2. Shape Classes

2.1. Possible Classes of Shape

The proposed method of shape understanding is based on the concept of
shape classes that are understood as the basic perceptual categories. The
Shape Understanding System (SUS) perceives the visual object by trying
to fit it into one of the shape categories. Although shape is one of the most
often perceived “properties” of the visual object, there is no satisfactory
classification and definition of shape. An attempt to develop the system of
shape classification that is based on the shape classes was made by Les [1].
Shape classes called shape categories (in the context of visual thinking) are
used as the “material” of the visual thinking process. The shape classes are
represented by the symbolic names and are defined in the context of visual
understanding process. Each class is related to each other and based on
relationships among classes there is relatively easy to establish the “per-
ceptual similarity” of visual objects.

In this chapter, the description of the shape classes is presented within the
framework of shape understanding method. Shape understanding method is
based on the concept of possible classes of shape [1]. A member of the
class that is defined in terms of its attributes is called an archetype of this
class. In the case of a digital image, the shape is given as an image region
or a set of pixels. A perceived object (phantom) is transformed into a
digital representation called a digital object. The proper interpretation of
the visual object is obtained during the visual reasoning process. During
the visual reasoning the perceived object is transformed into its symbolic
description called the symbolic name. The symbolic name is the name of
the shape category (shape classes) to which the shape of the perceived ob-
ject is fitted. The symbolic name is used to find the visual concept and to
assign the perceived object to one of the ontological categories. The visual
concept is a set of symbolic names obtained in the learning process. The
shape class is denoted by symbol 27, where 77 denotes the symbolic
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48 2. Shape Classes

description (the symbolic name) of a given class. A member of the class
denoted by symbol @ is called an archetype.

In this book, for simplicity, the symbol of the class (2 is omitted and
the class is often described by its symbolic name, e.g., A instead of 2"
or Q3[A](n,) instead of Q%40 Also n classes 3,,...,3, thatare

- N —
identical J, = S_I. for all i=1,....,n, j=1,...,n, and i # j are denoted as
n-3, whereas n classes J,,...,, that are not identical are denoted as

~ —
n<s. n
The general shape classes are defined based on the general attributes of

shape such as homotopy, convexity, or thickness. The general class is split
into specific classes based on additional features that represent a priori
information about local perceptual and geometrical properties of shape and
is incorporated into the a priori model of the shape class. The deepness of
the splitting process depends on the base class from which the specific
class is derived. In this book, the following general classes are presented:

. . A I
cyclic—acyclic general classes 27 —£2° | convex—concave general classes
0" —%  and thick—thin general classes 2" —Q° .

2.1.1. General Classes: A Priori Classes

The homotopy measure that is based on the computation of a number of
holes is applied to derive the cyclic—acyclic general classes 2" —Q" . An
element of the shape class, called an archetype, is called acyclic, if its
homology groups H,(X) coincides with homology groups of a point,
i.e., the Betti numbers b;, b, are equal to 0, and by=1, where b, =
rank H,(X'). The Oth Betti number b, stands for a number of components,
while b, denotes a number of wholes in shape. The derivation rule for
the cyclic general class is given as follows: where [¢” =0]= Q2 < 02",
a' denotes an attribute called homotopy and symbol < denotes that class
0" is derived from the class £2.

The convexity coefficient that is given as the ratio of the area of the
object A, to the area of the convex hull 4, a" =4,/ A, is used to

derive the convex £2” class and the concave 29 class. The convex hull
of a set of points X in the plane is the smallest convex polygon P that



2.1. Possible Classes of Shape 49

encloses X, smallest in the sense that there is no other polygon P’ such
that PO P’ > X. The computation of the convex hull of a finite set of

points in the plane has been studied extensively and some of the algo-
rithms as well as discussion of the complexity of the convex hull algo-
rithms can be found in [2, 3]. The derivation rule of the convex class is
given as follows: [a" =0]= 2 < 2", where a" is an attribute of the

class. The convex general class €2 is related to the notion of a convex set
(see, e.g., [4]). A set X in E” is convex if for any two points X,y € X ,
the (closed) segment Xy is wholly contained in this set (Xy < X ) or, in

another way, a set X is called the convex set if for any two points of this
set the following relation takes place: Ax+(1-A)ye X, for each

A €[0,1].
The thin class £2° is a class whose members are thin objects. The des-
cription of the object in terms of thickness can be obtained utilizing a dis-

tance transformation. The distance transformation is a mapping of a set of
points into a set of predefined distances (see, e.g., [5]). The distance trans-

formation (the thickness measure) is the image transformation points-number
" described in [6] that assigns the number to each point ulF eII" based
on the local properties and is given as follows:

[Vuf ell”, 3067 eR:0’ =hp(uf)}:>ui >o?,

where the local transformation hp (ul.p ) is determined by the selected
neighborhood. In the case of a distance transformation the local transfor-
mation is given as

hp(uf)z min |uu’ |,

! ukF el
F_F . . F . .
where |u, u; | denotes distance between a point u; and an arbitrary point

ukF e[I”. The detail description of the image transformations @" is

given in Chap. 3. The thin general class 2 is derived based on the thick-
ness measure which is the attribute of this class. The derivation rule for

the thin class 2 is given as follows: [a” < 0]= 2 < Q°, where a”
denotes a thickness measure and @ is the threshold.
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TDel

Fig. 2.1. Examples of exemplars of the selected general classes (a—b) cyclic,
(¢) convex, (d) concave, (e) thin

In Fig. 2.1 exemplars of the four general classes, the cyclic class
(Fig. 2.1a, b), the convex class (Fig. 2.1c¢), the concave class (Fig. 2.1d), and

the thin class (Fig. 2.1¢), are shown.
In the further parts of this book the description of the selected shape

classes is presented. The a priori classes such as the convex polygon class
or the concave polygon class are derived from the general class. The a pos-
teriori classes such as the star class or the spade class are derived from the
specific a priori classes.

2.1.1.1. Convex Classes

2.1.1.1.1. Convex Polygon Class and Its Subclasses

The convex polygon class 2" consists of elements that are called the
convex polygons. A polygon is a simple closed plane figure that is
bounded by a finite number of intersecting line segments (at least three

segments are required). The polygon p:[0,1]— R* is a piecewise linear
continuous function. The convex polygon class £2° is derived from the
convex general class £2” by assigning the value 0 to the curvature x(t)
of the border curve. The curvature x at F for a continuous function /" is

defined as the instantaneous rate of change tangent angle with respect to
the arc length

o _ lim 2B =a(B)
" RR

where a(F) is the angle between the positive x-axis and the direction of

the tangent line at a point £} and PO]D1 is the arc length between P and F,.

The detail description of the curvature in the context of the concepts of
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the differential geometry can be found in [7]. In the case when curve is
given by the parameterized form g(¢)={x(¢),y(¢)} with parameter
t € @ C R, the curvature is expressed in terms of derivatives of the curve
as follows

-

o ()'cz+j/2)3/2 :

Several methods of the curvature computation were proposed. For
example, curvature as the change of cosine over a region of support is
given in [8], the curvature as the rate of change of slope expressed as a
function of length is described in [9], or the curvature as a convolution
with a Gaussian kernel is described in [10].

The convex polygon class £2" is given by the following derivation rule:
[Vtelt,t, ]:k(t)=0]= Q2" = Q" Here, [t,t,,] is an interval where
the first derivative of the polygon curve given by the equations
x=x(t),y = y(t) exists.

The convex polygon class 2" is split into base convex polygon classes
based on the derivation rules

[EIneN:n:av]:QL>-QL”,

where a" =| V| denotes the attribute of the class (the cardinality of the set
of vertices V). A mathematical object is a cardinal number (cardinality of a
set) if and only if it is a power of a set [11]. For the set V of vertices, its
cardinality is denoted as | V' |. The classes with n =3, 4, 5, and 6 (number
of sides) are denoted by the symbolic class description L' as follows: r
(triangle class), L' (quadrilateral class), L’ (pentagon class), and L°
(hexagon class).

The class L' is split into specific classes against the relations between
selected attributes (al,d ,a;” ) . For example, the right triangle class L; is the
class whose archetypes are triangles with one interior angle that is equal to
90°. The derivation of the right triangle class Lie from the triangle class
L’ is given by the following rule

Haf‘eAG:af‘:Z}:L3>—L;.
2
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2.1.1.1.2. Convex Curve-Polygon Class and Its Subclasses

The convex curve-polygon class 2" consists of the geometrical figures,
which have curvilinear parts as well as linear segments. The curve-polygon

class 2" is defined against the value of the curvature x(¢) as follows
[Fi:Vte(t,t,, ), k() =0]= Q2" =Y,

where ¢, (i=1,...,N) is the value of a parameter for which the curvature

x(t) does not exist.

Splitting of the convex curve-polygon class M into the base classes is
based on a number of straight line segments and a number of curvilinear
segments m of archetypes of the class M . The description of the base con-

vex curve-polygon class is related to the generic polygon class L' . Arche-

type of the generic polygon class L' is constructed by joining vertices of
the straight line segments as shown in Fig. 2.2. Archetype shown in Fig.

2.2a is a member of the curve-linear class M'[L'], where 1 denotes one
curvilinear segment and L' denotes the generic polygon (rectangle Fig.
2.2b). Examples of the archetypes of the base convex curve-polygon
classes are shown in Fig. 2.2. The symbolic names for archetypes shown in

Fig. 2.2 are as follows: M '[L’] (Fig. 2.2¢), M'[L'] (Fig. 2.2d), M*[L']
(Fig. 2.2¢), M'[L’] (Fig. 2.2f), and M'[L°] (Fig. 2.2g). Construction of
the generic polygon is presented in Fig. 2.2a—b. The generic polygon is ob-
tained by joining straight line segment vertices.

The class M ™[L"] is split into specific classes based on the type of the
curvilinear segment and the description of the specific curve-polygon class

is given in the form M"[L"'[(m#},), where L' is a generic polygon class,

L0000

a b

Fig. 2.2. Construction of the generic polygon: (a) an archetype of the convex
curve-polygon class, (b) the generic polygon obtained by joining straight line
segment vertices. Examples of archetypes of the convex polygon-curve class (c—g)
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m is a number of curvilinear segments, and 491’5 denotes a type of the curvi-
linear segment. Each symbol of the type of the curvilinear segment 9'}’; has
its meaning: € denotes convexity of the curvilinear segment 8 €[c,w],

where ¢ is a convex curvilinear segment and w is a concave curvilinear
segment; f denotes the curvilinear segment f €[0,1,2], where 0 denotes a

“function,” 1 denotes a “nonfunction” only on one side, and 2 denotes a
“nonfunction” on both sides. The “function” is a curvilinear segment that
is the graphical representation of any function y = f(x). H denotes the

height of the curvilinear segment H €[0,1,2], where 0 indicates a low

height segment, 1 indicates a medium height segment, and 2 indicates a
high segment. The height is the perpendicular distance from the chord
connecting the endpoints of a curvilinear segment to the farthest point on
the curvilinear segment. The symmetrical curvilinear segment is denoted

9_ A
as 0, .

