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Summary In this chapter, we describe how creating knowledge bases from the pri-
mary biomedical literature is formally equivalent to the process of performing a
literature review or a ‘research synthesis’. We describe a principled approach to
partitioning the research literature according to the different types of experiments
performed by researchers and how knowledge engineering approaches must be care-
fully employed to model knowledge from different types of experiment. The main
body of the chapter is concerned with the use of text mining approaches to populate
knowledge representations for different types of experiment. We provide a detailed
example from neuroscience (based on anatomical tract-tracing experiments) and pro-
vide a detailed description of the methodology used to perform the text mining itself
(based on the Conditional Random Fields model). Finally, we present data from text-
mining experiments that illustrate the use of these methods in a real example. This
chapter is designed to act as an introduction to the field of biomedical text-mining for
computer scientists who are unfamiliar with the way that biomedical research uses
the literature.

2.1 Introduction

The overwhelming amount of information available to the biomedical researcher
makes the use of intelligent computational tools a necessity. These tools would help
the researcher locate information appropriate to his or her goal, identify/extract the
precise fragments of information required for each specific task, correlate and sort
the extracted information as needed, and summarize or otherwise synthesize it in
ways suitable for the task at hand. Such tools are not easy to build, by and large,
and require expertise in a variety of computer science specialties, including database
management, data analysis, natural language processing, and text mining.

Naturally, the organization and nature of the information to be so manipulated has
a great influence on the nature and level of performance of the tools used. For exam-
ple, the bioinformatics systems most widely used by biomedical researchers, those
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hosted by the National Center for Biotechnology Information (NCBI) [1], include
two types of database: (a) molecular and genetic databases and (b) bibliographic
databases (notably PubMed and PubMed Central). The structure of information con-
tained in the bioinformatics databases is precisely defined, tabulated, standardized,
homogeneous, and concerned mainly with molecular/genetic data and their deriva-
tions. In contrast, the information contained in bibliographic databases, defined as it
is in natural language, is non-standardized, massively heterogeneous, and concerned
with all aspects of biomedical knowledge (physiology and anatomy at all levels of
behavior, the body, its constituent organ systems and subdivisions).

The differences between these two types of system provide the central theme
of this chapter: while it is relatively straightforward with current computational tech-
niques to master the former, well-organized material, the latter requires sophisticated
natural language processing (NLP) techniques. Additionally, the process of using the
literature confirms to rigorous scholarly standards that necessitate careful citation of
known data, the accurate representation of complex concepts and (in the case of for-
mal meta-analysis) rigorous statistical analysis [2]. The development of Knowledge
Bases (KBs) by manual curation of the literature is being used in a great many fields,
including neuroanatomy [3-5], and yeast protein interaction networks [6]. The use
of NLP techniques has generated large-scale systems such as Textspresso (for fly
genetics [7]) and Geneways (for signal transduction [8]), amongst others.

In many sub-disciplines of the life-sciences (such as non-molecular neuro-
science, physiology and endocrinology), there are no large scale databases that
tabulate experimental findings for researchers to browse and view. In these subjects,
the vast amount of scientific information is only available to the community in the
Sform of natural language. The impact of this can be seen in the world of difference
that exists between neuroinformatics and bioinformatics databases. The CoCoMac
system (‘Collations of Connectivity data on the Macaque brain’, [4, 9]) is a success-
ful neuroinformatics database project concerned with inter-area connections in the
cerebral cortex of the Macaque. It is a mature solution for a problem that was under
consideration by national committees concerned as far back as 1989 (L.W. Swanson,
personal communication). CoCoMac currently contains roughly 4 x 10* connection
reports from 395 papers and is the product of years of painstaking data curation
by its development team. By way of contrast, the National Library of Medicine
announced in Aug 2005 that the total quantity of publicly available genetic data was
10'? individual base pairs from over 165,000 organisms.

Why is there such a massive disparity (six orders of magnitude) between the
two types of system? Two key components are present in molecular bioinformatics
systems and absent in the other domains: high-throughput Knowledge Acquisition
(KA) methods, and appropriately expressive target Knowledge Representation (KR)
systems to hold the experimental findings in a coherent structure. High-throughput
data acquisition methods have been developed for molecular work and their outputs
are relatively quantitative and simple (in comparison to the heterogeneous complex-
ity of neuroscience data). Databases such as NCBI [1], UniProt [10] and the Kyoto
Encyclopedia of Genes and Genomes (KEGG [11]) are the products of the use of
this technology for over a decade or more. If high throughput knowledge acquisition
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methods could be used on the published literature to populate a representation that
captures the essential details and linkage of experiments, the size of databases such
as CoCoMac could increase significantly.

In this chapter, our objective is to describe high-throughput methods to construct
KBs based on the application of NLP to the primary experimental literature. A ma-
jor point of discussion for this work is the ontology engineering methodolgy used to
design the target KR that we are attempting to populate. Scientifically speaking, the
process of generating a KB in this way is equivalent to the task of compiling a liter-
ature review, or more formally: ‘research synthesis’ [12]. Given the large quantities
of effort expended by biomedical scientists studying the literature, we suggest that
study tools could have a large impact on the field [13, 14].

Ontology engineering and development is attracting much interest within the
Biomedical Informatics community. A National Center for Biomedical Ontology
(NCBO) has been established at Stanford University [15], with support from several
similar research teams. Ontologies may be defined as ‘specifications of conceptual-
izations’ [16], and work in this field is mature, supported by thirty years of research
into Artifial Intelligence (AI), widely used data standards (OWL and RDF, Common
Logic, etc.), codes of best practice (e.g., the Open Biomedical Ontology foundry:
http://obofoundry.org/), and an increasing number of reliable open-source software
systems [17-19].

This chapter is therefore designed to serve a dual purpose: to provide a philo-
sophical context of text mining work and to describe the process in concrete, exper-
imental terms. We begin by introducing the idea of ‘conceptual biology’ in section
2, and how this relates to text mining in general. In section 3, we then describe the
rationale for partitioning the primary experimental literature based on ‘experimental
type’ and how this provides structure for text-mining work. We discuss existing bio-
medical knowledge bases that have been derived from the literature in section 4, and
then describe how the process of preparing a review article can define the underlying
context of the knowledge-intensive task that we are addressing in section 5. In the
latter half of the chapter, we show an example from neuroscience by elaborating the
theory (section 6), methodology (section 7) and results (section 8) of text-mining ex-
perimental work for a specific example taken from neuroscience that we introduced
in earlier sections. Finally we synthesize this work as a vision for the development
of the next generation of biomedical informatics systems.

2.2 A framework for conceptual biology

The term ‘conceptual biology’ denotes a computational approach that is based on
synthesizing new knowledge from data found in existing, already-published work
[20, 21]. Although, this approach lies at the heart of all literature-driven bioinfor-
matics systems, the term is itself rarely used explicitly. The originators of the idea of
conceptual biology developed the ARROWSMITH tool [22].

Biology is intrinsically concept-driven and is massively heterogeneous with re-
spect to the representations used for different concepts. This heterogeneity is simply
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an emergent property of the way that biological experiments are performed and syn-
thesized into facts. The Gene Ontology illustrates this by describing over 21,000
separate terms describing biological processes, cellular components and molecular
functions [23].

Let us begin by asking the following question: How do experiments contribute to
new knowledge that may be used by other researchers?

