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2.1. Possible Classes of Shape 

The proposed method of shape understanding is based on the concept of 
shape classes that are understood as the basic perceptual categories. The 
Shape Understanding System (SUS) perceives the visual object by trying 
to fit it into one of the shape categories. Although shape is one of the most 
often perceived “properties” of the visual object, there is no satisfactory 
classification and definition of shape. An attempt to develop the system of 
shape classification that is based on the shape classes was made by Les [1]. 
Shape classes called shape categories (in the context of visual thinking) are 
used as the “material” of the visual thinking process. The shape classes are 
represented by the symbolic names and are defined in the context of visual 
understanding process. Each class is related to each other and based on 
relationships among classes there is relatively easy to establish the “per-
ceptual similarity” of visual objects. 

In this chapter, the description of the shape classes is presented within the 
framework of shape understanding method. Shape understanding method is 
based on the concept of possible classes of shape [1]. A member of the 
class that is defined in terms of its attributes is called an archetype of this 
class. In the case of a digital image, the shape is given as an image region 
or a set of pixels. A perceived object (phantom) is transformed into a 
digital representation called a digital object. The proper interpretation of 
the visual object is obtained during the visual reasoning process. During 
the visual reasoning the perceived object is transformed into its symbolic 
description called the symbolic name. The symbolic name is the name of 
the shape category (shape classes) to which the shape of the perceived ob-
ject is fitted. The symbolic name is used to find the visual concept and to 
assign the perceived object to one of the ontological categories. The visual 
concept is a set of symbolic names obtained in the learning process. The 
shape class is denoted by symbol ηΩ , where η  denotes the symbolic 
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description (the symbolic name) of a given class. A member of the class 
denoted by symbol ω  is called an archetype. 

In this book, for simplicity, the symbol of the class Ω  is omitted and 
the class is often described by its symbolic name, e.g., Λ  instead of ΛΩ  
or [ ]( )nQ n ΓΛℑ ℑ  instead of ( )nQ n ΓΛΩ ℑ ℑ . Also n classes 1, , n

n

ℑ ℑ…��	�
  that are 

identical i jℑ ≡ ℑ  for all i = 1,…,n, j = 1,…,n, and i j≠  are denoted as 
n ⋅ℑ , whereas n classes 1, , n

n

ℑ ℑ…��	�
  that are not identical are denoted as 
nℑ . 

The general shape classes are defined based on the general attributes of 
shape such as homotopy, convexity, or thickness. The general class is split 
into specific classes based on additional features that represent a priori 
information about local perceptual and geometrical properties of shape and 
is incorporated into the a priori model of the shape class. The deepness of 
the splitting process depends on the base class from which the specific 
class is derived. In this book, the following general classes are presented: 
cyclic–acyclic general classes ΑΩ – ΓΩ , convex–concave general classes 

ΛΩ – QΩ , and thick–thin general classes ΝΩ – ΘΩ . 

2.1.1. General Classes: A Priori Classes 

The homotopy measure that is based on the computation of a number of 
holes is applied to derive the cyclic–acyclic general classes ΑΩ – ΓΩ . An 
element of the shape class, called an archetype, is called acyclic, if its 

1 b2 are equal to 0, and b0 = 1, where i

i

b =
0

1

]H AΩ Ω= ⇒
≺

, 
Ha

The convexity coefficient that is given as the ratio of the area of the 
object Aω  to the area of the convex hull Aℵ , /a A Aω

ℵ
ℵ=  is used to 

derive the convex ΛΩ  class and the concave QΩ  class. The convex hull 
of a set of points X in the plane is the smallest convex polygon P that 

 b , i.e., the Betti numbers
rank H (X ) . The 0th Betti number b  stands for a number of components,
while b  denotes a number of wholes in shape. The derivation rule for

0where  [athe cyclic general class is given as follows: 

homology groups ( )iH X  coincides with homology groups of a point,  

 denotes an attribute called homotopy and symbol      denotes that class 
AΩ

≺

Ω . is derived from the class 
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encloses X, smallest in the sense that there is no other polygon P′  such 
that 
points in the plane has been studied extensively and some of the algo-
rithms as well as discussion of the complexity of the convex hull algo-
rithms can be found in [2, 3]. The derivation rule of the convex class is 
given as follows: [ 0]a ΛΩ Ωℵ = ⇒ ≺ , where aℵ  is an attribute of the 
class. The convex general class ΛΩ  is related to the notion of a convex set 
(see, e.g., [4]). A set X  in 2Ε  is convex if for any two points ,x y X∈ , 
the (closed) segment xy  is wholly contained in this set ( xy X⊆ ) or, in 
another way, a set X is called the convex set if for any two points of this 
set the following relation takes place: (1 )x y Xλ λ+ − ∈ , for each 

[0,1]λ∈ . 
The thin class ΘΩ  is a class whose members are thin objects. The des-

tance transformation. The distance transformation is a mapping of a set of 
points into a set of predefined distances (see, e.g., [5]). The distance trans-

=  described in [6] that assigns the number to each point F F
iu ∈�  based 

( ), : ,F F F
i i i i i iu u uρ ρ ρ

ρσ σ σ⎡ ⎤∀ ∈ ∃ ∈ℜ = ⇒⎣ ⎦� = �  

where the local transformation ( )F
iuρ=  is determined by the selected 

neighborhood. In the case of a distance transformation the local transfor-
mation is given as 

( ) min | |,
F F
k

F F F
i k i

u
u u uρ

∈
≡

�
=  

where | |F F
k iu u  denotes distance between a point F

iu  and an arbitrary point 
F F
ku ∈� . The detail description of the image transformations Θ =  is 

given in Chap. 3. The thin general class ΘΩ  is derived based on the thick-
ness measure which is the attribute of this class. The derivation rule for 
the thin class ΘΩ  is given as follows: [ ]aρ Θθ Ω Ω≤ ⇒ ≺ , where aρ  
denotes a thickness measure and θ  is the threshold. 

⊆P′P X⊂ . The computation of the convex hull of a finite set of 

Θ
on the local properties and is given as follows: 

formation (the thickness measure) i s the image transformation points-number 

cription of the object in terms of thickness can be obtained utilizing a dis-
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         a   b  c      d           e 

Fig. 2.1. Examples of exemplars of the selected general classes (a–b) cyclic, 
(c) convex, (d) concave, (e) thin 

In the further parts of this book the description of the selected shape 
classes is presented. The a priori classes such as the convex polygon class 
or the concave polygon class are derived from the general class. The a pos-
teriori classes such as the star class or the spade class are derived from the 
specific a priori classes. 

The convex polygon class LΩ  consists of elements that are called the 
convex polygons. A polygon is a simple closed plane figure that is 
bounded by a finite number of intersecting line segments (at least three 
segments are required). The polygon 2:[0,1]p R→  is a piecewise linear 
continuous function. The convex polygon class LΩ  is derived from the 
convex general class ΛΩ  by assigning the value 0 to the curvature ( )tκ  
of the border curve. The curvature κ  at 0P  for a continuous function Γ  is 
defined as the instantaneous rate of change tangent angle with respect to 
the arc length 

0 1

1 0

0 1

( ) ( )lim ,
P P

P P

P P

α ακ −→

−
=  

where 1( )Pα  is the angle between the positive x-axis and the direction of 

0 0 1

−

0 1P .

 

2.1.1.1. Convex Classes 

the tangent line at a point P  and P P  is the arc length between P  and 
The detail description of the curvature in the context of the concepts of 

2.1.1.1.1. Convex Polygon Class and Its Subclasses 

In Fig. 2.1 exemplars of the four general classes, the cyclic class 
(Fig. 2.1a, b), the convex class (Fig. 2.1c), the concave class (Fig. 2.1d), and 
the thin class (Fig. 2.1e), are shown. 
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the differential geometry can be found in [7]. In the case when curve is 
given by the parameterized form ( ) { ( ), ( )}g t x t y t=  with parameter 
t Θ∈ ⊂ℜ , the curvature is expressed in terms of derivatives of the curve 
as follows 

2 2 3/ 2 .
( )

xy yx
x y

κ −
=

+
��� ���
� �

 

The convex polygon class LΩ  is given by the following derivation rule: 

1[ [ , ] : ( ) 0] L
i it t t t Λκ Ω Ω+∀ ∈ = ⇒ ; . Here, 1[ , ]i it t +  is an interval where 

the first derivative of the polygon curve given by the equations 
( ), ( )x x t y y t= =  exists. 

: ,
nv L Ln N n a Ω Ω⎡ ⎤∃ ∈ = ⇒⎣ ⎦ ;  

where | |va V=  denotes the attribute of the class (the cardinality of the set 
of vertices V). A mathematical object is a cardinal number (cardinality of a 
set) if and only if it is a power of a set [11]. For the set V of vertices, its 
cardinality is denoted as | |V . The classes with n = 3, 4, 5, and 6 (number 
of sides) are denoted by the symbolic class description nL  as follows: 3L  
(triangle class), 4L  (quadrilateral class), 5L  (pentagon class), and 6L  
(hexagon class). 

The class nL  is split into specific classes against the relations between 
selected attributes ( ),d

i ia aα . For example, the right triangle class 3
RL  is the 

class whose archetypes are triangles with one interior angle that is equal to 
90°. The derivation of the right triangle class 3

RL  from the triangle class 
3L  is given by the following rule 

3 3: .
2

G
i i Ra A a L Lα α π⎡ ⎤∃ ∈ = ⇒⎢ ⎥⎣ ⎦

;  

Several methods of the curvature computation were proposed. For  
example, curvature as the change of cosine over a region of support is 
given in [8], the curvature as the rate of change of slope expressed as a 
function of length is described in [9], or the curvature as a convolution 
with a Gaussian kernel is described in [10]. 

The convex polygon class LΩ  is split into base convex polygon classes 
based on the derivation rules 
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The convex curve-polygon class MΩ  consists of the geometrical figures, 
which have curvilinear parts as well as linear segments. The curve-polygon 
class MΩ  is defined against the value of the curvature ( )tκ  as follows 

1[ : ( , ), ( ) 0] ,M
i ii t t t t Λκ Ω Ω+∃ ∀ ∈ = ⇒ ;  

where it  (i = 1,…,N) is the value of a parameter for which the curvature 
( )tκ  does not exist. 
Splitting of the convex curve-polygon class M  into the base classes is 

based on a number of straight line segments and a number of curvilinear 
segments m of archetypes of the class M . The description of the base con-
vex curve-polygon class is related to the generic polygon class nL . Arche-
type of the generic polygon class nL  is constructed by joining vertices of 
the straight line segments as shown in Fig. 2.2. Archetype shown in Fig. 
2.2a is a member of the curve-linear class 1 4[ ]M L , where 1 denotes one 
curvilinear segment and 4L  denotes the generic polygon (rectangle Fig. 
2.2b). Examples of the archetypes of the base convex curve-polygon 
classes are shown in Fig. 2.2. The symbolic names for archetypes shown in 
Fig. 2.2 are as follows: 1 3[ ]M L  (Fig. 2.2c), 1 4[ ]M L  (Fig. 2.2d), 2 4[ ]M L  
(Fig. 2.2e), 1 5[ ]M L  (Fig. 2.2f), and 1 6[ ]M L  (Fig. 2.2g). Construction of 

The class [ ]m nM L  is split into specific classes based on the type of the 
curvilinear segment and the description of the specific curve-polygon class 
is given in the form [ ]( )m n f

HM L mθ , where nL  is a generic polygon class, 
 

 

         
 a b   c       d  e f     g 

Fig. 2.2. Construction of the generic polygon: (a) an archetype of the convex 
curve-polygon class, (b) the generic polygon obtained by joining straight line 

2.1.1.1.2. Convex Curve-Polygon Class and Its Subclasses 

the generic polygon is presented in Fig. 2.2a–b. The generic polygon is ob- 
tained by joining straight line segment vertices.

segment vertices. Examples of archetypes of the convex polygon-curve class (c–g)
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m is a number of curvilinear segments, and f
Hθ  denotes a type of the curvi-

linear segment. Each symbol of the type of the curvilinear segment f
Hθ  has 

its meaning: θ  denotes convexity of the curvilinear segment [ , ]c wθ ∈ , 
where c is a convex curvilinear segment and w is a concave curvilinear 
segment; f denotes the curvilinear segment [0,1,2]f ∈ , where 0 denotes a 
“function,” 1 denotes a “nonfunction” only on one side, and 2 denotes a 
“nonfunction” on both sides. The “function” is a curvilinear segment that 
is the graphical representation of any function ( )y f x= . H denotes the 
height of the curvilinear segment [0,1,2]H ∈ , where 0 indicates a low 
height segment, 1 indicates a medium height segment, and 2 indicates a 
high segment. The height is the perpendicular distance from the chord 
connecting the endpoints of a curvilinear segment to the farthest point on 
the curvilinear segment. The symmetrical curvilinear segment is denoted 
as f

Hθ . 
Archetypes of the class 1M  possess only one straight line segment and 

one curvilinear segment. The description of the specific class derived from 
the class 1M  is given in the form ( )1 f

HM θ . The examples of exemplars 
generated from the class 1M  are given in Fig. 2.3. The symbolic names of 
the exemplars shown in Fig. 2.3 are as follows: ( )1 2

1M c  (Fig. 2.3a), 

( )1 1
1M c  (Fig. 2.3b), ( )1 0

1M c  (Fig. 2.3c), ( )1 2
2M c  (Fig. 2.3d), ( )1 2

1M c  

(Fig. 2.3e), and ( )1 2
0M c  (Fig. 2.3f). 

  
 a  b c  d e f 

Fig. 2.3. Exemplars generated from the class 1MΩ : (a) ( )1 2
1M c , (b) ( )1 1

1M c , 
(c) ( )1 0

1M c , (d) ( )1 2
2M c , (e) ( )1 2

1M c , (f) ( )1 2
0M c  

Archetypes of the class 1 3[ ]M L  possess two straight line segments and 
one curvilinear segment. The description of the specific class derived from 
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the class 1 3[ ]M L  is given in the form ( )1 3[ ] f
HM L θ , where f

Hθ  denotes 
 curvilinear segment. Archetypes of the class ( )1 3[ ] f

HM L θ

Archetypes of the class 2 4[ ]M L

class 2 4[ ]M L  is given in the form ( )2 4[ ] f f
H HM L θ θ , where f

Hθ  denotes 
the type of the curvilinear segment and 4L  denotes the generic polygon. 