Archetypes of the class M' possess only one straight line segment and
one curvilinear segment. The description of the specific class derived from

the class M' is given in the form M : ((91’;) . The examples of exemplars
generated from the class M' are given in Fig. 2.3. The symbolic names of
the exemplars shown in Fig. 2.3 are as follows: M ! (012 ) (Fig. 2.3a),
M'(c}) (Fig. 2.3b), M'(c) (Fig. 23¢), M (&) (Fig. 2.3d), M'(c;)
(Fig. 2.3¢),and M (g; ) (Fig. 2.3f).

Archetypes of the class M'[L’] possess two straight line segments and
one curvilinear segment. The description of the specific class derived from

a b c d e f

Fig. 2.3. Exemplars generated from the class 2" : (a) M' (012 ) ,(b) M (cll ) ,
© M'(c!).@ M'(5)). 0 M'(c”). 0 M'(c;)
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Fig. 2.4. Archetypes of the class M '[L’](8/ ) (a-h), MZ[L4] 6.6/ ) (ip)
H 1%

the class M'[L’] is given in the form M 1[L3](6’;f1'), where 6}, denotes
the type of the curvilinear segment. Archetypes of the class M 1[L3](9;; )
in Fig. 2.4(a-h).

Archetypes of the class M 2[L4] possess two straight line segments and
two curvilinear segments (see Fig. 2.4(i—p)). The specific class derived from the
class M?[L'] is given in the form M 2[L4](t9§9§), where 6}, denotes

the type of the curvilinear segment and L' denotes the generic polygon.

2.1.1.1.3. Convex Curve Class and Its Subclasses

The convex curve class 25 consists of convex curves. A convex curve
in £2 can be described in many different forms: an implicit equation
F(x,y,z) =0, a parametric equation (x(¢),)(f)), the parametric Fourier equa-
tions, parametric B-splines, or wavelets. The approximated forms of curve
representation, such as Fourier series, cubic-splines, B-splines, /7 -splines,
and wavelets, are often used in geometric modeling (e.g., [12]) and are most
promising as a model for the convex curve class. The Fourier series can be
seen also as a definition of a curve in the parametric form. The curve /~ can
be expressed in the form of its truncated Fourier series as follows:

N 2nnt . 2nnt
x(t):a0+2(an cos 7;” +b, sin 7;" ),
n=1

S . 2mnt
y()=c,+ Z(cn cos 27;” +d, sin 7;” j
n=1
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The coefficients a,, b, ,
Brigham [13].

The equation for a single parametric cubic spline segment is given by

c,, and d,  are computed as described in

n?o

4
P(ty=> Bt", t,<t<t,,t,<t<t,
i=1

where #; and t, are the values of parameters at the beginning and at the end
of the segment. P(¢) is the position vector of any points on their cubic
spline segment. The curve can be computed as

3 3
Ci)=Y 4,0, Ci(t)=D B,t', 1, <t<t,.
i=0 i=0

The constant coefficients 4; and By are determined by specifying four
boundary conditions for the spline segment [12].
B-splines are given by the parametric equation

()= ib,-,k(zﬁ,.,

where ¢,,q,,...,q, are n+ 1 control points. The index k=2,3,..., deter-

mines the number of control points that have influence on the points of the
curve [14].

Discrete parameter wavelet transform DPWT [15] can be used to re-
present curve f{¢) as follows:

f(&)=c) > . DPWT(m,n)¥,, (1),

where ¢ is some constant dependent on ¥ (t). The discrete parameter
wavelet transform is given by DPWT(m,n) = J SO, ,()dt, where
¥, ()= agm/zﬁ’f(agmt —m’o), ¥ o()=¥(t),and a, and 7, are con-
stants that determine the sampling intervals.

It can be proved (see, e.g., [7]) that a unit-speed curve /} (a,b) >R

. . . . . . 2
whose curvature is given as a piecewise continuous function x : (a,b) —> R
is given by
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A

7 () =(JeosO(s)ds +c|sin O(s)ds +d
0(s) = _[K(S)ds+00 ; (1)

where ¢, d, and @, are integration constants. The curvature given as a
piecewise continuous function x is characteristic for the curvilinear seg-
ment. Equation (1) can be used as a model of the curve class. However to
derive the specific classes the heuristic rules are applied that make it pos-
sible to define the classes based on more perceptually oriented approach.
The curve class £2° is defined by using a curvature and is given by the
derivation rules [V €[t,,,]: k(t) > 0] = 2" = Q" where parameter
varies over a given range ¢ €[¢,,1,].

The class K' is the class whose archetypes are regular curves. The
regular curve is a curve that is convex and symmetrical. Archetypes of the

convex curve class K' are defined by the ellipse equation
2 2
by
-4+ y_ — 1,
a b
which is parameterized by two parameters a and b. The curvature of the
ellipse is given by the equation

ab

) 32 °
(bz cos’ t+a’ sin’ t)

From the convex curve class K' the specific classes, the circle class
KIC (Fig. 2.5a) and the ellipsis class K; (Fig. 2.5b, c), are derived.

The class K is a class for which curvature of each archetype has one
clear maximum and each archetype is symmetrical. The maximum of the
curvature is the point # €[¢,,¢,] for which the first derivative of the curva-
ture x'(¢) = 0. The maximum of the curvature is denoted as x, _ and K,

X max
is the attribute of the class K*. The derivation rule of the convex class K>
is given as

[a’“m > 9,;‘] = 0% - 0%,

where 6, is the threshold. Archetypes generated from convex curve class
K? are shown in Fig. 2.5d, e.



2.1. Possible Classes of Shape 57
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Fig. 2.5. Archetypes of the convex curve class

The class K is described as a class for which curvature of each arche-
type is in the range 6 < x(¢) <6, , where 6 and 6, are thresholds. The

derivation rules of the convex class K are given in the form
K K K K K K
[a <¢9,,Aamm>91]:>9 =027,

max

K

. 3
where a_, al. are attributes of the convex curve class K, and 6,6,

max min
are thresholds. Archetypes generated from convex curve class K are
shown in Fig. 2.51, g.
The convex curve class K* is derived from convex class based on deri-
vation rules given in the form

[a’“ <0,"/\aL >¢9,L]:>QK - Q%

max

. L .
where curvature a’ , and elongation a~ are attributes of the convex

max °

curve class Q and (9,'(,6’1L are thresholds. Archetypes generated from the
convex curve class K* are shown in Fig. 2.5h, i. Elongation L is defined
as L=A,/A,, where 4, and A, are the first and second eigenvalues of the
matrix of the first and second moments

{mzo m“}, wherem,, = I pryqudy, and p,q €[0,1,2].

my Mgy,

—00 —00

2.1.1.2. Concave Classes

In the section “Convex Curve Class and Its Subclasses™ the specific convex
classes were described. In this section the specific concave classes, derived
from the concave general class, are presented. The process of derivation of
the concave general class ) was described in the previous chapters. The
archetype of the concave class Q consists of elements that can be decom-
posed into subregions (residuals) iteratively. In decomposition scheme the
concave object is broken down into very simple primitives called residuals.
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a b : C

Fig. 2.6. Process of decomposition of the archetype of the concave class:
(a) an archetype of the concave class Q'[L'](L"), (b) the generic convex class L',

(¢) residual L'

At first the convex hull is used as a base for the decomposition of the
object into the concave regions and residuals and next each residual is
examined in the process called the first level of iteration (see Fig. 2.6). In
the case when some residuals are concave they are examined in the process
called the second level of iteration. The description of the concave class
depends on the level of iteration and is given by a symbolic name
Q'[3,1(n3,), where n is the number of residuals, J,. is a type of the
residuals, I, is a type of the generic classes, 3, is one of the convex
classes 3, ={L,K,M}, and 3, is one of the acyclic generic classes
S ={4,0,6;.

The convex hull shown in Fig. 2.6b is used as a base for the decomposi-
tion of the object into the concave regions and residuals and is called the
generic convex object. The generic convex object is a member of the con-
vex rectangular class L'. As it was described in decomposition scheme,
the concave object is broken down into very simple primitives called
residuals. Figure 2.6 shows the process of decomposition of the concave
object (a) an archetype of the concave class O'[L*(LY (Fig. 2.6a), (b) the
generic convex class L (Fig. 2.6b), and (c) residual member of the rectan-
gular class L’ (Fig. 2.6¢).

2.1.1.2.1. Levels of Iterations

As it was described, the description of the concave class depends on the
level of iteration, the number of residuals n, type of the residuals J -, and
type of the generic class J . The description of the concave class at the
first level of iteration is given by Q"[J ,](n ), where I, is one of the
convex classes I, ={L,K,M} and I, is one of the acyclic general
classes 3, ={A,0}. Depending on the number of residuals n, and type
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of classes I, and J, the following concave classes are possible:
QL (nA), Q) (n®),or Q) (kAm®) , where k + m = n.

In the case when the generic class is the convex polygon class L the
class that is derived is given by Q] (nA). The symbol Q,(nA) denotes
the concave class J whose generic class is the convex polygon class L
and archetypes of this class have n residuals. All residuals are archetypes

of one of the convex classes (the polygon class L, the convex polygon-
curve class M, or the convex curve class K). The following concave classes

are possible: Q/(nL), Q;(nM), Q;(nK), Q;(kLmM), Q;(kLmK),
Q! (kMmK), or Q;(hLkMmK), where k+m=n and h+k+m=n.
Similarly, the possible classes whose generic class is the convex curve-
polygon class Q;,(nA) or the convex curve class Oy (nA) can be ob-
tained. The symbol Q°[L’](2-L’) denotes that the concave class Q
whose generic class is the convex polygon class (pentagon) L’ has two re-
siduals. Both residuals are archetypes of the triangle class L’ . Examples of
the concave class at the first level of iteration are given in Fig. 2.7.
Archetypes in Fig. 2.7a—c are members of the class Q"[L](nA), where
the generic class is given by the convex polygon class L. The residuals are
members of the convex polygon class L, the convex curve-polygon class
M, or the convex class K. Archetypes are given by the following sym-

bolic names: Q°[L’](2-L’) (Fig. 2.7a), O[L'](M) (Fig. 2.7b), and
O[L'1(K") (Fig. 2.7¢).

Archetypes in Fig. 2.7d—f are members of the class Q,, (nA), where the
generic class is given by the convex curve-polygon class M. The residu-

als are members of the convex polygon class L, the convex curve-polygon
class M, and the convex class K. Archetypes are given by following

symbolic names: Q[M](L’) (Fig. 2.7d), Q[M](M) (Fig. 2.7¢), and
O[M](K") (Fig. 2.79).

il DO

C d e

Fig. 2.7. Archetypes of the concave classes at the first level of iteration
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Archetypes in Fig. 2.7g—i are members of the class Oy (nA) where the
generic class is given by the convex curve class K. The residuals are
members of the convex polygon class L, the convex curve-polygon class
M, and the convex class K. Archetypes are given by the following
symbolic names: Q[K](L’) (Fig. 2.7¢), O[K](M) (Fig. 2.7h), and
O[K1(K") (Fig. 2.7i).