In Chapter 3 of [24], a non-biologist describes this process from 1962 to 1969 for
a Nobel-Prize-winning discovery: the chemical structure of the hormone Thyrotropin
Releasing Factor (TRF). This process was multi-stage, iterative and evolutionary.
Firstly, it was recognized that the discovery of a new fact (the structure of TRF)
would provide an important breakthrough, and then a research community went
about solving the problem through a range of experimental techniques. The members
of this community were competing fiercely with each other, so that the discoveries of
one group were immediately used by the others. Finally, in 1969, the discovery was
made that the chemical formula of TRF is ‘Pyro-Glu-His-Pro-NH2’. It is important
to note that up until that point, publications from the members of the community
were concerned with arriving at the definition of the chemical formula. When the
formula was derived, all of the previous work was summarized by this single piece
of information, which was then available for use by other scientists without any
reference to the research that had lead to its discovery.

The research process therefore generates a plethora of different complex repre-
sentations, arguments and data to supports the discovery of ‘scientific facts’. Such
facts are rarely as cut and dried as a chemical formula (as was the case with TRF).
They must usually be qualified in terms of supporting evidence and may evolve as
more research is conducted.

Knowledge engineering approaches to ontology development seek to formalize
this information within a compuatable framework to make it more tractable by the
scientific community. The fields of biomedical informatics and computational biol-
ogy depend on this process of formalization and a number of structured representa-
tions are being constructed for this purpose. The OBO foundry lists a number of these
ontologies defined at various levels. In typical ‘top-level’ ontologies, concepts are
completely generic (e.g., ‘“Thing’, ‘Organism’, ‘Continuant’). These may be used to
inform high-level biomedical concepts such as ‘disease’, ‘stress’, ‘fear’, or ‘cancer’.
In order to investigate these high-level biomedical concepts, specific experimental
models are used by scientists to provide a framework to investigate phenomena of in-
terest. These experiments provide a rigorous, logical framework for reasoning about
biological phenomena. Principles of experimental design provide the building blocks
for this framework and we refer interested computer scientists to [25] for an excellent
introduction.

Put simply, biomedical experiments generally consist of the demonstration of
statistically significant differences between measurements of a dependent variable
under conditions imposed by the choice of different values of independent vari-
ables. This is illustrated schematically in Figure 2.1. Thus, reasoning within bi-
ology depends on human expertise, experimental design, statistical inference and
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Fig. 2.1. A schematic representation of a hypothetical ‘effect’ in a biological experiment. The
graph shows a statistically significant difference in the dependent variable between conditions
Dand E.

significance-testing rather than other forms of mathematical logic (which may pro-
vide formal methods to model this specialized process).

The values of both independent and dependent variables can be classified based
on the four scales of measurement [26]. These scales are (a) ratio measurements
(fully numerical with a defined zero point, such as the Kelvin scale of temperature);
(b) interval measurements (fully numerical without a defined zero point, such as the
Celsius scale); (c) ordinal measurements (ranked data where only relative order is
available); (d) nominal measurements (simple enumerated categories). This approach
differs from knowledge-engineering approaches where inference rules must be based
on boolean values and constructed only from enumerated values.

Thus, a basic individual ‘unit’ of scientific reasoning is an experiment, consist-
ing of a set of independent variables (including the experimental protocol), depen-
dent variables, data and statistics [27]. Typically, conclusions are inferred from this
data and then presented as factual statements that are supported by experimental evi-
dence. These facts may then be summarized into a ‘model’. This model may then be
used as the basis of forming new hypotheses and designing new experiments. This
conceptual workflow forms the basis of our approach to text-mining and is illustrated
in Figure 2.2.

Within Figure 2.2, we illustrate the construction of knowledge bases from the
published literature, raw data files such as images, electronic laboratory notebooks,
general multimedia files and online data sources. Any KB would need to store and
manage these resources prior to constructing any representation of their content. De-
scriptions of experimental observations could then be derived either by manual cu-
ration, information extraction or other methods. In some cases, facts are also likely
to be mined directly from the literature (as is the case with systems that describe
protein-protein interactions for example [8]) as well as being inferred from experi-
mental observations.
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Fig. 2.2. High-level schematic representation for knowledge-base development for conceptual
biology based on common knowledge resources. Within this chapter, we emphasize text-
mining approaches based on the peer-reviewed published literature, but this framework could
conceivably apply to KRs based on any knowledge source.

Standardization is a crucial component of this work. Standards arise from either
de-facto standard approaches and technology (such as the Gene Ontology [23], or
the Protégé system [28]) or from work performed by committees and consortia to
agree on appropriate semantics to place on nomenclature and models (such as the
Microarray Gene Expression Data Society, or ‘MGED’ or the International Union of
Basic and Clinical Pharmacology or ‘TUPHAR’). One viewpoint is that ontologies,
data exchange formats, and database schemata constitute ‘computational symbolic
theories’ [29]. Certainly, these are the components where the explicit semantics of
biology are embedded into technology for use by the community.
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In our attempts to construct a framework for conceptual biology, we emphasize
the primary experimental observations as the components that are the most portable
between different subject domains. For example, descriptions of histological label-
ing within tract-tracing experiments are almost indistinguishable from descriptions
of histological labeling in in-situ hybridization experiments; a single represetation
could be used for both types of experiment. Experimental observations typically pro-
vide accurate assertions, whereas interpretations are dependent on the evidence that
support them. We suggest that observations may therefore be more accurate than
interpretations within a KB. The drawback of emphasizing observations over inter-
pretations is that additional inference is required to reconstruct the conclusions of a
study.

In order to satisfy conditions of exemplary scholarly practise, it is crucial that the
KB provide a fully-annotated link to the original phrase, sentence, figure or article
section of the mined or curated information (rather than just the citation). These
explicit links to text within the source documents and original experimental data
enable users to trace the logic that supports the claim that the interpretations are
correct. Without these features in place, users of a KB would have to read the paper
in its entirety in order to validate its claims.

Given this general architecture, we now examine how we can segment the pro-
hibitively large literature into more manageable domains upon which we may then
operate with NLP-based approaches.

2.3 Partitioning the literature - the notion of ‘experimental type’

There are two main types of scientific article: primary experimental reports and
reviews. The structure of experimental reports is quite regular and typically has the
following sections: abstract, introduction, materials and methods, results, discussion/
conclusion and references (as well as figures and tables scattered throughout). In
comparison, the structure of review articles is freeform, and is based mainly on
citations linking to knowledge found in experimental reports (or other reviews). We
focus on the originating source of new scientific knowledge by only considering
primary research articles and disregarding reviews.

Computationally, the literature itself is difficult to partition cleanly, since it is pri-
marily a resource designed with human readability and retrieval in mind. Papers are
not separated into information-specific categories that then may be collated into ap-
propriate knowledge bases. To assist with this, we define the notion of experimental-
type based on the design of an experiment. Although there is variability within the
design of any given experiment, we adopt a simplistic approach. All of the seemingly
complex choices made by an experimentalist to select a model system, methodology,
assaying technique, time-points and type of experimental subject are concerned with
the independent variables and their values. All measurements made within the ex-
periment are just dependent variables and their values.

If we wish to construct a database for scientific data for a specific experimental-
type, we first construct the database schema based on the experimentalists’ choice of
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independent and dependent variables. More specifically, we would want our database
design to be widely applicable across a large number of individual experiments and
we might ignore the less significant choices made by experimenters. This is typified
by the idea of ‘minimum information required by an experiment’ which denotes the
level of detail required in the experimental data to be able to make correct high-
level interpretations. This idea has formed the basis of standardized object models
for specific experiment types to enable collaboration and data sharing [30-33].