 

   
   a          b            c          d     e        f        g      h 
 
   
 
     i         j            k          l             m        n      o         p 

Fig. 2.4. Archetypes of the class ( )1 3[ ] f
HM L θ  (a–h), ( )2 4[ ] f f

H HM L θ θ  (i–p) 

The convex curve class KΩ  consists of convex curves. A convex curve  
in E2 can be described in many different forms: an implicit equation 

tions, parametric B-splines, or wavelets. The approximated forms of curve 
representation, such as Fourier series, cubic-splines, B-splines, β -splines, 
and wavelets, are often used in geometric modeling (e.g., [12]) and are most 
promising as a model for the convex curve class. The Fourier series can be 
seen also as a definition of a curve in the parametric form. The curve Γ  can 
be expressed in the form of its truncated Fourier series as follows:  

0
1

0
1

2 2( ) cos sin ,

2 2( ) cos sin .

n n
n

n n
n

nt ntx t a a b
T T
nt nty t c c d

T T

∞

=

∞

=

π π⎛ ⎞= + +⎜ ⎟
⎝ ⎠

π π⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑

∑

F(x,y,z) = 0, a parametric equation (x(t),y(t)), the parametric Fourier equa-

 possess two straight line segments and 

the type of the
in Fig. 2.4(a–h). 

two curvilinear segments (see Fig. 2.4(i–p)). The specific class derived from the 

2.1.1.1.3. Convex Curve Class and Its Subclasses 
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The equation for a single parametric cubic spline segment is given by 
4

1
1 2

1
( ) , ,i

i
i

P t B t t t t−

=

= ≤ ≤∑ 1 2t t t≤ ≤  

where t1 and t2 are the values of parameters at the beginning and at the end 
of the segment. P(t) is the position vector of any points on their cubic 
spline segment. The curve can be computed as 

3 3

1 2
0 0

( ) , ( ) ,k i k i
x ik y ik

i i
C t A t C t B t t t t

= =

= = ≤ ≤∑ ∑
The constant coefficients Aik and Bik are determined by specifying four 

boundary conditions for the spline segment [12]. 
B-splines are given by the parametric equation 

,
0

( ) ( ) ,
n

i k i
i

f t b t q
=

= ∑  

where 0 1, , , nq q q…  are n + 1 control points. The index k = 2,3,..., deter-
mines the number of control points that have influence on the points of the 
curve [14]. 

,( ) DPWT( , ) ( ),m n
m n

f t c m n tΨ= ∑∑  

where c is some constant dependent on ( )tΨ . The discrete parameter 
wavelet transform is given by ,DPWT( , ) ( ) ( )m nm n f t t dtΨ= ∫ , where 

( )/ 2
, 0 0 0( ) m m

m n t a a t nΨ Ψ τ− −= − , 0,0 ( ) ( )t tΨ Ψ= , and 0a  and 0τ  are con-

stants that determine the sampling intervals. 
2ˆ
2

is given by 
whose curvature is given as a piecewise continuous function κ : (a,b) →ℜ  

It can be proved (see, e.g., [7]) that a unit-speed curve f a: ( ,b) →ℜ  

The coefficients na , nb , nc , and nd  are computed as described in 
Brigham [13]. 

present curve f(t) as follows: 
Discrete parameter wavelet transform DPWT [15] can be used to re-

.
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( )
0

ˆ ( ) cos ( )d sin ( )
,( ) ( )

f s s s c s ds d

s s ds

θ θ

θ κ θ

⎧ = + +⎪
⎨

= +⎪⎩

∫ ∫
∫  (1) 

where c, d, and 0θ  are integration constants. The curvature given as a 
piecewise continuous function κ  is characteristic for the curvilinear seg-
ment. Equation (1) can be used as a model of the curve class. However to 
derive the specific classes the heuristic rules are applied that make it pos-
sible to define the classes based on more perceptually oriented approach. 
The curve class KΩ  is defined by using a curvature and is given by the 
derivation rules 1 2[ [ , ] : ( ) 0] Kt t t t Λκ Ω Ω∀ ∈ > ⇒ ; , where parameter t 
varies over a given range 1 2[ , ]t t t∈ . 

2 2

1,x y
a b
+ =  

which is parameterized by two parameters a and b. The curvature of the 
ellipse is given by the equation 

( )3/ 22 2 2 2
.

cos sin

ab

b t a t+
 

From the convex curve class 1K  the specific classes, the circle class 
1
CK  (Fig. 2.5a) and the ellipsis class 1

EK  (Fig. 2.5b, c), are derived. 
The class 2K  is a class for which curvature of each archetype has one 

clear maximum and each archetype is symmetrical. The maximum of the 
curvature is the point 1 2[ , ]t t t∈  for which the first derivative of the curva-
ture ( )tκ′ max  and 

2 . The derivation rule of the convex class 2K

max 2 ,KK
haκ κθ Ω Ω⎡ ⎤> ⇒⎣ ⎦ ;  

where h
κθ  is the threshold. Archetypes generated from convex curve class 

2K  are shown in Fig. 2.5d, e. 

The class 1K  is the class whose archetypes are regular curves. The
regular curve is a curve that is convex and symmetrical. Archetypes of the 
convex curve class 1K  are defined by the ellipse equation 

maxκ= 0 . The maximum of the curvature is denoted as κ
attribute of the class K

is given as 
is the 
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The class 3K  is described as a class for which curvature of each arche-
type is in the range ( )l htκ κθ κ θ< < , where l

κθ  and h
κθ  are thresholds. The 

derivation rules of the convex class 3K  are given in the form 
3

max min ,KK
h la aκ κ κ κθ θ Ω Ω⎡ ⎤< ∧ > ⇒⎣ ⎦ ;  

Fig. 2.5. Archetypes of the convex curve class 

The convex curve class 4K  is derived from convex class based on deri-
vation rules given in the form 

4
max ,KL L K

l la aκ κθ θ Ω Ω⎡ ⎤< ∧ > ⇒⎣ ⎦ ;  

where curvature maxaκ , and elongation La  are attributes of  the  convex 
curve class KΩ  and , L

l l
κθ θ  are thresholds. Archetypes generated from the 

convex curve class 4K  are shown in Fig. 2.5h, i. Elongation L is defined 
as 1 2L λ λ= , where 1λ  and 2λ  are the first and second eigenvalues of the 
matrix of the first and second moments 

20 11

11 02

, ,p q
pq

m m
where m x y dx dy  and

m m

∞ ∞

−∞ −∞

⎡ ⎤
=⎢ ⎥

⎣ ⎦
∫ ∫

In the section “Convex Curve Class and Its Subclasses”  the specific convex 
classes were described. In this section the specific concave classes, derived 
from the concave general class, are presented. The process of derivation of 
the concave general class Q  was described in the previous chapters. The 
archetype of the concave class Q  consists of elements that can be decom-
posed into subregions (residuals) iteratively. In decomposition scheme the 
concave object is broken down into very simple primitives called residuals. 

where maxaκ , minaκ  are attributes of the convex curve class 3K , and ,l h
κ κθ θ  

are thresholds. Archetypes generated from convex curve class 3K  are 
shown in Fig. 2.5f, g. 

   a          b            c           d     e        f        g      h i

2.1.1.2. Concave Classes 

p,q∈[0,1, 2].
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At first the convex hull is used as a base for the decomposition of the 
object into the concave regions and residuals and next each residual is 
examined in the process called the first level of iteration (see Fig. 2.6). In 
the case when some residuals are concave they are examined in the process 
called the second level of iteration. The description of the concave class 
depends on the level of iteration and is given by a symbolic name 

[ ]( )nQ nΛ Γℑ ℑ , where n is the number of residuals, Γℑ  is a type of the 
residuals, Λℑ  is a type of the generic classes, Λℑ  is one of the convex 
classes { , , }L K MΛℑ ≡ , and Γℑ  is one of the acyclic generic classes 

{ , , }QΓ Λ Θℑ = . 

 

 
 a   b    c 

As it was described, the description of the concave class depends on the 
level of iteration, the number of residuals n, type of the residuals Γℑ , and 
type of the generic class Λℑ . The description of the concave class at the 
first level of iteration is given by [ ]( )nQ nΛ Γℑ ℑ , where Λℑ  is one of the 
convex classes { , , }L K MΛℑ =  and Γℑ  is one of the acyclic general 
classes { , }Γ Λ Θℑ = . Depending on the number of residuals n, and type 

Fig. 2.6. Process of decomposition of the archetype of the concave class:  
(a) an archetype of the concave class 1 4 4[ ]( )Q L L , (b) the generic convex class 4L , 
(c) residual 4L  

The convex hull shown in Fig. 2.6b is used as a base for the decomposi-
tion of the object into the concave regions and residuals and is called the 
generic convex object. The generic convex object is a member of the con-
vex rectangular class 4L . As it was described in decomposition scheme, 
the concave object is broken down into very simple primitives called 
residuals. Figure 2.6 shows the process of decomposition of the concave 

1 4 4

4

4

object (a) an archetype of the concave class Q L[ ](L ) (Fig. 2.6a), (b) the 
generic convex class L (Fig. 2.6b), and (c) residual member of the rectan-
gular class L (Fig. 2.6c). 

2.1.1.2.1. Levels of Iterations 
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of classes Λℑ  and Γℑ  the following concave classes are possible: 
( )nQ nΛ Λ , ( )nQ nΛ Θ , or ( )nQ k mΛ Λ Θ , where k + m = n. 

In the case when the generic class is the convex polygon class L  the 
class that is derived is given by ( )n

LQ nΛ . The symbol ( )n
LQ nΛ  denotes 

the concave class Q  whose generic class is the convex polygon class L 
and archetypes of this class have n residuals. All residuals are archetypes 
of one of the convex classes (the polygon class L, the convex polygon-
curve class M, or the convex curve class K). The following concave classes 
are possible: ( )n

LQ nL , ( )n
LQ nM , ( )n

LQ nK , ( )n
LQ kLmM , ( )n

LQ kLmK , 
( )n

LQ kMmK , or ( )n
LQ hLkMmK , where k + m = n and h + k + m = n. 

Similarly, the possible classes whose generic class is the convex curve-
polygon class ( )n

MQ nΛ  or the convex curve class ( )n
KQ nΛ  can be ob-

tained. The symbol 2 5 3[ ](2 )Q L L⋅  denotes that the concave class Q  
whose generic class is the convex polygon class (pentagon) 5L  has two re-
siduals. Both residuals are archetypes of the triangle class 3L . Examples of 
the concave class at the first level of iteration are given in Fig. 2.7. 

n

the generic class is given by the convex polygon class L. The residuals are 

bolic names: 2 5 3[ ](2 )Q L L⋅  (Fig. 2.7a), 4[ ]( )Q L M  (Fig. 2.7b), and 
4 1[ ]( )Q L K  (Fig. 2.7c). 

n
M

symbolic names: 3[ ]( )Q M L  (Fig. 2.7d), [ ]( )Q M M  (Fig. 2.7e), and 
1[ ]( )Q M K  (Fig. 2.7f). 

 

L, the convex curve-polygon als are members of the convex polygon class 
class M , and the convex class K .  Archetypes are given by following 

generic class is given by the convex curve-polygon class M . The residu-

 

 
  a b   c d e f g h i 

Fig. 2.7. Archetypes of the concave classes at the first level of iteration 

members of the convex polygon class L, the convex curve-polygon class 

Archetypes in Fig. 2.7a–c are members of the class Q L[ ](nΛ),  where 

M, or the convex class K. Archetypes are given by the following sym-

Archetypes in Fig. 2.7d–f are members of the class Q (nΛ), where the 
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M K
3  (Fig. 2.7g), [ ]( )Q K M  (Fig. 2.7h), and 

1[ ]( )Q K K  (Fig. 2.7i). 

Archetypes in Fig. 2.8 are members of the class [ ]( [ ]( ))Q QΛ Λ Λ , 
where the generic class of each archetype is one of the following classes: 
the convex polygon class L , the convex curve-polygon class M , and the 
convex class K . The residuals are members of the concave class Q . 
Archetypes shown in Fig. 2.8 are given by following symbolic names: 

1 4 1[ ]( [ ]( ))Q L Q M M  (Fig. 2.8a), 1 1 4 3[ ]( [ ]( ))Q M Q L L  (Fig. 2.8b), and 
1 1 3[ ]( [ ]( ))Q K Q M L  (Fig. 2.8c). 