Similarly, at the second level of iteration the description of the concave
class is given by Q5 (n3,), where I, is one of the convex classes
3,={L,K,M} and 3, is one of the acyclic general classes
3, ={4,0,0}. Depending on the number of residuals n, type of
the class I, and type of the generic convex class J, the following
classes are possible: Q"[A](nQ), Q"'[Al(kQmA), Q"[Al(kOm®O), or
O"[Al(hQk Am®), where k+ m= nand h + k +m =n. Examples of the arche-
types of the concave classes at the second level of iteration are given in Fig. 2.8.

Archetypes in Fig. 2.8 are members of the class Q[A](Q[A](A)),

where the generic class of each archetype is one of the following classes:
the convex polygon class L, the convex curve-polygon class M , and the
convex class K. The residuals are members of the concave class Q.
Archetypes shown in Fig. 2.8 are given by following symbolic names:

O'[L'(Q'[M1(M)) (Fig. 2.8a), Q'[M](Q'[L*}(L’)) (Fig. 2.8b), and
O'[KI(Q'[M]1(L")) (Fig.2.8¢).

In the case when a number of iteration levels and the number of residuals
are growing an archetype of the concave class can be described as an

archetype of the thin class. Also for the class Qi (L) the following ex-
pression is true lim Qim (L)=0",(K), where K denotes the curvilinear
1—>0

class. For the convex polygon class Q"[L"](nL"), when n is large
enough, the convex polygon class is called a noisy class and is denoted as

o E

Fig. 2.8. Archetypes of the concave classes at the second level of iteration
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Fig. 2.9. Archetypes of the noisy polygon class

N[L")(L") = lim Q. (nL*) . When all residuals are triangles (k=3) the
noisy class is denoted as NR[L"](n-L’) [16]. Examples of archetypes of
the noisy class N[L'](nL’) are given in Fig. 2.9.

2.1.1.2.2. Concave Polygon Class

In the previous section the specific concave classes, derived from the gen-
eral concave class, were described. In this section the subspecific concave
classes, derived from the concave polygon class, are presented. The con-
cave polygon class is the class archetypes of which are concave polygons.
The concave polygon class at the first level of iteration is described as
O"[L"](nL") . For the concave polygon class Q"[L"](nL") the generic
class is the convex polygon class L and all residuals are archetypes of one
of the convex polygon classes. The concave polygon class at the second

level of iteration is described as Q"[L"](nQ"[L"1(hL”)) and the concave
polygon class at the third level of iteration is given by symbolic name
O'[L"1(nQ"[L"1(hQ" L' J(WL’))) . Example of the archetype generated
from the concave polygon class at the third level of iteration given by sym-
bolic name Q’[L°J(Q’[L’IQ'[L'N(LY), L, L), Q'[L')(LY), O'[L')(L))
is shown in Fig. 2.10. The symbol Q°'[L°1(Q’[L1(Q'[L'1(L}),2L),
O'[L' (LY, O'[L*](L)) denotes the archetype of the concave class O
whose generic class is the archetype of the convex polygon class (hexagon)

L° and the concave class is described at three levels of iteration. At the first
level of iteration there are three residuals, archetypes of the concave classes

O[O L (LY, 2L%), O'[L'I(LY), and O'[L*](L}). At the second
level of iteration each residual Q’[L°1(Q'[L*1(LY), 2L°), O'[L*1(LY),
and Q'[L'](L’) is considered as an archetype of the concave class whose
generic classes are archetypes of the convex polygon classes L, L', and



62 2. Shape Classes

b=57 —J N

0

Fig. 2.10. The archetype of the class Q[L°I(Q’[L1(Q'[L1(LY),
L, Q'L LY, O'[L (L))

L' . The archetype of the class Q°[L’](Q'[L*](L"), 2L°) has three resi-
duals Q'[L*](L"), I, and I’. At the third level of iteration the residual
O'[L*1(L") is decomposed into the generic class L' and one residual L* .
The concave polygon class can be described by applying the different
symbolic descriptions. One of the descriptions is based on the computation of
the convex and concave vertices. Let m denote the number of vertices of
the generic convex polygon (convex vertices) of the archetype of the con-
cave class Q"[L"]. Let n denote a number of residuals and 4, (i=1,...,n)

denotes a number of concave vertices w’] between two convex vertices v,
and v,,,. To obtain description of this class in a more convenient way, let
v, =a denotes a convex vertex and k ;= {le . Wé, e W;,,.} denotes a set of
concave vertices between two adjacent vertices v, and v, so as the
class description can be represented by the string in the form
£ lakak,,...,ak,,...,ak,]. The description given by the concave ver-
tices string can be transformed into the description given by the iterative

model Q”[L'”](L]f,...,L];) . Examples of the transformations of the des-
cription given by the concave vertices string into the description given by
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Fig. 2.11. Archetypes of the class defined by the description given by the concave
vertices string

the iterative model for the archetype shown in Fig. 2.11c is as follows:
+i[a4a3a4a3)= Q*[L')(L',’,L*,’) . Examples of archetypes defined
by the description given by the concave vertices string are shown in Fig.
2.11. Those archetypes are given by the following symbolic names:
Li[a4aaa) (Fig. 2.11a), £;[a4a3aa] (Fig. 2.11b), £ [a4a3a3a]

(Fig. 2.11c¢), and £ [a4a3a4a3] (Fig. 2.11d).

The archetype of the complex polygon class C is obtained as the result
of a certain type of topological operation called a complex polygon addi-
tion. The addition operation defines the way in which polygons are joined
together. One of the addition operations that make the complex polygon
object by joining two polygons along the cornmon edge is the edge sum.
The edge- surn 1s defined as follows. Let ®” € Q" and 0" € _QL
Where a) ,o" are archetypes of the polygon class. The sum
o ® " (v ) at the edge E (0" ") is defined to be a polygon resulted from
addlng o" with ®" by translatrng, rotating, and scahng ®" so that
E, (a) ) coincides w1th E (®"). The edge E, (@) given by vertices
v, (a) ! and v+,(a) ') describes the bounding rectangle of the sum
o' " (v ) The boundlng rectangle is given by a line passing through
vertices V, (a) ), v, (0" ') and perpendicular to the line given by the
edge E, (0" ) The archetype of the complex polygon class can consist
with more than two parts. The complex polygon class is denoted as
C(nL"), where n is a number of polygonal parts L . There is a conversion
from the notation of the complex class into the notation given by the itera-

tive model. Figure 2.12 shows an archetype of the complex polygon class
represented by four different symbolic representations in the form of the
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Fig. 2.12. An archetype of the concave polygon class

iterative model Q°[L*](2L"), thecomplexmodel C(L*, L*, L) , thesubtract-

ing model 4 [v4vv4v], and the cyclic model 1" {(12- 7)(12d) described
in [17].

2.1.1.2.3. Concave Curve-Polygon Class

The concave curve-polygon class is a class archetypes of which are
the concave curve-polygons. The concave curve-polygon is the class
archetypes of which need to have at least one curvilinear segment. At
the first level of iteration the following concave curve-polygon classes
are possible: Q' [M (kM ), Q" [L1(kM), Q* [M (kL) , Q*[L](k,Mk,L),
or Q¥[M](k,Mk,L). The description of the specific concave curve-
polygon classes can be given using the concave vertices form
WAL -0, j-g,k-1"), where @ is a type of the concave curvilinear
segment, g is the concave straight-curvilinear segment, and /" is the con-
cave n-gon. There is a conversion from the notation of the concave vertices
form into the notation given by the iterative model. For example, arche-

types shown in Fig. 2.13a—c are given by description both in a concave
vertices form and by an iterative model:

O’ MM, L) =W [M[L]](c’w) (Fig. 2.13a)
O ML (M, LYY =W [M[L']](cwel*) (Fig. 2.13b)
O'IMIL ML, M', L) = W ML ])(ewlg") (Fig. 2.13¢)
The regular concave curve-polygon class is the class given by symbolic
name Q[M (kM) . For this class the generic class and all residuals are
members of the curve-polygon class M. Examples of archetypes gene-

rated from class Q*[M](kM) are shown in Fig. 2.13d—f. Those arche-
types are given by the following symbolic names: Q°[M[L']](2M")

(Fig. 2.13d), Q*[M*[L']](2M") (Fig. 2.13¢), and Q*[M'[L']](2M")
(Fig. 2.131).
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Fig. 2.13. Examples of archetypes whose descriptions are given both in a concave
vertices form and by an iterative model

The archetypes of the concave curve-polygon class whose generic class
is a member of the polygon class are given by the symbolic name

Q' [L1(kM) or QF[L](k,Mk,L), where K = k, +k, . Examples of arche-
types generated from the class Q°[L](kM) are shown in Fig. 2.13g-i.
Archetypes shown in Fig. 2.13g—i are given by the following symbolic
names: Q°[L’1(2M,) (Fig. 2.13g), Q°[L'](2M,)(Fig. 2.13h), and
Q°’[L’1(2M,) (Fig. 2.13i). Examples of archetypes generated from the class
O%[L)(k,Mk,L) are shown in Fig. 2.13j-1. Archetypes shown in Fig.
2.13j-1 are given by the following symbolic names: Q°[L’|(M,L’) (Fig.
2.13j), Q’[L1(M,L") (Fig. 2.13k),and Q°’[L’{(M,M,L’) (Fig. 2.131).
The concave curve-polygon class, for which archetypes of the generic

class are members of a convex polygon class L, is called the concave
curve-polygon star class and is given by the symbolic name

O'[L'1(mMnL), m + n = k. The concave curve-polygon star class whose
all residuals are members of the curve-polygon class is called the regular
concave curve-polygon star class and is denoted as Q*[L*](kM) . Exam-

ples of archetypes generated from the curve-polygon star class are shown
in Fig. 2.14. Archetypes shown in Fig. 2.14 are given by the following

A

a b c

Fig. 2.14. Archetypes of the regular concave curve-polygon star classes
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symbolic names: Q’[L’](3M) (Fig. 2.14a), O*[L'](4M) (Fig. 2.14b),
and O°[L’](5M)(Fig. 2.14c).

