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Stochastic Integration with Respect to fBm
and Related Topics

2.1 Pathwise Stochastic Integration

2.1.1 Pathwise Stochastic Integration in the Fractional
Sobolev-type Spaces

In this subsection we consider pathwise integrals fOT f(t)dB}F for processes f
from the fractional Sobolev type spaces I3, (L) for some p > 1. This approach
was developed by Z&hle (Zah98), (Zah99), (Zah01).

Consider two nonrandom functions f and g defined on some interval
[a,b] C R and suppose that the limits f(u+) := lims o f(u+0) and g(u—) :=
limsjog(u —0), a < u < b, exist. Put foi(x) := (f(x) — f(at+))Lp (@),
go—(x) = (g(b—) — g(x))1(ap)(x). Suppose also that f, € I, (Lyla,b]),
gp— € Il__o‘(Lp[a,b]) for some p > 1,¢ > 1,1/p+1/¢ < 1,0 < a < 1. Then,
evidently, D&, fot € Ly[a,b], Di"%go— € Lgla, b].

Definition 2.1.1. The generalized (fractional) Lebesque—Stieltjes integral
f; f(x)dg(x) is defined as

b b
/ f(x)dg(x) ;:/ (DS fas)(@)(Dp=*go—) (@)dx + f(a+)(g(b—) — gla+)).

Lemma 2.1.2. Definition 2.1.1 does not depend on the possible choice of a.

Proof. Let foy € (I, N IS ) (Lpla, b)), go— € (I N 17" 7P)(Ly[a, b)) for
some «, 3 such that 0 < a < 1,0<a+8<1,1/p+1/¢ < 1. Then, ac-
cording to (1.1.5) (composition formula for fractional derivatives) and (1.1.6)
(integration-by-parts formula),

b
/ (DF7 £ ) (2) (DL g, ) () d
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b DL-
= [ (D% £ ) @)D= g )0
a
’ B pl B
— [ W2 @ (DD} g @)
a

b
- / (D2, far) (@) (Di=g, ) (2)da
O

Let ap < 1. Then foq € I3, (Lp[a,b]) if and only if f € I$, (Ly[a,b]) and
in this case we can simplify the formula for the generalized integral:

f F@)dg(x) = [ (D% £)@) ~ 7y - 22 (DY g0 ) (@)
fla+ ><< ) — gla+)) = [1(D2, /) @)(D}" gy )()da 2.11)
—f(CH-)I1 a(Dto‘ )(a) + fla+)(g(b—) — g(a+))
f( D1 ““gp-)(x)dx

Lemma 2.1.3. Let g, € I}~%(Lyla,b]) N Cla,b] for some q > — and
0<a<l. Then foranya<c<d<b

b
/ (D2, 10.0)(@)(DL" gp ) (@)d = g(d) — g(0). (21.2)

Proof. We have that

0, z <ec
(DZ Tea)) (@) = § Fiay c<w<d
ez 2D 2 g <z <.
Therefore, by using (2.1.1), we obtain for ap < 1, or ¢ > —— a, that

Mg,y d>>< 2)(Dy =gy )(@)dz = sy [2 (2 — )~ (D}~ gy ) (x)da
— ey @ = d) (DY gy ) (w)dzx = I, (Dy = g, )(c)
— ;= (D= gv-)(d) = g(d) — g(c).

Corollary 2.1.4. Let the function g € C*a,b] for some A\ < 1, then
gp— € Ibl__“(Lp[a,b]) foranyp > 1 and 1 —a < X. So, we can put p > 2/,
a=1—X/2 and obtain for g (2.1.2).

n—1

Corollary 2.1.5. For any step function fr(x) = 3. cilia, z),,)(x) with
k=0

a=x9 < - <z, =">b and g satisfying the conditions of Lemma 2.1.3, we

have that fab f(x)dg(x) = > cr(g(xrs1) — g(zr)).
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Further we suppose that g(b—) = g(b) and g(a+) = g(a).
Denote by BV {a, b] the class of functions of bounded variation on [a, b].

Lemma 2.1.6. Let the functions foq € I, (Lpla,b]), go— € I,~*(Ly[a, b)) N
BV[a,b] withp>1,¢q>1,1/p+1/qg<1 and

[ 1200z N @) < . (2.13)

/ f(@)dg(x) = (L) / f(@)dg(x)

Proof. We have that
(L) [} f@)dg(z) = (L) [} T2, (D, ) @)dg(o)
= ra—ay (- S)f (fy (x = y)* (D ) (y)dy)dg ().

Condition (2.1.3) together with Fubini theorem permits us to change the order
of integration:

(L S)f (f( —yzafl(th )(y)dy)dg(x)
= [1(D%, HW)([, (@ = y)*~tdg(x))dy (2.1.5)
-1 SO @ 7 (2 = y)*2dz)dg(x))dy.

Further, if y € (a,b) is the point of continuity of function g, then

f;(ff(z— )a 2dz>dg< = [7(J7 dg(x))(z — y)*2dz

Then

(2.1.4)

b
i i£> dgl ) r<)(; bz =1, ‘((]izi)mg(y) dz (2.1.6)
+ W = a_al (Db_o‘gb_)(y).

Since set of discontinuity points of g is at most countable , and taking (2.1.4)—
(2.1.6) together, we obtain the proof. O

Now we consider the case of Holder functions f and g. The existence of
(R-S) f; fdg for f € C*a,b], g € C*[a,b] with A\ + p > 1 was established by
Kondurar (Kon37). Moreover, this integral coincides with f: fdg , as the next
theorem states.

Let f € C*[a,b] for some 0 < A < 1 and |f(z) — f(y)| < c(\)|z — y|*,
x,y € [a,b]. Consider the following step function:

n—1

fﬂ(‘r) = Z f(xk)l[zkvifk+l)(x)7

k=0

where the partition 7 = {a =z¢ < x1 < --+ < x, = b}
EVidenﬂy’ 11m\7r|~>0 Sup, Hfﬂ' - f”LOC[a,b] =0
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Theorem 2.1.7. 1) For any 0 < a < A

Jim sup ([0 fx) = (D% D0y = 0

2) Let f € C*([a,b]), g € C*[a,b] with A+ pu > 1, then (R-S) f: fdg exists

and
/ab fdg = (R-S) /ab fdg.

Proof. 1) It is sufficient to prove that f; %dz — 0 and

S fE @ = y) 7 fa(@) = f(2) = faly) + F(y)ldydz — 0 as |7| — 0. But
|fr(2z) — ( )\ |f(xg) — flx )Lag c(\)|m|* for x € [xp,2ps1 ), therefore
f; m’((j)iafaldx <e(A )|7r|’\% — 0as|r| — 0. Also, for x € [ xp, e )

A(z) = [ (@ =) falz) = f(2) = faly) + f(W)ldy
= 2 [ @) () = f@) = @) + f(y)ldy

>
|
—

=0
k=l
+ [ @ =) (y) = f@)ldy < 2¢(N) 20 o @ —y) T dy - [
eV [ (2 =y My < 2e(0)|rP ETBT 4 o(n) ezt
<3e(NZE7,

which means that f; A(z)dx — 0 as |r| — 0.
2) We take 1 — o < a < A, then the fractional derivatives Dg, f(x) and
(D=%g)p—(2) exist, and, moreover,

b b T
(DL=g)y(2)] < F(l - (\s(ié )x)l(a)\ +(1-a) \95 )x)g(ﬂ)\dy)
< riay e MO —aptet (14 22 ) <

I'(l—a) +a 1

for some constant C. Therefore, according to part 1) of the proof,

[y fxdg - 2 fdgl < [P 1(Dg f)(x) — (DEy )(@)[(DLZg)s- (x)|d
< C [PUD fr) (@) — (DE, f)(@)|dz — 0,

(2.1.7)
as |m| — 0.
Furthermore, according to Corollary 2.1.5,
b nd b
Jo fxdg = kZ f@r)(g(@rs1) — g(zx)) — (R-S) [, fdg, (2.1.8)
=0
and from (2.1.7)—(2.1.8) we obtain the desired equality. O

Now we establish the properties of generalized integral f; fdg as the func-
tion of upper and lower boundaries.
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Lemma 2.1.8 ((Zah98)). 1) Let a < s < t < b and the functions f and g
satisfy the assumptions

(i) (f - Ls,py) € IS (Lypla, b)), gp— € I'*(L,Ja,b)) for some 0 < a < 1,
pzlqg=11/p+1/q<1,

(ii) fs+ € Iﬁl(Lp/ (8,8]), gi— € T2 (Ly[s,t]) for some 0 < o’ < 1,
p>1,¢d>11/p+1/¢ <1. Then

/abl(s,t)fdg=/:fdg-
/:fngr/tufdg—/:fdg

holds for a < s <t <wu <b, if all the integrals exist as generalized Lebesgue—
Stieltjes integrals.