 
 

 

Fig. 2.8. Archetypes of the concave classes at the second level of iteration 

In the case when a number of iteration levels and the number of residuals 
are growing an archetype of the concave class can be described as an 
archetype of the thin class. Also for the class 1 ( )m

i
L

Q L  the following ex-
pression is true 1 1lim ( ) ( )m m

i
L Li

Q L Q K
→∞

= , where K denotes the curvilinear 

Archetypes in Fig. 2.7g–i are members of the class ( )n
KQ nΛ  where the 

generic class is given by the convex curve class K . The residuals are 
members of the convex polygon class L , the convex curve-polygon class 

  a b   c 

Similarly, at the second level of iteration the description of the concave 
class is given by ( )nQ n

Λ Γℑ ℑ , where Λℑ  is one of the convex classes 
{ , , }L K MΛℑ =  and Γℑ  is one of the acyclic general classes 
{ , , }QΓ Λ Θℑ = . Depending on the number of residuals n, type of  

the class Γℑ  and type of the generic convex class Λℑ  the following 
classes are possible: [ ]( )nQ nQΛ , [ ]( )nQ kQmΛ Λ , [ ]( )nQ kQmΛ Θ , or 

n

class. For the convex polygon class [ ]( )n m kQ L nL , when n is large 

symbolic names:  Q K[ ](L )
.  Archetypes are given by the following,  and the convex class 

enough, the convex polygon class is called a noisy class and is denoted as 

types of the concave classes at the second level of iteration are given in Fig. 2.8. 
Q [Λ](hQkΛmΘ ),  where k  + m = n and h + k + m = n. Examples of the arche-
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[ ]( ) lim ( )m
m k n k

Ln
L L Q nL

→∞
ℵ ≡ . When all residuals are triangles (k = 3) the 
noisy class is denoted as 3[ ]( )mL n Lℵ ⋅  [16]. Examples of archetypes of 
the noisy class 4 3[ ]( )L nLℵ  are given in Fig. 2.9. 

 

Fig. 2.9. Archetypes of the noisy polygon class 

In the previous section the specific concave classes, derived from the gen-
eral concave class, were described. In this section the subspecific concave 
classes, derived from the concave polygon class, are presented. The con-
cave polygon class is the class archetypes of which are concave polygons. 
The concave polygon class at the first level of iteration is described as 

[ ]( )n m kQ L nL . For the concave polygon class [ ]( )n m kQ L nL  the generic 
class is the convex polygon class L and all residuals are archetypes of one 
of the convex polygon classes. The concave polygon class at the second 
level of iteration is described as [ ]( [ ]( ))n m h m pQ L nQ L hL  and the concave 
polygon class at the third level of iteration is given by symbolic name 

[ ]( [ ]( [ ]( )))n m h m w u sQ L nQ L hQ L wL . Example of the archetype generated 
from the concave polygon class at the third level of iteration given by sym-
bolic name 3 6 3 5 1 4 4 3 3 1 4 4 1 4 3[ ]( [ ]( [ ]( ), , ), [ ]( ), [ ]( ))Q L Q L Q L L L L Q L L Q L L  

3 6 3 5 1 4 4 3

1 4 4 1 4 3
[ ]( [ ]( [ ]( ), 2 ),Q L Q L Q L L L

6

3 5 1 4 4 3[ ]( [ ]( ), 2 )Q L Q L L L , 1 4 4[ ]( )Q L L , and 1 4 3[ ]( )Q L L . At the second 
3 5 1 4 4 3[ ]( [ ]( ), 2 )Q L Q L L L , 1 4 4[ ]( )Q L L , 

and 1 4 3[ ]( )Q L L  is considered as an archetype of the concave class whose 

is shown in Fig. 2.10. The symbol 
Q [L ](L ), Q [L ](L ))  denotes the archetype of the concave class Q 
whose generic class is the archetype of the convex polygon class (hexagon) 
L  and the concave class is described at three levels of iteration. At the first 
level of iteration there are three residuals, archetypes of the concave classes

level of iteration each residual 

generic classes are archetypes of the convex polygon classes 5L , 4L , and 

2.1.1.2.2. Concave Polygon Class 
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4L . The archetype of the class 3 5 1 4 4 3[ ]( [ ]( ), 2 )Q L Q L L L  has three resi-
duals 1 4 4[ ]( )Q L L , 3L , and 3L . At the third level of iteration the residual 

1 4 4[ ]( )Q L L  is decomposed into the generic class 4L  and one residual 4L . 

 
3 6 3 5 1 4 4

3 3 1 4 4 1 4 3
[ ]( [ ]( ),

, ) [ ]( ), [ ]( ))
Q L Q L L

L L Q L L Q L L  

the convex and concave vertices. Let m denote the number of vertices of 
the generic convex polygon (convex vertices) of the archetype of the con-
cave class [ ]n mQ L . Let n denote a number of residuals and ih  (i = 1,…,n) 
denotes a number of concave vertices i

jw  between two convex vertices iv  
and 1iv + . To obtain description of this class in a more convenient way, let 

iv a≡  denotes a convex vertex and { }1 2, , ,
i

i i i
i hk w w w≡ …  denotes a set of 

iv  and 1iv +

1 2[ , , , , ]n
m i nL ak ak ak ak… … . The description given by the concave ver-

tices string can be transformed into the description given by the iterative 
( )1

n m k k
n

](Q L[Fig. 2.10. The archetype of the class 

The concave polygon class can be described by applying the different 

class description can be represented by the string in the form 
concave vertices between two adjacent vertices  so as the

symbolic descriptions. One of the descriptions is based on the computation of 

model Q L[ ] L ,…, L . Examples of the transformations  of the des-
cription given by the concave vertices string into the description given by 
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the iterative model for the archetype shown in Fig. 2.11c is as follows: 
4 4 4 4 3 4 3
4 [ 4 3 4 3] [ ]( , , , )L a a a a Q L L L L L≡ . Examples of archetypes defined 

by the description given by the concave vertices string are shown in Fig. 
2.11. Those archetypes are given by the following symbolic names: 

1
4[ 4 ]L a aaa  (Fig. 2.11a), 2

4 [ 4 3 ]L a a aa  (Fig. 2.11b), 3
4 [ 4 3 3 ]L a a a a  

(Fig. 2.11c), and 4
4 [ 4 3 4 3]L a a a a  (Fig. 2.11d). 

 

 
 a  b c  d 

vertices string 

The archetype of the complex polygon class C  is obtained as the result 
of a certain type of topological operation called a complex polygon addi-
tion. The addition operation defines the way in which polygons are joined 
together. One of the addition operations that make the complex polygon 
object by joining two polygons along the common edge is the edge-sum. 
The edge-sum is defined as follows. Let 

n nL Lω Ω∈  and 
k kL Lω Ω∈ , 

where ,
k nL Lω ω  are archetypes of the polygon class. The sum 
( )

n kL L
ivω ω⊗ ( )

nL
iE ω  is defined to be a polygon resulted from 

adding 
nLω  with 

kLω  by translating, rotating, and scaling 
kLω  so that 

( )
kL

jE ω  coincides with ( )
nL

iE ω . The edge ( )
nL

iE ω  given by vertices 
( )

nL
iv ω  and 1( )

nL
iv ω+  describes the bounding rectangle of the sum 

( )
n kL L

ivω ω⊗ . The bounding rectangle is given by a line passing through 
vertices ( )

nL
iv ω , 1( )

nL
iv ω+  and perpendicular to the line given by the 

edge ( )
nL

iE ω . The archetype of the complex polygon class can consist 
with more than two parts. The complex polygon class is denoted as 

( )iC nL , where n is a number of polygonal parts iL . There is a conversion 
from the notation of the complex class into the notation given by the itera-
tive model. Figure 2.12 shows an archetype of the complex polygon class 

Fig. 2.11. Archetypes of the class defined by the description given by the concave 

 at the edge 

represented by four different symbolic representations in the form of the 



64      2. Shape Classes 

2 4 4 4 4 4

2
4 [ 4 4 ]L v vv v 12

 
 
 
 

Fig. 2.12. An archetype of the concave polygon class 

2 3 1 3 2 3 3[ [ ]]( , ) [ [ ]]( )Q M L M L W M L cl w≡  (Fig. 2.13a) 
2 4 1 4 2 4[ [ ]]( , ) [ [ ]]( )Q M L M L W M L cwcl≡  (Fig. 2.13b) 
3 4 1 3 1 3 3 4 3 1[ [ ]]( [ ], , ) [ [ ]]( )Q M L M L M L W M L cwl g≡ (Fig. 2.13c) 

The regular concave curve-polygon class is the class given by symbolic 
name [ ]( )kQ M kM . For this class the generic class and all residuals are 

rated from class [ ]( )kQ M kM  are shown in Fig. 2.13d–f. Those arche-
types are given by the following symbolic names: 2 3 1[ [ ]](2 )Q M L M  
(Fig. 2.13d), 2 2 4 1[ [ ]](2 )Q M L M  (Fig. 2.13e), and 2 1 4 1[ [ ]](2 )Q M L M  
(Fig. 2.13f). 

The concave curve-polygon class is a class archetypes of which are  
the concave curve-polygons. The concave curve-polygon is the class  
archetypes of which need to have at least one curvilinear segment. At 
the first level of iteration the following concave curve-polygon classes 
are possible: [ ]( )kQ M kM , [ ]( )kQ L kM , [ ]( )kQ M kL , 1 2[ ]( )KQ L k Mk L , 
or 1 2[ ]( )KQ M k Mk L . The description of the specific concave curve-
polygon classes can be given using the concave vertices form 

, , [ ]( , , )i j k m nW L i j g k lθ⋅ ⋅ ⋅ , where θ  is a type of the concave curvilinear 
segment, g is the concave straight-curvilinear segment, and nl  is the con-
cave n-gon. There is a conversion from the notation of the concave vertices 
form into the notation given by the iterative model. For example, arche-
types shown in Fig. 2.13a–c are given by description both in a concave 
vertices form and by an iterative model: 

members of the curve-polygon class M. Examples of archetypes gene-

ing model 

4

iterative model Q L[ ](2L )  , the complex model C(L , L , L ) , the subtract- 
, and the cyclic model ⊥ {(12 ⋅π )(12d ) described 

in [17]. 

2.1.1.2.3. Concave Curve-Polygon Class 
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The archetypes of the concave curve-polygon class whose generic class 

[ ]( )kQ L kM  or 1 2[ ]( )KQ L k Mk L , where 1 2K k k= + . Examples of arche-
types generated from the class [ ]( )kQ L kM  are shown in Fig. 2.13g–i. 
Archetypes shown in Fig. 2.13g–i are given by the following symbolic 
names: 2 3

1[ ](2 )Q L M  (Fig. 2.13g), 2 4
1[ ](2 )Q L M (Fig. 2.13h), and 

2 5
1[ ](2 )Q L M  (Fig. 2.13i). Examples of archetypes generated from the class 

1 2[ ]( )KQ L k Mk L  are shown in Fig. 2.13j–l. Archetypes shown in Fig. 
2.13j–l are given by the following symbolic names: 2 3 3

1[ ]( )Q L M L  (Fig. 
2.13j), 2 5 4

1[ ]( )Q L M L  (Fig. 2.13k), and 3 5 1 3
1 2[ ]( )Q L M M L  (Fig. 2.13l). 

 

         

Fig. 2.13. Examples of archetypes whose descriptions are given both in a concave 
vertices form and by an iterative model 

class are members of a convex polygon class L , is called the concave 
curve-polygon star class and is given by the symbolic name 

[ ]( )k kQ L mMnL , m + n = k. The concave curve-polygon star class whose 
all residuals are members of the curve-polygon class is called the regular 
concave curve-polygon star class and is denoted as [ ]( )k kQ L kM . Exam-
ples of archetypes generated from the curve-polygon star class are shown 
in Fig. 2.14. Archetypes shown in Fig. 2.14 are given by the following 

 

Fig. 2.14. Archetypes of the regular concave curve-polygon star classes 

The concave curve-polygon class, for which archetypes of the generic 

   a          b            c        

  d     e        f        

                              
g h i j k l

  a     b        c        

is a member of the polygon class are given by the symbolic  name 
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As it was described in the section “Concave Curve-Polygon Class,” the 
thin class is a class whose members are thin objects. In this book the term 
the thin class is used to denote the acyclic-thin class. The thin class is 
represented by the acyclic graph called a tree. The undirected graph 
G = (V, E), where V is the set of nodes and E V V⊆ ×  is the set of edges, 
is called a tree if it satisfies two conditions: the graph is connected and the 
graph contains no cycles. It can be shown that in the case of the thin 
acyclic shape class a tree is a spanning tree. An edge of a spanning tree is 
called a branch and a spanning tree with H vertices consists of H-1 
branches. The spanning tree represents an archetype of the thin class. The 
archetype of the thin class consists of edges and vertices. The two types of 
vertices are distinguished: the endpoint vξ  and the branching-point vζ . 