2.1.1.3. Thin Classes

As it was described in the section “Concave Curve-Polygon Class,” the
thin class is a class whose members are thin objects. In this book the term
the thin class is used to denote the acyclic-thin class. The thin class is
represented by the acyclic graph called a tree. The undirected graph
G = (V, E), where V is the set of nodes and £ < V' xV is the set of edges,
is called a tree if it satisfies two conditions: the graph is connected and the
graph contains no cycles. It can be shown that in the case of the thin
acyclic shape class a tree is a spanning tree. An edge of a spanning tree is
called a branch and a spanning tree with H vertices consists of H-1
branches. The spanning tree represents an archetype of the thin class. The
archetype of the thin class consists of edges and vertices. The two types of

vertices are distinguished: the endpoint v¢ and the branching-point v* .
The thin class, the archetype of which has a branch vaf connecting

only the branching points, is called the thin bridge class and the branch

v§v5 is called a bridge. Depending on the curvilinearity of the branch, two

types of branches can be distinguished: the straight branch and the curvi-
linear branch. The class whose archetypes have all straight branches is
called the straight thin class. For the straight thin class a set of angles and
distances called the set of attributes of the straight thin class is computed.

The set of attributes is denoted as A® = {(ald,ala ),(aj,ag),...,(a,f,,b; )} ,

where a’ is a distance computed as d; = ‘vf vf for two different types of

the vertices and d ,f = vf V4| for this same type of vertices, and a’ is an

X (. X

AU
¢,and k=1,..., H-1, m=1,....M, and «; —vav,f jX, where X de-
notes vertices type ¢ , and k= 1,...,H I,m=1,...,M.

Depending on the type of branches the thin class is split into three
classes: the 1-D class archetypes of which have only isolated branches

vf v5, the star class @ archetypes of which have only external branches

va; and the thin bridge class @k archetypes of which have both external

vévg and internal vf vf branches. Examples of the archetypes from the

angle computed as a; = £v; where X denotes vertices type & or

1

thm class are shown in Fig. 2.15. Archetypes from the @° class are shown
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Fig. 2.15. Archetypes of the thin class (a—c) the @ class, (d, e) the star class @D,
(f-h) the bridge class @,:

a h

in Fig. 2.15a—c, archetypes from the star class @ are shown in Fig. 2.15d, e,

and archetypes from the bridge class @,i are shown in Fig. 2.15f-h.
Based on the relations between attributes the following thin star classes
@, are derived:

e The equilateral-star class: this is a class for which all archetypes
have all branches equal

e The equiangular-star class: this is a class for which all archetypes
have all angles equal

e The ideal star class: this is a class for which all archetypes have all
angles and branches equal

The derivation rules applied for each individual class are as follows:

[Vaid € AT,EITd eR,: aid =T, ] =0, > C—Ek (the equilateral-star class)
[Vaf’ ed, AT, eR,:a] = Ta] =@, > é—)k (the equiangular-star class)
[(Va' € 4", 3T, eR.:a! =T)A(Va' € 4/, 3T, eR,:af =T,) |=®, -,
(the ideal star class)

Examples of archetypes of the thin straight star class £2 ® are shown in Fig.
2.16. The archetype from the @° class is shown in Fig. 2.16a, the archetype

from the @ class is shown in Fig. 2.16b, and the archetype from the ®°
class is shown in Fig. 2.16c.

IR

Fig. 2.16. Archetypes of the straight star class Q% (a) the equiangular-star class
@3, (b) the equilateral-star class @3, (c) the ideal star class ®°
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Fig. 2.17. Archetypes of the bridge thin straight class @,: : (a) the equilateral-thin
class éf , (b) the equilateral-branch thin class @42 , (¢) the equiangular-branch

thin class @42

Similarly, the bridge thin straight class @,i can be split into specific

classes based on a set of attributes A®. Examples of archetypes of the
bridge thin class are shown in Fig. 2.17. The archetype from the bridge

thin straight equilateral-class @42 is shown in Fig. 2.17a, the archetype
from the bridge thin straight equilateral-branch class @42 is shown in Fig.
2.17b, and the archetype from the bridge thin straight equiangular-branch

class 542 is shown in Fig. 2.17c.

The special subclass of the thin class is a thin fractal class denoted as
Q" . The fractal class is described in the form of the thin class as @",
where m and n are numbers that characterize the L-system [18]. The thin
fractal class defined by the L-system is restricted to the class for which its
graph representation is a spanning tree. It imposes the constraints for the
level of iteration of the system and a set of parameters of the model. Ar-
chetypes of the fractal class are generated by L-systems. L-system uses
strings that are interpreted based on the notion of a LOGO-style turtle. For
example, the dragon curve can be generated by repetitively substituting
line segments by pairs of lines forming either a left or a right turn and is
described by the following L-system:

: Fl
pl: Fl> FI + Fr+
p2: Fr—Fl - Fr

The symbols Fl, Fr are interpreted by turtle as the “move left” and
“move right” commands, and pl, p2 are productions rules [18]. From the
thin fractal class the following specific classes are derived: the equiangular-

branch thin fractal class F f , the equiangular-thin fractal class F as , the thin
fractal class F ”lf , the thin curved fractal class F > and the thin curved fractal



2.1. Possible Classes of Shape 69

RS

a

Fig. 2.18. Archetypes of the thin fractal class . (a) the equiangular-branch

thin fractal class ﬁ' ”8 , (b) the equiangular-thin fractal class F as , (¢) the thin fractal
class F”/: , (d) the thin curved fractal class F°, (e) the thin curved fractal class Fnlz

class F,ﬁ Figure 2.18 shows examples of archetypes generated from the

specific fractal classes. These classes are defined in the similar way as the
spec1ﬁc classes described in previous sections. The archetype of the class

F is shown in Fig. 2.18a, the archetype of the class F is shown in Fig.
2.18b, the archetype of the class Fm is shown in Fig. 2.18c, the archetype

of the class F° is shown in Fig. 2.18d, and the archetype of the class Fn'; is
shown in Fig. 2.18e.

As it was described in the section “Concave Curve-Polygon Class” the
1-D thin class @° is the class archetypes of which have only isolated
branches v;v; . From the 1-D thin class the specific classes are derived
based on the properties of the graph function that is representative of the
archetype of the class @”. The function y = f(x) is defined in the closed

interval [a,b] and is prescribed by an analytical expression or a formula. It
is assumed that the function fulfils the conditions: f(—a)= f(a)=c and
Vxela,b], f(x)<cA f(x)>d, where ¢, d are the greatest and the
smallest of all values of the function f{x). The 1-D thin class @i is defined
as follows: [Vx €[a,b],3y €[c,d]: y = f(x)]| = @ = @ . The 1-D thin
convex function class derived from @ is defined as follows: [Vxl, x, €la,b],
31 € (0,1): f(Ax, +(l—ﬁ)xz)s/’tf(xl)+(1—l)f(xz)]:>@ - @C.The
1-D thin class derived from @7 for which their graph is symmetric with
respect to the vertical axis f{—x) =f(x) is called 1-D symmetric class @Sz .

The derivation rules are as follows: [Vx €[a,b]: f(-x) = f(x)]|= O > (95 .
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Fig. 2.19. Archetypes of the nonfunction classes o (a—c) and archetypes of the

convex function classes: (d) symmetrical Q- , (e and f) nonsymmetrical o7

Examples of archetypes generated from specific 1-D thin class are shown
in Fig. 2.19. Archetypes of the nonfunction classes £2° are shown in Fig.
2.19a—c, the archetype from the convex symmetrical function class £2° is
shown in Fig. 2.19d, and archetypes from the convex nonsymmetrical (NS)
function class £2° are shown in F ig. 2.19e, f.

The 1-D thin class @7, archetypes of which are straight poly-lines, is des-
cribed in relation to its generic class and is called the thin poly-line class
® . The archetypes of the generic class are obtained by joining the pseudo-
nodes of the archetypes of the class ® as shown in Fig. 2.20. The arche-
type of the class ®[L'] shown in Fig. 2.20a is described in relation to
its generic class L' (Fig. 2.20b) and the archetype of the class
Q[O'[L*1(L})] (Fig. 2.20¢) is described in relation to its generic class
O'[L'1(L) (Fig. 2.20d).

The bridge tree class is the class derived from the bridge thin class.
Archetypes of the bridge tree class are represented by the acyclic graph
called a tree. The bridge tree class is described by the bridge notation that
is explained in Fig. 2.22. The bridge is denoted by the bracket “[ ],”
whereas branch by the bracket “(').” The notation is based on the decom-
position of the tree into branches and bridges. During decomposition the

a b C d

Fig. 2.20. Archetypes of the thin poly-line class ® and its generic class: (a) the
class @ [L'] and (b) its generic class L', (c) the class @[Q'[L*](L*)] and (a)

its generic class Q'[L*](L)
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Fig. 2.21. Archetypes of the bridge tree class

branches are removed and the bridge that is left becomes the generic
bridge of the tree. For example, the archetype shown in Fig. 2.21a is an
archetype from the bridge tree class @([1]{[1](2)} {[11(2)} {[11(3)} {[1]1(4)}) .

The result of removing branches is the string @(1]{[1]} {[1]}{[1]} {[1]})

and finally after renaming bridges into branches the bridge class
O([1](2)(2)) is obtained. The bridge class @([1](2)(2)) that is the result

of decomposition is shown in Fig. 2.21b. Examples of the archetypes from
the bridge tree classes are shown in Fig. 2.21. The archetype from the class
O(1](2)(D[1](2)) is shown in Fig. 2.21c, the archetype from the

class @([1](3)(2)) is shown in Fig. 2.21d, and archetype from the class
O11{(2),[11(2)} {(1),[1](2)}) is shown in Fig. 2.21e.

As it was described in previous sections each class can be described by
applying the different notations. The archetypes in Fig. 2.22 are described
by the notation of the bridge tree class @([1](2)(2)), generic bridge tree

class O1]2Q)2NO'[L'1(L})], or by notation of the O/p class as
O/ p[Q'[L'N(L)]{3L°, L'} . The notation of the @/p class is derived
from the notation of the p class described in the further part of this chapter.
In order to explain the notation of the @/ p class, an example of decom-
position of the archetype from the @/ p class is shown in Fig. 2.22. Figure
2.22a shows the archetype from the thin bridge class &{[1](2)(2)). The

a b c

Fig. 2.22. Explanation of the notation of the @/ p class
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archetype consists of one bridge that has two branches on its ends. The
endpoints of this archetype are joined by straight lines as shown in Fig.
2.22b, and as the result the object consisting of the four parts, three tri-
angles L', and one quadrilateral L', was obtained. The generic polygon,
archetype of the class Q'[L*](L’), is shown in Fig. 2.22c.

2.1.1.4. Cyclic Class

As it was described in the section “Thin Classes,” the cyclic general class
A is defined based on the values of the attribute called a homotopy mea-
sure. The cyclic class A consists of elements that can be decomposed
iteratively into subregions (holes). The decomposition scheme in which the
cyclic object is broken down into very simple primitives, called holes, is
similar to the decomposition scheme of the concave object described in
previous sections. At first all holes are filled and an object “without holes”
is used as a base for the decomposition of the object into the filled regions
and holes. Next each hole is examined in the process called the first level
of iteration. In the case when some holes are cyclic they are examined in
the process called the second level of iteration. The description of the con-
cave class depends on the level of iteration and is given by a symbolic
name A"[J,](n3,), where n is the number of residuals, J, is a type of
the holes, and 3, is a type of the generic classes. The base cyclic class is
denoted as A4"[J,], where J, is one of the acyclic general classes
3, =1{4,0} from which the base cyclic class is derived and # is a number
of holes. The description of the specific cyclic classes is based on a type of
the generic class 3, as well as on the type of the holes J,. The arche-
type of a cyclic class derived from the acyclic class can be seen as a result
of subtraction of the acyclic region and holes.