2) The equality

Proof. 1) Let {¢n(z),z € R} be a sequence of smooth kernels, i.e.

on € C*®(R), ¢, >0, ¢, = 0 outside [-1/n, 0] and f£)1/n on(z)dz = 1. More
exactly, let ¢, (x) = np(nz) for ¢ € C°(R), ¢ = 0 outside of [—1,0]. Then
we can approximate the function g, by smooth functions g,, := gy— *¢,, and
the following properties hold:

gn(b—) =n f[w—b,:v—a]ﬂ[—l/mo] (9(b—) — g(z — t))p(nt)dt [z=p—= 0;
(Dy=%gn)(x) = Dy~ ([ 9 (z — t)on (t)dt)

=10 (@)1 —a) ™" (Jz 90— (@ — )pn(t)dt(b — x)>~*
+afly— 1) (fulgo—(z —t) — g (y — t))wn(t)dt)dy>

1(a, (z) _(z—t b ag,_(x—t)—agy_ (y—t
= 15(1&15) fR ©n(t) (E’;_g(:)cl,i Jrozfz gb (QC(y_)x)gga(y )dy) dt

= 1a0) (@) (D= g0-) * o) (2);

(2.1.9)

|‘(D;:a9n) - (D;:agb*)Hqu[a,b]
(D=2 g-) o — (D02
= [y /2 (Dy= )@ = ) = (Dy="gv ) (@) p(t)dt|“dr
< C L2 IDZ g0 )( = £) = (D= gp-)(]tdtdr — 0, n— ox.
(2.1.10)
Therefore, from this L,-convergence, from Lemma 2.1.2 and the properties
of convolutions,

[P 1 fdg = JHDE 160 ) () (D= g ) (w)du
= limy, oo f%(Dfiﬁr Loy /) () (D~ % gn) (u)du
= limp oo [ (130 f) (W)gl (w)du = limy, o [ f(u)(gy— * ) (u)du.

Further, for any ¢ > 0 (¢* ¢!, )(u) = 0, therefore
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/ F(u)(go— * 0 (u)du = / £ (u)(g * @) (u)du
s s (2.1.11)

- / F()(gr— * 1) (u)ds,
and

lim,, o0 f f _x ) (uw)du = limy, o0 fst fu) (g * %) (u)du (2.1.12)
= lim, o0 f f V(g * @n) (u)du.

Thanks to Lemma 2.1.2, assumption (ii), (2.1.9) and (2.1.10), applied to t
instead of b,

lim,,— o0 fst f (g * cpn)’(u)dul

e

=i [H(DZL o) (DI 00) = o)) (21.49)
= [J(DZ for)( )(Dtl_”‘ gi-)(uw)du = [} fdg,

and we obtain the first statement. The second one we obtain by using some
of the equalities from (2.1.11):

St fdg+ [ fdg—hmn—»oof Fr)(g*@p,)(r)dr
+lim,, oo j; V(g * @) (r)dr = limy, o f F(r)(g =) (r)dr
= Jo fdg.

2.1.2 Pathwise Stochastic Integration in Fractional Besov-type
Spaces

In this subsection we consider the approach to pathwise stochastic integration
in fractional Besov-type spaces, introduced by Nualart and Ragcanu (NRO0O)
(see also (CKR93) and (NO03a)).

C0n51der the followmg functional spaces. Let for 0 < 8 < 1
<,0f( )= |—|—fO |F(t) = f(8)|(t—5)~P~Lds, and W = W[ [0T] be the space
of real- valued measurable functions f:[0,T] — R such that

I£llos :== sup f(t) < oo.
te[0,T]

Furthermore, let W/ = W/ [0, T] be the space of real-valued measurable func-
tions f : [0,T] — R such that

= sup (LGOI, U0, <o

0<s<t<T
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and W2ﬁ = Wzﬁ [0,T] be the space of real-valued measurable functions
f:10,T] — R such that

_ [Tl T f(s) = fw)
_/0 e ds+/0 /0 (s — )P du < .

Note that the spaces Wﬁ i = 0,2 are Banach spaces with respect to corre-
sponding norms and || f ||1,g is not the norm in a usual sense.
Moreover, for any 0 < e < A (1 — ()

CP*10,T) ¢ WP[0,T) € CP~¢[0,T], i = 0,1, C?*<[0,T] € W0, T).

Therefore, the trajectories of fBm B for a.a. w € 2, any T' > 0 and any
0 < 8 < H belong to Wlﬁ[O,T].

Let f € WP[0,T]. Then its restriction to [0,¢] C [0,7] belongs to
1 (L0, 1)) and
As(f) = s (DL )(5)| < sl flls < oo

0<s<t<T ra-p)
The restriction of f € W4[0,T] to [0,#] C [0,T] belongs to IF (L1[0,]).

Now, let f € WE[0,T], g € W} P[0, T]. Then for any 0 < ¢ < T there
exists the Lebesgue integral fg(D§+f)(x)(Dt1:Bgt,)(m)da:, so we can define
fg fdg according to Definition 2.1.1 and formula (2.1.2). Moreover, for any
0<t<T fot fdg = fOT L(o,1)fdg, and the integral fot fdg admits an estimate

| Jy fdal < o (DG (@)D= ;) ()| da
< Ai-s(g )Hf||25<( BN glha-pllfll2s-

Further we fix some 0 < 8 < 1/2.

Lemma 2.1.9 ((NRO00)). 1. Let f € WP[0,T), g € W} 7°[0,T), Gi(f) :=
fg fdg, t €10,T]. Then

e (p®) < Cé,TAlfﬂ(g)/o ((t— )72 + 57P)p)(s)ds.

2. Let f € WP[0,T], g € W 7P[0,T]. Then G.(f) € C*~P[0,T] and
IG(Nl11-p < ChrAi-s(9)lI fllo,5-
Here Cf;’T,z’ = 1,2 depend only on T and (3.

Proof. 1. It is not hard to check that for f € WP[0,T] and g € W} [0, T]
condition 1) of Lemma 2.1.8 holds. Therefore, evidently,
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Gi(f) = Ga(H)l = | 1 fdgl < [ (DL, H)||(Di=7 gi—)(w)|du
) (R )

From (2.1.14) it follows that

Jy 055 Pl du < A1-(9) (Jy 1@y (¢ = 8) 77~ (u = )~ Pds)du
Iy I )5y ).

(2.1.14)

(2.1.15)
The first integral on the right-hand side of (2.1.15) can be estimated as

C [ |f()|(t —u)~2Pdu with C = [7°(1+u)"#~'u"Pdu, and the second one
can be estlmated as fo (t—u)P [ %dv du.
Since (t —u)~2% > (t —u)"PT~#, we obtain from (2.1.15) that

L|Gi(f) = Gulf)] t
/O (t_u)ﬁ-&-ldUS*/ll—ﬁ(g)(C+Tﬁ)/o( w) ™ (u)du. (2.1.16)

Further, from (2.1.14) it follows that

Gi()] < Ma—plo) fy (‘f,ﬁz L J 0 ay) du

2.1.17
< A1_5(g)(1 + BT?) [ u P (u)du, ( )
and the proof follows from (2.1.16)—(2.1.17).
2. It follows from (2.1.14) that
14 BT"
Gi(F) = Gl < Aroalg) I sle = o)1,
and from (2.1.17) we obtain that
1+ B7T%
G| < Av-sla) ST P s
whence the proof follows with Cg r=(1VvTh) 1+555 O

Similar but more simple estimates hold for the Lebesgue integral Fi(f) =
fo s)ds, so we omit the proof of the following lemma.

Lemma 2.1.10 ((NR00)). 1. Let 0 < 8 <1 and f:[0,T] — R be a measur-
able function with sup,cjo fof I£(s)|(t — 5)Pds < oo.
Then

t
O < Chyr / F()I(t — 5)~Pds,

with C% . =T +1/8.
2. Let f be bounded on [0,T]. Then F(f) € C*[0,T] and
1E(llos < Cﬁ 77, where ff.:=sup,¢) |f( ), C’g’T depends on 3 and T.
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2.2 Pathwise Stochastic Integration w.r.t.
Multi-parameter fBm

2.2.1 Some Additional Properties of Two-parameter Fractional
Integrals and Derivatives

Throughout this section we consider two-parameter functions and fields. The
first result can be proved similarly to the one-parameter case. Let the rectangle
P = [a,b] be fixed.

Lemma 2.2.1. 1. Let f € I77(L,(P)) for some p > 1. Then

limg, —,0,8,—0 Dafi )f( x) = f(z), where the limit is in L,(P). 2. Let, in

addition, the function f be twice continuously differentiable in the neighbor-
2,

hood of the point x. Then limg, 1 8,1 Daﬁf(zf)f(x) = 6515;2 (z). So, we can

put DSy f o= s Doy = -

Theorem 2.2.2. Let0< 3; <1l and 1 <p< 61_1 \Y 62_1. Then the operator
If}rﬁz is bounded from L,(P) into L,(P), where
L<q<p((Q—=0Fp) " A(L=Bap)™h).