There is a natural parallel between the design of experiments and the design of
schemas in bioinformatics systems. Experimental-type is, therefore, a classification
of the knowledge representation schema that can adequately capture the minimum
required information for a set of experiments that share the same experimental design
and interpretation. Less formally, if two experiments’ data can be entered into a
single database in the same set of tables and attributes without needing to alter the
database schema, then the two experiments share the same experimental-type.

Another dimension of representation within scientific experiments that we use to
partition the literature is the ‘depth of representation’. These four categories consist
of high-level interpretations and primary experimental observations (shown in Figure
2.2) as well as the complete details of the experimental methods and results (for
researchers attempting to replicate the experiment) and a nuanced evaluation of the
reliability of the paper. Curation efforts (such as efforts within the GO project [23]
and CoCoMac [4]) use codes to denote the source and likely reliability of a specific
data entry.

This partition of the primary literature along two orthogonal axes of representa-
tion (‘experimental-type’ and ‘depth of representation’) is illustrated schematically
in Figure 2.3. Within our example described later, we specifically target the shaded
‘cell’ of this figure: the primary experimental observations of tract-tracing experi-
ments. We will describe tract-tracing experiments later in the chapter. For now, we
state that the high-level interpretations of these experiments describe neuronal pro-
jections between brain regions and that this information is inferred from experiments
where injections of tracer chemicals are made into the brains of experimental animals
and then processed to find histological labeling produced by these injections.

It is immediately apparent from Figure 2.3 that two types of text-mining endeavor
are possible: ‘horizontal’ studies that classify papers across experimental type and
‘vertical® studies that drill down into the specific literature pertaining to one experi-
mental type. The definition of appropriate knowledge representations and ontologies
for each experimental type at each of the different depths of representation is itself a
research topic attracting significant interest [31, 34]. Text mining projects that have
used unsupervised approaches in biomedicine have been used to index and cluster
abstracts in the Medline database [22, 35] provide examples of ‘horizontal’ studies.

It is possible to identify subtypes and specializations of experiments. Specialized
versions of tract-tracing experiments could conceivably include ‘double-labeling
tract-tracing-experiments’, where two (or more) histological labeling methods are
used to interactions between neuron populations involved in a projection revealed
by the co-localization of labeling. Other examples include ultrastructure experiments
(where electron microscopy is used to view the ultrastructure of labeled neurons) and
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Fig. 2.3. A two-dimensional partition of the published scientific literature.

transneuronal labeling (where tracers may be transmitted between neurons to view
multi-synaptic connections) [36]. Each of these experimental types would require a
different schema to represent their semantics.

2.4 Related Work: Biomedical Knowledge Bases
based on published studies

Thousands of biomedical databases are available to researchers (for a review of the
current global state of databases available for molecular biology, see the Molecu-
lar Biology Database collection in the ‘Database issue’ of Nucleic Acids Research
[37]). Within the neuroscience community, the ‘Neuroscience Database Gateway’,
provides an online overview of current systems [38]. These systems are often derived
from laboratories’” primary data (with external links to their publications), rather than
synthesizing information found within the literature. Notable systems from within
molecular biology that are based on the literature are the BioCyc family of data-
bases (EcoCyc, MetaCyc, etc.) [39—41], the BioGRID [42], Textpresso [7], KEGG
[43] and GeneWays [8]. The Generic Model Organism Database (GMOD) is a large
consortium of organism-specific systems. These include ‘dictybase’ [44], ‘EcoCyc’
[39], ‘FlyBase’ [45], ‘MGI’ [46], ‘RGD’ [47], ‘SGD’ [48], ‘TAIR’ [49], ‘TIGR’
[50], “Wormbase’ [51], and ‘ZFIN’ [52].

A new emerging profession within this field deserves mention: the ‘biocurator’.
These individuals who populate and maintain large-scale database systems with in-
formation in a readable, computable form [53]. As an emerging discipline, biocu-
ration occupies a uniquely important position within biomedical research and this
responsibility is often undertaken by teams of Ph.D. level biologists (the Jackson
Laboratory has over thirty biocuration staff [54]). Even with this level of commit-
ment and support, most teams are still overwhelmed by the volume of information
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present in the literature. Crucially, as both databases and ontologies evolve, these
large scale efforts will find it increasingly difficult to change the representations they
use or update previously curated data to new emerging representations. There is an
emerging organized community of biocurators, and the first ‘International Biocura-
tor Meeting’” was organized in 2005, arising from the collaboration between different
databases in the GMOD consortium (http://www.biocurator.org/).

Both Textpresso and GeneWays utilize NLP approaches for knowledge acqui-
sition. Within neuroscience, there are several manually-curated systems: CoCoMac
[4] and BAMS [5] describe connections in the Macaque and Rat brain. Also worthy
of mention is the work performed within the Tsuji group at the University of Tokyo.
Their development of the GENIA text corpus is specifically geared towards the bio-
medical domain and provides a general reference for Biomedical NLP research [55].
They are also actively engaged in addressed specific research questions concerning
information extraction in biomedicine [56].

The BioCyc collection has multiple databases that have undergone extensive
manual curation by members of the scientific community [39]. These systems con-
tain knowledge describing signaling pathways derived from (and in conjunction
with) genetic data. It has a well-defined ontology [57]. The collection provides
model-organism-specific databases (such as EcoCyc for E-Coli [41]) and databases
across organisms (such as MetaCyc for metabolism [40]). The EcoCyc database de-
rives information from 8862 publications in the literature (involving extensive man-
ual curation by experts).

The BioGRID system is a large-scale manual curation effort that provides a direct
comparison between high-throughput experimental methods for knowledge acquisi-
tion and literature curation [6]. It is primarily concerned with protein-protein and
protein-gene interactions in yeast (Saccharomyces cerevisisae). Within this system,
workers have curated information from 31,793 separate abstracts and 6,148 full-
text papers [6]. Within this study, the researchers found that the protein interaction
datasets taken from high-throughput and literature-curated sources were of roughly
equivalent size but only had 14% overlap between them. This suggests that mod-
ern, high-throughput techniques augment existing work, but also that the wealth of
information reported in the literature cannot easily be reproduced by these methods.

The Textpresso system was originally designed for information retrieval and ex-
traction purposes for the Caenorhabditis elegans literature [7]. It involved processing
3,800 full-text articles and 16,000 abstracts and uses regular expression patterns to
perform the information extraction step. It also employs entries from the Gene On-
tology [23] as entries in its lexicon and used combinatorial rules to build patterns
from within programs which could then be applied to its corpus. Systems such as
KEGG [43] and the Signal-Transduction Knowledge Environment [58] involves the
manual construction of representations of pathways by knowledge engineers.

The GeneWays system is a system for extracting, analyzing, visualizing and
integrating molecular pathway data [59]. In 2004, the systems’ developers reported
that they have downloaded approximately 150,000 articles into the present system.
This corpus has yielded roughly 3 million redundant statements that may then be
processed with NLP-based approaches [8]. As with the BioCyc systems, GeneWays
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uses a well defined ontology to describe signaling pathways [59]. Its information
extraction system was derived from a mature existing medical Information Extraction
(IE) system that is currently used within a production setting in hospitals [60].

