the ability to analyze information and predict the
impact of decisions before they are made. A decision is a choice between al-
ternatives based on estimates of the values of those alternatives. Supporting a
decision means helping people working alone or in a group gather intelligence,
generate alternatives and make choices. Supporting the choice making process
involves supporting the estimation, the evaluation and/or the comparison of
alternatives. In practice, references to DSS are usually references to computer
applications that perform such a supporting role.

The goal of a DSS is to supplement the decision powers of the human
with the data manipulating capabilities of the computer (Emery, 1987). It is



2.4 Decision Supporting Systems 45

not intended to solve a decision problem. Therefore it should not support
reaching a single or unique decision nor should it restrict a possible range of
decisions.

Furthermore, it is usually not possible to decide whether a solution found
by a DSS is correct or not. Rather, this information may be more or less
useful; it may be better or worse than other information (Lenz et al., 1998).

Richter (1992) identified four characteristic properties of DSS:

(1) The amount of information that has to be coped with is too large to
be handled by humans without the support of an appropriate technical
system.

(2) The decision has to be made quickly.
(3) Data has to be prepared for decision making.
(4) The process of decision making is highly complex and requires specific

algorithms.

Turban et al. (2005) composed more longer list of ideal characteristics and
capabilities of DSS:

1. Support for decision makers in semistructured and unstructured problems.
2. Support managers at all levels.
3. Support individuals and groups.
4. Support for interdependent or sequential decisions.
5. Support intelligence, design, choice, and implementation.
6. Support variety of decision processes and styles.
7. DSS should be adaptable and flexible.
8. DSS should be interactive and provide ease of use.
9. Effectiveness balanced with efficiency (benefit must exceed cost).

10. Complete control by decision-makers.
11. Ease of development (modification to suit needs and changing environ-

ment).
12. Support modeling and analysis.
13. Data access.
14. Standalone, integration and Web-based.

2.4.1 Classification of DSS

There is no universally accepted classification of DSS. Different authors pro-
pose different classifications. Using the relationship with the user as the cri-
terion, Häettenschwiler (1999) differentiates passive, active, and cooperative
DSS. A passive DSS is a system that aids the process of decision making,
but that cannot bring out explicit decision suggestions or solutions. An ac-
tive DSS can bring out such decision suggestions or solutions. A cooperative
DSS allows the decision maker (or its advisor) to modify, complete, or refine
the decision suggestions provided by the system, before sending them back to
the system for validation. The system again improves, completes, and refines



46 2 Decision Support in Design

the suggestions of the decision maker and performs the validation. The whole
process then starts again, until a consolidated solution is generated.

Using the mode of assistance as the criterion, Power (2002) differen-
tiates communication-driven DSS, data-driven DSS, document-driven DSS,
knowledge-driven DSS, and model-driven DSS.

A model-driven DSS emphasizes access to and manipulation of a statisti-
cal, financial, optimization, or simulation model. Model-driven DSS use data
and parameters provided by users to assist decision makers in analyzing a
situation; they are not necessarily data intensive. Dicodess is an example of
an open source model-driven DSS generator (Gachet, 2004).

A communication-driven DSS supports more than one person working on
a shared task; examples include integrated tools like Microsoft’s NetMeeting
or Groove (Stanhope, 2002).

A data-driven DSS or data-oriented DSS emphasizes access to and manipu-
lation of a time series of internal company data and, sometimes, external data.

A document-driven DSS manages, retrieves and manipulates unstructured
information in a variety of electronic formats.

A knowledge-driven DSS provides specialized problem solving expertise
stored as facts, rules, procedures, or in similar structures.

Using scope as the criterion, Power (1997) differentiates enterprise-wide
DSS and desktop DSS. An enterprise-wide DSS is linked to large data ware-
houses and serves many managers in the company. A desktop, single-user DSS
is a small system that runs on an individual personal computer.

2.4.2 Architectures of DSS

Different authors identify different components in a DSS. Sprague and Carlson
(1982) identify three fundamental components of DSS:

– The database management system (DBMS)
– The model-base management system (MBMS)
– The dialog generation and management system (DGMS)

Haag et al. (2006) describe these three components in more detail: the
DBMS stores data, which can be further divided into that derived from the
local data repositories, from external sources such as the Internet, or from
the personal insights and experiences of individual users; the MBMS handles
representations of events, facts, or situations using various kinds of models;
and the DGMS is the component that allows a user to interact with the
system.