Proof. Denote r := p((1 —ﬁlp)_1 (1—
consider ¢ € (p,r). Then for 5 + 1_1,
Hoélder inequality, it holds that

B2p)~1). Since r > p, it is sufficient to
-+ 1 =1- 3, from the generalized

T

:,d\‘b—‘l\)

Q[

Jepr I @i - un”i-lmdu)

i=1,2

([ o) [ T =)

a@] ;=19

-7 -
<CIfley ([ 10r T o =)

i=1,2

(L% f)(@)] < C(/[a 2]

1
7/

Q=

Here we choose « satisfying the inequalities (1 — 8;)y¢ < 1 and (1 — 5;)(1 —
v)p' < 1, which is equivalent to 1 — (p'(1 — ;)" < v < (¢(1 — ;))~". Such
a choice is possible, since the inequality 1 — (p'(1 — 3;))~! < (¢(1 — 3;))~*
equivalent to ¢ < p(1— B;p)~!, and this is evident under our suppositions. By
integration over P we obtain that

<C||pr(7;.)</ |f |pdu / H _u (51 1)’qux)

1=1,2

Iﬁlﬁz ‘

< cnfan(p)
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Corollary 2.2.3. Let f € L,(P),g € Ly(P), I2/7g € L.(P) for 1/p+1/r =
Landr < q((1—B1q) P A (1= B2q)7 1), de. 1/p+1/q <1+ 1 A Ba. Then

/ F) 272 g(w)du = / g(u) P72 f (w)du
P

Evidently,
Iilp2lilﬂ2 _ Iil+ﬂ1p2+ﬁ2 on Ll('P)'

for f € 19T (Ly(P)), pi, B, 2 0,01 + B < 1
DPirz D,31/32 f DP1+ﬁ1P2+52 f:

at(b-) at(b—)
for f e 1NV \(Lp(P)), g € 1§27 (Le(P)), p,a > 1, 1/p+1/q <1+ p1 A p2
/ Dgii_ﬂz du — / f Dmpz ) .
P

2.2.2 Generalized Two-parameter Lebesgue—Stieltjes Integrals

We suppose that all the functions, considered on some rectangle P = [a, b],
belong to the space D(P), i.e. they have the limits in all the quadrants,

QT (z) = {s € Pls > x}, QT () = {s € Pls1 > x1, s2 < w2},
Q Tt (r)={s€Pls1 <x1,82 > w2}, Q" (v) = {s € P|s < x},

f(z) =lims_q s> f(s), and on the sides of rectangle the limits that can be de-
fined are supposed to exist and denoted as f(x1,ba—), f(b1—,z2), f(b—). De-

note fo1(z) = Auf(x), 2 € P, and fp_(x) := f(x)— f(x1,b0—) — f(b1—, x2) +
f(o—).

Definition 2.2.4. Let f,g : P — R. The generalized two-parameter
Lebesgue—Stieltjes integral of f w.r.t. g is defined by

/ fdg = / (D £ (w) (DL g, ) (w)du

s / (D2 Far ) (1, a5) (DY) (g1, (1, b-) = g, (b))

i=1,2
+ fla)Aag(b), (2:2.1)
under the assumption that all the integrals on the right-hand side exist.

A more convenient formula for [, fdg has a form

/ fdg = / (D f)(u) (DL~ %2 g, ) (u)du.
P P

(We do not specify here the conditions ensuring the latter equality but it is
very easy to do it, similarly to the one-parameter case.) The next results also
can be proved similarly to the one-parameter case ((SKM93) and (Zah98)).
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Theorem 2.2.5. Definition 2.2.4 is correct, i.e. the right-hand side of (2.2.1)
does not depend on the choice of B;,1 =1,2.

Theorem 2.2.6. Let f : P — R, f € CM*2(P) and \; + 3; < 1,i = 1,2,
0< i <1. Then I2%  (fuypmy) € CHHPAHE(P),

Theorem 2.2.7. Let the function f € C**2(P). Then for any p > 1 and
0<eg <A,i=1,2
Jaro—y € IZ7(Lyp(P))

and
DLy faromy) € CHTENTE(P),

Theorem 2.2.8. Let f € C(P), g € BV(P), f € IﬂlﬁQ(L (P)), go— €
PPy, i =12, j=3-i, L+l <1, 0<8 <1i=12
Then the generalized two—pammeter Lebesgue Stzeltjes integral fp fdg equals
the Riemann—Stieltjes integral fP x)dg(z).

Theorem 2.2.9. 1. Let g € C**2(P) for some 0 < \; < 1,i = 1,2. Then
for any Py = [¢,d) C P

1p,dg = Acg(d).
P

2. Let g € CM*2(P) and let the partition T = 7' x 72, where ™ = {a; = z}) <
- <l =b;} be the partition of [a;, bs].

Also, let fﬂ(x) Z Z fJ1]2 Pijvio (:E), where lejé = Hi:1,2[x§'iv‘r;i+1)'

]z—

Then fp fﬂ'dg* Z Z f]1]2 z; 9 (IJ-‘rl) where €L :(:17]1‘1733?2)'

1=1,2 7,=0

Now, let m, be the sequence of partitions of rectangle P, m, C 741

,n i,mn . —
and |m,| = max;—1 2 maXogj,,gnmq(IﬁH -z ). Let f: P =R, fj,j, =
f(xji+1) We say that the partitions m, are uniform, if n;* =ny " and 2} —
" = b Eﬁ' vi=1,2.

Ji
Theorem 2.2.10. 1. Let f € C*1*2(P) for some 0 < \; < 1,i =1,2. Then
Jim sup [ fr, = fllpp) =0,

where sup,. is taken over all the sequences of partitions mentioned above.
DL e Jas = DL o, =
for any BV B2 < A1 A Ay and all the sequences of um'form partitions of P.

2. limy, 00 SUP,/ ,
n
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Proof. The first statement is a direct consequence of uniform continuity f on
P. Further, let g,,(x) = fx (z) — f(z). For the second statement it is sufficient
to prove that any of the following functions

G (@) = gn(x)(z — a1) ' (y — az) 2,

G5 (x) := (w2 —ag) ™" /m1 (gn(x) = gn(s1,2)) (w1 — 51) "y,

al

G5 (x) = (z1 —ar)™™ /m2 (90 (2) = gn(@1, 52)) (w2 — 52) 7P dsa,

a2

Gy (x) = Asgn(x) H (z; — s5) " Pids

[a,z] i=1,2

tends to zero in Ly (P). First, note that |g,(z)| < C(|7,|* + |7,|*?), whence
1GH 1,y < Cllmal* +Imal2) TT (b5 — a;)' 7P — 0, n — oo. Further, let

i=1,2
the point x € P} := [[,_, 2[:531”, x;ﬁl) =: [#7,27, ;). Then it holds that

1,n

J1—1 A
Gy () = (w2 — ag)fﬁ2 (Z / (z1 — 81)717ﬁ1d81

1
+/ gn(z, 2}, 51) (21 — 81)_1_616181) )
Ty

where g, (z, 27, 51) = f(2}) — f(x) — f(x,lcnw?;) + f(s1,22). Therefore,

|G3 ()| {z € Pj'}

< C(xg —ag)™™ ( Z |x;L" —x;

i=1,2

1,n

As e 1
1)/ (1’1 —81)7 761d81
a

1

1,n

Jj1—1 ) ) , , b
+ 3 (@ — ™™ + (@G — 23")) /1 (= s1) s
k=0 :

k

‘|‘/ (1'1 — 81)A1_1_61d51‘|

J1
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and
- 1L,n\ A —
16T 2, py < 321G oy < €S ( [ (2= a2 =y
J1,J2 J1,J2 7)1
+ (w2~ az) P (wy — a2 (v — 2" H
1,n
Ly g [T 1-5
+ Z ka — ") (22 — az) ) (z1 —s1) dsy
zk’"
2 ol ey
+ (22— ag) (23, — 23N Z (@ —s) 1-B1 g,
=0 /o
4 (33‘2 _ a2) ﬁz( 1 x;;")Al ﬁl) dl‘)
n{™
< C(by — ag) P2 | |mp| P + |, |2 Z (lelﬁ_l — xk”)lfﬁl
j1=1
n(ln) wll»+n1 by
+ Z ‘Tk+1 — Ik ))\1 /1 (/1 (Il — 51)717ﬁ1d1‘1)d81
j1=0 " N
+ [l Z / / x1 — s1)" T Pdsydmy + |, M
$

J1=0

(2.2.2)

The first, third and fifth terms on the right-hand side of (2.2.2) are bounded

from above by C|m,|** % — 0, n — oo, and it is true for any ,,. The second

and fourth terms can be effectively estimated when m, = 7/, is uniform. In
this case

n(ln) O
1, 1,
D I
=1 (n)
and
(™ _1
|7T;z‘>\2 Z lel fmk (r1 — 51) " " Prdsyday
ngn) 1 1
<P E (ah — e 0, o
=
G4 and G} can be estimated in a similar way. O

Definition 2.2.11. We say that the two-parameter left Riemann—Stieltjes
integral [- fp fdg exists if the sums S, have the limit for all sequences of
uniform partitions of P with vanishing diameter.
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Theorem 2.2.12. Let f € CMA2(P), g € CHH2(P) and \j+pu; > 1,0 =1,2.
Then the generalized two-parameter Lebesgue—Stieltjes integrals fp fdg and
I- [ fdg exist and coincide.