At the first level of iteration the symbolic representation of the cyclic
class is given as A"[/"](nJ ), where a hole can be a member of the thin
or acyclic class I, ={@, 1} . Depending on the number of holes n, and a

type of generic class 3, and a type of holes J,, the following specific
cyclic classes can be derived: A"[A](nl"), A"[Al(n®@), A"[Q])(nl"),

and A"[Q](n@®) . In the case when there are n holes there are the follow-
ing classes given by the symbolic names: A} (nA), A, (nQ), A,(n®),
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Fig. 2.23. Examples of exemplars from the cyclic class
Ay(nA), A;(nQ), and A;(n®). Figure 2.23 shows exemplars generat-

ed from the cyclic class. The symbol 4° [L'] (3L) (Fig. 2.23b) denotes

exemplar whose generic class is the convex polygon class r (rectangle)

and it has three holes. All holes are archetypes of the rectangle class L' .
Figure 2.23e¢ shows exemplar generated from the cyclic class

AZ[Q4[L8](4L4)](K}E,L4), whose generic class is the concave polygon
class Q4 [L8 ](4L4) , and it has two holes. The first hole is an archetype of

the rectangle class L' and the second one is the archetype of the curvilin-

ear class (ellipse) Kg .
The archetype of the class A'[A](Z”) for which the hole has common points

with the border points is a concave point class 4 [A](17) = QI[A](F).
Similarly, the archetype of the class A'[Q](/”) for which the hole has
common points with the border points is the archetype of the concave
point class A'[O](1") = Q'[Q1(I"). Figure 2.24 shows exemplars gene-
rated from the concave point class QI[L4](L4) (Fig. 2.24a) and
O'[L'1(I*,L*) (Fig. 2.24b).

Similarly, at the second level of iteration the symbolic representation of
the cyclic class is given as A"[/7](nJ ), where at least one hole from the

set I, is a member of the cyclic class 4. Examples of exemplars gene-

rated from the cyclic classes at the second level of iteration are shown in
Fig. 2.25a—d. The symbolic names of these exemplars are as follows:

) »

a b

Fig. 2.24. Exemplars of the concave point class
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A[L (4 ](zh)) (Fig 2.259)
A [L‘;](Al [L‘;](K)) (Fig. 2.25b)
AIO'[LNIH(AQ[L*)(4L)](K)) (Fig. 2.25¢)

A[OTM[LNMON AL NQ ML INQ L'12M D)), O'TM (M)
(Fig. 2.25d). Example of exemplar generated from the cyclic classes at the
third level of iteration, whose symbolic name is given as follows

A' [L‘,: ] (A1 [L‘,‘e } (A1 [L‘;e ] (Ljfe ))) , is shown in Fig. 2.25¢. The symbolic
name A' [L‘;](Al [lfﬂ(ﬂ;2 )) denotes an exemplar generated from the
class whose generic class is the convex polygon class L' (rectangle) and it
has one hole. The hole is an archetype of the cyclic class A' [L‘;](L‘,‘?) .

The generic class of the hole is the convex polygon class r (rectangle).
The hole is an archetype of the rectangle class L' .

2.1.1.5. Complex Cyclic Class

Archetypes of the complex cyclic class C(®) are obtained as the result of
the certain type of topological operation called a complex addition [19],
[20]. The complex class is denoted as C(/),/,,...,1,), where
I1,1,,....I', are classes of the addition operation. In the case when
N =2, the complex class is reduced into the class of the two-element
operation and denoted as C(/7},/,). In the case when /', = A, the class

is called the complex convex class. In the case when /', = 4, the class is
called the complex cyclic class. Archetype of the complex cyclic class
consists of parts, where one of the parts needs to be an archetype of the
cyclic class. Examples of the archetypes of the complex cyclic class are

given in Fig. 2.26. Symbol C(Al [L;](L“),Lj’) (see Fig. 2.26a) denotes
that archetype of the complex class C consists of two parts, one archetype

B D C S

Fig. 2.25. Exemplars of the complex cyclic class given by symbolic names
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Fig. 2.26. Archetypes of the complex cyclic class

of the cyclic class A' I:L;](L“) and the second archetype of the convex

class L’. In the case when 7~ , =0, the complex class is defined by the

point-sum operation and the class is called the complex convex thin class.
Examples of the archetypes of the complex cyclic-thin class are given in

Fig. 2.26. Symbol C(A'[L’](K),®) (see Fig. 2.26f) denotes that an arche-
type of the complex class C consists of two parts, one archetype of cyclic
class A'[L’](K) and the second archetype of the thin class @ .

Examples of archetypes generated from the complex cyclic-thin class

given by symbolic names are shown in Fig. 2.26: C (A1 [L‘]‘e:'(L4),L3)
(Fig. 2.26a), C(A‘ [L;](L‘,;),K) (Fig. 2.26b), C(A'[M1(K),K) (Fig.
2.26¢), C(AI[K](L‘;),E) (Fig. 2.26d), C(A'[K](K),K) (Fig. 2.26e),
C(A'[C1(K),®) (Fig. 2260, C(A[LL),0) (Fig. 2.26g),
C(A1 [L‘}J(L‘;),@[ﬁ]) (Fig. 2.26h), C(A1 [L‘,;](K),z@) (Fig.
2.26i), C(A1 [L‘(‘)](K),@@) (Fig. 2.26j), C(A1 [L‘;](L“),zé) (Fig.
2.26k), C(A1 [L;](K),@,Ql[Ml](ﬁ)) (Fig.  2.26l), and
(4113 ](£),0,L,0,4 [ L, | (K)) (Fig. 2.26m).

2.1.1.6. Cyclic Thin Class: The G-Class

The archetype of the cyclic class AL (") for which the type of the hole

and the generic acyclic class is equal and area of the hole is close to the
area of the archetype of the generic acyclic class is called the arche-

type of the cyclic-thin class 4, (") = p[A]{I"} . Examples of exemplars
generated from classes given by the symbolic names: (a) p[L‘H{L;} ,
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Fig. 2.27. Examples of exemplars of the cyclic-thin class

) p[ L [{3L%} . (@) p| Ly |{3L,. Ly Ly} and (d) p[ K |{2M'} are
shown in Fig. 2.27a—d. The symbolic name p[L;]{Lje} denotes an ex-

emplar generated from the class whose generic class is the convex polygon
class L' (rectangle) and it has one hole. The hole is an archetype of the
rectangle class L' . The symbol p denotes that the exemplar is generated

from the acyclic class whose area of the hole is close to the area of the
archetype of the generic acyclic class.

The archetype of the cyclic-thin class p[ A]{/ "} can be represented by

notation of the G-class. In this notation the object is decomposed into the
core object and the thin object. Example of this decomposition is shown
in Fig. 2.28. Figure 2.28 shows archetypes from the cyclic-thin class

p[Ql[L(’](L3)]{Q[L5](L;),3L‘;} that are decomposed according to the
convention of the G-class. The archetype in Fig. 2.28a given by the sym-
bolic name G[O[L’(L){@*P*[Q[L'1(L*)]} is decomposed into the

thin object @***[Q[L*](L’)] (Fig. 2.28b) and the concave core object
O[L°](L’) (Fig. 2.28c). This archetype is represented as a member of the
cyclic-thin class p[Ql[Lé](E)]{Q[LS](L;),3L‘;} and is decomposed
into the concave core object O[L°](L’) and four objects: one concave
QO[L’1(L},) and the three convex L. .

_/LQ

a b c

Fig. 2.28. Archetypes of the cyclic-thin class
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Fig. 2.29. Archetypes of the class triangle convex thin class

2.1.1.6.1. Convex Cyclic Thin G-Class

Archetype of the convex cyclic-thin class can be decomposed into the core
convex object A and holes. Figure 2.29 shows archetypes of the convex
cyclic-thin class whose the core convex object is the member of the con-

vex triangle class L’ . Archetypes shown in Fig. 2.29 are represented by the
following symbolic names: p[L3]{2L§e} (Fig. 2.29a), p[L’1{L’, L'} (Fig.
229b), p[LUQILN(LY), L'} (Fig. 2.29¢), p[L'{L',O[L)(L)} (Fig.
2.29d), p[L’'1{3L'} (Fig. 2.29¢), and p[L’]{3L"} (Fig. 2.29f). Figure
2.30 shows archetypes of the convex cyclic-thin class whose the core
convex object is the member of the convex rectangle class L‘,‘?. Archetypes
shown in Fig. 2.30 are represented by the following symbolic names:

plLi {2} (Fig 230a)., p[Li]{L.0[ L ](L)} (Fig. 230b),
p[ L (4L} (Fig. 2.300), p[ i {2251} (Fig. 2.300), p[ L ]{4-L;)

(Fig. 2.30e), p| L} [{2L;.L'} (Fig. 2.30f), and p| L} ]{2L°,0'[L')(L)}
(Fig. 2.30g).
Figure 2.31 shows the archetype of the convex cyclic class. The core

convex object of this archetype is the member of the convex class L.
The symbolic names for these objects are given in the form of the

convex thin class p{L'}{kL"} and the G-class G{L'}{®}. The sym-
bolic names are as follows: p[L']{3L}, GIL'I{O'[L']} (Fig. 2.31a),

a b c d e f g
Fig. 2.30. Archetypes of the convex rectangle cyclic-thin class
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Fig. 2.31. Archetypes of the class G{L"} {®}

a b

plL 2L, 0.1}, GO L'}y (Fig. 2.31b), p[L]{2L), L, L'},
GIL'|{@*P*[L']} (Fig. 2.31c), p[LX]{L°,3L4O}, GIL1{@**[L']} (Fig.
2.31d), and p[L']{L 3L}, GIL'1{®***[L']} (Fig. 2.31¢). The symbol
L% denotes that the archetype is the member of the class L or L.