According to Power (2002), academics and practitioners have discussed
building DSS in terms of four major components: the user interface, the data-
base, the model and analytical tools, and the DSS network.

Häettenschwiler (1999) identifies five components of DSS:

– The users with different roles or functions in the decision making process
(decision maker, advisors, domain experts, system experts, data collectors)

– The specific and definable decision context



2.5 Conclusions 47

– The target system describing the majority of the preferences
– The knowledge base made of external data sources, knowledge databases,

working databases, data warehouses and meta-databases, mathematical
models and methods, procedures, inference and search engines, adminis-
trative programs, and reporting systems, and

– The working environment for the preparation, analysis, and documenta-
tion of decision alternatives

Marakas (1999) proposes a generalized architecture made of five distinct parts:

– The data management system
– The model management system
– The knowledge engine
– The user interface, and
– The user(s)

Holsapple and Whinston (1996) classify DSS into the following six frame-
works: Text-oriented DSS, Database-oriented DSS, Spreadsheet-oriented DSS,
Solver-oriented DSS, Rule-oriented DSS, and Compound DSS.

The support given by DSS can be separated into three distinct. interrelated
categories (Hackathorn and Keen, 1981): Personal Support, Group Support
and Organizational Support.

DSSs which perform selected cognitive decision-making functions and are
based on artificial intelligence or intelligent agents technologies are called In-
telligent Decision Support Systems (IDSS).

A DSS is a problem dedicated system usually designed for a specific de-
cision making process and its environment. Using DSS is useful in complex
design situations for which specification of attainable goals and rational de-
cisions is quite complicated. The DSS finds a solution closest to the specified
goals. This ability to provide answers for decision support in a changing en-
vironment is the main advantage of decision supporting systems.

There are two alternative approaches for the design of DSSs: normative and
descriptive (Lenz et al., 1998). The normative approach attempts to establish
general rules for rational behaviour. It is realized by utilizing a knowledge-
based reasoning technique. On other hand, the descriptive approach does not
rely much on general principles but on examples of successful problem solving
episodes. Such episodes are investigated to obtain knowledge about how the
solution was derived. This can clearly be implemented by utilizing a case-based
reasoning approach.

2.5 Conclusions

In the chemical process design there is a growing demand for an improvement
to the design process in order to generate better flowsheets within a shorter
development time. Existing design supporting tools have been developed for



48 2 Decision Support in Design

specific purposes and related to separate parts of process design. Therefore a
tool or methodology that is able to support overall design activity (from A to
F levels) would be very valuable.

Due to uncertain and incomplete input data and the lack of formal meth-
ods, approaches to innovative design and redesign support are proposed to
assist the design engineer rather than to automate the process. Engineer in-
tervention is required to generate or evaluate a proper solution. The problem
solving process then is to provide the user of a design supporting system with
documents to satisfy his demands.

Knowledge-based systems using rule-based reasoning and various algorith-
mic techniques have been applied to build design decision support system.
Although such systems have been met with some success, difficulties have
been encountered in terms of formalizing generalized design experiences as
rules, logic and domain models. In order to support innovative design tasks,
conventional problem solving methods are not applicable, in general. The use
of experience is of particular importance. Recently, researchers have been ex-
ploring the idea of using case-based reasoning to complement or replace other
approaches to design support. In order to support creative design tasks, the
application of analogical problem solving is advantageous.

The idea of supporting the designer by means of case-based knowledge to
help navigate through a dynamic design process seems to be promising. More-
over, a general approach which can support various stages of design activity
is only possible with case-based reasoning: it relies on particular experience of
design and there is no need for derivation of specific heuristics of the design
process for each design stage.

Case-based reasoning (CBR) can support innovative design and redesign
activity by reminding designers of previous experiences that could match with
the new design situation, not necessary totally but only partially. This ap-
proach is able to support almost all steps of chemical process design, except
perhaps the first and last ones (i.e. from B to E). But even for steps A and F,
the sort of supporting activity can be realised. The next part describes a
case-based design supporting paradigm.



http://www.springer.com/978-3-540-75705-4