Proof. Tt is sufficient to prove that S, — [ p fdg. But the sums S, equal
Sn = [p fr,dg. Denote f® = f. . Then

[ £0dg = [ DO @)D g, (@)
P P

for any 1—pu; < B; < A;. According to previous theorem, Dgfzf(") — fozf
in L1(P), whence the proof follows. O

Remark 2.2.13. We can use the Holder properties of f in order to establish
that [, fdg = lim S,,, where

S =Y (F@™ &) + FE a5 = FE) Awng(af)

J1j2

and £ is any point of P}'.

2.2.3 Generalized Integrals of Two-parameter fBm in the Case of
the Integrand Depending on fBm

Since the trajectories of two-parameter fBm Bf1H2 as. belong to
CHi—erHz2=22(P) for any rectangle P C R? and any 0 < ¢; < H;, the next
result is a direct consequence of Theorem 2.2.12.

Theorem 2.2.14. Let B™1H2 be g two-parameter fBm with H; € (1/2,1), and
the function F: Ry x R - R, F € C*(Ry x R). Then there exists the gener-
alized two-parameter Lebesque—Stieltjes integral fp F(., BHiHz2)qpH H2 ypich
coincides with the left Riemann-Stieltjes integral I- [, F(, BHH2)qpH1Hy

Remark 2.2.15. Theorem 2.2.14 holds if we replace F(-, Bf1H2) with any
Holder field f € C*172(P), such that \; + H; > 1. It means that for such an

f, we can consider the integral fp fdBMiHz for any w € 2/, P(£2') = 1 as the
limit of corresponding integral sums.

2.2.4 Pathwise Integration in Two-parameter Besov Spaces

According to the form of two-parameter forward and backward fractional
Marchaud derivatives (Definition 1.20.8), the Besov type spaces in this case
receive the following form.

Let P, := [O t]=11I,— 12[O ti],
P = If(t) flsista)|(tr — s1) ™" "Ny,
PR (F)(E) = [o7 [£(t) = f(tr, s2)[(t2 — s2) 72" Lo,
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P3N = [, [AO(p(t 5,1+ 8)71ds, 0 < Bi < 1,
and @ 2(t) = [F(O] + 5 o (W) + e3> ().

Denote by Wég 1.2 (Pr) the Banach space of measurable functions f : Pp —

R, such that

1£llo,61,6, := sup @772 (t) < oo,
teEPT

Wlﬂ 1Pz (Pr) the Banach space of measurable functions f : Pr — R, such that

1fll1,8:,8: = SUPgcs<taT (\Asf(t)| :1}2(@. — ;)P

+ (tz — s9) % fstll |foe(u, 89) — fr(8)|(uw — s1) " Prdu
+ (t; —s1)™™ f;j | e (51,0) — fi_(8)|(v — s2) "= P2dv
+ foy 1A F () (p(ry s, 1+ ﬂ))_ldr) <0

(for the notation of ¢(r, s, 3) see Definition 1.20.3) and W&"2(Pr) the Ba-
nach space of measurable functions f : Pr — R, such that

12500 = Jo, (1) TT 877 + 5300 (1) ()

1,2

)

s ()(s) + €5 (1)(s) ) ds < oo.
Similarly to Lemmas 2.1.9 and 2.1.10, the following bounds can be established.
Let 0 < 3; <1/2,i=1,2, Gi(f) = fpt fdg, F(f) = fPt fds.
Lemma 2.2.16. 1. Let f € W' (Pr), g € W, P1P2(Pr). Then

P (1) < Chy s (9) /P TT (% 4 (1 = ) 725002 (1)
ti=1,2

2. Let f € WP'P2(Pr), g € WP PPy, Then G.(f) € C1-P1-B2(Pp)
and

IG()1-g11-8: < C3 gy 7 A1-811-8:(9) || 10,51 52 -

3. Let 0< B <1 and  fr = supyep, |f(t)] < oo. Then
F.(f) e WP (Pr) N C2(Pr) and

HF(f)||0,51,ﬁ2 < Cgl,BQ,TfY*“'

2.2.5 The Existence of the Integrals of the Second Kind of a
Two-parameter fBm

We fix the rectangle P = [0,7] C R3 and consider the sequence of uniform
partitions
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T = {t] = (Thj1- 27", Taja - 277),0 < j; <27}

Let the functions f,g: P — va‘é)Ri = fo € R, 9|8]R<i =go € R,
f € CM*2(P) and g € CHk2(P).
Consider the sequence of integral sums of the second kind, i.e.

2" —1

Sni= Y f(tHAjgAlg,

J1,52=0

where Ajlg = g(t?1+1j2) o g(t?)’ A?g = g(t?1j2+1) - g(t;l)'
Theorem 2.2.17. Let \;, p; > %,)\H—ul +po > 2,4 =1,2. Then there exists

limy, oo Sp =: 8. This limit will be called the integral of the second kind of f
w.r.t. g and denoted as S = fP fdigdag.

Proof. Let, for technical simplicity, 77 = To = 1. Also, let m > n. Consider
the difference S,, — Sy, = Sn — Sin + Smn — Sm, Where

2" —1
Swn = > 277, 227" (g((r+ 1277, j227") — g(r27™, j2277))
J1,J2=0r€Aj,
x (g(r2™™, (ja +1)27") — g(r27™, j227")),
Ajl = {’I” : j12min S r < (]1 —+ 1)2m7n}

It is sufficient to estimate only S,, — Sy, because Sy, — S, can be estimated
similarly. We have that

where

on_1 on_1

A= > X f)AjgAl, g9, A2%, = > X ALfAL9A% .9,

J1,j2=0r€A;, J1,J2=0r€Aj,
Ajrg = A g(r2=™, (j2 +1)277),
A= A%r2—m,j22—”)g((r +1)27™, (j2 +1)277),
AL f = AL f(r27™, j227"), (j2 +1)277),
43,9 = A%ﬂ"",j22—")g(r2_m7 (2 +1)277).

Transform Al  into the sum

mn
2n 1

A=Y Y ft)A,94,9,
J1,J2=0T€A;,

sehere Ajyrg = Aty ooy (9((r + 1277 (G2 +1)27),
and Ajl‘rg = A%mfm ,sz*")g(t;ﬁ—&-ljg)' The increments Aj,,g correspond to the
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rectangles Aj,, = (r27™, (r +1)27™ ] x ( j227", (j2 + 1)27™ ], that do not
intersect, and UA;,, = (0,1 ]?. Therefore the sum A}, can be presented as
a two-parameter generalized Lebesgue—Stieltjes integral fp fmndg, where

fmn<s> = f(t;b>AJ1rg . 1{s€Aj2r}'
In turn,
/P Frndg = /P (DG foun) () (D171~ gy ) (s)ds,

where 1 = (1,1),0 = (0,0), 1 — u; < B; < A\;,¢ = 1,2. With such a choice
of 3 leﬁll*ﬂzgl, € Omtbi—luz+B2=1(P) in particular, there exists such
a C > 0 that [(D}=""'"P2g, _)(s)| < C, s € P. Therefore, it is sufficient to
prove that [, |( Dg_lf2 Fmn)(8)|ds — 0, n,m — oo. Since ng_ﬁz finn consists of
four terms, we must consider them separately. Estimate only [, [@mni(s)|ds,
where

(Pmnl( ) = 52 (fmn( ) fmn(u1732))<51 - u1)_1_ﬁ1du1,
and
Pmn2(5) = Jio,q AuFn(s) TT (50 = i)

the other two terms can be considered similarly.
Let s € Aj,,. Then, taking into account that |f(s)| < C for some C > 0,
we obtain that

[Pmn1(5)] < ‘92_ﬁ2(f0j12 +f12 i (8) = Fonm (1, 52)| (51 — w1) =1 Prduy
< 82_62 Oj12 (|fmn( )l + |fmn(u1a32)|)(31 — ul)_l_ﬁldul
+ ngﬁz T2 o [FED| (51— ur +277)M (51— ug) ™ 1=Prduy < Csy B2

J1
X(Q—”Hl (31 _]12 ") [31 + (51 —r2 m)Hl 651 + 2~ M (51 —r2- m) [31)

whence

n

1
Jplomm(lds<C Y X (2—nm Ja,,, 527 (s1 = j127")ds
J1,J2=0r€A;,
ﬁ _ myp1—0B1 mpy “B2ig _ po—my—fi )
+fA 2(s7 —r2™™) ds + 2~ fAjy 8o (81 —127™)"Pds

< 0(1 - 52) Ln(Br—pm) 4 gm(Bri=m)) 0, m,n — oo.