2.1.1.6.2. Concave Cyclic Thin G-Class

Archetype of the concave cyclic-thin class can be decomposed into
the core concave object O and holes. Following the notation of the

G-class the archetype is decomposed into the concave core object Q
and the thin objects @ or the complex thin objects C(®). Figure 2.32

shows the archetypes of the concave cyclic-thin class that are
decomposed into the core concave object and the thin object @ .
Archetypes are represented by the symbolic names as follows:

PLOLLNIN{BL, 0, (L)), Gloryen{e ™ [o.m) ]} (Fig
232a), p [QILNIN{4L, L}, G, () |[{e[0.()]} (Fig
2320), p[ 0s (L) ] {223, L3.0,()} . 6[ 00 (1) [{0°*** [0, 2]}
(Fig. 2.32c), and p| fH(2L3)]{((L5)3L04),3L‘;,QL4(L3)},G[QLZH(ZE)}
{orerer g (2L3):|} (Fig. 2.32d). Figure 2.33 shows archetypes of

the concave cyclic-thin class that are decomposed into the core
concave object and the complex thin objects C(@) . Archetypes are repre-

sented by the symbolic names as follows: GI:QL° (L3):|{C (L3,3@2 @2)}

>3

(Fig. 2.33a), G[QL7(L3)]{C(L3,3@2,@;)} (Fig. 233b), and

G[QLH (L3)] (C(L,40%)) (Fig. 2.33¢).
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a b c d
Fig. 2.32. Archetypes of the thin concave G-class G{Q} {®}
TP R &pha
a b c
Fig. 2.33. Archetypes of the thin concave G-class G{Q} {C(®)}

2.1.1.7. Colored Classes

The class for which an archetype can be seen as consisting of adjacent
regions of the different uniform colors is called the colored class X . An
archetype of the colored class & can be decomposed into the regions of
the different colors and assigned to one of the specific classes. The decom-
position of the archetype is shown in Fig. 2.34.

The colored class is the class archetypes of which have their parts marked
by the different colors. The description of the convex colored class can be
reduced into the description of the cyclic class A"[J,,](n ). The arche-

type of the colored class N’ [L;(g)}(L; (y),lf;(b)) is shown in Fig.
2.35. The symbol N’ I:L‘;(g)}(L;(y),L;(b)) denotes that the convex

()=

Fig. 2.34. Decomposition of the archetype consisting of adjacent regions of the
different uniform colors
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Fig. 2.35. Archetype of the convex colored class |_L‘; ( g)—| (L‘]‘e ), Ly (b))

a b

Fig. 2.36. Archetypes of the concave complex colored class

colored class ¥, whose generic class (the convex polygon class — quadri-
lateral L‘; (g) —color green) called background, has two regions of the dif-
ferent colors. Both regions are archetypes of the quadrilateral class L*.
The first region L} () is marked by the letter () denoting the yellow
color whereas the second region L} (b)is marked by the letter () denot-
ing the blue color.

The archetype of the concave complex colored class can be decomposed
into the parts of the different colors. The concave complex colored class is
denoted as o(/,,1,,...,L ), where I'|,I,,...,I", are general classes
of shape. Archetypes of the concave complex colored class are given in

Fig. 2.36. The symbol go(Li »), Q[L‘;e } (L‘:e )(0)) denotes that the arche-

type of the concave complex colored class ¢, can be decomposed into two
. 4

regions — the convex polygon class (rectangle) L, and the concave poly-

gon (rectangle with the one concavity) Q':L‘;e } (lf;e ) The archetype

shown in Fig. 2.36b is represented by the symbolic name

(NI (@1( L)), N][ Ly () (K (7).

2.1.2. The a Posteriori Classes

The shape classes described in the previous chapters were established
based on the geometrical properties of the figure. The derivation of the
specific classes was based on constraining the values of selected attributes
of the general classes. These classes are called a priori classes because
derivation of the specific class is based on geometrical properties of arche-
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types generated from the selected class. In this book shape is interpreted as
the basic perceptual category to which the perceived object is fitted. Shape
as the perceptual category is used during the learning of the visual concept
of the different ontological categories such as a letter, a sign, or a real-
world object. During categorical learning the specific shape classes that are
good representative of the shape of the given ontological category need to
be derived from the existing a priori classes. The classes of shape that are
derived as the result of “specialization” of the existing a priori classes are
called the a posteriori classes.

2.1.2.1. The Star Class

As it was described in Sect. 2.1.2 the a priori classes are established based
on the geometrical properties of the visual object. The a posteriori classes
are derived from the a priori classes based on the specialization of the
selected shape classes. Specialization means that the a posteriori classes
are established to match shape of the sign or the real-world object. Example
of the class that is established based on the existing meaningful objects
called a sign is the star class. The star class is defined based on generaliza-
tion of the most often used visual representations of the star signs. The star
class is a class derived from the concave class Q"[A](nA), where n>2.
The polygon star class is a class derived from the concave polygon class
and is given by the symbolic name Q"[L'](nL’). The curvilinear star
class is a class derived from the concave class where all residuals are arche-
types of the curve-polygon class Q"[L"](nM) . The concave star class is a
class derived from the concave class where all residuals are archetypes
of the concave class Q"[L"](nQ) . The concave I-star class is a class
derived from the concave class where all residuals are archetypes of
the concave class, residuals of which are archetypes of the concave
class Q'[L'](nQ(mQ)). In similar way the concave IlI-star class

Q"'[L" 1(nQ(mQ(kQ))) or the concave I1l-star class Q"[L" [(nQ(mQ(kQ(hQ))))
can be defined.

The concave polygon star class is a class derived from the concave poly-
gon class where all residuals are archetypes of the concave polygon class
O'[L'1(nQ"[LFI(L)), where indexes h, k, and I denote: h-the number of
residuals, the generic k-polygon, and the residual /-polygon. The concave poly-
gon [-star class is a class derived from the concave polygon class where all
residuals are archetypes of the concave polygon class, residuals of which are

archetypes of the concave polygon class Q"[L'[(nQ"[L' [(mQ"[L 1(L"))).
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Fig. 2.37. Explanation of the different notations of the star class

The star class can be described by using the notation of the complex-
core class. Objects shown in Fig. 2.37 explain the differences in the de-

scription of the object in terms of the concave class Q°[L’](5L') (Fig.
2.37a) and the complex-core class A°[L°]{L’}(5L%) (Fig. 2.37b). The
symbol in the bracket “[ ]” denotes the generic polygon, for example, [L’]
(see Fig. 2.37a), whereas the symbol in the bracket “{ }” denotes the core
of the archetype of the complex class, for example, {LS} (see Fig. 2.37b).

The advantage of the second approach is such that the object is interpreted
as an object having the “arms.” Based on this interpretation we can estab-
lish the proper similarity relations among objects. For example, the objects
from Fig. 2.37b, ¢ that look very similar, have the same complex-core class

description given by the symbolic name A’[L’]{L’}(5L’) but the differ-
ent convex class description given by the symbolic names Q°[L'](5L")
(Fig. 2.37b) or Q*[L*1(Q'[L*],3L°) (Fig. 2.37¢c). It seems that the com-
plex-core class description is more perceptually oriented.

The archetype generated from the n-star class is represented by the sym-
bolic name Q"[L'](nL’), where the 2n-star class is a class derived from
the concave polygon class Q"[L*"](nL’) . The class R"[L*"](nL’) derived
from the class Q"[L*"](nL’) , where all residuals have the common point,
can be given by notation of the complex class S"[L*"](nL’). In the case
when there is no common point the class will have description
S"[I*"1{L"}(nL"). By generalization, the class S"[L*"](nL’) can be ex-
tended to the c-class S, {nJ}, where J is a general class. Examples of

the n-star class are given in Fig. 2.38a—b, and the 2n-star class in Fig.
2.38c—d.
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Fig. 2.38. Simple I-star classes (a, b) and simple II-star classes (¢, d)

The curvilinear star class Q"[A](nQ*[L’](2M ")), where A denotes one

of the classes 4 ={L",L",M"(I*")}, is the specific class derived from
the concave star class. In the case where all residuals have the common
point the class can be given by the complex class description. The complex
class description interpret the object in terms of petals (the parts of the
object that are “glued” in one point) and described by complex class des-

cription as the c-complex class S"[77]{nJ}. When all petals are arche-
types of the curve class 3= K the class is the regular curve c-class
S"[A]{nK} . In the case where n is big enough n>M, the generic class
becomes the polygon class and the regular curve c-class is given as
S"[L"]{nK} . In the case where petals are different (members of the arche-
types of the different curve classes) 3 =K, the c-class is called the non-
regular curve c-class and is given as S"[4]{n* K} . Examples of archetypes
of the regular curve c-class are shown in Fig. 2.39a—e and archetypes of
the nonregular curve c-class are shown in Fig. 2.39f-g.

The c-class S"[77](n3J), for which all petals are archetypes of the thin
class 3=, is the regular thin c-class S"[L"](n®). In the case where
I =@?, the class is reduced to the thin star class @"[L"]. In the case when
the thin star class has different sizes of the “rays” S"[L"|(n®@),m<n

the class is the thin para-star class @"[L"]. Example of the archetype

\)‘“‘:‘) \ \q___..-l, I. -
a b c d e f g

Fig. 2.39. Examples of archetypes of the regular curve c-class and the nonregular
curve c-class
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Fig. 2.40. Archetypes of the thin star class, exemplar of the concave c-class

generated from the thin star class @*[L'] is shown in Fig. 2.40a and the
archetype generated from the thin para-star class @°[L'] is shown in Fig.
2.40b.

The complex star point class is the class that has the nucleus and petals
that are joined in one point with nucleus. This class is given by the nota-
tion of the complex class S"[/7]{/}(nJ). The complex polygon star
point class is the class whose nucleus and petals are polygons. The
complex polygon star point class is given by the symbolic name
S"[L'14L Y (nL™). Examples of the archetypes of the complex star
point class are given in Fig. 2.40c S*[L']{L*}(4L), Fig. 2.40d

S*[L){K.}(AL'), and Fig. 2.40e S*[L*']{L*}(4K}).

2.1.2.2. The Spade Class

The spade class is the a posteriori class that is established based on
the properties of the real-world object. The spade class denoted as
('S"HC(,0) is derived from the complex symmetrical thin class
C(/7,0) archetypes of which consist of two parts, one called the blade
and the other one called handle. The handle is a member of the thin class
@ . The members of the a posteriori spade class are used as the structural
archetypes of the real-world object called spade. The spade class
('S"C(I",®%) is the class archetypes of which are obtained by joining
the straight line with the object called the core that is a member of one of
the classes: the convex, the concave, or the cyclic in such a way that the
straight line has one common point with one of the sides of the core and
the whole figure is symmetrical. Examples of the spade class are shown in

Fig. 2.41a ('S)C(L},0"), Fig. 2.41b—< ('S)C(L},0’), Fig. 2.41d
('S)C(L;.0%). Fig. 2.41e ('S)C(L;,.07), Fig. 2.41f (S)C(L,07),
Fig. 2.41g ('S)C(M),,0°), Fig. 241h ('S)C(K.,0), Fig. 24li
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Fig. 2.41. Archetypes of the “spade” class (a—j) and archetypes at the classes simi-
lar to the spade class (k-1)

('S"HC(Q*[L*1(4-L’),0%), and Fig. 2.41j (S"C(A'[L'1(L"),®%). The
notation of the spade class can be expressed in the form of the @/ p class.
For example, the symbolic name of the archetype in Fig. 2.4la is
6/p [[LS]{z-L;,L;g }} the archetype in Fig. 2.41b is @/p[[LS 1{2- L3, L} }]
and the archetype in Fig. 2.41c is @/p[[LS]{z-Q[L3](L3),L‘;}]. This
notation makes it possible to find the difference between the archetype
shown in Fig. 2.41b and the archetype shown in Fig. 2.41c. The archetypes
shown in Fig. 241k @/p[[L’]{2L’}] and in Fig. 2.411 @/p[[L“]{L;,L‘;}]
are similar to archetypes shown in Fig. 2.41a—j and are not members of the
spade class.