It seems clear from this partial review of existing work that the likely cover-
age of data contained within manually-curated systems is a small percentage of the
total that is available. The total size of the published biomedical literature may be
estimated from the size of the complete MEDLINE corpus of biomedical citations
(available for download as compressed XML from the National Library of Medi-
cine): approximately 1.6 x 107 citations (dating from the mid-fifties to the present
day) [61]. Naturally the coverage of each knowledge base may be estimated by the
proportion of abstracts available on Medline via a keyword search. If the example
presented by the BioGrid is representative, the total number of yeast-specific ab-
stracts was 31,793 and 9,145 were available as full text. Of these, 6,148 papers were
curated into the system [6].

Naturally, if the full-text articles are not available, then they simply cannot be in-
cluded in the contents of a knowledge base. For this reason, licensing and copyright
issues become crucial to the development of these systems. Legally, the content of
research papers is usually owned by journal publishers. A notable exception to this is
the so-called ‘open-access’ publication model. The federal U.S. government has also
issued a request that researchers deposit papers that were supported under federal
funding into its open-access repository, PubMedCentral [62]. Under normal licens-
ing conditions for most well-funded universities, researchers have access to large
numbers of journals as a matter of course. After examining the online availability of
journals relevant to the field of neuroendocrinology available at the authors’ home
institution (the University of Southern California), we found that from 65 relevant
journal titles, we were permitted to access 1886 journal-years worth of text. Thus,
even under current conditions of restrictive copyright, it is possible to obtain moder-
ately large quantities of text. Note that, to computer scientists, working in the field
of Natural Language Processing, such corpora sizes are not considered large since
much work is currently done on terascale crawls of the world wide web [63].

Finally, our own work in this area consists of the NeuroScholar system, which
is a knowledge management platform for treatment of the neuroscience literature
[13]. This system is designed to be a desktop application that provides direct support
for scientists’ interaction with the primary research literature (rather than a single
large-scale centralized web-based database system). It provides a means to add both
unstructured and structured annotations to full-text articles as PDF files [14], an
Electronic Laboratory Notebook component [64] and a system to provide support
for visualization plugins based on components such as neuroanatomical atlases [65].
NeuroScholar is open-source and provides a platform for development of knowledge-
engineering technology for biomedicine. The system is available for download from
http://www.neuroscholar.org/.

In the next section, we examine how the interaction between biologists and com-
puter scientists designing such a system would take into account practices and meth-
ods from within the preexisting scholarly process.
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2.5 Practical applications: ‘Research Synthesis’

The terms ‘meta-analysis’ and ‘research synthesis’ refer to formalized approaches to
reviewing the literature [12]. Within the clinical, social and behavioral sciences such
approaches are widely used to attempt to minimize problems of variance and bias
across studies. Due perhaps to the concept-driven nature of the subject, experimen-
tal biology does not often rely on these formal approaches directly; instead workers
in the field use expert narrative reviews to summarize the knowledge contained in
specific subfields of the literature. Thus, we propose that the development of for-
malized approaches to constructing knowledge bases from the published literature is
actually a form of research synthesis or meta-analysis for experimental biology. By
leveraging a very large number of studies into this process we seek to (a) increase
the possible scope of published reviews and (b) provide tools that make writing con-
ventional reviews easier.

Following [66], the process of constructing a literature review may be broken into
stages, where researchers perform specific sets of tasks. We illustrate this workflow
in Figure 2.4. Using this approach will involve challenges at each stage which may,
or may not, be supported by computational tools.

| Conceptualize and Plan

Identify Research
Articles of Interest

Vi

| Obtain Articles

R

Evaluate Articles | | ‘Understand ' Articles |
Synthesize Research | Archive Understanding ‘

Across Articles

\/

Generate Publishable Output
(Notes / Presentations /
Reviews / Chapters)

| Publish Output |

Fig. 2.4. A schematic representation of the process of performing a literature review.
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The CommmonKADS framework is a practical methodology of generating so-
lutions for knowledge-intensive tasks [67]. Within this methodology, knowledge en-
gineers are guided through a design process involving a detailed analysis of the task
under consideration, the organizational context of the task and the agents performing
various roles in relation to it (in addition to issues of representing and acquiring the
knowledge necessary to address the task itself). Thus, it is both relevant and neces-
sary to consider the whole task under investigation and to develop models for the
contextual and procedural components of the task in question.

At the start of the process of reviewing the literature in a given field, a scientist
must first conceptualize and plan their study. This currently involves only the re-
searchers’ own expertise without support from knowledge tools. Once the researcher
has settled on a subject for their review, they must then identify articles of inter-
est by searching either Medline or Google Scholar portal. Research is ongoing to
improve the performance of these tools (see [68] for an example of adding function-
ality to Medline). Selecting relevant papers is also called ‘literature triage’ which
has been addressed in community based evaluations such as the KDD challenge cup
[69], and TREC 2004 and 2005 [70, 71].

The greatest computationally advances for scientific scholarly work is the ease
with which one may now obtain full-text articles. This process is determined by
copyright issues within the publishing process, and the vast majority of scholarly
journals have online access to full-text papers.

The processes of understanding and evaluating the article are performed itera-
tively in parallel depending on how many times and how deeply the researcher reads
the paper. Understanding the article may involve reading it several times, taking notes
and even discussing the contents of the article with colleagues. Evaluation is based
on the quality of the research within the paper (and its relevance to the reviewers).
There is not much (if any) computational support for the individual reviewer at this
stage, and this work is also the most time consuming and difficult.

Once the researcher has understood the article, he/she may archive their under-
standing by recording notes on file cards, keeping notes, or even storing a structured
representation in a local knowledge base [14]. This is an essential component of the
process since it is likely that they will forget the details of the article within a few
months unless they re-read it. Development within the NeuroScholar system specif-
ically targets this task by providing annotation tools for neuroscientists to be able to
store their opinions and accounts as a network of interrelated statements [64]. This is
similar to the development of argumentation networks [72, 73]. An important stage
of constructing a review is being able to synthesize research across articles. This
is also the role played by formal meta-analysis when applied across studies with a
common set of research criteria (such as with randomized clinical trials [74]). This
is a difficult problem, requiring deep knowledge of the subject to create conceptual
connections between papers.

Computationally, this is equivalent to data-mining and knowledge discovery.
These are analytical techniques that are used extensively within molecular biology
to search for correlations and patterns within data stored in databases (see [75-77]
for reviews). These are applicable and useful whenever data may be compiled in
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sufficient quantity, and have also been used in the field of systems-level neu-
roanatomy to look for patterns in neural connections between brain regions [78, 79].

The final tasks facing the reviewer are to generate a physical instantiation
of the research synthesis (as the finished review, a presentation or a set of notes)
and then publish or disseminate it. Given a computational representation, it is rel-
atively simple to generate tabulated or graphical output to represent the knowledge.
In addition, Natural Language Generation systems may also be used to create human
readable text that summarizes the contents of complex knowledge representations
[80].

2.6 An Example Experiment Type: ‘Tract-Tracing Experiments’

We describe our approach for a single, specific experiment type: tract-tracing exper-
iments. The methods we describe could be used for any experiment type defined at
any depth of representation (see Figure 2.3). This could be accomplished by simply
substituting the relevant schema, markup and data into the appropriate place within
the methodology.