Further, from Holder properties of f and g, it follows that for

u < (7127™,4227") we have the estimate |Ayfimn(s)| < 2(so — ug +
27 M) A2 4 O(sg — ug + 27)H2 (s — ug) "M, for u € (5;277,r27™) x
(0, 227™) the estimate is [Ay fnn (5)] < 2(s2—up +27") 2 (51 —ug +27™)41 4
C27™1 (59 — ug +27")42, and Ay frun(s) = 0 otherwise. Hence,

| Pmn2(8)] < C27 (51 — 227 ") P (50 — (ji — 1)27 ") e 2P

+ C(Sl 45227 + 2—m)u1—51 (82 — 27 4 2—7;)”2/\”2—527
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and f'p |men2( |d8 < 0on(BrtBa—pi—p2AX2) _, 0,m,n — 0. So,
|AL | — 0,m,n — oo. Now we want to prove that |AZ | — 0,m,n — oo.
We can present AZ, = as

2" —1
2 E 2,j2

A n - Amn?

Jj2=0
where
2" —1
2,J2
Avin = E: E: A er 7zr9'
71=0 ’I‘EA]1

Moreover, AZ%J2  can be presented as one-parameter generalized
Lebesguefstieltjes integral fo Vi, (w)dig(u, jo2~ ), where ¢, (u) =

fA_hrg]'{TQ m<u<(r+1)2*m}a ¥(0) = 0. Then fo 1/132 u)dig(u, j227") =
fo O+1/JJ2 u) (D} P )(u, 7227 ™)du, where 1 — py < 3 < 1/2. Evidently,
((DY=Pg1_)(u, j227™)| < C, therefore, it is sufficient to prove that

2" —1

Z €+¢j2)(u)\du—> 0,m,n — oco.

Jj2=0

Note that
(DF ) () = (11 = 8)) 7 (1w (w)u™
8 / (V3 () — Y5 () (0 — 2) 102,

and [, (u)| < C27"Ma+82) whence

2" —1

Z/sz )™ ﬁdu<0/ By - 2n(-M=12) 0 n — co.

Jj2=0

Further, for j127" <727 <u < (r4+1)27™ < (j; +1)27",

[t =@ = [ [

sz (u) - wjz (2)| < |’(/}j2 (u)l + |1/}j2 (Z)l < C2_n()\1+%t2)'

From here,

and

5 S VT2 (W (1) = 4, (2)) (u — 2) " Pdz|du

J2=0

n

< o2 atuz) 5~ S fgi}b) |fj12 (u — 2)~ ' Pdz|du
J1,J2=0reA;,
< 02n(HA=X—12) (0 n — oo,
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since under assumption Ay 4+ @1 + po > 2 we can choose % >pB>1—pin

such a way that 1+ 58— X\ — ug < 0. Finally, for /127" < z<u < (r+1)27™
|, (1) = thj, (2)] < 272 (u— 2 +27"™)M,

and

Z fo |f1r n quJ]z wjz(z))(uiz)iliﬁdddu
§ C’2m A+P1=21=p2) _, 0, m — oo.

O

Remark 2.2.18. For f(s) = C A2, =0, and it is easy to see from the bounds
of AL that the theorem will hold under the assumption \;, u1; > %72’ =1,2.

Remark 2.2.19. Multiple stochastic fractional integral with Hurst parameter
less than 1/2 was considered in (BJO06).

2.3 Wick Integration with Respect to fBm with
H € [1/2,1) as S*-integration

2.3.1 Wick Products and S*-integration

Recall (see Sections 1.4-1.5), that the random variable F' on the probability
space S’(R) belongs to S* if F admits the formal expansion (1.5.1) with finite

negative norm
IF2, = alc2(2N)™" < oo
acl

for at least one ¢ € N. Introduce the following notations:

(i) Let the function Z : R — S*, and for any F € S we have that
(Z(t),F) € Li(R) as a function of t € R.
(ii) In this case, define [, Z(t)dt as the unique element of S* such that

<</R Z{tydt, F >> = /]R (2(t), F) dt,

and say that Z is integrable in S™.

(ili) Define the Wick products: for F(w) =3 caHa(w), and
Gw) = 35 dgHp(w), put (F O G)(@) = Son 5 caddgHars(w)
According to the (HOUZ96), for F,G, H € S it holds that

(iv) FOG =GO F,

(v) (FOG)OH=FOGOH);

(vi) HO(F+G)=HOF + HOG,

(vii) FOGeSUHF,GeS; FOGeS*if F,G € 5™

In this section we consider only the case H € [1/2,1).
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Theorem 2.3.1. Let the process Y (t) € S* and admit an expansion
Y(t) =, ca(t)Ha(w), t € R, with the coefficients, satisfying the inequality

K = sup{al |lcall}, ) (2N) 74} < o0

for some q > 0. )
Then the Wick product Y (t) B,fw is S*-integrable, and, moreover,

/R Y(t)QBint:aZ; /R Co(8) My T ()t - Hip e, (). (2.3.1)

Proof. Consider only BtH , and for arbitrary BtM the proof is the same. Since
(hi,w) = M., (w), we have that the Wick product Y (t)$BH € S* and
equals >, ca(t)Mf%k(t)Hmrsk (w). According to (HOUZ96, Lemmas 2.5.6
and 2.5.7), the S*-integrability of Y (t) & Bf follows from the inequality

2

Z p! Z Ca(t)MfEk(t) (2N) PP < oo

BeT ak:atep=0 L1 (R)

for some p > 0. According to estimate (1.5.3),
‘Mfl;k(t)’ < CK*/3=H/2 < Ok5/12 for any k > 1 and some C > 0.

Therefore,
[ |eaOM 0] dt < 812 ol
R
and
2 2
ST cal)MI (1) <[ > ca(t)Mfﬁk(t)HL .
a,k:atep=0 L1(R) a,k:a+e,=p4 .
2

<C Z k12 llcallr, )
ak:atep=0

Consider the sum
2
S:=) g S B eally, @ | @N)P

BET ak:ate=0
2

BB Y lealln, @ | @N)F

BeT a,k:ater=0
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where [() equals the number of the last nonzero element in the index g (the
length of the index (). Further, for any «, 8 there exists no more than one k,
such that « + ¢ = . Therefore,

2

S el | 2B Y leall}m -

ak:ate,=0 ak:ater=0

It means that

S < Z(a +e)l(l(a+ Ek))17/6 Hcanil(R) (2N)~Po—pex
ak

a+eg)! () o—pe
<KY %(Z(aw,ﬁ))?’(m) (p=g)a—per
a,k

<KDY (Ja|+1)*27 1m0k < o0,
aLk

for p > g + 1, and we have established the S*-integrability of Y () <>BtH .
Now, for any F'= >, dg xHpie, (w) € S, we have from the definition of the
S*-integral and of Wick product, that

<</RY(t)<>BtHdt7F>> :/R<<§kca(t)Mf’;;k(t)Ha+€k(w)7F>> dt

(2.3.2)
= /R > (a + en)lea(t)da s M by (t)(w)dt.
o,k

Note that

D (o + ) [da i * (2N)270FER) = € < 00
a,k

for any ¢ € N. Therefore

Z/R(a+ak)!|ca(t)||da,k ‘Mf?zk(t)‘dtgZ(a+ek)!|da,k\k5/12 lealls. e
ak ak

1/2
< D20 B ldasl* (N2 Y K o7 gy Br! (2N) T2el0reR)
a,k a,k
1/2

!
< | CE D k5/6%(2N)“1|a‘k‘2‘1 <00
a,k :
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for ¢ > 11/12, B = o+ €y, because ) %(21\1)_‘1'“‘ <> (la] + 1)2-dll <
00. So, we can change the signs of sum and integral in (2.3.2) and obtain

<</Ry(t)<>BtHdt,F>> = Z(a—i—sk)!da’k/}Rca(t)Mfﬁk(t)(w)dt

ak

— <<Z/ca<t)Mka(t)(w)dt,F>>,
ak R

whence (2.3.1) follows. O

Corollary 2.3.2. Let Y(t) = > ca(t)Ho(w) € S* be a process such that
fOT EY?2(t)dt < oo for some T > 0. Then Y a! fOT c2(t)dt = fOT EY?2(t)dt <
o0, whence K := sup,{a! ”EaHQLl(R) (2N)79*} < oo for any q > 0 (hereafter
we put o (t) := co(t)1jo,7())-

So, we can use Theorem 2.3.1 and conclude that Y (¢) & BM is
S*-integrable, and, moreover, equality (2.3.1) holds.