The a posteriori T-spade class is derived from the complex thin class
(spade class). The archetype of the T-spade class ('S')C(F,(s) ®,3)
instead of the handle that is a member of the thin straight class has the
handle that is a member of the s-star class (s) ®; . The s-star class (s5) ®;
is the thin star class whose archetypes are symmetrical and have one |

branch that is significantly longer from other branches. Examples of arche-
types from the s-star are shown in Fig. 2.42a—c. Archetypes shown in Fig.

2.42a, ¢ have the symbolic name (s)®’[L'], whereas the archetype in
Fig. 2.42b has the symbolic name (s) ®; [L']. Examples of the archetypes
from the T-spade class are shown in Fig. 2.42d-f. The symbolic names of
archetypes from the T-spade class shown in Fig. 2.42 are as follows:
('S)C(L;.(s)® [L']) (Fig. 2.42d), ('S")C (L} (s) ®} [L']) (Fig. 2.42e),
and ('S")C(Ly.(s)® [L']) (Fig. 2.42f).
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Fig. 2.42. Archetypes of the T-spade class
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The a posteriori C-spade class is derived from the complex thin class
(spade class). The archetype of the C-spade class consists of three parts:
the blade, the handle, and the small handle. The C-spade class
(SNC(I",®%,(g)A) is the class archetypes of which are obtained by
joining the straight line with the object called the core and the other object
called the small handle in such a way that the whole object is symmetrical.
The core can be a member of the convex, the concave, or the cyclic
classes. Examples of the C-spade class are shown in Fig. 2.43.
The symbolic names of the archetypes shown are as follows:

(S)C (L}, 0.(e)L) (Fig. 2.43a). ('S )C (L3, 07, (£)M") (Fig. 2.43b),
and ('S")C(L;.0%,(£)K") (Fig. 2.43¢).

Similarly like archetypes of the spade class, the archetypes of the R-
spade clas§ are members of the complex symmetrical -classes
('S"YC(L",I") consisting of two parts: one called the blade and the otller

one called the handle. The handle is a member of the elongated class /7,
whereas the blade is a member of one of the classes: the convex class, the
concave class, or the cyclic class. In the case when both the handle and the
blade are members of the convex class we have convex R-spade class

v

NS
a b c

Fig. 2.43. Examples of archetypes generated from the C-spade class
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Fig. 2.44. Exemplars generated from the convex R-spade class

("'S"C(A,A). Examples of the convex R-spade class are shown in Fig.
2.44. The symbolic names of exemplars shown in Fig. 2.44 are as follows:

(S"C| L, L, j (Fig. 2.44a), ('S ')C(L‘} , L‘;j (Fig. 2.44b, c¢),
(S"C LST,L‘;] (Fig. 2.44d), ('S"C (LL ,L‘;j (Fig. 2.44e),
(s"c| L, L, ] (Fig. 2.44f), ('S"C (M; L j (Fig. 2.44g),

(‘S"C Ké,L‘;j (Fig. 2.44h), (S"C(M',M') (Fig. 2.44i, j),

('S"C| KM lj (Fig. 2.44k), and ('S')C(L‘},L‘}] (Fig. 2.441). The no-

tation of the convex R-spade class can be expressed in the notation of the
concave class. For example, the exemplar generated from the R-spade

class shown in Fig. 2.44a-b has its symbolic name QZ[ZS](Z L, ) , where

symbol L denotes an archetype with a small side.
In the case when the handle is a member of the convex class and the
blade is a member of the concave class, we have Q-spade class

‘'s"HC (Q,;l) In the case when the handle is a member of the convex
class and the blade is a member of the cyclic class we have the A-spade
class ('S")C (A,/+1). In the case when both the handle and the blade are
members of the concave class we have the Q-g-spade class ('S")C(Q, Q).
In the case when both the handle and the blade are members of the cyclic
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Fig. 2.45. Exemplars generated from (a) the Q-spade class, (b) the A-spade class,
(¢) g-spade class

class we have the A-a-spade class ('S ')C(A,;l). Example of exemplar
from the Q-spade class ('S')C(Q4[L8](4L3),Lt}:j is shown in Fig. 2.45a,
example of exemplar from the A-spade class ('S")C (AI[L“](L4 ),Lt;j is
shown in Fig. 2.45b, and exemplar from the g-spade class
('S ')C(L“,Qz[lj‘;](ZMl)] is shown in Fig. 2.45c.

The ipade—pike class is derived from the complex class C(/, 1: ),

where /7 is the elongated pike class. The archetypes of the spade-convex

pike class are complex classes ('5 NC(I,A) consisting of two parts,
where one part called the handle is a memberxof the convex elongated pike

class /. The convex elongated pike class A consists of archetypes that
have at least one sharp corner. Examples of exemplars generated from the
convex elongated pike class are shown in Fig. 2.46. Symbolic names of

exemplars shown in Fig. 2.46 are as follows: r (Fig. 2.46a), M (Fig.
2.46b), and K' (Fig. 2.46¢).

———mllll =

a b c

Fig. 2.46. Archetypes of convex elongated pike class A
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Fig. 2.47. Archetypes of the spade-pike class

Examples of exemplars generated from the spade-convex pike class are
shown in Fig. 2.47. Symbolic names of exemplars shown in Fig. 2.47 are

as follows: ('S')C(L‘;,ﬁ] (Fig. 2.47a), ('S")C(K;,]l;l] (Fig. 2.47b),
('§~)c(L;,1§'j (Fig. 2.47¢), ('§')c(L;,KX;j (Fig. 2.47d), ('S')C(L“T,I(X;j
(Fig. 2.47e), ('S')c(ﬁ,é;) (Fig. 2.471), ('§')c(1<;,1<xgj (Fig. 2.47g),
and ('5')C(Q4[L8](4L3), Kj (Fig. 2.47h).

2.1.2.3. The Letter Class

The a posteriori classes described in this section are derived based on the
specialization of the a priori shape classes that means these classes are
established to match shape of the letter. In this section the class that is
derived from the thin class, which is established based on the properties of
the letters, is presented. The letter class is defined based on generalization
of the most often used visual representation of the letters. The archetypes
of this class represent the structural archetype of the letter.

To represent a letter, the descriptions of the specific classes need to
include the specific parameters that refer to the straightness of the seg-
ments, the length of the segment, the angle between segments, type of
thinness, as well as the orientation of the object. The attributes such as the
length are expressed by applying the graded values: aid ele,s,m,L},
where & denotes a “very small,” s denotes a “small,” m denotes a
“medium,” and L denotes a “large” value. The attribute such as the angle
can be expressed by applying the graded values: a; € {¢,R,0, A} , where

& denotes a “very small,” R denotes a “right,” O denotes an “obtuse,”
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and A4 denotes an “acute” angle. The orientation of the object is expressed
by a selected type of the letter and a type of the transformation M — a mir-

ror transformation and a rotation O in a clockwise direction by the angle
a’ €{R,0, A} . Figure 2.48 shows archetypes of the specific class @°.
The letters “L,” “I',” “A\,” “V,” “J,” “q,” “9,” “Y” and the mathematical
symbols <, Vv, ), Z, — are described by the symbolic names of the spe-
cific thin class shown in Figs. 2.48 and 2.49. For example, the letter “L” is
given by the symbolic name ®[L;][Z ,8] or by adding the letter “L” in
bracket “[ ]” into the name of the class ["L"]® [L;] .

The symbolic names of the letter classes show similarities of the objects
from these classes. This property of the symbolic name is used in process
of generalization (abstraction). Archetypes shown in Fig. 2.48 are repre-

sented by the symbolic names as follows ®[L§e][l,s] (Fig. 2.48a),
®| L, |[.m] (Fig. 2.48b), ®| L, |[m.m] (Fig. 2.48c), ®| L;, |[m,m]
(Fig. 2.48d), and ®[Li1 ][m,m] (Fig. 2.48e). The generalization process

shows that all objects shown in Fig. 2.49 are members of the class ®[L'].

In order to find the proper archetype that matches a given letter the sub-
specific class that includes the spatial orientation of the object needs to be
introduced. Figure 2.49 shows archetypes of the subspecific letter class
that is established to differentiate among the different letters that are mem-

bers of the same specific class &® I:Lie][l ,8]. The symbolic names of the
subspecific classes are as follows: ®[L3R][Z,s]{'L'} (Fig. 2.49a),
®[ L, 11510 L'(M)} (Fig. 2.49b), ®[ L, |[1,s]{' L'(MO™)} (Fig. 2.49¢),
®[ L, JL.s1{'L(O™)} (Fig. 2.49d), ®| L, |[1.s]{'L'(O")} (Fig. 2.49%).
®[ L, JIL.s1¢ L'(MO"); (Fig. 2.49f), ®| L, |[1,51{' L'(MO™ )} (Fig. 2.49g),
and ®[ L, |[Z.s]{'L'(O™")} (Fig. 2.49h).

R

Fig. 2.48. Archetypes of the specific thin class @’
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Fig. 2.49. Archetypes of the specific thin class

Understanding of the letter requires identifying the similar objects in order
to be able to predict a new font or to recognize a letter that is subjected to
one of many distortions. The shape classes convey information about the
similarities between archetypes of the members of the different classes.
For example, from the function class the specific classes are derived in or-
der to represent the difference among letters that looks very similar. Fig-
ures 2.50 and 2.51 show examples of the archetypes of the convex function
class. The concept of the function class is explained in the section “The
Spade Class.” The letters “V” and “U” and the mathematical symbols

< Vv, ) Z, o=, = U, U, o, II, II are described by the symbolic

names of the symmetrical convex function class. Figure 2.50 shows arche-
types of the subspecific letter class that represent symbols

<V, ), Z, =, U, U, < and letters “V” and “U.” The symbolic names
of the subspecific classes for archetypes shown in Fig. 2.50 are as follows:

®[ M'[ K, ] (Fig 2500, ® L, ] (Fig. 2.500), ® M'[ K} ]] (Fig
2.50¢), ® [M' [L‘;ﬂ (Fig. 2.50d), @[M' [K;ﬂ (Fig. 2.50e), and
®[M'[K*]] (Fig. 2.50f). Figure 2.51 shows archetypes of the subspecific
letter class that represent symbols <, [, II and letter “U.” The sym-
bolic names of the subspecific classes for archetypes shown in Fig. 2.51
are as follows: ®[ Lj, | (Fig. 2.51a), ®[ L} | (Fig. 2.51b), ®| L; | (Fig.
2.51c), ®[L'] (Fig. 2.51d), ®[M'[L’]] (Fig. 2.51e, f), ®[M'[L*]] (Fig.
2.51g), and ® [M'[K*]] (Fig. 2.51h). The mathematical symbol “c” is

interpreted as the rotated version of the letter “U.” Archetypes in Fig.
2.51b—d can be interpreted as the representatives of the distorted version of

the symbols [ 1, [1.
AAAAYN

Fig. 2.50. Archetypes of the symmetrical convex function class
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|a\/b\\c//d/LekaJLth\

Fig. 2.51. Archetypes of the nonsymmetrical convex function class

OLLL O

Fig. 2.52. Archetypes of the nonfunction class

Archetypes of the nonfunction class are shown in Fig. 2.52. The letter
“U” can be described by the symbolic names of the nonfunction class

®[L°] (Fig. 2.52a). The letter “C” can be described by the symbolic
names ®[M1[K}EH (Fig. 2.52b), ®[M?’[L']] (Fig. 2.52c, d),
®[M'[K*]] (Fig. 2.52¢), and ®[M '[K’]] (Fig. 2.52f).