Tract-tracing experiments were first performed in the early 1970s when tiny
amounts of radioactive (tritiated) amino acids were placed into targeted regions of
brain tissue [81]. This ‘tracer chemical’ was taken up by the cells located within the
‘injection site’ and then transported along the long axonal processes of these neurons.
The experimental animal was then sacrificed and its brain processed for radioactivity
revealing patches of ‘labeling’ that revealed the spatial location of the transported
tracer. Since these early experiments, the basic design of tract-tracing experiments
has remained consistent within the field (see [82] for a treatment of newer methods).
The types of tracers used in modern experiments are easier to use, are more pre-
cise, suffer less from tissue-specific problems (such as uptake of the tracer by fibers
passing through the injection site but not terminating there), and they produce clear
histological labeling of cells and their processes. The consistency and relative sim-
plicity of this experimental design, coupled with the number of studies performed
and the relative importance and complexity of the resulting data (connections in the
brain), sparked the development of several databases of neural connectivity over the
last 15 years where the information from these experiments has been partially stored
[4, 5, 83, 84]. None of these systems use text mining approaches and all have partial
coverage of the literature.

An object-oriented model that captures the logic of this schema is expressed in
UML in Figure 2.5, (see also [14, 34]). The logical design of a tract tracing exper-
iment is relatively simple consisting of three sets of entities that may be defined as
part of a schema. The first is the chemical used as a tracer in the experiments since
anterograde tracers (such as Phaseolus Leuco-Agglutinin or ‘PHAL’ [85]) reveal the
outputs of the neurons in the injection site, and retrograde tracers (such as Fluoro
Gold or ‘FG’ [86]) reveal the inputs. Thus the uptake properties of each tracer de-
termine how we should interpret the results. The second is the injection-site,
which captures the details of where the tracer injection was made and is a child of
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the neuroanatomical-location entity. The third entity in question pertains
to the location and description of transported labelling (Labeled-location en-
tities) which include both the location of the label and salient characteristics, such as
density and type (‘cellular’, ‘fiber’, ‘varicose’, etc.).

The <<DV>> stereotypes for labeled-location class and the density
and type attributes denote that they are considered dependent variables (and may be
processed accordingly when required within our knowledge modeling process). The
structure of other entities, such as the neuroanatomical-location involves
potentially several named structures from an atlas (at 1las—volume objects) since a
single location or site may conceivably involve multiple named structures. The abbr
attribute denotes the abbreviation commonly used to describe the atlas—volume,
and the addr attribute denotes the ‘address’ of the region (a construct used to denote
the position of the region in the hierarchy).

tract-tracing- neuroanatomical-
expt +nj | injection location
-site 4> @ top : topography
1 @ ic :ipsi-contra
+racer |, 1
1.%
chemical +regions
atlas-volume
@ abbr: string(50)
@ addr: string(255)
<<DV>>
labeled-location 1o
1.* @ <<DV>>density : ordinal-7-density - rav
+abel ¢ <<DV>>type :labeling-type
1 [ +at
atlas

neural-projection
@ origin : neuroanatomical-location
¢ termination : neuroanatomical-location
@ strength : neural-projection-strength

Fig. 2.5. Schema for tract-tracing studies used in the text-mining examples described in this
chapter.

In Figure 2.5, note the presence of the neural-projection which represents
an interpreted ‘fact’ that takes the form location A projects to location B with strength
C. A large number of these facts could be summarized into a large connection matrix
and then analyzed mathematically in a form of a model (see Figures 2.2 and 2.3,
[78]). The logic required to construct these facts is simple: if the chemical is
a retrograde tracer, then construct a neural-projection originating from the
labeled-location and terminating in the injection-site and vice-versa
if the chemical is anterograde. This experiment-type therefore provides a suitably
simple example for investigating our method’s feasibility.
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UML is not considered particularly effective as knowledge representation. It is
a widely-used inudstrial standard for software engineering and provides an effective
way of expressing class/attribute/role relationships diagrammatically. We automati-
cally converted the above schema to OWL format and show the equivalent schema
rendered for viewing within the OntoViz plugin of the Protégé ontology editing tool
(see Figure 2.6). Using UML presents a low ‘barrier to entry’ for non-specialists who
are familiar with concepts from object-oriented programming.

neuroanatomical-location tract-tracing-expt
ic Fegions* | top Wz inj
ipsi-contra atlas-volume topography labeled-location injection-site
at | lav* type density tracer
atlas labeling-type ordinal-7-density chemical

Fig. 2.6. Translation of the UML schema into an OWL ontology, (rendered by OntoViz within
Protégé/OWL).

The main challenge is to populate this representation from the textual narrative
of published papers. Naturally, the textual descriptions of this data are typically far
more complex than our simple schema, involving a wide variety of syntactic and
semantic structures (some of which act as modifiers for tags that demarcate the main
items). We use an XML-based representation to provide a set of markup tags that
capture recognizable linguistic features of entities from our target representation
and of additional entities to capture additional structure from the text. In Figure
2.7, we present two examples of text with accompanying XML markup to illustrate
our methodology, the first relatively simple, the second more complex and more
representative of our input data.

This illustrates how we use XML tags to demarcate phrases of interest (including
names of brain structures, descriptions of labeling patterns, topographic terminol-
ogy, etc.). Note that we have invented our new tags to provide additional processing
structure for subsequent evaluation. For example, the <injectionSpread> tag
denotes regions that may (or may not) be involved in the injection site. Constructing
the tagset is an iterative ongoing process where we initially created a simple repre-
sentation and then refined it as we mark up the text and run our NLP methods. The
XML scheme serves two purposes: to capture the semantic detail sufficiently well
to be able to populate the target representation and also to maximize performance
of our system’s ability to mark up the text. Consequently, there is not a one-to-one
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A.

Injections of <tracerChemical abb="w"> wga-hrp </tracerChemical> were
confined to <injectionLocation region="XII"> xil </injectionLocation>
in 4 animals and extended beyond <injectionSpread> the boundaries of

xil </injectionSpread> in 6 animals.

B

In this case , <labelingDescription density="6" type="f"> heavy
anterograde labeling </labelingDescription> was present in
<labelingLocation ipsiContra="b" region="MMm" topography="cv"> the
ventral portion of the posterior half of the medial mamillary nucleus
bilaterally </labelingLocation> ( fig . 49 , h ) ,
<labelingDescription density="4" type="f"> whereas moderate to light
anterograde labeling </labelingDescription> was present in
<labelingLocation ipsiContra="b" topography="rd" region="MM"> the
intermediate and dorsal parts of the anterior half of the medial
nucleus bilaterally </labelingLocation> ( fig . 4f , g )

Fig. 2.7. Text from tract-tracing experiments, marked up with XML tags under the current
design of the text-mining process. Note the presence of a common ‘OCR error’ in the text
extracted captured from the PDF file in (A): here ‘xil’ is really ‘XII’, the hypoglossal nucleus
in the rat.

correspondence between our markup tags and output representation shown in Figure
2.5. Traversing this step involves ongoing research that is currently at a preliminary
stage. For the rest of this chapter, we describe our approach to automatically insert
these tags into text across a corpus of papers describing tract-tracing experiments
using modern NLP techniques.

2.7 Methodology

The overall challenge, from text to knowledge

The text-mining process when applied to our problem of tract-tracing experiments
may be decomposed into subtasks: (a) identifying documents of interest, (b) delin-
eating individual experiments in the text, (c) accurately tagging the appropriate text
within the narrative, (d) annotating the marked-up text accurately, (¢) composing the
complete annotation into computable entities conforming to our target schema. Each
one of these tasks requires the use of different sets of tools to accomplish the end
goal of constructing database entries from the raw text input. Bringing all of these
components together is an ongoing task within the project.