The thin class, the archetype of which has a branch i jv vζ ζ  connecting 
only the branching points, is called the thin bridge class and the branch 

i jv vζ ζ  is called a bridge. Depending on the curvilinearity of the branch, two 
types of branches can be distinguished: the straight branch and the curvi-
linear branch. The class whose archetypes have all straight branches is 
called the straight thin class. For the straight thin class a set of angles and 
distances called the set of attributes of the straight thin class is computed. 
The set of attributes is denoted as ( ) ( ) ( ){ }1 1 2 `2, , , , , ,d d d

N NA a a a a a bΘ α α α= … , 

where d
ia  is a distance computed as k i jd v vξ ξ ζ=  for two different types of 

the vertices and k i jd v vζ ζ ζ=  for this same type of vertices, and iaα  is an 

angle computed as X X
k i k jv v vξ ζα = ∠ , where X  denotes vertices type ξ  or 

ζ , and k = 1,…,H-1, m = 1,….,M, and X X
k i k jv v vζ ζα = ∠ , where X  de-

notes vertices type ζ , and k = 1,…,H-1, m = 1,….,M. 
Depending on the type of branches the thin class is split into three 

classes: the 1-D class archetypes of which have only isolated branches 

1 2v vξ ξ , the star class ⊕  archetypes of which have only external branches 

i jv vξ ζ , and the thin bridge class 1
kΘ  archetypes of which have both external 

i jv vξ ζ  and internal i jv vζ ζ  branches. Examples of the archetypes from the 
thin class are shown in Fig. 2.15. Archetypes from the 2Θ  class are shown 

symbolic names: 3 3[ ](3 )Q L M  (Fig. 2.14a), 4 4[ ](4 )Q L M  (Fig. 2.14b), 
and  (Fig. 2.14c). 

2.1.1.3. Thin Classes 

5 5Q [L ](5M )
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1
kΘ  are shown in Fig. 2.15f–h. 

 
 
 

    a          b             c           d         e  f  g 

Fig. 2.15. Archetypes of the thin class (a–c) the 2Θ  class, (d, e) the star class ⊕ , 
(f–h) the bridge class 1

kΘ  

Based on the relations between attributes the following thin star classes 
k⊕  are derived: 

• The equilateral-star class: this is a class for which all archetypes 
have all branches equal 

• The equiangular-star class: this is a class for which all archetypes 
have all angles equal 

• The ideal star class: this is a class for which all archetypes have all 
angles and branches equal 

The derivation rules applied for each individual class are as follows: 

, ,:d T d
i d i d k ka A T a T⎡ ⎤∀ ∈ ∃ ∈ℜ = ⇒⊕ ⊕⎣ ⎦

��;  

ˆ, ,:T
i i k ka A T a Tα α

α α⎡ ⎤∀ ∈ ∃ ∈ℜ = ⇒⊕ ⊕⎣ ⎦ ;

( , ,: ) ( , ,: )d T d T
i d i d i i k ka A T a T a A T a Tα α

α α∀ ∈ ∃ ∈ℜ = ∧ ∀ ∈ ∃ ∈ℜ = ⇒⊕ ⊕⎡ ⎤⎣ ⎦ ;

 (the ideal star class) 
k⊕

The archetype from the 3⊕��  class is shown in Fig. 2.16a, the archetype 
from the 3⊕̂  class is shown in Fig. 2.16b, and the archetype from the 3⊕  
class is shown in Fig. 2.16c. 
 

 
 
 
 

     a  b  c 

Fig. 2.16. Archetypes of the straight star class kΩ⊕ : (a) the equiangular-star class 
3⊕�� , (b) the equilateral-star class 3⊕̂ , (c) the ideal star class 3⊕  

Ω  are shown in Fig. 
2.16. 

in Fig. 2.15a–c, archetypes from the star class ⊕  are shown in Fig. 2.15d, e, 
and archetypes from the bridge class 

 (the equilateral-star class)

 (the equiangular-star class) 

h 

Examples of archetypes of the thin straight star class 
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Similarly, the bridge thin straight class 1
kΘ  can be split into specific 

classes based on a set of attributes AΘ . Examples of archetypes of the 
bridge thin class are shown in Fig. 2.17. The archetype from the bridge 
thin straight equilateral-class 2

4Θ̂  is shown in Fig. 2.17a, the archetype 
from the bridge thin straight equilateral-branch class 2

4Θ��  is shown in Fig. 
2.17b, and the archetype from the bridge thin straight equiangular-branch 
class 2

4Θ
�

 is shown in Fig. 2.17c. 

Fig. 2.17. Archetypes of the bridge thin straight class 1
kΘ

class 2
4Θ̂ 2

4
��

thin class 2
4Θ
�

 

The special subclass of the thin class is a thin fractal class denoted as 
FΩ . The fractal class is described in the form of the thin class as m

nΘ , 
where m and n are numbers that characterize the L-system [18]. The thin 
fractal class defined by the L-system is restricted to the class for which its 
graph representation is a spanning tree. It imposes the constraints for the 
level of iteration of the system and a set of parameters of the model. Ar-
chetypes of the fractal class are generated by L-systems. L-system uses 
strings that are interpreted based on the notion of a LOGO-style turtle. For 
example, the dragon curve can be generated by repetitively substituting 
line segments by pairs of lines forming either a left or a right turn and is 
described by the following L-system: 

  : Fl 
  p1: Fl→ Fl + Fr+ 
  p2: Fr→Fl − Fr 

The symbols Fl, Fr are interpreted by turtle as the “move left” and 
“move right” commands, and p1, p2 are productions rules [18]. From the 
thin fractal class the following specific classes are derived: the equiangular-
branch thin fractal class 8F̂π , the equiangular-thin fractal class 5Fα , the thin 
fractal class k

mF 5

  a     b        c        

: (a) the equilateral-thin 

, (b) the equilateral-branch thin class Θ , (c) the equiangular-branch 

��

, the thin curved fractal class F , and the thin curved fractal
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Fk
m

specific fractal classes. These classes are defined in the similar way as the 
specific classes described in previous sections. The archetype of the class 

8F̂π  is shown in Fig. 2.18a, the archetype of the class 5Fα  is shown in Fig. 
2.18b, the archetype of the class k

mF  is shown in Fig. 2.18c, the archetype 
of the class 5F  is shown in Fig. 2.18d, and the archetype of the class Fk

m  is 
shown in Fig. 2.18e. 

 
 
 
 
 
 
        a  b  c  d  e 

Fig. 2.18. Archetypes of the thin fractal class FΩ : (a) the equiangular-branch 
thin fractal class 8F̂π , (b) the equiangular-thin fractal class 5Fα , (c) the thin fractal 
class k

mF , (d) the thin curved fractal class 5F , (e) the thin curved fractal class Fk
m  

As it was described in the section “Concave Curve-Polygon Class” the 
1-D thin class 2Θ  is the class archetypes of which have only isolated 
branches 1 2v vξ ξ . From the 1-D thin class the specific classes are derived 
based on the properties of the graph function that is representative of the 
archetype of the class 2Θ . The function ( )y f x=  is defined in the closed 
interval [a,b] and is prescribed by an analytical expression or a formula. It 
is assumed that the function fulfils the conditions: ( ) ( )f a f a c− = =  and 

[ , ], ( ) ( )x a b f x c f x d∀ ∈ ≤ ∧ ≥ , where c, d are the greatest and the 
smallest of all values of the function f(x). The 1-D thin class 2

FΘ  is defined 
2 2

FΘ;
2

2 2
1 2

1 2 1 2

[ , [ , ],
(0,1) : ( (1 ) ) ( ) (1 ) ( )]

C

x x a b
f x x f x f xλ λ λ λ λ Θ Θ

∀ ∈
∃ ∈ + − ≤ + − ⇒ ;

2Θ
respect to the vertical axis f(−x) = f(x) is called 1-D symmetric class 2

SΘ . 

The derivation rules are as follows: 2 2[ [ , ] : ( ) ( )] Sx a b f x f x Θ Θ∀ ∈ − = ⇒ ; . 

[ [∀ ∈x a,b],∃y c∈[ ,d ] : y = f (x)]⇒Θ . The 1-D thinas follows: 
convex function class derived from Θ  is defined as follows: 

. The 

1-D thin class derived from  for which their graph is symmetric with 

class . Figure 2.18 shows examples of archetypes generated from the 
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Examples of archetypes generated from specific 1-D thin class are shown 
in Fig. 2.19. Archetypes of the nonfunction classes Ωℑ  are shown in Fig. 
2.19a–c, the archetype from the convex symmetrical function class Ξ̂Ω  is 
shown in Fig. 2.19d, and archetypes from the convex nonsymmetrical (NS) 
function class Ξ̂Ω  are shown in Fig. 2.19e, f. 

 

        
 a b  c  d e f 

Fig. 2.19. Archetypes of the nonfunction classes Ωℑ  (a–c) and archetypes of the 
convex function classes: (d) symmetrical Ξ̂Ω , (e and f) nonsymmetrical Ξ̂Ω  

2

cribed in relation to its generic class and is called the thin poly-line class 
⊗ . The archetypes of the generic class are obtained by joining the pseudo-
nodes of the archetypes of the class ⊗  as shown in Fig. 2.20. The arche-
type of the class 4[ ]L⊗  shown in Fig. 2.20a is described in relation to 
its generic class 4L  (Fig. 2.20b) and the archetype of the class 

1 4 3[ [ ]( )]Q L L⊗  (Fig. 2.20c) is described in relation to its generic class 
1 4 3[ ]( )Q L L  (Fig. 2.20d). 

 

 
 
 
 
 
 a  b   c  d 

Fig. 2.20. Archetypes of the thin poly-line class ⊗  and its generic class: (a) the 
class 4L 1 4 3[ [ ]( )]Q L L

1 4 3[ ]( )Q L L  

The bridge tree class is the class derived from the bridge thin class. 
Archetypes of the bridge tree class are represented by the acyclic graph 
called a tree. The bridge tree class is described by the bridge notation that 

whereas branch by the bracket “( ).” The notation is based on the decom-
position of the tree into branches and bridges. During decomposition the 

, archetypes of which are straight poly-lines, is des-The 1-D thin class Θ

is explained in Fig. 2.22. The bridge is denoted by the bracket “[ ],” 

, (c) the class its generic class ⊗ 4[ ]L and (b) ⊗  and (d) 

its generic class 
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branches are removed and the bridge that is left becomes the generic 
bridge of the tree. For example, the archetype shown in Fig. 2.21a is an 
archetype from the bridge tree class [1]{[1](2)}{[1](2)}{[1](3)}{[1](4)}Θ〈 〉 . 
The result of removing branches is the string [1]{[1]}{[1]}{[1]}{[1]}Θ〈 〉  
and finally after renaming bridges into branches the bridge class 

[1](2)(2)Θ〈 〉  is obtained. The bridge class [1](2)(2)Θ〈 〉  that is the result 
of decomposition is shown in Fig. 2.21b. Examples of the archetypes from 
the bridge tree classes are shown in Fig. 2.21. The archetype from the class 

[1](2)(1)[1](2)Θ〈 〉
[1](3)(2)Θ〈 〉

 

        
 a  b c  d  e 

Fig. 2.21. Archetypes of the bridge tree class 

As it was described in previous sections each class can be described by 
applying the different notations. The archetypes in Fig. 2.22 are described 
by the notation of the bridge tree class [1](2)(2)Θ〈 〉 , generic bridge tree 
class 1 4 3[1](2)(2) [ [ ]( )]Q L LΘ〈 〉 , or by notation of the Θ ρ  class as 

1 4 3 3 4[ [ ]( )]{3 , }Q L L L LΘ ρ . The notation of the Θ ρ  class is derived 
from the notation of the ρ  class described in the further part of this chapter. 
In order to explain the notation of the Θ ρ  class, an example of decom-
position of the archetype from the Θ ρ  class is shown in Fig. 2.22. Figure 
2.22a shows the archetype from the thin bridge class [1](2)(2)Θ〈 〉 . The 

 

                  

Fig. 2.22. Explanation of the notation of the Θ ρ  class 

class 
 is shown in Fig. 2.21c, the archetype from the

a  b c  

 is shown in Fig. 2.21d, and archetype from the class 
Θ〈 〉[1]{(2),[1](2)}{(1),[1](2)}  is shown in Fig. 2.21e. 
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endpoints of this archetype are joined by straight lines as shown in Fig. 
2.22b, and as the result the object consisting of the four parts, three tri-
angles 3L , and one quadrilateral 4L , was obtained. The generic polygon, 
archetype of the class 1 4 3[ ]( )Q L L , is shown in Fig. 2.22c. 

As it was described in the section “Thin Classes,” the cyclic general class 
A  is defined based on the values of the attribute called a homotopy mea-

sure. The cyclic class A  consists of elements that can be decomposed 
iteratively into subregions (holes). The decomposition scheme in which the 
cyclic object is broken down into very simple primitives, called holes, is 
similar to the decomposition scheme of the concave object described in 
previous sections. At first all holes are filled and an object “without holes” 
is used as a base for the decomposition of the object into the filled regions 
and holes. Next each hole is examined in the process called the first level 
of iteration. In the case when some holes are cyclic they are examined in 
the process called the second level of iteration. The description of the con-
cave class depends on the level of iteration and is given by a symbolic 
name [ ]( )n

AA nΦℑ ℑ , where n is the number of residuals, Aℑ  is a type of 
the holes, and Φℑ  is a type of the generic classes. The base cyclic class is 
denoted as [ ]nA Φℑ , where Φℑ  is one of the acyclic general classes 

{ , }QΦ Λℑ =  from which the base cyclic class is derived and n is a number 
of holes. The description of the specific cyclic classes is based on a type of 
the generic class Φℑ  as well as on the type of the holes Aℑ . The arche-
type of a cyclic class derived from the acyclic class can be seen as a result 
of subtraction of the acyclic region and holes. 