Corollary 2.3.3. Let Y(t) = 1. Then the previous corollary holds with
co(t) = 1,¢q(t) =0 for a # 0,whence

T T
/ BMat = Z/ M hy,(t)dt - He, (w) = By
0 PR

In this connection, we can say that the fractional noise is the S*-derivative of
fBm.

As a consequence, we can define [V, $dBM = [, & BMdt for the
process Y;, satisfying the conditions of Theorem 2.3.1.

Now, let Y € Ly[0,T] be some nonrandom function, H € (1/2,1).

Then ¢, (t) = Y (t) =24 (t), for @« = 0 and ¢, = 0 for other «, so, by using
Theorem 2.3.1, we obtain that

/OY & BEdt = Z/ ()M hy,(t)dt - (b, w).

Further, even for Y E L1[0,T] we can replace the operator M¥ and obtain
Y MHh;,C MHY hk dt, whence
0

T
SH - HY ~ . 7 w
/0 Y (t) & B dtzk:/RM_ Y (t)hy(t)dt - (hy, w)

:Xk: /R MEV () (D)dt - He (),

(2.3.3)
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where Y (t) = Y(£)1jo,7)(t). The right-hand side of (2.3.3) corresponds to
(HOUZ96, representation (2.5.22)) of the integral fOT MY (t) & Bydt, where

B, = Btl/Q is a white noise:
T . T .
/ M"Y (t) & Bydt = / Ca(t)h()dt - Hoye, (w).
0 ok 0
Therefore, for Y € LI [0,T)
T . — . — .
/ Y (t) BMdt = / M_Y(t) < Bedt = / M_Y (t) - Bydt. (2.3.4)
0 R R

2.3.2 Comparison of Wick and Pathwise Integrals for “Markov”
Integrands

In this subsection we can, without losing generality, consider instead of S’(R)
the probability space 2 = Co(R4,R) of real-valued continuous functions on
R, with the initial value zero and the topology of local uniform convergence.
There exists a probability measure P on ({2, F), where F is the Borel o-field,
such that on the probability space (2, F, P) the coordinate process B : {2 — R
defined as,

Bi(w) =w(t), we N2

is the Wiener process.

(i)  Recall the notion of a stochastic derivative. Let I be a square-integrable
random variable, and suppose that the limit

éiir%)% (F(w. +5/0' h(s)ds) — F(w.)> exists in La(P)

for any h € Ly(R). Then this limit is called the directional derivative Dy F'.
(ii) If the directional derivative Dy F', h € Ly(R), is absolutely continuous
w.r.t. the measure h(z)dz, i.e.

Du(#) = [P @) hayd,

and (dDp(F))/(dh) does not depend on h, then the Radon—Nikodym deriv-
ative (dDy(F))/(dh) is called the stochastic derivative of F' and is denoted
by D, F.

(ili) We have a chain rule for the stochastic derivative: if D, F' exists and
¢ € CY(R), then D,p(F) has the stochastic derivative

D,¢(F) = ¢(F)D, F.
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(iv) Let u € La(R) be a nonrandom function. Then it follows from (NP95,
Proposition 5.5), that

Dm/usst =u, a.e.
R

(v)  Recall the notion of the class Dy 5. This is the Banach space, obtained
as a completion of the set Py of smooth functionals F' = f(By,,...,Bt,),
w.r.t. the norm [[F|; , := [|F|[,,p) + I ||D:CFHHS||L1(P), where F' € Py,

and |[|-|| ;¢ denotes the Hilbert-Schmidt norm.
Denote LY(R) = {f: R — R: [, [M_ f(z)|* dz < oo}.
Lemma 2.3.4. Let F € Dy o, f € LY (R). Suppose that the integrals

(M_f)(s)dB, = F- / f(s)dBM

R

/R(M_f)(s) -DyFds and F /

R

belong to Ly(P). Then F & [, f( s)dBM exists and

F<>/f B = /(F M_f)(s)0B

=F. /f yaBM — /M f)(s) - DsFds. (2.3.5)

Proof. By using (HOUZ96, Corollary 2.5.12) and (NP95, Theorem 3.2), we
obtain for nonrandom f that

M _ S
Fo [ 16aBl =P [ (rpois
~ [For B, = [ (F-M_p05
R R
- [Or s~ [0 D.Fds
:F-/Rf(s)ngw —/R(M,f)(s)-Dsts.

(Note that according to (NP95, Theorem 3.2), the Skorohod integral
= F )6B exists if and only if the difference F - [ (M_f)(s)dB
— Ja( M f - D4Fds belongs to La(P)). 0

Using this result, we can compare the Wick integral and the pathwise
integral w.r.t. fBm B, H € (1/2,1)(the latter integral coincides with
Stratonovich integral). Therefore, now My = MH.
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Lemma 2.3.5. Let p € C'(R), F, = @(Bf), f(s) = Ly qn)(s), t,h > 0. If
¢ (Bf) and F, - (B, — BfY) belong to Ly(P), then
FO(Bfl, —Bi') = F-(Bfi, — B{)
— HY' (B h 4 c(w)(t?*71h? 4 b2,
where c(w) is a.s. finite and independent of t and h.

Proof. According to equation (2.3.5), we can rewrite formally the left-hand
side of the previous equality:

FtQ(Bgrh -B"Y=F;- (Btlj-h - Bl

- / (M7 1,,10) (5)Dap(BH )ds.  (2.3.6)

Further, according to the chain rule (iii), it holds that
Dsp(Bf) = ¢'(B{")DBy",
and
DyB{' = D, /R (M7 104) (w)dBy, = (M 11,49)(s).
Therefore,
F, OB, - B =F,- (Bf), - Bl")
~¢'(Bf") /R (ME L m) () (M 110,0) (s)ds,

and under the conditions of the lemma the right-hand side of equation (2.3.6)
is well-defined. Finally,

/R (ML py)(5) (M 10,)(s)ds = E(BI, — BI)BY
1

= 5((t+h)2H 7t2H . hQH) — Ht2ah+2HOé02a71h2 o th,

where 0 € (t,t + h). The lemma is proved. O

Remark 2.3.6. Evidently, the assumption E(go(BtH))zJr€ < oo for some € > 0
is sufficient for F;(Bf, — Bf) to belong to Ly(P).

Now, fix some T' > 0 and consider the sequence 7, = {0 =t} < --- <
t =T} of partitions of [0,T7], such that 7, C 7,41 and |m,| — 0 as n — oo.
Suppose that

¢'(Bl') € Lo(P), ¢(By") € Laye(P), t € [0, 7] (2.3.7)
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for some £ > 0.
According to Lemma 2.3.5, we can write

> (Bl )oABf, =Y w(Bfl )ABE,
=1 =1

n

- HZ ‘P/(Bgfl)(t?—l)QaAti,n + R (T),

i=1

where At;,, =t — 17 4, ABfn = B - BtH,Ll. Here R, (T) is a remainder
term and R, (T) — 0 a.s. as n — oo. Furthermore, the process C; := p(BH)

is Holder continuous up to order H. Also, by Theorem 2.1.7, part 2), the
sum > o, w(Bgil)ABfn converges a.s. as n — oo to the pathwise integral

foT o(BH)dBE . Clearly,

n T
E ¢ (B 1)(t?_1)2aAti,n H/ ¢ (BM)s*ds a.s.
- 0

=1

Therefore,
n T T
lim Y " o(Bff )& ABf, :/ o(BHYyaBH —H/ ¢ (BH)s*ds as.
n— oo = o ’ 0 0
Moreover, under assumption (2.3.7) and
T 2
E/ (p(BI)) ds < oo, (2.3.8)

0

there exists the Wick integral fOT ©(BH) ¢ dBH. Now we are in a position to
prove that

T n
| e oans = im DoelBl )0 BN (289

Theorem 2.3.7. Under conditions (2.3.7) and

E sup (go(BSH))2 + Esup(¢'(BH))? < (2.3.10)
s<T s<T

equality (2.3.8) and (2.3.9), consequently, the equality

T T T
| emiodst = [ omhapt <1 [ pB0sas
0 0 0

holds a.s.
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Proof. Let the random variables F,G € D; 2. According to equality (2.3.5)
and (NP95, Theorem 3.2), for i < k

E[FOAB], -G ABJL ]

=FE [ /R FM™ 1 4n)(5)3Bs - /R GMHl[tZ_lytZ](s)éBs]

= E |:/ FGMEI].[t:Ll’t?] (S)MHl[t2_17tzw](8)dS:|
R

— (2.3.11)
+E X RDtFDSGMfl[t?l’tm(t)Mfl[tz1,tg](s)d5dt]
L X
1
= *E[FGT‘M]
2
+E /R DyFM™ 1 g (t)dt - /R DSGMF1[tz,1,tZ](s)ds],

where

P g — )P (=) (o, — )P

ri = |ty — ]