Existing computational approaches all contribute to address subtasks of this
process. Fortunately, these separate subtasks are being addressed by research per-
formed on several different topics within the community: Document Classification,
Named Entity Recognition, Relation Extraction and Event Characterization (follow-
ing the MUC competitions [87] and more recent competitions within the bio-NLP
community [88]). Note that by our existing definitions, the overall task of extracting
information pertaining to a specific complete experiment is synonymous with that
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of Event Detection and Characterization, a task that has been notoriously difficult
to solve with high performance in the MUC and ACE evaluations (best performance
tends to hover around 60% precision and recall, [89]). Even so, given the importance
of biocuration and the high cost of maintaining biomedical databases, developing
methods to improve efficency of constructing knowledge bases will still have a large
impact.

The overall task has too many subcomponents to describe in detail here. Instead
we will focus on the process of automatically inserting appropriate tags into the text
and describe the methodology for this in detail.

Information extraction techniques: from Patterns to Conditional Random
Fields

For the NLP community, IE has been a constantly active area since the 1970s. IE
processes text corpora to populate a target representation, typically recorded in a
database. Ideally, the specific information extracted should be concise and may con-
tain several words or a phrase. Much of the current work in IE is pattern-based, that
is, specific textual patterns are defined and associated with the data/knowledge types
of interest. When the patterns match a fragment of text, they serve both to delimit
the region of interest and to allocate it to a specific data type. For example, a pat-
tern can be ‘<person> was born in <place> on <date>’. Whenever this pattern
encounters a matching sentence, the person’s name, the birth place and the birth date
are extracted. This is the approach used within the Textpresso system [7].

Acquiring meaningful patterns is the key to this approach, and is the main re-
striction in terms of its usefulness. It is usually hard to create a complete pattern list
with all variations that are naturally encountered in human language. Traditionally,
these patterns were constructed either manually or programmatically, or they were
acquired from human-annotated corpora, e.g., [90-92]. In these cases, it is not gen-
erally guaranteed that all possible patterns can be included within such a manually
compiled list. Therefore, these approaches tend to have unpredictable coverage. The
cost of human annotation in these cases is non-trivial and must be repeated in each
domain. It is also the case that required fields do not always follow fixed patterns and
patterns cannot be derived with sparse data.

Depending on the extraction task, identifying the required information from the
text may require additional knowledge beyond that expressible in a surface text pat-
tern. This limited ability of expressivity arises since the only information represented
is a sequence of words in a fixed order. Although some research reported to de-
rive more complex patterns by mixing Part of Speech (POS) tags and surface words
[63, 93], patterns cannot be integrated with other types of useful required knowledge,
(such as the root form of a word).

A straightforward way to construct patterns is to annotate manually a large num-
ber of sentences with the required slots (a laborious task). It is possible to learn sur-
face patterns by bootstrapping from a set of seed data [94, 95]. However, the power
of this approach is somewhat limited and at most, only two slots are allowed in a
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single sentence. The ability to learn patterns with multiple slots has not been yet
reported with reasonable performance.

In this bootstrapping procedure, a set of seed data pairs are prepared in advance.
For example, we first manually create a list of person names and their birthdates for
the relation ‘birth date’. The system then scans a text corpus (or a corpus returned
by querying search engines with these terms). Any sentence containing both search
terms is automatically identified. Slots are renamed with two anchor names, for ex-
ample, <person> and <birthdate> respectively in this case. A suffix tree traverse
algorithm [96] then builds a suffix tree to strip off non-common portions of the sen-
tences, leaving potential patterns. The learned patterns can be verified with a small
validation set and used to extract relations in the future. Systems requiring averagely
ten to twenty seed data pairs can obtain promising results while significantly reduc-
ing expensive human costs.

As mentioned above, pattern-based approaches learn useful patterns to pinpoint
required fields values using seed data. Most approaches on binary relation extraction
[94, 97] rely on the co-occurrence of two recognized terms as anchors in a single
sentence. However, this approach cannot be generalized to more complex situations
where the data corpus is not rich enough to learn variant surface patterns. Although
surface pattern based techniques perform well when sentences are short and complete
pattern lists are available, sentences within biomedical articles tend to be long and the
prose structure tends to be complex, reducing the effectiveness of short contiguous
patterns. What is required is the ability to recognize automatically, sequences of
important indicator terms, regardless of intermediate material and then to assemble
the pertinent parts as required.

A promising development within NLP research is the Conditional Random
Field (CRF) model for sequential labeling [97, 98], which has been widely used for
language processing, including improved model variants [99], web data extraction
[100], scientific citation extraction [101], and word alignment [102]. The origina-
tors of the CRF model provide an open-source implementation in the form of the
MALLET toolkit [103].

As given in [104], this model is simply a conditional probability P(y|x) with
an associated state-based graph structure. Within a labeling task, where the model
traverses a set of tokens (words) and labels each one according to the current state of
the model, the most likely transitions between states (to given the most likely label
assigned to a given token) is given by summing a set of weighted feature functions.
Here each feature, defined by the system builder, reflects some (potentially) pertinent
aspect of the text: it may be a word, a part of speech, semantic or syntactic label,
punctuation mark, formatting command, efc.

The structure of this graph is adaptable and when it takes the form of a lin-
ear chain, the CRF model has very similar properties to Hidden Markov Models
(HMMs). CRF models have inherent characteristics that outperform the limitations
of old pattern based approaches: they view all the required knowledge to extract use-
ful information as features and given reasonable training data, they compile those
features automatically to extract information. They can provide a compact way to
integrate many different types of features (including explicit surface word patterns).
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Therefore, CRF models have more powerful expressivity even when potential
patterns have never been seen before by the system. In this situation, the CRF models
utilize related information from heterogeneous sources. Additionally, they do not
suffer from any limitation to the number of slots per sentence.

We use plain text as a token sequence for input and attempt to label each token
with field labels. For each current state, we train the conditional probability of its
output states given previously assigned values of input states. Formally, given a sen-
tence of a separate input sequence of word tokens, S = (wy,wa, ..., w,), we attempt to
obtain a corresponding labeling sequence of field names, L = (11,15, ...,1,), and each
input token corresponds to only one label. The field names must include a default
label, ‘O’, denoting that the token receives a null label.

The CRF model is trained to find the most probable labeling sequence L for an
input sentence S by maximizing the probability of P(L|S). The decision rule for this
procedure is:

L = argmax P(L|S) .1)
L

As described above, this CRF model is characterized by a set of feature functions
and their corresponding weights. The conditional probability can be computed using
Equation 2.2 (as with Markov fields).

1
P(L|S) = 7, %P <Z Zkk*fk(lll,l,,S,t)> (2.2)
=1 k

Where fi(l;—1,1;,S,t) is a feature function, including both the state transition
feature fi(l;—1,1,S) and the feature of output state given the input sequence fi(1;,S).
A detailed introduction to the mathematics of this formulation may be found in
[98, 104] and will not be repeated here.

The individual feature functions are created by the system builder, often us-
ing standard computational linguistic tools such as parts of speech (POS) taggers,
parsers, lexions efc. Since the CRF model automatically learns which features are
relevant for which labels, the system builder is free to experiment with a variety of
features.