At the first level of iteration the symbolic representation of the cyclic 
class is given as [ ]( )n

AA nΓ ℑ , where a hole can be a member of the thin 
or acyclic class { , }A Θ Γℑ ≡ . Depending on the number of holes n, and a 
type of generic class Γℑ , and a type of holes Aℑ , the following specific 
cyclic classes can be derived: [ ]( )nA nΛ Γ , [ ]( )nA nΛ Θ , [ ]( )nA Q nΓ , 
and [ ]( )nA Q nΘ . In the case when there are n holes there are the follow-
ing classes given by the symbolic names: ( )nA nΛ Λ , ( )nA nQΛ , ( )nA nΛ Θ , 
 

2.1.1.4. Cyclic Class 

archetype consists of one bridge that has two branches on its ends. The 
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  a    b 

Fig. 2.24. Exemplars of the concave point class 

Similarly, at the second level of iteration the symbolic representation of 
the cyclic class is given as [ ]( )n

AA nΓ ℑ , where at least one hole from the 
set Aℑ  is a member of the cyclic class A . Examples of exemplars gene-
rated from the cyclic classes at the second level of iteration are shown in 
Fig. 2.25a–d. The symbolic names of these exemplars are as follows: 

1

1 1[ ]( )Γ . 
Similarly, the archetype of the class 1[ ]( )A Q Γ  for which the hole has 
common points with the border points is the archetype of the concave 
point class 1 1[ ]( ) [ ]( )A Q Q QΓ Γ≡ . Figure 2.24 shows exemplars gene-
rated from the concave point class 1 4 4[ ]( )Q L L  (Fig. 2.24a) and 

1 4 3 3[ ]( , )Q L L L  (Fig. 2.24b). 

The archetype of the class A [Λ](Γ )  for which the hole has common points 
A Q[ ]Λ (Γ Λ) ≡with the border points is a concave point class 

figur

e citation 2.21e.

Fig. 2.23. Examples of exemplars from the cyclic class 

a  b c d e  f g h  

( )n
QA nΛ , ( )n

QA nQ , and ( )n
QA nΘ

3 4 3L L

exemplar whose generic class is the convex polygon class 4L  (rectangle) 
and it has three holes. All holes are archetypes of the rectangle class 4L . 
Figure 2.23e shows exemplar generated from the cyclic class 

( )2 4 8 4 1 4[ [

]

(4 )] ,EA Q L L K L , whose generic class is the concave polygon 
class [ ](4 )Q L L , and it has two holes. The first hole is an archetype of 
the rectangle class 4L  and the second one is the archetype of the curvilin-
ear class (ellipse) 1

EK . 

. Figure 2.23 shows exemplars generat-

ed from the cyclic class. The symbol A [  (Fig. 2.23b) denotes ( )

]
4 8 4
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( )( )1 4 1 4 4
R R RA L A L L⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (Fig. 2.25a) 

( )1 4 1 4 ( )R TA L A L K⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (Fig. 2.25b) 
1 5 3 4 8 3[ [ ]( )]( [ [ ](4 )]( ))A Q L L A Q L L K  (Fig. 2.25c) 

(Fig. 2.25d). Example of exemplar generated from the cyclic classes at the 
third level of iteration, whose symbolic name is given as follows 

( )( )( )1 4 1 4 1 4 4
R R R RA L A L A L L⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , is shown in Fig. 2.25e. The symbolic 

name ( )( )1 4 1 4 4
R R RA L A L L⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  denotes an exemplar generated from the 

class whose generic class is the convex polygon class 4L  (rectangle) and it 
has one hole. The hole is an archetype of the cyclic class ( )1 4 4

R RA L L⎡ ⎤⎣ ⎦ . 
The generic class of the hole is the convex polygon class 4L  (rectangle). 
The hole is an archetype of the rectangle class 4L . 

Fig. 2.25. Exemplars of the complex cyclic class given by symbolic names 

Archetypes of the complex cyclic class ( )C Θ  are obtained as the result of 
the certain type of topological operation called a complex addition [19], 
[20]. The complex class is denoted as 1 2( , , , )NC Γ Γ Γ… , where 

1 2, , , NΓ Γ Γ…  are classes of the addition operation. In the case when 
N = 2, the complex class is reduced into the class of the two-element 
operation and denoted as 1 2( , )C Γ Γ . In the case when 1Γ Λ≡ , the class 
is called the complex convex class. In the case when 1 AΓ ≡ , the class is 
called the complex cyclic class. Archetype of the complex cyclic class 
consists of parts, where one of the parts needs to be an archetype of the 
cyclic class. Examples of the archetypes of the complex cyclic class are 
given in Fig. 2.26. Symbol ( )1 4 4 3( ),RC A L L L⎡ ⎤⎣ ⎦  (see Fig. 2.26a) denotes 
that archetype of the complex class C consists of two parts, one archetype 

a  b c  d e 

2.1.1.5. Complex Cyclic Class 

 

     

2 1 2 4 1 4 1 2 5 2 3 1 1 1 1[ [ [ ]]( )]( [ ]( [ [ ]]( [ ](2 ))), [ ]( ))TA Q M L M A L Q M L Q L M Q M M
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of the cyclic class 1 4 4( )RA L L⎡ ⎤⎣ ⎦  and the second archetype of the convex 
class 3L . In the case when 2Γ Θ≡ , the complex class is defined by the 
point-sum operation and the class is called the complex convex thin class. 
Examples of the archetypes of the complex cyclic-thin class are given in 
Fig. 2.26. Symbol 1 3( [ ]( ), )C A L K Θ  (see Fig. 2.26f) denotes that an arche-
type of the complex class C consists of two parts, one archetype of cyclic 
class 1 3[ ]( )A L K  and the second archetype of the thin class Θ . 

Examples of archetypes generated from the complex cyclic-thin class 
given by symbolic names are shown in Fig. 2.26: ( )1 4 4 3( ),RC A L L L⎡ ⎤⎣ ⎦  

(Fig. 2.26a), ( )( )1 4 4 ,R RC A L L K⎡ ⎤⎣ ⎦  (Fig. 2.26b), 1( [ ]( ), )C A M K K  (Fig. 

2.26c), ( )( )1 4 3[ ] ,RC A K L L  (Fig. 2.26d), 1( [ ]( ), )C A K K K  (Fig. 2.26e), 
1 3( [ ]( ), )C A L K Θ  (Fig. 2.26f), 1 3 4( [ ]( ), )C A L L Θ�  (Fig. 2.26g), 

( )( )1 4 4 3 3, [ ]R TC A L L LΘ⎡ ⎤⎣ ⎦  (Fig. 2.26h), ( )1 4 ( ), 2RC A L K Θ⎡ ⎤⎣ ⎦
2.26i), ( )1 4 ( ),OC A L K ΘΘ⎡ ⎤⎣ ⎦

�  (Fig. 2.26j), ( )1 4 4( ), 2TC A L L Θ⎡ ⎤⎣ ⎦
�  (Fig. 

2.26k), ( )1 1 3( ), , [ ]( )RC A L K Q M LΘ⎡ ⎤⎣ ⎦  (Fig. 2.26l), and 

( )( )1 4 4 4 1 4, , , , ( )R R R RC A L L L A L KΘ Θ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (Fig. 2.26m). 

 
 

 
 
 

Fig. 2.26. Archetypes of the complex cyclic class 

The archetype of the cyclic class 1 ( )AΛ Γ  for which the type of the hole 
and the generic acyclic class is equal and area of the hole is close to the 
area of the archetype of the generic acyclic class is called the arche-
type of the cyclic-thin class 1 ( ) [ ]{ }AΛ Γ ρ Λ Γ≡ . Examples of exemplars 

{ }4 4
R RL L⎡ ⎤⎣ ⎦ , 

 

 (Fig.  

a b  c  d e f g  h  i j

k l m   

2.1.1.6. Cyclic Thin Class: The G-Class 

1 4

ρgenerated from classes given by the symbolic names: (a) 
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Fig. 2.27. Examples of exemplars of the cyclic-thin class 

Fig. 2.28. Archetypes of the cyclic-thin class 

a b c  d 

a b c

(b) { }4 43R RL Lρ ⎡ ⎤⎣ ⎦ , (c) { }4 3 4 43 , ,R R R TL L L Lρ ⎡ ⎤⎣ ⎦ , and (d) 1 1{2 }EK Mρ ⎡ ⎤⎣ ⎦  are 

shown in Fig. 2.27a–d. The symbolic name { }4 4
R RL Lρ ⎡ ⎤⎣ ⎦  denotes an ex-

emplar generated from the class whose generic class is the convex polygon 
class 4L  (rectangle) and it has one hole. The hole is an archetype of the 
rectangle class 4L . The symbol ρ  denotes that the exemplar is generated 

The archetype of the cyclic-thin class [ ]{ }ρ Λ Γ  can be represented by 
notation of the G-class. In this notation the object is decomposed into the 
core object and the thin object. Example of this decomposition is shown 
in Fig. 2.28. Figure 2.28 shows archetypes from the cyclic-thin class 

( ){ }1 6 3 5 3 4[ [ ]( )] [ ] ,3R TQ L L Q L L Lρ  that are decomposed according to the 
convention of the G-class. The archetype in Fig. 2.28a given by the sym-
bolic name 6 3 2(2)2 4 3[ [ ]( )]{ [ [ ]( )]}G Q L L Q L LΘ  is decomposed into the 
thin object 2(2)2 4 3[ [ ]( )]Q L LΘ  (Fig. 2.28b) and the concave core object 

6 3[ ]( )Q L L  (Fig. 2.28c) .  This archetype is represented as a member of the 
cyclic-thin class ( ){ }1 6 3 5 3 4[ [ ]( )] [ ] ,3R TQ L L Q L L Lρ  and is decomposed 

into the concave core object 6 3[ ]( )Q L L  and four objects: one concave 
5 3[ ]( )RQ L L  and the three convex 4

TL . 

from the acyclic class whose area of the hole is close to the area of the 
archetype of the generic acyclic class. 
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Archetype of the convex cyclic-thin class can be decomposed into the core 
convex object Λ  and holes. Figure 2.29 shows archetypes of the convex 
cyclic-thin class whose the core convex object is the member of the con-
vex triangle class 3L . Archetypes shown in Fig. 2.29 are represented by the 
following symbolic names: { }3 3[ ] 2 RL Lρ  (Fig. 2.29a), 3 3 4[ ]{ , }L L Lρ  (Fig. 
2.29b), 3 3 3 3[ ]{ [ ]( ), }L Q L L Lρ  (Fig. 2.29c), 3 4 3 3[ ]{ , [ ]( )}L L Q L Lρ  (Fig. 
2.29d), 3 3[ ]{3 }L Lρ  (Fig. 2.29e), and 3 4[ ]{3 }L Lρ  (Fig. 2.29f). Figure 
2.30 shows archetypes of the convex cyclic-thin class whose the core 
convex object is the member of the convex rectangle class 4

RL . Archetypes 
shown in Fig. 2.30 are represented by the following symbolic names: 

{ }4 32R RL Lρ ⎡ ⎤⎣ ⎦  (Fig. 2.30a), { }4 3 4 3, ( )R RL L Q L Lρ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (Fig. 2.30b), 

{ }4 34R RL Lρ ⎡ ⎤⎣ ⎦  (Fig. 2.30c), { }4 4 42 ,R Q RL L Lρ ⎡ ⎤⎣ ⎦  (Fig. 2.30d), { }4 44R RL Lρ ⋅⎡ ⎤⎣ ⎦  

(Fig. 2.30e), { }4 4 32 ,R TL L Lρ ⎡ ⎤⎣ ⎦  (Fig. 2.30f), and { }4 3 1 4 32 , [ ]( )RL L Q L Lρ ⎡ ⎤⎣ ⎦  
(Fig. 2.30g). 

 

 
    a  b  c d  e      f 

Fig. 2.29. Archetypes of the class triangle convex thin class 

 
 
 

 
    a  b c             d  e      f  g 

Fig. 2.30. Archetypes of the convex rectangle cyclic-thin class 

2.1.1.6.1. Convex Cyclic Thin G-Class 

Figure 2.31 shows the archetype of the convex cyclic class. The core 
convex object of this archetype is the member of the convex class nL .  
The symbolic names for these objects are given in the form of the 
convex thin class { }{ }n mL kLρ  and the G-class { }{ }nG L Θ . The sym-
bolic names are as follows: { }6 4[ ] 3 OL Lρ , 6 3 3[ ]{ [ ]}G L LΘ  (Fig. 2.31a), 
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{ }6 7 4 3 4[ ] 2 , ,–
O OL L L Lρ , 6 7 4 4[ ]{ [ ]}–G L LΘ  (Fig. 2.31b), { }4 4 3 4[ ] 2 ,OL L ,L Lρ , 

4 2(2)2 4[ ]{ [ ]}G L LΘ  (Fig. 2.31c), { }8 6 4[ ] ,3 OL L Lρ , 8 2(2)2 4[ ]{ [ ]}G L LΘ  (Fig. 
2.31d), and { }7 5 4[ ] ,3 OL L Lρ , 7 2(2)2 4[ ]{ [ ]}G L LΘ  (Fig. 2.31e). The symbol 

6 7–L  denotes that the archetype is the member of the class 6L  or 7L . 