The letters “M” and “X” can have their curvilinear versions. The specific
classes that can be used for description of these letters are derived from the
thin polygon-curve class & . Because there is a big range of shapes that
can be used as representatives of the letters type M, the M-letter classes
has to be established during learning process described in Chap. 5. In this
section, examples of the archetypes from the selected M-letter classes are
presented. The poly-line version of the letter type M is described in
Chap. 5. The symbolic names of some of the possible curvilinear ver-

sions of the letters are given by the following notations: ®[Q'[L' (M ")]
(Fig. 2.53a), Q[Q'[M’[L'I(M")] (Fig. 2.53b), ®[Q'[L'13M")] (Fig. 2.53¢),
QO MILINQ[L']2M )] (Fig. 2.53d), ®[Q'[M[LINQ[L12M )]
(Fig.  2.53¢), Q[O'[M’[LNQ[L]2M")]  (Fig. 2.53f), and
Qo' rn(o’ M [ L iemh) ] (Fig. 2.539).

R

Fig. 2.53. Archetypes of the nonfunction classes
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2.1.3. String Form: Type of the Class

Archetypes of the shape classes are described in the form of the symbolic
names. For the purpose of the visual reasoning the symbolic name is trans-
formed into the string form. The string consists of combination of the se-
lected letters, numbers, and the symbol “|.” The string has a following
form: B1]...|Bi|...|Bn|, where Bi denotes the symbolic name of the class.
There is a conversion from the notation of the symbolic name into the

string notation. For example, the convex class L’ is expressed as L3 in the
string form.

The string notation is used to introduce the type of the class. The string
without symbol “|” is denoted as the type P. It represents exemplars of the
convex classes. For example, exemplars of the convex classes given in Fig.
2.54 (L3A, L4R, M1L3A, M1L4R, and M2L4R) are all of the type P.

Examples of exemplars that represent the different types of string forms
are shown in Figs. 2.55-2.67. The type S that represents cyclic and con-
cave classes, is given in the form Sn|A|1X]...|iX]...|nX|. The type Sq (the
concave type) is given in the form Qn|GJ|1R]|...|iR|...|nR]|, whereas the type
Sa (the cyclic type) is given as An|C[1W]|...|iW|...nW|. Examples of the
exemplars type Sn|A|1X]...|iX]...|nX]| are given in Figs. 2.55-2.57. The
type S1|A|1_S1|1_A|1_X]| and the type S1|A|1_S1|1_A|2 S1]2_AJ]2_X]| both
represent the exemplar o of the concave or cyclic classes on the first and
the second level of iteration. The concave class Q; (4L) is expressed as

Q4|L4|L3|L3|L3| in the string form. For example, an exemplar shown in Fig.
2.59a given as A;} (Al4 (Al4 (L‘,‘2 ))) is transformed into the string form as

A1|L4R|1_Al|l_L4R|2_A1|2 _L4R|2_LA4R|.
Examples of the general type string forms Sn|A|1X]...[iX]...nX] that
generate the following patterns are as follows:

Q1|G[R], A1|C|W|, Q2|G|1R|2R]|, Q3|G|IR|2R[3R], A3|C|I1W]2W|3W|
A1|Q1|GR|W/|, A1|Q3|G|IR|2R|3R|W|, A2|Q1|G|R|IW]2W]
A1|Q1|G|1_QI|I_G[R|W|, A1|Q2|G|1_Q1|1_G|1_RR|W
A1/Q3|G|1_QI|1_G|1_R|IR2R|W

AEYAS

Fig. 2.54. Exemplars of the type P
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Examples of general type string form S1|A|1_S1|1 Al X]| that gener-
ates the following patterns are as follows:

Q1|G|1_QI1|1_G[R|, Al|C|1_Al1|l_C/W|, Q2|G[R1|1_1Q1|1_IG|1_2R|.

Examples of the exemplars of the complex types are shown in Figs. 2.63
and 2.64.

AAAAAMMPNAAannA

Fig. 2.55. Exemplars of the type Q1|G|R|

AOooafA0AaA00Aav

Fig. 2.56. Exemplars of the type A1|G|W|

AAAHMHH2IZIIZIX

Fig. 2.57. Exemplars of the type Q2|G|1R|2R|

meAARAOAM

Fig. 2.58. Exemplars of the type Q1|G|1_Q1|1_GR]

a b c
Fig. 2.59. Exemplars of the types A1|G|1_Al|1_G|W| and Q3|G|1R|2R|3R|

bl 22202220

Fig. 2.60. Exemplars of the type Q2|GR1|1_1Q1|1_1G|1 _2R|
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mrriMmmmm

Fig. 2.61. Exemplars of the type Q1|G|1_Q1|1_G|2_Q1|2_G|2_R|

M$ XXM

Fig. 2.62. Exemplars of the types Q3|G|1R|2R|l _1QI|1 1G|l_R| and
A1]Q2|G|1_Q1]1_GJ1_R|R|W

AAALA mmmivihbde

Fig. 2.63. Exemplars of the type C2|K|T]|

AR 09A

Fig. 2.64. Exemplars of the types C2|Q1|G|R|T| and C2|A1|G|W|T|

AL KX

Fig. 2.65. Exemplars of the types A1|Q1|G|R|W| and A1|Q3|G|1R|2R|3R|W|

KA A KR

Fig. 2.66. Exemplars of the type A2|Q1|G|R|ITW|2W]|

A

Fig. 2.67. Exemplars of the types Al1|Q1|G|1_Ql|l GIRIW and
Al1|Q3|G|1_Q1|1_G|1_R|IR]2R|W
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2.1.4. Generalization

In the shape understanding system (SUS) a symbolic name is given in the
form of the SUS representation. It is easy to translate the SUS representa-
tion into the form of the symbolic names. For example, the SUS repre-

sentation C[L3,L3] is translated into the symbolic name C(L3,L3) and
the SUS representation <Q><L4>|{<L3>[O]} {<L3>[O]} is translated into
the symbolic name Q; (L30 , LSO) . Figure 2.68 illustrates the meaning of the

symbols used by the SUS. The complex class is described by a symbolic
name, the type of vertices, the normalized size of the sides, and the type of
angles as follows: C[L3,L3], [vvvqvq], and L{ mmslle}{apaocao}. The

symbolic name C[L3,L3] (C(L’, L") ) denotes an archetype of the complex

class (two triangles). The term [vvvqvq] denotes the convex v and concave
g vertices. The term L{mmslle} denotes the normalized size of the sides
(1 — large, m — medium, s — small, and e — very small). The term {apaoao}
denotes angles (a — acute, o — obtuse, and p — right).

The concave class is described by the symbolic name, the type of the
sides (straight or curvilinear), and the symmetry and elongatedness as
follows:

<Q><L4>|{<L3>[0]} {<L3>[O]} [AAAA][NS][EIJ[AAA][NS][EI][[A
AA]INS][EL].

The symbolic name <Q><L4>|{<L3>[0]} {<L3>[O]}, (Q; (LZ,LZ))
denotes an archetype of the concave polygon class with L4 as a generic
polygon and two residuals L3[O] — the obtuse triangles. The symbol
[AAAA][NS][E1] denotes the polygon (straight lines — A), nonsymmetrical
(NS), and medium elongated (E1).

The translation of the symbolic name into a string form requires includ-
ing all details of the symbolic name. The level of details is marked by
introducing the symbol “ _.” The symbolic name is translated into the form
LO L1 _..Ln, where the level Ln denotes the level of the detailed descrip-

. . 3
tion of the archetype of the class. For example, the triangle class L,

Fig. 2.68. The archetype of the complex class
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a b

Fig. 2.69. Exemplars of the class QLZ4 (Lz ,L3, )

(m,m,m) is translated into the form L 3 A mmm. An exemplar of the
concave class (Fig. 2.69a) is described by the symbolic name, the type of
vertices, the normalized size of the sides, and the type of angles:

Qé (L30,L3 A), [vagqavvqv], and L{Ilmmsllml} {paaapaoa}. The symbolic
names of exemplars of the concave class Qé (LZ,L3 A) and all detail des-

criptions are translated into the string form as follows:

(Fig. 2.69a) Q 1|L_4 R mlml 1010]L 3 A mmm 2L 3 O llm 0|

(Fig. 2.69b) Q_1|L 4 R_mlml 1100[L_3 A mmm 2|L 3 O llm 0|

During generalization the symbol is dropped from the right to the left,
e.g., for the symbol L3 A, the two generalizations are possible: L 3 and
L, where “L_3 A” is any acute triangle, “L_3” is any triangle, and “L” is
any polygon. In the case of the concave polygon Q 1|L 4 R|L 3 A 2| the
generalization involves dropping the letters in the “ordered” manner or in
the “combinatorial” manner.

An ordered manner takes into account the structural feature of the ex-
emplar, for example, for the concave class the generic class is treated dif-
ferently than residuals. The ordered manner required to compare only the
“known” features of the shape.

The combinatorial manner does not distinguish between the types of the
class description treating all elements of the string as the symbols of the
type LO_L1 ..Ln. The generalization means to drop any combination of
the letters. The final step of the combinatorial manner is interpretation of
the final string (the string where selected combination of the letters was
removed).

Example of the string obtained during generalization performed in the
“ordered” manner:

QIL 4 RL3A2QI1L4RL3A,QI1LA4IL3,Q 1L|L,Q

Example of the strings obtained during generalization performed in the
“combinatorial” manner:
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Q1L 4 RIL 3 A 2], Q IIL 4 RIL 3 2|, Q IIL 4L 3 A 2|,

Q_I[L_4[L 32|, Q_1L_4 RIL_3_Al, Q_I|L_4 R|L 3|, Q_I|L_4L_3_A|
Q_I[L_4[L_3|, Q_I|L_4|L}, Q_I|LIL_3|, Q_I|LIL|, Q.
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