The methodology we use is based on a supervised-learning approach. In or-
der to learn which features predict which label(s), the CRF model requires a pre-
labeled training set to learn and optimize system parameters. To avoid the over-fitting
problem, a Gaussian prior over the parameters is typically applied to penalize the
log-likelihood [105]. We calculate the first-derivative of this adjusted log-likelihood
value, and use it to maximize this probability and estimate the values for A;. Once we
have obtained these parameter values, the trained CRF model can be used to make
predictions with previously unseen text.

The principal obstacle to the development of general-purpose information ex-
traction systems based on supervised approaches is that obtaining enough suitably
formatted training data upon which to train the system is either too expensive or too
complex. Besides the bootstrapping approaches described previously, the procedure
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called ‘active learning’ strives to reduce the annotation cost by selecting the most
informative training examples and presenting just them to the annotators, thereby
obtaining from them the maximally useful feedback. Once these informative exam-
ples have been constructed they are added to the training set to improve system
performance. Thus, one can start with a small annotation set, train a system, pro-
vide annotators with initial, largely inaccurate system results, and then use the cor-
rections provided by the annotators to refine the learning process. Active learning
approaches may be categorized on the basis of the selection criteria concerning
data to be cycled through the annotation/correction process. ‘Committee-based’ ap-
proaches select data with the highest disagreement (in the classification task) to be re-
processed. ‘Uncertainty/certainty score-based’ approaches, require that all new data
undergoing classification are assigned uncertainty/certainty scores based on prede-
fined measurements. Those data with the highest uncertainty scores are then returned
to be reprocessed by a human annotator and added to the training set.

These methods can significantly accelerate the process of annotating training data
for machine learning systems. Although these methods were initially introduced into
language processing for classification tasks [106, 107] many different NLP fields
have adopted this idea to reduce the cost of training. These include information ex-
traction and semantic parsing [108]; statistical parsing [109]; Named Entity Recog-
nition [110]; and Word Sense Disambiguation [111].

Stage 1: Corpus Processing

The first stage of performing text mining work is to obtain and preprocess as large a
body of textual information as possible. This involves downloading research articles
from the web and extracting the text of these articles to remove the formatting used
by individual journals. This is a vital but non-trivial step since the articles may only
be available in formats that are difficult to manipulate (such as PDF). In addition to
this, the publishing process places breaks, figure- and table-legends into the flow of
the text so that an uninterrupted stream of the experimental narrative is not directly
readable from the file without additional processing. Within our example application
concerned with neuroanatomical connections, we used a geometric, rule-based ap-
proach built on top of a well-engineered, open-source document management system
(‘Multivalent’ [112]) to parse the PDF files that make up our corpus.

We use the Journal of Comparative Neurology as the basis for our text corpus.
This is an authoritative publication for neuroanatomists and for neuroscience in gen-
eral [113]. We acted within the journal’s copyright guidelines to download roughly
12,000 articles dating from 1970 to 2005. This coincides with the timeframe over
which tract-tracing experiments have been performed. We used papers that had con-
sistent formatting from volume 204 to 490 (1982-2005) providing a complete text
corpus of 9,474 files and 99,094,318 words distributed into various article sections
(‘Abstract’, ‘Introduction’, etc.). We restricted our attention to the results sections of
these papers, which comprised roughly one quarter of the total text in the corpus.

As with many other researchers in the field of biomedical text mining, the pre-
ferred representation for text data is the Extensible Markup Language (XML). There
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are preexisting XML editors that support the process of adding annotations to text
(see, for example, the Vex system [114]). This provides a convenient standardized
user interface for the process of annotation (which is the most time-consuming and
tedious component of this type of work). Vex also uses standard web-formatting
(Cascading Style Sheets or ‘CSS’) to permit the user to define their own visual for-
matting for the text being annotated. For a review of tools to assist with managing
corpora and their annotation, see [115].

Stage 2: The basic text processing and feature definition

In order to locate the text that pertains to the semantic structures specified in the
schema, we use a set of morphological, lexical, grammatical or semantic functions
to provide features that can train the CRF model to tag words appropriately. These
feature functions implement NLP-based functions and may use downloadable tools
within their implementation. The binary functions that we define for our target ap-
plication are as follows:

* Lexical features: Entities defined within the schemas affiliated with each type of
experiment are often identifiable through specific names. Note that in many do-
mains that have not been centralized and regulated, the nomenclature of concepts
is often quite messy, exceedingly complicated and contradictory (see [116, 117]
for examples from neuroanatomy and [118, 119] for a discussions of this topic in
the context of Named Entity Recognition for molecular biology). For our work
with tract-tracing experiments, we use lexicons that are pre-chosen for differ-
ent components of the schema. These include named neuroanatomical structures
(taken from [120]), the neuroanatomical cardinal directions! (e. g., ‘caudal’, ‘ros-
tral’, etc.), names and abbreviations of tracer chemicals used (e.g., ‘PHAL’), and
commonsense words that describe the density of labeling (e.g., ‘dense’, ‘weak’,
etc.). Given a different schema, we would select different features and would
construct lexica from the expanding number of biomedical controlled vocabular-
ies that are now avaiable (see [121] for review). Every word in a given lexicon
forms a separate feature (e.g., the feature lexicon—-region only returns 1 if
the word being labeled appears in the ‘region’ lexicon).

* Surface and window words: We employ the word itself and the immediately
surrounding words as features for the labeling algorithm, (e.g., the feature
surface-injection only returns 1 if the word being labeled is ‘injection’;
the feature previous—injection, returns 1 only if the previous word
is ‘injection’; the next—injection feature function acts similarly for the
following word).

I'Six terms are typically used to denote directions along the three orthogonal axes within
neuroanatomy: ‘rostral’ and ‘caudal’ denote the front-to-back direction; ‘medial’ and ‘lateral’
denotes towards or away from the midline; and ‘dorsal’ and ‘ventral’ denotes the top-to-bottom
direction. These terms are often used in combination, so that ‘dorsolateral’ refers to a direction
to the top and away from the midline.
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* Dependency relations: We use a dependency parser (‘MiniPar’ [122]) to parse
each sentence, and then derive four types of features from the parsing result. The
first type is the root forms of words when this differs from the presented form
(e.g., the feature root—inject, only returns 1 if the being labeled is ‘injected’,
‘injection’ or some other derivation and O otherwise). The second and third types
of dependency feature are based on the subject and object of the sentence. For
example, the feature syntax—subject, only returns 1 if the word being la-
beled is the subject of the sentence. Similarly, the feature syntax—object
only returns 1 if the word is the object of the phrase. The fourth type of feature
is based on the governing verb for each word. We traverse dependency relations
to the nearest verb within the parse and then base the definition of our feature on
the root form of that verb (e.g., the feature govern—inject, only returns 1 if
the word being labeled is governed by the verb ‘to inject’ in the target sentence).

It should be remembered that the choice of features is not restricted for the set de-
scribed above. These simply provide a working model for our tract-tracing example.
Other types of features that can be used may be based on parts of speech, character
n-grams, word-shapes, previously tagged words, short forms of abbreviations and
other variants (see [123] as an example with a widespread choice of features). The
choice of feature functions largely determines the performance of the system and is
where the system designer can most greatly influence the outcome of the text-mining
process. It is also possible to view the weight parameters for each individual feature
for each state transition within the CRF model. This provides possible powerful in-
sight into the reasoning learned within the labeling task.

Interestingly, studies of automated methods that evaluate the reliability of curated
facts within the Geneways system also consider relationships and clustering between
features themselves [124]. This illustrates the versatility and power of machine learn-
ing approaches in this context. Biomedical experts contribute to this process by pro-
viding training data for which computer scientists and NLP-experts may then devise
suitable features.