 

Fig. 2.31. Archetypes of the class { }{ }nG L Θ  

    a b c d e 

Archetype of the concave cyclic-thin class can be decomposed into  
the core concave object Q  and holes. Following the notation of the  
G-class the archetype is decomposed into the concave core object Q  
and the thin objects Θ  or the complex thin objects ( )C Θ . Figure 2.32 
shows the archetypes of the concave cyclic-thin class that are  

Θ

( ){ }5
6 3 4 3[ [ ]( )] 3 ,T RL

Q L L L Q Lρ , { }4

6 3 2(2)2 3[ [ ]( )] ( )
L

G Q L L Q LΘ ⎡ ⎤⎣ ⎦  (Fig. 

2.32a), { }37 3 4ρ , { }47
3(2)2 33 ( )( )

LL
G Q LQ L Θ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦  (Fig. 

2.32b), { }6 8 5
3 4 3( ) 2 , ( )

L L
Q L L Q Lρ −⎡ ⎤⎣ ⎦ , { }5

3
6 8

3 ( )( )
LL

G Q LQ L Θ−⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦  

(Fig. 2.32c), and ( ){ }4

6 4 4 3
6 8

2 3 ( )3 , 3 , ( )(2 ) O O LL
L L L Q LQ Lρ −⎡ ⎤⎣ ⎦ , 6 8

2 3(2 )
L

G Q L−⎡ ⎤⎣ ⎦  

{ }5

2(2)2(2)2(2)2 2 3(2 )
L

Q LΘ ⎡ ⎤⎣ ⎦  (Fig. 2.32d). Figure 2.33 shows archetypes of 

the concave cyclic-thin class that are decomposed into the core  
concave object and the complex thin objects ( )C Θ . Archetypes are repre-

sented by the symbolic names as follows: ( ){ }3

3 2 3
6

3 , 3 ,( ) LL
G C LQ L Θ Θ⎡ ⎤⎣ ⎦  

(Fig. 2.33a), ( ){ }7 3
3 3 2 3( ) ,3 ,

L L
G Q L C L Θ Θ⎡ ⎤⎣ ⎦  (Fig. 2.33b), and 

6 7
3 23 { ( , 4 )}( )

L
G C LQ L Θ−⎡ ⎤⎣ ⎦  (Fig. 2.33c). 

 

2.1.1.6.2. Concave Cyclic Thin G-Class 

. decomposed into the core concave object and the thin object 
Archetypes are represented by the symbolic names as follows: 

[ ]Q L (L ) 4L L,o

o
2( 2)1( 2) 2

[ ]
4
oL , 
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Fig. 2.32. Archetypes of the thin concave G-class { }{ }G Q Θ  

   

Fig. 2.33. Archetypes of the thin concave G-class { }{ ( )}G Q C Θ  

The class for which an archetype can be seen as consisting of adjacent 
regions of the different uniform colors is called the colored class ℵ . An 
archetype of the colored class ℵ  can be decomposed into the regions of 
the different colors and assigned to one of the specific classes. The decom-
position of the archetype is shown in Fig. 2.34. 

 

 

 

 

Fig. 2.34. Decomposition of the archetype consisting of adjacent regions of the 
different uniform colors 

by the different colors. The description of the convex colored class can be 
reduced into the description of the cyclic class [ ]( )n

AA nΦℑ ℑ . The arche-
type of the colored class ( )2 4 4 4( ) ( ), ( )T R TL g L y L b⎡ ⎤ℵ ⎣ ⎦  is shown in Fig. 

2.35. The symbol ( )2 4 4 4( ) ( ), ( )T R TL g L y L b⎡ ⎤ℵ ⎣ ⎦  denotes that the convex 

    a b c 
    

d
 

    a b c

2.1.1.7. Colored Classes 

The colored class is the class archetypes of which have their parts marked 
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The first region 4 ( )RL y  is marked by the letter ( )y  denoting the yellow 
color whereas the second region 4 ( )TL b is marked by the letter ( )b  denot-
ing the blue color. 

Fig. 2.35. Archetype of the convex colored class ( )2 4 4 4( ) ( ), ( )T R TL g L y L b⎡ ⎤ℵ  

The archetype of the concave complex colored class can be decomposed 
into the parts of the different colors. The concave complex colored class is 
denoted as 1 2( , , , )NΓ Γ Γ℘ … , where 1 2, , , NΓ Γ Γ…  are general classes 
of shape. Archetypes of the concave complex colored class are given in 
Fig. 2.36. The symbol ( )( )4 4 4( ), ( )R R RL y Q L L o⎡ ⎤℘ ⎣ ⎦  denotes that the arche-

regions – the convex polygon class (rectangle) 4
RL  and the concave poly-

gon (rectangle with the one concavity) ( )4 4
R RQ L L⎡ ⎤⎣ ⎦ . The archetype 

shown in Fig. 2.36b is represented by the symbolic name 

( )( )4 4 4 1[ ( )] ( ) , ( ) ( ( ))T RL g L b L y K r⎡ ⎤℘ ℵ ℵ⎣ ⎦ . 

Fig. 2.36. Archetypes of the concave complex colored class 

The shape classes described in the previous chapters were established 
based on the geometrical properties of the figure. The derivation of the 
specific classes was based on constraining the values of selected attributes 
of the general classes. These classes are called a priori classes because 
derivation of the specific class is based on geometrical properties of arche-

 

lateral 4 ( )TL g  – color green) called background, has two regions of the dif-
ferent colors. Both regions are archetypes of the quadrilateral class 4L . 

colored class ℵ , whose generic class (the convex polygon class – quadri-

2.1.2. The a Posteriori Classes 

℘type of the concave complex colored class , can be decomposed into two 

    a b
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as the perceptual category is used during the learning of the visual concept 
of the different ontological categories such as a letter, a sign, or a real-
world object. During categorical learning the specific shape classes that are 
good representative of the shape of the given ontological category need to 
be derived from the existing a priori classes. The classes of shape that are 
derived as the result of “specialization” of the existing a priori classes are 
called the a posteriori classes. 

As it was described in Sect. 2.1.2 the a priori classes are established based 
on the geometrical properties of the visual object. The a posteriori classes 
are derived from the a priori classes based on the specialization of the 
selected shape classes. Specialization means that the a posteriori classes 
are established to match shape of the sign or the real-world object. Example 
of the class that is established based on the existing meaningful objects 
called a sign is the star class. The star class is defined based on generaliza-
tion of the most often used visual representations of the star signs. The star 
class is a class derived from the concave class [ ]( )nQ nΛ Λ , where n>2. 
The polygon star class is a class derived from the concave polygon class 
and is given by the symbolic name 3[ ]( )n nQ L nL . The curvilinear star 
class is a class derived from the concave class where all residuals are arche-
types of the curve-polygon class [ ]( )n nQ L nM . The concave star class is a 
class derived from the concave class where all residuals are archetypes 
of the concave class [ ]( )n nQ L nQ . The concave I-star class is a class 

[ ]( ( ))n nQ L nQ mQ
[ ]( ( ( )))n nQ L nQ mQ kQ [n nQ L

 can be defined. 
The concave polygon star class is a class derived from the concave poly-

gon class where all residuals are archetypes of the concave polygon class 
[ ]( [ ]( ))n n h k lQ L nQ L L

residuals are archetypes of the concave polygon class, residuals of which are 
archetypes of the concave polygon class [ ]( [ ]( [ ]( )))n n h k b c dQ L nQ L mQ L L . 

2.1.2.1. The Star Class 

the concave class, residuals of which are archetypes of the concave 
derived from the concave class where all residuals are archetypes of

. In similar way the concave II-star class class
](nQ(mQ(kQ(hQ))))o r the concave III-star class 

types generated from the selected class. In this book shape is interpreted as 
the basic perceptual category to which the perceived object is fitted. Shape 

, where indexes h, k, and l denote: h-the number of 
residuals, the generic k-polygon, and the residual l-polygon. The concave poly- 
gon I-star class is a class derived from the concave polygon class where all 
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The star class can be described by using the notation of the complex-
core class. Objects shown in Fig. 2.37 explain the differences in the de-
scription of the object in terms of the concave class 5 5 3[ ](5 )Q L L  (Fig. 
2.37a) and the complex-core class 5 5 5 3[ ]{ }(5 )L L LΔ  (Fig. 2.37b). The 
symbol in the bracket “[ ]” denotes the generic polygon, for example, 5[ ]L  
(see Fig. 2.37a), whereas the symbol in the bracket “{ }” denotes the core 
of the archetype of the complex class, for example, 5{ }L  (see Fig. 2.37b). 
The advantage of the second approach is such that the object is interpreted 
as an object having the “arms.” Based on this interpretation we can estab-
lish the proper similarity relations among objects. For example, the objects 

description given by the symbolic name 5 5 5 3[ ]{ }(5 )L L LΔ  but the differ-
5 5 3

(Fig. 2.37b) or 4 4 1 4 3[ ]( [ ],3 )Q L Q L L  (Fig. 2.37c). It seems that the com-
plex-core class description is more perceptually oriented. 

 

           
 a  b  c 

Fig. 2.37. Explanation of the different notations of the star class 

The archetype generated from the n-star class is represented by the sym-
bolic name 3[ ]( )n nQ L nL , where the 2n-star class is a class derived from 
the concave polygon class 2 3[ ]( )n nQ L nL . The class 2 3[ ]( )n nR L nL  derived 
from the class 2 3[ ]( )n nQ L nL , where all residuals have the common point, 
can be given by notation of the complex class 2 3[ ]( )n nS L nL . In the case 
when there is no common point the class will have description 

2[ ]{ }( )n n h kS L L nL . By generalization, the class 2 3[ ]( )n nS L nL  can be ex-
tended to the c-class { }nS nΓ ℑ , where ℑ  is a general class. Examples of 
the n-star class are given in Fig. 2.38a–b, and the 2n-star class in Fig. 
2.38c–d. 

 

Q [L ](5L )  ent convex class description given by the symbolic names 

from Fig. 2.37b, c that look very similar, have the same complex-core class 
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 a        b        c  d 

Fig. 2.38. Simple I-star classes (a, b) and simple II-star classes (c, d) 

The curvilinear star class 2 3 1[ ]( [ ](2 ))nQ A nQ L M , where A denotes one 
of the classes 2{ , , ( )}n n n nA L L M L=

�
, is the specific class derived from 

the concave star class. In the case where all residuals have the common 
point the class can be given by the complex class description. The complex 
class description interpret the object in terms of petals (the parts of the 
object that are “glued” in one point) and described by complex class des-
cription as the c-complex class [ ]{ }nS nΓ ℑ . When all petals are arche-
types of the curve class Kℑ ≡  the class is the regular curve c-class 

[ ]{ }nS A nK . In the case where n is big enough n>M, the generic class 
becomes the polygon class and the regular curve c-class is given as 

[ ]{ }n nS L nK . In the case where petals are different (members of the arche-
types of the different curve classes) iKℑ ≡ , the c-class is called the non-
regular curve c-class and is given as [ ]{ }nS A n K∗ . Examples of archetypes 
of the regular curve c-class are shown in Fig. 2.39a–e and archetypes of 
the nonregular curve c-class are shown in Fig. 2.39f–g. 

Fig. 2.39. Examples of archetypes of the regular curve c-class and the nonregular 
curve c-class 

The c-class [ ]( )nS nΓ ℑ , for which all petals are archetypes of the thin 
class Θℑ ≡ , is the regular thin c-class [ ]( )n nS L nΘ . In the case where 

2Θℑ ≡ , the class is reduced to the thin star class [ ]n nL⊕ . In the case when 
the thin star class has different sizes of the “rays” [ ]( ),n mS L n m nΘ <  
the class is the thin para-star class [ ]n mL⊕ . Example of the archetype 
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generated from the thin star class 4 4[ ]L⊕  is shown in Fig. 2.40a and the 
archetype generated from the thin para-star class 6 4[ ]L⊕  is shown in Fig. 
2.40b. 

The complex star point class is the class that has the nucleus and petals 
that are joined in one point with nucleus. This class is given by the nota-
tion of the complex class [ ]{ }( )nS nΓ Γ ℑ . The complex polygon star 

[ ]{ }( )n h k mS L L nL
4 8 4 3[ ]{ }(4 )S L L L

{ }4 8 1 3[ ] (4 )CS L K L , and Fig. 2.40e ( )4 4 4 1[ ]{ } 4 ES L L K
�

. 