Put in (2.3.11) F = @(Bﬁ_l), G = W(Bt%,l) and take the sum over
1 < i<k <n. We obtain that

n 2
5 (szgl) o ABfn) _ st
i=1
where

St= Y. EeB )e(BE ri,
1<i<k<n
and

Sy= ) E/R‘P/(Bg,l)Mfil[t?_l,tm(f)Mfl[o,t?_ll(f)dt

1<i<k<n

X / SD’(BE’%71 )Mfl[tz_vt;;] (S)M¥1[07tg_1] (s)ds

R
1 n n n
=1 > BB ) (B ) () = (t7_1)* — (Atp)*)
1<i<k<n

Evidently,

2
¢ (Bl )|t At;) . (2.3.12)

S5| < H2E (Z

i=1
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If the partition 7, is uniform, i.e. ¢} = %, then for some Cy > 0

i\
sp<2 y E‘@Bgl <n>
1<i<n
7N\ 2H
+ <n> Cy Z ’(p(BtH?l Bg / / )2 du du.
i—1Jk—1

1<i<k<n
(2.3.13)

Now it is very easy to conclude from (2.3.10)—(2.3.13), that the sums
=) ¢(Bi) 0 AB{,
k=1

form a Cauchy sequence in Lo(P), at least, for uniform ,. From the estimate

(E ) < IF ]y p N9l apy - F € La(P), g € 5,

we obtain that (S, — Sm,g) — 0, n,m — oo for any g € S. This means
that {S,} is a Cauchy sequence in the weak sense. If we establish the weak

convergence S, — S 1= fOT ©(BH) & dBH | then the theorem will be proved,
since the convergence will be in Ly(P), as well. According to (2.3.1) and
Corollary 2.3.2, we have that

~ T . T ~
5= / so(BtH><>det=Z / ()M T (£)dt - Hope, (),

Sn —/ Qﬁn OBHdt Z/ MHhk )dt ' H(l+6k (W)a
0

where

n

on(t) = ZLP(Bg‘_l)]-[tl L (1),

=Y caOHa(w), ca(t) =D caltiy)lpp i (t).
a =1

Denote d}} := ¢4 — c. Then

55, =% /d" (ML T(t)dt - Hp(w).

B aka+sk B

Furthermore, for any g =3~ ; gsHp(w) € S and any ¢ > 0
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’<<§S"’9>>!S§ﬂ! 9% D /Osza)Mfﬁk(t)dt

a,k:ater=0
1/2

< [ 2 (g2 20y
B

9 1/2
dn M Ek‘ (2N) P4

L1[0,T

x%:ﬁ! >

a,k:ater=0

We estimate only the second multiplicand. According to (1.5.3), for
H e (1/2,1) ‘Mfﬁk(t)‘ < Ck®/'? with constant C independent of ¢, k. So,

2 2

dn M T <cl > ML en
L. [0,T] a,k:ater=0

>

ak:ate=p0

< C(l(ﬁ))5/6 Z HdZHLl[O,T] )

a,k:atep=0
where [(3) equals the number of nonzero entries in . Further,

2

d M1

dopreN) Tty
B

ak:ater=0 L1[0,T]

< Z B! (2N)~P41(3)5/6 Z ldallz, o7
B

a,k:ate,=0

< BB ST Rl . (2N) T
I}

a:Fk,a+er=43

< o+ e)(Ua+ )0 R[], o (2N) 79t
a,k

" a+eg)! . ger
< sup {at 10312 0. } 2 55 1+ 1) 70 o) o o

ak

n (|2 —lalg.—
< sup {al 42113, 0.2y } D (la] +1)%/527Ielag s,
« ak

The last series converges for ¢ > 1, and it follows from the continuity of ¢
and condition (2.3.10), that
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n (|12 n
sup {a! ||da||L1[07T]} < Za! ldall Lypo,77 - T

=T o(B) = () oy = 0 71— 0.

Theorem 2.3.7 can be generalized to the processes of the form

m
M = E O'kBg{k.
k=1

Suppose that H; = % and Hy € (1/2,1), 2<k <m.

Theorem 2.3.8. Assume that conditions (2.3.7), (2.3.8) and (2.3.10) hold
with B replaced by BM. Then

T T
/ P(BM) & dBM = / S(BM)dB)M
0 0

n T T
~ 1
- Z crv;akC'Hin(H,;jLHk)/ gp'(Béw)sHﬁH’“*ldsqLﬁaf/ ¢ (BM)ds,
ik=1 0 0
where
o ey B(H; —1/2,2 — H; — Hy)
(H; + Hy)(Hi + Hy — 1)I'(H; — 1/2)I"(Hy, — 1/2)’
H;,Hy, € (1/2,1),

éHH = Cl(r?)
e = _THe o= 1/2 Hy o€ (1/2,1),
I'(Hy, +3/2) /2, Hy. € (1/2,1)

0, H; € (1/2,1), Hy, = 1/2,

%,Hi —Hy=1/2.

Proof. We start with (2.3.5) and conclude that
p(BM) (B, — BY) = o(B) - (B, — B{)

m

—¢'(BM) Y Uio'k/Mflil[t,t+h](S)Mflkl[o,t](s)d&
R

i,k=1

Further, for f € L (R), g € L¥*(R), H;, Hy, € (1/2,1)
/MH MHk( ds = zkH// H 3/2f()
x/ (y—s)H’*‘_3/2g(y)dyd8— ZkH/ f(x)g(y)dz dy

TAY
X / (x— S)H"’_?’/Q(y — S)H’“_Sﬂds,

— 00
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) ol _
where Ci,k,H T, 71/2)F(Hk 72y Evidently,

TA\Y .
/ (I o S)Hi73/2(y . S)Hk73/2d5

— 00

Hit =2 ( ik Hl{y >z} + Ck J Hl{y < x})

with Oy = [ 2H3/2(1 4 2)He=3/2dz = B(H;~1/2,2— H; — Hy,). There-
fore,

/MH ()M *g(s)ds = zkH/f )y —
' (Cfi),Hl{x <y} + 081y < x}) da dy.
Let f(z) = 1 44n)(2), 9(y) = 1p,4(y). Then

/ Mflq 1[t,t+h] (S).Z\4’£—IIC l[O,t] (S)ds

t+h
= H C,”H/ / —a:H”H’f 2dy dx

=ly—=x

HJer 2

7j=1,2
= [T ¢V} u(H: + H)(H; + Hy — 1)~
j=1,2

X [(t—F h)Hi+Hk _ tHi+Hk _ hHﬁ»ijI
—. éHin [(t + h)HiJFHk — ¢HitHe _ hHHer]
= Cwym, [(Hi + H)T A= 0 4 (H; + Hy) (H; + Hy — 1)97 =12
— BP0 € (¢t + h).
(2.3.14)

For H; = 1/2 and H; € (1/2,1) we have that MY? = T is identity
operator, and

c<3>
1/2 Hy, _ _ “YHp _ N\Hr—3/2
/RMf fls)MZ*g(s)ds = = 1/2) /f / g(y)(y — s) dyds.

For f and g as above, the last integral equals

~17 / / sy dyds
e

|:(t + h)HkJrl/z _ tHk+1/2 o thJrl/?}

= Cyy [(Hk +1/2)tH1/2p

- (Hy +1/2)(H)y, — 1/2)¢H=2p2 — th+1/2} . (23.15)
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At last, for H; = H, = 1/2

/ M1 ()M 1y, 44y (5)ds = 0. (2.3.16)
R

Now we can proceed as in Lemma 2.3.5 and Theorem 2.3.7, put 5'% 1= %,
take into account (2.3.14)—(2.3.16) and obtain the proof. O

2.3.3 Comparison of Wick and Stratonovich Integrals for
“General” Integrands

Now we consider the general process Fy instead of ¢(BM). Suppose that fBm
{Bff,t >0} is “one-sided”, H € (3,1).
Theorem 2.3.9. Let {F}, F;,t € [0,T]} be the stochastic process satisfying

the conditions

(i) F, €Dy for anyt € [0,T], E|F[*™ < oo for any t € [0,T] and
some € > 0, sup, ;0,1 |DsFi| is bounded in probability;

(ii) limp o supseqo ry [DieF's — DiFsin| = 0 in probability;

(i1i) Fy is a.s. Holder continuous of order a > 1 — H (this condition implies
the existence of the Stratonovich integral fOT FydBH, H € (1/2,1));

(iv) EfOT F2dt < oo (this condition implies the existence of the Wick
integral fOT Fy, & dBH, according to Corollary 2.3.2);

(v)  there exists a sequence of partitions {m,,n > 1} with |m,| — 0 asn — oo
such that the integral sums Y_;_, Fin_  AB}, converge to fOT F, $dBH
i probability.

Then

T T T s
/ FstBf:/ EsdBf—cg‘)/ (/ (s—t)o‘leFtdt> ds.
0 0 0 0

Proof. Consider for any 0 <t < t+h < T the function f(u) = 1 14n)(u).
Then we take into account that DsF; =0 for s >t and s < 0 (since Fy is Fy-

adapted) and obtain that [, MY fD,Fyds = C’S) fot :+h(u—s)a_1duDsFtds,
where f:+h(u —5)*~1du < ™°. Hence,

) 3)?