Stage 3: Evaluating the results

As is usually the case within the field of NLP, quantitative evaluation is essential
for the development of the techniques described here. The standard measurements
that are most relevant to this question are measures of inter-annotator agreement
(often based on the kappa statistic, [125]). This is calculated in the following formula
where P(A) is equal to the proportion of times annotators agree, and P(E) is equal to
the proportion of times annotators would be expected to agree according to chance
alone.

P(A) - P(E)
1 —P(E)

The recall (what proportion of target items have been correctly extracted?) and
the precision (how many of these extracted items were themselves correct?) are

Kappa = 2.3)
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routinely measured and reported for IE tasks. These two values may also be ex-
pressed as a single number by the use of the F-Score, see [126, 127].

o # of correct extracted items
Precision = - 2.4
#of all extracted items

# of correct extracted items
Recall = - - 2.5)
#of target items from the ‘gold standard’ reference

2 x Precision * Recall
F — score = — (2.6)
Precision + Recall

Methods of evaluation within the field as a whole centers around shared evalua-
tions where the task being addressed is standardized and presented to the community
as a competition. Within biomedicine, recent evaluations include the KDD challenge
cup task 1 (2002) [69], the TREC genomics track (2003-2006) [70, 71], BioCre AtIVE
(2003-2004, 2006) [128].

Extrinsic measures of evaluation provide feedback from the perspective of do-
main experts and are based on subjective criteria such as ‘is this useful?’, and ‘does
this save time?’. Evaluating these type of criteria must depend on subject interviews
and questionnaires. It is also possible to record behavioral statistics from the use of
the system, which can provide valuable data to indicate how well the system per-
forms at a specific task.

We focus on the development of systems that must be developed, implemented
and tested. Whilst engaged in this pursuit, we use four extrinsic evaluation tasks. (1)
requirements evaluation (are requirements fully specified, complete and attainable?);
(2) system validation and verification (does the system fully represent the knowledge
it is supposed to, and is the system built well technically?); (3) usability evaluation
(is the system easy to learn and use?); (4) performance evaluation (how well does
the system fulfill its requirements?). One important measure that we emphasize is
the time taken to annotate documents by domain experts. Usage metrics (such as the
number of system downloads over a given period) can also provide insight as to the
impact of a given system on the community [129, 130].

2.8 Results

In a series of experiments, we marked up 21 documents by hand, providing 1047 sen-
tences (at an approximate rate of 45 sentences per hour). We then randomly divided
this data into training and testing sets (with 698 and 349 sentences respectively)
to reconstruct our annotations. The system’s performance based on different com-
binations of features is shown in Table 2.1. Performance of this task is acceptably
high (F-Score = 0.79). This is especially encouraging because the number of train-
ing examples (14 documents) is relatively small. We then ran our labeling system on
previously unseen text and corrected the machine driven annotations by hand. We
found that this process had been accelerated to an approximate rate of 115 sentences
per hour.
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Table 2.1. NLP performance (Precision, Recall and F-Score) for text-mining from tract-
tracing experiments. Features Key, L = Lexical, C = Current Word, P/F = Preceding or Fol-
lowing Word, W = Context Window, D = Dependency features.

Features Precision Recall F-Score
Base 0.41 0.18 0.25
L 0.60 0.37 0.46
L+C 0.77 0.73 0.75
L+C+P/F 0.77 0.73 0.75

L+C+PF+W 0.81 0.75 0.78
L+C+PF+W+D0.80 0.78 0.79

The confusion matrix describing the errors made by our system is shown
in Figure 2.8. The leading diagonal holds the counts of our system’s cor-
rect guesses for word-labels, and off-diagonal counts demonstrate errors. Note
that the three labels for different types of neuroanatomical locations are fre-
quently confused (<injectionLocation>, <tracerChemical>, and
<labelingLocation>). Pooling these labels into a single category yields
Recall = 0.81, Precision = 0.85, F-Score = 0.83. This emergent property of the
textual descriptions may also have relevance to the design of the knowledge repre-
sentations and ontological resources derived from text. Annotating the text of articles
involves developing suitable labeling schemes and performing a large amount of
annotation. This is particularly instructive concerning subtleties of representation
that may be relevant to ontology engineers. We envisage that much of our future
work will center on the actions of biocurators as knowledge engineers, enabled in
their work by NLP approaches and KB systems.

human labels

&
532 ,2 88 bz 2

Counts SRR to 8% S =

== A =1 g- = 2= =29

o 8585 93 83 534
o 41087 141 97 338 1751 6 143420
injectionLocation 545 744 48 6 820 1 2164
injectionSpread 126 43 147 1N 155 0 482

labelingDescription | 1121 5 0 3773 82 47 | 5028
labelingLocation 1988 224 110 27 9251 0 (11600
tracerChemical 108 1 12 0 0 623 744
44975 1158 414 4155 12059 677

s|aqe| auiydew

Fig. 2.8. A ‘confusion matrix’ for the tract-tracing experimental data.
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2.9 Conclusions

This chapter is concerned with ‘Intelligent Text Mining’; thus, the main component
of our work described here is to describe an appropriate target for our text mining
approaches. The central concept of this work is the view shown in Figure 2.2: we
base our methodology primarily on experimental observations (that may be used to
construct representations of ‘facts’ and ‘models’). Each individual experiment, con-
sists of a set of independent variables (that capture the constraints imposed on the
experiment) and a set of dependent variables (that capture the measurements made
within the experiment). Commonly used experimental designs provide templates for
specific experiment-types that can be used to create effective data summaries of ex-
perimental observations.

Despite the astonishing scholarly abilities of top-level biologists, the number of
individual experimental facts that typically pertain to any phenomenon of interest
taxes the limits of human memory. The overall objective of this work is to provide
large-scale knowledge-bases that serve as massive literature reviews. We observe that
the process of constructing such systems mimics the process of performing a meta-
analysis of the literature for specific experimental-types. Once such a knowledge-
base has been compiled, new, previously unseen summaries of research data provide
insight that is only possible from data-mining of such large-scale systems (see [3] for
mathematical meta-analyses of neural connectivity based on these summary data).

The rate-determining step facing workers building such systems is knowledge
acquisition, and many existing biomedical databases rely solely on the highly expen-
sive process of human curation. This provides the underlying need for text-mining
tools that fit can supply appropriately structured data. An interesting challenge of
building these text-mining approaches lies in the possibility of providing tools that
can be used by biocurators, which may then leverage their expertise and dedication
into their functionality. It is crucial that advances in computer science translate effec-
tively into application development for academic biomedical informatics systems. In
our example of neuroanatomical tract-tracing experiments, we provide a system that
may be used to support specific databases for this experimental-type [4, 5]. Given
the performance of our system (F-Score = 0.79 for the text labeling task), we would
not expect to provide a completely automated solution, but a significant increase in
biocuration efficiency may permit these system-developers to provide a more com-
prehensive account of the literature with fewer curation resources.

It is currently an exciting time in the field of biomedical knowledge engineer-
ing. Advances in the performance and versatility of open-source machine-learning
systems [98, 103], and in the maturity and infrastructure surrounding the use of on-
tologies in biomedicine [15] provide a rich, highly collaborative and productive envi-
ronment for future work. We hope that this chapter encourages computer scientists to
address these important questions through the development of new approaches and
tools.
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