 

             
    a         b  c d e 

Fig. 2.40. Archetypes of the thin star class, exemplar of the concave c-class 

(' ' ) ( , )S C Γ Θ  is derived from the complex symmetrical thin class 
( , )C Γ Θ  archetypes of which consist of two parts, one called the blade 

and the other one called handle. The handle is a member of the thin class 
Θ . The members of the a posteriori spade class are used as the structural 
archetypes of the real-world object called spade. The spade class 

2(' ') ( , )S C Γ Θ  is the class archetypes of which are obtained by joining 
the straight line with the object called the core that is a member of one of 
the classes: the convex, the concave, or the cyclic in such a way that the 
straight line has one common point with one of the sides of the core and 
the whole figure is symmetrical. Examples of the spade class are shown in 
Fig. 2.41a ( )4 2(' ') ,RS C L Θ , Fig. 2.41b–c ( )4 2(' ') ,TS C L Θ , Fig. 2.41d 

( )5 2(' ') ,TS C L Θ , Fig. 2.41e ( )5 2(' ') ,MS C L Θ , Fig. 2.41f 6 2(' ') ( , )S C L Θ , 

Fig. 2.41g ( )4
1 2(' ') ,
L

S C M Θ , Fig. 2.41h ( )1 2(' ') ,CS C K Θ , Fig. 2.41i 

2.1.2.2. The Spade Class 

the properties of the real-world object. The spade class denoted as 
The spade class is the a posteriori class that is established based on

complex polygon star point class is given by the symbolic name 
point class is the class whose nucleus and petals are polygons. The

 point class are given in Fig. 2.40c ,  Fig.  2.40d 
. Examples of the archetypes of the complex star
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4 8 3 2(' ') ( [ ](4 ), )S C Q L L Θ⋅ , and Fig. 2.41j 1 4 4 2(' ') ( [ ]( ), )S C A L L Θ . The 
notation of the spade class can be expressed in the form of the Θ ρ  class. 
For example, the symbolic name of the archetype in Fig. 2.41a is 

{ }5 3 4[ ] 2 R RL LΘ ρ ⎡ ⎤⋅ { }5 3 4,R TL⎡ ⎤⎣ ⎦

{ }5 3 3 4[ ] 2 [ ]( ), TL Q L L LΘ ρ ⎡ ⎤⋅⎣ ⎦

                         
  a        b          c         d          e         f         g        h          i         j        k       l 

The a posteriori T-spade class is derived from the complex thin class 
(spade class). The archetype of the T-spade class ( )3

1(' ') , ( )S C sΓ ⊗   
instead of the handle that is a member of the thin straight class has the 
handle that is a member of the s-star class 3

1( )s ⊗ . The s-star class 3
1( )s ⊗  

is the thin star class whose archetypes are symmetrical and have one l 
branch that is significantly longer from other branches. Examples of arche-
types from the s-star are shown in Fig. 2.42a–c. Archetypes shown in Fig. 
2.42a, c have the symbolic name 3 3

1( ) [ ]s L⊗ , whereas the archetype in 
Fig. 2.42b has the symbolic name 3 4

1( ) [ ]s L⊗ . Examples of the archetypes 
from the T-spade class are shown in Fig. 2.42d–f. The symbolic names of 
archetypes from the T-spade class shown in Fig. 2.42 are as follows: 

( )4 3 3
1(' ') , ( ) [ ]TS C L s L⊗ ( )4 3 3

1, ( ) [ ]RL s L⊗
( )4 3 4

1(' ') , ( ) [ ]RS C L s L⊗  (Fig. 2.42f). 

⎣ ⎦ ,

and the archetype in Fig. 2.41c is . This

 (Fig. 2.42e),  (Fig. 2.42d), ('S C')

Θ ρ [ ]L L2 ⋅, L , the archetype in Fig. 2.41b  is 

notation makes it possible to find the difference between the  archetype 
shown in Fig. 2.41b and the archetype shown in Fig. 2.41c. The archetypes 

3 3 { }4 3 4[ ] ,R RL L LΘ ρ ⎡ ⎤⎣ ⎦    Θ ρ [[L ]{2L }]  and in Fig. 2.41l shown in Fig. 2.41k

 and 

are similar to archetypes shown in Fig. 2.41a–j and are not members of the 
spade class. 

Fig. 2.41. Archetypes of the “spade” class (a–j) and archetypes at the classes simi-
lar to the spade class (k–l) 
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    a          b            c           d             e             f 

The a posteriori C-spade class is derived from the complex thin class 
(spade class). The archetype of the C-spade class consists of three parts: 
the blade, the handle, and the small handle. The C-spade class 

2(' ') ( , , ( ) )S C Γ Θ ε Λ  is the class archetypes of which are obtained by 
joining the straight line with the object called the core and the other object 
called the small handle in such a way that the whole object is symmetrical. 
The core can be a member of the convex, the concave, or the cyclic 

( )4 2 3(' ') , , (RS C L Θ ε ( )4 2 1, , (RL Θ ε
 and ( )4 2 1(' ') , , ( )RS C L KΘ ε  (Fig. 2.43c). 

              
        a b c 

Fig. 2.43. Examples of archetypes generated from the C-spade class 

Similarly like archetypes of the spade class, the archetypes of the R-
spade class are members of the complex symmetrical classes 
(' ') ( , )S C Γ Γ

+

 consisting of two parts: one called the blade and the other 
one called the handle. The handle is a member of the elongated class Γ

+

, 
whereas the blade is a member of one of the classes: the convex class, the 
concave class, or the cyclic class. In the case when both the handle and the 
blade are members of the convex class we have convex R-spade class 

 

)M  (Fig. 2.43b), )L (Fig. 2.43a), ('S C')
The symbolic names of the archetypes shown are as follows: 
classes. Examples of the C-spade class are shown in Fig. 2.43. 

Fig. 2.42. Archetypes of the T-spade class 
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(' ') ( , )S C Λ Λ
+

. Examples of the convex R-spade class are shown in Fig. 
2.44. The symbolic names of exemplars shown in Fig. 2.44 are as follows: 

4 4(' ') ,R RS C L L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.44a), 4 4(' ') ,T RS C L L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.44b, c), 

5 4(' ') ,T RS C L L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.44d), 5 4(' ') ,M RS C L L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.44e), 

6 4(' ') , RS C L L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.44f), 4
1 4(' ') , RL

S C M L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.44g), 

1 4(' ') ,C RS C K L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.44h), 1 1(' ') ( , )S C M M
×

 (Fig. 2.44i, j), 

1 1(' ') ,ES C K M
×⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.44k), and 4 4(' ') ,T TS C L L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.44l). The no-

tation of the convex R-spade class can be expressed in the notation of the 
concave class. For example, the exemplar generated from the R-spade 
class shown in Fig. 2.44a–b has its symbolic name ( )2 5 3[ ] 2 RQ L L⋅

�
, where 

symbol 5L
�

 denotes an archetype with a small side. 

                    
  a         b       c          d           e          f         g           h             i         j        k          l  

Fig. 2.44. Exemplars generated from the convex R-spade class 

In the case when the handle is a member of the convex class and the 
blade is a member of the concave class, we have Q-spade class 
(' ') ( , )S C Q Λ

+

. In the case when the handle is a member of the convex 
class and the blade is a member of the cyclic class we have the A-spade 
class (' ') ( , )S C A Λ

+

. In the case when both the handle and the blade are 
members of the concave class we have the Q-q-spade class (' ') ( , )S C Q Q

+

. 
In the case when both the handle and the blade are members of the cyclic 
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class we have the A-a-spade class (' ') ( , )S C A A
+

. Example of exemplar 

from the Q-spade class 4 8 3 4(' ') [ ](4 ), RS C Q L L L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 is shown in Fig. 2.45a, 

example of exemplar from the A-spade class 1 4 4 4(' ') [ ]( ), RS C A L L L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 is 

shown in Fig. 2.45b, and exemplar from the q-spade class 
4 2 4 1(' ') , [ ](2 )TS C L Q L M

+⎛ ⎞
⎜ ⎟
⎝ ⎠

 is shown in Fig. 2.45c. 

      
   a      b       c 

Fig. 2.45. Exemplars generated from (a) the Q-spade class, (b) the A-spade class, 
(c) q-spade class 

The spade-pike class is derived from the complex class ( , )C Γ Γ
×

, 

where Γ
×

 is the elongated pike class. The archetypes of the spade-convex 

pike class are complex classes ˆ(' ') ( , )S C Γ Λ
×

 consisting of two parts, 
where one part called the handle is a member of the convex elongated pike 
class Λ

×

. The convex elongated pike class Λ
×

 consists of archetypes that 
have at least one sharp corner. Examples of exemplars generated from the 
convex elongated pike class are shown in Fig. 2.46. Symbolic names of 

exemplars shown in Fig. 2.46 are as follows: 3L
×

 (Fig. 2.46a), 1M
×

 (Fig. 

2.46b), and 1K
×

 (Fig. 2.46c). 

 
 
 a   b   c 

Fig. 2.46. Archetypes of convex elongated pike class EΛ  
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Examples of exemplars generated from the spade-convex pike class are 
shown in Fig. 2.47. Symbolic names of exemplars shown in Fig. 2.47 are 

as follows: 4 3ˆ(' ') ,RS C L L
×⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.47a), 1 1ˆ(' ') ,ES C K M
×⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.47b), 

4 1ˆ(' ') ,TS C L K
×⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.47c), 4 1ˆ(' ') ,R ES C L K
×⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.47d), 4 1ˆ(' ') ,T ES C L K
×⎛ ⎞

⎜ ⎟
⎝ ⎠

 

(Fig. 2.47e), 5 1ˆ(' ') , ES C L K
×⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.47f), 1 1ˆ(' ') ,E ES C K K
×⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.47g), 

and 4 8 3 1ˆ(' ') [ ](4 ), ES C Q L L K
×⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Fig. 2.47h). 

                                       
  a          b              c                  d          e            f          g            h 

Fig. 2.47. Archetypes of the spade-pike class 

The a posteriori classes described in this section are derived based on the 
specialization of the a priori shape classes that means these classes are 
established to match shape of the letter. In this section the class that is 
derived from the thin class, which is established based on the properties of 
the letters, is presented. The letter class is defined based on generalization 
of the most often used visual representation of the letters. The archetypes 
of this class represent the structural archetype of the letter. 

To represent a letter, the descriptions of the specific classes need to 
include the specific parameters that refer to the straightness of the seg-
ments, the length of the segment, the angle between segments, type of 
thinness, as well as the orientation of the object. The attributes such as the 
length are expressed by applying the graded values: { , , , }d

ia s m Lε∈ , 
where ε  denotes a “very small,” s  denotes a “small,” m  denotes a 
“medium,” and L  denotes a “large” value. The attribute such as the angle 
can be expressed by applying the graded values: { , , , }ia R O Aα ε∈ , where 

O

2.1.2.3. The Letter Class 

ε  denotes a “very small,” R denotes a “right,”  denotes an “obtuse,” 
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and A  denotes an “acute” angle. The orientation of the object is expressed 
by a selected type of the letter and a type of the transformation M – a mir-
ror transformation and a rotation RO  in a clockwise direction by the angle 

{ , , }ia R O Aα ∈ . Figure 2.48 shows archetypes of the specific class 2Θ . 
The letters “L,” “Γ,” “Λ,” “V,” “J,” “د“ ”,ר“ ”,ך” and the mathematical 
symbols , , , ,< ∨ 〉 ∠ ¬  are described by the symbolic names of the spe-
cific thin class shown in Figs. 2.48 and 2.49. For example, the letter “L” is 
given by the symbolic name 3 [ , ]RL l s⎡ ⎤⎣ ⎦  or by adding the letter “L” in 

bracket “[ ]” into the name of the class 3[" "] RL L⎡ ⎤⎣ ⎦ . 
The symbolic names of the letter classes show similarities of the objects 

from these classes. This property of the symbolic name is used in process 
of generalization (abstraction). Archetypes shown in Fig. 2.48 are repre-
sented by the symbolic names as follows 3 [ , ]RL l s⎡ ⎤⎣ ⎦  (Fig. 2.48a), 

3 [ , ]RL l m⎡ ⎤⎣ ⎦  (Fig. 2.48b), 3 [ , ]RL m m⎡ ⎤⎣ ⎦  (Fig. 2.48c), 3 [ , ]OL m m⎡ ⎤⎣ ⎦  

(Fig. 2.48d), and 3 [ , ]L m m⎡ ⎤⎣ ⎦  (Fig. 2.48e). The generalization process 
shows that all objects shown in Fig. 2.49 are members of the class 3[ ]L . 
In order to find the proper archetype that matches a given letter the sub-
specific class that includes the spatial orientation of the object needs to be 
introduced. Figure 2.49 shows archetypes of the subspecific letter class 
that is established to differentiate among the different letters that are mem-
bers of the same specific class 3 [ , ]RL l s⎡ ⎤⎣ ⎦ . The symbolic names of the 

subspecific classes are as follows: 3 [ , ]{' '}RL l s L⎡ ⎤⎣ ⎦  (Fig. 2.49a), 
3 [ , ]{' '( )}RL l s L M⎡ ⎤⎣ ⎦  (Fig. 2.49b), 3 2[ , ]{' '( )}R

RL l s L MO⎡ ⎤⎣ ⎦  (Fig. 2.49c), 
3 2[ , ]{' '( )}R
RL l s L O⎡ ⎤⎣ ⎦  (Fig. 2.49d), 3 [ , ]{' '( )}R

RL l s L O⎡ ⎤⎣ ⎦  (Fig. 2.49e), 
3 [ , ]{' '( )}R

RL l s L MO⎡ ⎤⎣ ⎦  (Fig. 2.49f ), 3 3R
R⎡ ⎤⎣ ⎦

and 3 3[ , ]{' '( )}R
RL l s L O⎡ ⎤⎣ ⎦  (Fig. 2.49h). 

                        
a b c  d  e 

Fig. 2.48. Archetypes of the specific thin class 2Θ  

L l[ , s]{' 'L (MO )} (Fig. 2.49g), 

A

⊗
⊗

⊗

⊗ ⊗ ⊗

⊗
⊗

⊗

⊗

⊗ ⊗

⊗ ⊗

⊗ ⊗

⊗
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a   b c        d  e f  g      h 

Fig. 2.49. Archetypes of the specific thin class 

to be able to predict a new font or to recognize a letter that is subjected to 
one of many distortions. The shape classes convey information about the 
similarities between archetypes of the members of the different classes. 
For example, from the function class the specific classes are derived in or-
der to represent the difference among letters that looks very similar. Fig-
ures 2.50 and 2.51 show examples of the archetypes of the convex function 

Spade Class.” The letters “V” and “U” and the mathematical symbols 
, , , , , , , , , ,< ∨ 〉 ∠ ¬ ∪ ⊂ ∏; ∪ �  are described by the symbolic 

names of the symmetrical convex function class. Figure 2.50 shows arche-
types of the subspecific letter class that represent symbols 

, , , , , , ,< ∨ 〉 ∠ ¬ ∪ ⊂∪  and letters “V” and “U.” The symbolic names 
of the subspecific classes for archetypes shown in Fig. 2.50 are as follows: 

1 1
OM K⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦  (Fig. 2.50a), 3

AL⎡ ⎤⎣ ⎦  (Fig. 2.50b), 1 1
EM K⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦  (Fig. 

2.50c), 1 4
TM L⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦  (Fig. 2.50d), 1 1

SM K⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦  (Fig. 2.50e), and 
1 2[ [ ]]M K  (Fig. 2.50f). Figure 2.51 shows archetypes of the subspecific 

letter class that represent symbols , ,⊂ ∏ �  and letter “U.” The sym-
bolic names of the subspecific classes for archetypes shown in Fig. 2.51 
are as follows: 4

RL⎡ ⎤⎣ ⎦  (Fig. 2.51a), 4
TL⎡ ⎤⎣ ⎦  (Fig. 2.51b), 4

TL⎡ ⎤⎣ ⎦  (Fig. 

2.51c), 4[ ]L  (Fig. 2.51d), 1 3[ [ ]]M L  (Fig. 2.51e, f), 1 4[ [ ]]M L  (Fig. 
2.51g), and 1 4[ [ ]]M K  (Fig. 2.51h). The mathematical symbol “⊂ ” is 
interpreted as the rotated version of the letter “U.” Archetypes in Fig. 

  

Fig. 2.50. Archetypes of the symmetrical convex function class 

Understanding of the letter requires identifying the similar objects in order 

a   b c       d e f 

2.51b–d can be interpreted as the representatives of the distorted version of  
Figure citation �the symbols . ∏,

class. The concept of the function class is explained in the section “The 

⊗ ⊗ ⊗

⊗ ⊗

⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗
⊗
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Fig. 2.51. Archetypes of the nonsymmetrical convex function class 

Archetypes of the nonfunction class are shown in Fig. 2.52. The letter 
“U” can be described by the symbolic names of the nonfunction class 

6[ ]L  (Fig. 2.52a). The letter “C” can be described by the symbolic 
names 1 1

EM K⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦  (Fig. 2.52b), 2 4[ [ ]]M L  (Fig. 2.52c, d), 
1 4[ [ ]]M K  (Fig. 2.52e), and 1 3[ [ ]]M K  (Fig. 2.52f). 

           

Fig. 2.52. Archetypes of the nonfunction class 

classes that can be used for description of these letters are derived from the 
thin polygon-curve class . Because there is a big range of shapes that 
can be used as representatives of the letters type M, the M-letter classes 
has to be established during learning process described in Chap. 5. In this 
section, examples of the archetypes from the selected M-letter classes are 
presented. The poly-line version of the letter type M is described in 
Chap. 5. The symbolic names of some of the possible curvilinear ver-
sions of the letters are given by the following notations: 1 4 1[ [ ]( )]Q L M  
(Fig. 2.53a), 1 2 4 1[ [ [ ]]( )]Q M L M  (Fig. 2.53b), 3 4 1[ [ ](3 )]Q L M  (Fig. 2.53c), 

1 2 4 2 3 1[ [ [ ]]( [ ](2 ))]Q M L Q L M  (Fig. 2.53d), 1 2 4 2 3 1[ [ [ ]]( [ ](2 ))]Q M L Q L M  
(Fig. 2.53e), 1 2 6 2 3 1[ [ [ ]]( [ ](2 ))]Q M L Q L M  (Fig. 2.53f), and 

( )1 2 6 2 1 4 1[ [ ]] [ ](2 )TQ M L Q M L M⎡ ⎡ ⎤ ⎤⎣ ⎣ ⎦ ⎦  (Fig. 2.53g). 
 

                  
  

Fig. 2.53. Archetypes of the nonfunction classes 

a   b c       d e f g h

a   b c       d e f 

The letters “M” and “Σ” can have their curvilinear versions. The specific 

a   b c       d e f g 

⊗
⊗ ⊗

⊗ ⊗

⊗

⊗
⊗ ⊗

⊗ ⊗
⊗

⊗
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2.1.3. String Form: Type of the Class 

Archetypes of the shape classes are described in the form of the symbolic 
names. For the purpose of the visual reasoning the symbolic name is trans-
formed into the string form. The string consists of combination of the se-
lected letters, numbers, and the symbol “|.” The string has a following 
form: B1|…|Bi|...|Bn|, where Bi denotes the symbolic name of the class. 
There is a conversion from the notation of the symbolic name into the 
string notation. For example, the convex class 3L  is expressed as L3 in the 
string form. 

The string notation is used to introduce the type of the class. The string 
without symbol “|” is denoted as the type P. It represents exemplars of the 
convex classes. For example, exemplars of the convex classes given in Fig. 
2.54 (L3A, L4R, M1L3A, M1L4R, and M2L4R) are all of the type P. 

 

 

 
Fig. 2.54. Exemplars of the type P 

Examples of exemplars that represent the different types of string forms 
are shown in Figs. 2.55–2.67. The type S that represents cyclic and con-
cave classes, is given in the form Sn|A|1X|…|iX|…|nX|. The type Sq (the 
concave type) is given in the form Qn|G|1R|…|iR|…|nR|, whereas the type 
Sa (the cyclic type) is given as An|C|1W|…|iW|…|nW|. Examples of the 
exemplars type Sn|A|1X|…|iX|…|nX| are given in Figs. 2.55–2.57. The 
type S1|A|1_S1|1_A|1_X| and the type S1|A|1_S1|1_A|2_S1|2_A|2_X| both 
represent the exemplar o of the concave or cyclic classes on the first and 
the second level of iteration. The concave class 4

4 3(4 )
L

Q L  is expressed as 

 as ( )( )( )4 4 4
1 1 1 4

R R R
RL L L

A A A L

A1|L4R|1_A1|1_L4R|2_A1|2_L4R|2_L4R|. 
Examples of the general type string forms Sn|A|1X|…|iX|…|nX| that 

Q1|G|R|, A1|C|W|, Q2|G|1R|2R|, Q3|G|1R|2R|3R|, A3|C|1W|2W|3W| 
A1|Q1|G|R|W|, A1|Q3|G|1R|2R|3R|W|, A2|Q1|G|R|1W|2W| 
A1|Q1|G|1_Q1|1_G|R|W|, A1|Q2|G|1_Q1|1_G|1_R|R|W 
A1|Q3|G|1_Q1|1_G|1_R|1R|2R|W 

generate the following patterns are as follows: 

Q4|L4|L3|L3|L3| in the string form. For example, an exemplar shown in Fig. 

2.59a given  is transformed into the string form as 
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Examples of general type string form S1|A|1_S1|1_A|1_X| that gener-

Q1|G|1_Q1|1_G|R|, A1|C|1_A1|1_C|W|, Q2|G|R1|1_1Q1|1_1G|1_2R|. 

Examples of the exemplars of the complex types are shown in Figs. 2.63 
and 2.64. 

Fig. 2.55. Exemplars of the type Q1|G|R| 

 

 

Fig. 2.56. Exemplars of the type A1|G|W| 

Fig. 2.57. Exemplars of the type Q2|G|1R|2R| 

 

 

Fig. 2.58. Exemplars of the type Q1|G|1_Q1|1_G|R| 

 

 

 

  

Fig. 2.59. Exemplars of the types A1|G|1_A1|1_G|W| and Q3|G|1R|2R|3R| 

 

 

 

Fig. 2.60. Exemplars of the type Q2|G|R1|1_1Q1|1_1G|1_2R| 

  

 

 

a   b c       

ates the following patterns are as follows: 
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Fig. 2.61. Exemplars of the type Q1|G|1_Q1|1_G|2_Q1|2_G|2_R| 

Fig. 2.62. Exemplars of the types Q3|G|1R|2R|1_1Q1|1_1G|1_R| and 
A1|Q2|G|1_Q1|1_G|1_R|R|W 

 

 

 

Fig. 2.63. Exemplars of the type C2|K|T| 

 

 

 

Fig. 2.64. Exemplars of the types C2|Q1|G|R|T| and C2|A1|G|W|T| 

 

 

Fig. 2.65. Exemplars of the types A1|Q1|G|R|W| and A1|Q3|G|1R|2R|3R|W| 

 

 

Fig. 2.66. Exemplars of the type A2|Q1|G|R|1W|2W| 

Fig. 2.67. Exemplars of the types A1|Q1|G|1_Q1|1_G|R|W and 
A1|Q3|G|1_Q1|1_G|1_R|1R|2R|W 
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Fig. 2.68. The archetype of the complex class 

The concave class is described by the symbolic name, the type of the 
sides (straight or curvilinear), and the symmetry and elongatedness as 
follows: 

<Q><L4>|{<L3>[O]}{<L3>[O]}|[AAAA][NS][El]|[AAA][NS][El]|[A
AA][NS][El]. 

The symbolic name <Q><L4>|{<L3>[O]}{<L3>[O]}, ( )( )4
2 3 3,O OL

Q L L  
denotes an archetype of the concave polygon class with L4 as a generic 

[AAAA][NS][E1] denotes the polygon (straight lines – A), nonsymmetrical 
(NS), and medium elongated (E1). 

The translation of the symbolic name into a string form requires includ-
ing all details of the symbolic name. The level of details is marked by 

L0_L1_...Ln, where the level Ln denotes the level of the detailed descrip-
tion of the archetype of the class. For example, the triangle class 3

OL  

2.1.4. Generalization 

polygon and two residuals L3[O] – the obtuse triangles. The symbol 

introducing the symbol “_.” The symbolic name is translated into the form 

form of the SUS representation. It is easy to translate the SUS representa-
tion into the form of the symbolic names. For example, the SUS repre-
sentation C[L3,L3] is translated into the symbolic name 3 3( , )C L L  and 
the SUS representation <Q><L4>|{<L3>[O]}{<L3>[O]} is translated into 
the symbolic name 4

2 3 3( , )O OL
Q L L . Figure 2.68 illustrates the meaning of the 

symbols used by the SUS. The complex class is described by a symbolic 
name, the type of vertices, the normalized size of the sides, and the type of 
angles as follows: C[L3,L3], [vvvqvq], and L{ mmslle}{apaoao}. The 
symbolic name C[L3,L3] ( 3 3( , )C L L ) denotes an archetype of the complex 
class (two triangles). The term [vvvqvq] denotes the convex v and concave 
q vertices. The term L{mmslle} denotes the normalized size of the sides 
(l – large, m – medium, s – small, and e – very small). The term {apaoao} 
denotes angles (a – acute, o – obtuse, and p – right). 

 

In the shape understanding system (SUS) a symbolic name is given in the 



2.1. Possible Classes of Shape      97 

(m,m,m) is translated into the form L_3_A_mmm. An exemplar of the 
concave class (Fig. 2.69a) is described by the symbolic name, the type of 
vertices, the normalized size of the sides, and the type of angles: 

( )4
2 3 , 3O AL

Q L L , [vaqavvqv], and L{lmmsllml}{paaapaoa}. The symbolic 
names of exemplars of the concave class ( )4

2 3 , 3O AL
Q L L  and all detail des-

criptions are translated into the string form as follows: 

(Fig. 2.69a) Q_1|L_4_R_mlml_1010|L_3_A_mmm_2|L_3_O_llm_0| 
(Fig. 2.69b) Q_1|L_4_R_mlml_1100|L_3_A_mmm_2|L_3_O_llm_0| 

 

 
 
 
 
  a   b 

Fig. 2.69. Exemplars of the class ( )4
2 3 , 3O AL

Q L L  

During generalization the symbol is dropped from the right to the left, 
e.g., for the symbol L_3_A, the two generalizations are possible: L_3 and 
L, where “L_3_A” is any acute triangle, “L_3” is any triangle, and “L” is 
any polygon. In the case of the concave polygon Q_1|L_4_R|L_3_A_2| the 
generalization involves dropping the letters in the “ordered” manner or in 
the “combinatorial” manner. 

An ordered manner takes into account the structural feature of the ex-
emplar, for example, for the concave class the generic class is treated dif-
ferently than residuals. The ordered manner required to compare only the 
“known” features of the shape. 

The combinatorial manner does not distinguish between the types of the 
class description treating all elements of the string as the symbols of the 
type L0_L1_...Ln. The generalization means to drop any combination of 
the letters. The final step of the combinatorial manner is interpretation of 
the final string (the string where selected combination of the letters was 
removed). 

Example of the string obtained during generalization performed in the 
“ordered” manner: 

Q_1|L_4_R|L_3_A_2|Q_1|L_4_R|L_3_A|, Q_1|L_4 |L_3|, Q_1|L |L|, Q 

Example of the strings obtained during generalization performed in the 
“combinatorial” manner: 
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Q_1|L_4_R|L_3_A_2|, Q_1|L_4_R|L_3_2|, Q_1|L_4|L_3_A_2|, 
Q_1|L_4|L_3_2|, Q_1|L_4_R|L_3_A|, Q_1|L_4_R|L_3|, Q_1|L_4|L_3_A|, 
Q_1|L_4|L_3|, Q_1|L_4|L|, Q_1|L|L_3|, Q_1|L|L|, Q. 
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