H (CH ) 2 ! 2

E /M, fDFds) <-~—Zh O‘tE/ D, Fy|? ds < .
R « 0

Further, F; - [, MY fdB, = F, - (Bﬁ_h - BtH), and, according to (i),
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9 2+€ 2(2+s) P
E|F- (B, - BI)|" < (BIR/*) <E|Bt+h B < oo,
Therefore, [, ME f- D,Fyds and F; - [, MY fdB, belong to La(P ) and it

follows from Lemma 2.3.4 that the integral sums Y’ Fyp & AB ,, €xist.
Moreover,

Fy OAB}, =Fyn -ABf — /]R M1y oy(s)DsFin ds
=Fn -ABH — 1 n o (8) (M (D. Fyp ) (s)ds
ty_q k,n [tR_1:t%] + ty_1

_F ABH _ 3) /t;: /tkl( _ a—lD F d d
=Fyp ko s—u) wlip_ duds.
iy

(2.3.17)
Consider the difference,

noorte o pthea
Z/ / (s — u)o‘_lDuthildu ds
k=1Ytk-1 70

/ / )* "Dy Fyp A iry(s)duds

<C- sup |D,Fy|-|mn| T —0, (2.3.18)
0<u<t<T

as n — oo in probability, according to (i). Further, according to (i) and (ii),

a 1D Ftﬂ 1[t2r717t2)(5)du ds

/ / )4 Dy Fsdu ds

in probability. Now, the proof follows from (v) and (2.3.17)-(2.3.19). O

-0 (2.3.19)

Now consider one sufficient condition for (v) (condition (v) seems to be
the most artificial among other conditions (i)—(iv)). To this end, consider the
middle part of (2.3.11), from which we obtain that for any step processes

Fo(t) =201 Fenlpp ap (t) and Gu(t) = 370 Genlpp 4 (1)

E

Zn:Fn )& dBH - ZG t) & dBH
=1

k=1

=F / MPE, ) MG, (t)dt + E | MYD,F,(t)M" DG, (s)ds dt.
R R2
(2.3.20)
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The next result was motivated by (Ben03a, Theorem 2.2.8).
Theorem 2.3.10. Let the stochastic process {Fy,Fi,t € [0,T]} satisfy the

assumptions (i)-(iv) and
(vi) EfOT F2dt < o
(vii) the operator Fy : [0,T] — Dy o is continuous in La([0,T] x P).

Then the integral sums Y ;_, Fyp OAB,fn exist, the integral fOT F,¢{dBH
exists and

T n
H _ 1 " H .
/0 F,;$dB = nh—>Holo kgzl Fip O ABy, in Ly(P)

for any sequence of increasing partitions 7, with |7, — 0 as n — oo.

Proof. Under condition (vi), the existence of sums >, Fin & AB,gn and

the integral fOT F, & dBH was established in Theorem 2.3.9. Further, using
(2.3.20) and (vii), we obtain that

2
E

T n
/ F,dBf' = Fy O ABJ,
0 k=1

H n 2
:E/R[M, (F.— F")(t)] dt

+ / E[M"(D,F. — DyF")(s)]? dsdt =: E, < oo
RZ

From the Hardy-Littlewood theorem (Theorem 1.1.1) with ¢ = 2, o =
H-1/2andp= 4

mn 2 mn
[ e = O] de < Cu lE. = FIE o

and from condition (vii) it follows that
2 ,
/ [M"(DyF. = D,F™)(s)] " ds < Ciy | DyF. = DeF™M7 | oy
R H

whence from (vii) and (iv) we obtain that

T
n| 2 n 2
E, < CyE (F —F o + / EIDF = DF I o dt)
H H

T
2 2
< CyT**E <||F- = F" 101 +/0 [ DeF. — Dy F" (|7 0.7 dt)

T
<Cur® [ E|F - F e
0 ,

< C’H,1T2°‘ F—F™ — 0, n — oo.

Lo ([0, T]xP)
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O

2.3.4 Reduction of Wick Integration w.r.t. Fractional Noise to the
Integration w.r.t. White Noise

Recall that for nonrandom integrands f € L (R)
/Rf(t)dBtH = /R(Mff)(t)dBt.

In this subsection we reduce fR X O BtH dt to the corresponding integral
Jo (M X)(t) ¢ Bydt w.r.t. white noise.

Theorem 2.3.11. Let the following conditions hold:
E/ IX,[2dt < 00 and E/((Mf|Xt|)(t))2dt < 0.
R R

Then
/XtOBtHdt:/(MfX)(t)oBtdt a.s.
R R

Proof. According to Theorem 2.3.1 and Corollary 2.3.2, the condition
E [ |X;[?dt < oo supplies the equality

/Xt<>BtHdt:Z/ca(t)Mfﬁk(t)dt-HaJrEk(w). (2.3.21)
R ok R

First, replace the operator M f in the last equality. Evidently,

/f(t)Mfg(t)dt:/Mf’f(t)g(t)dt (2.3.22)
R R

for f € L,(R), g € Ly(R) with p > 1,¢ > 1 and %—i—% =l+a=H+1/2
Moreover, hy € L¢(R) for any ¢ > 1. Since E [, | X,|*dt

=Y al [, (t)dt < oo, we can take p = 2, ¢ = - and obtain from (2.3.22)
tha?

/ co(t) M hy (t)dt = / (M e) () hy () dt. (2.3.23)
R R

Further, consider the formal expansion Y; := > (M ¢, )(t)Ha(w). Again, from

Corollary 2.3.2, the condition
E/ Y2dt = Za!/ [(MFc,)(t))?dt < oo (2.3.24)
R > R

ensures the equality
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; = HC h w). 0.
/]R YtOBtdt—aZ; /R (M ) (1) (£)lt H o, () (2.3.25)

So, we want to know when (2.3.24) holds and we need the equality
Y; = (M X)(t). This follows from the equalities

(MP X)), Ha () 1a(r) = (MFea) (1) = MY (X0, Ho())1a(rys - (2:3.26)

if they hold for any « € Z. Equalities (2.3.26) can be reduced to

/Q (/t G t)alXx(W)di)Ha(w)dP
:/t (x—t)o‘—1< QXI(w)Ha(w)dP)dx (2.3.27)

for a.a. t € R. In turn, the Fubini theorem can be applied to (2.3.27) in the
case when

o0 2
E(/t (x — t)a_1|Xz(w)|dm) <oo foraa teR (2.3.28)

because EHZ(w) = a! < co. Evidently, the condition E [, (M| X|)(t))%dt <
oo ensures both (2.3.24) and (2.3.28). The proof now follows from (2.3.21),
(2.3.23), (2.3.25) and (2.3.26). 0

2.4 Skorohod, Forward, Backward and Symmetric
Integration w.r.t. fBm. Two Approaches to Skorohod
Integration

Taking into account the definition of the integral for nonrandom function
w.r.t. Bm: [i f(t)dB = [ (M f)(t)dB;, and Theorem 2.3.11, it is desir-
able to define the integral [, f(t)dBf for stochastic integrands in a similar
way. Evidently, in this case, even for very simple and natural integrands, such
as f(t) = BE, we have that (M7 BH)(t) = CS) [ (= t)* 1B dz is not
adapted. So, we must in this case address the theory of integration of non-
adapted processes. To this end, recall the definition of the Skorohod integral
(see also the pioneer paper (Sko75)).
Let the stochastic process X; = X;(w) be such that

EX} <oo forallteR.

Then X; admits a Wiener—It6 chaos expansion

Xt:Z/ fn(s1,.o ey 80, )dB®" (51, .., 8n),
n=0"R"
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where the functions f,(-) € Lo(R™) and are symmetric in variables

($1,---,8n), for n = 0,1,2,... and for each t € R. See, for example,
(HOUZ96, Theorem 2.2.5). Let f,(s1,...,5n,Sn+1) be the symmetrization
of frn(s1,.-.,8n, Snt1) With respect to (n + 1) variables s1,. .., Sp, Snt1-

Definition 2.4.1. Assume that

i(n—kl)!‘

n=0

F

L2 (Rn+l )

Then we say that the process X is Skorohod integrable, write
X € Dom(d), denote the Skorohod integral as [, X;0B;, and define it as

Jo Xi6By =37 [oni fn(sl, oy Sng1)dB® D (s s,01). The Skorohod
n=0
integral belongs to Ly (P),

f

E/ X 6B, =0, and E| / Xi0Bi> => (n+1)! ‘
R R n—0

Lo(Rn+1)

Remark 2.4.2 ((NP95)). Define by L; o the class of stochastic processes
X € Ly(R x £2) such that X € Do for almost all ¢, and there exists a

measurable version of two-parameter process D,X; satisfying the relation
E [42(DsXy)?ds dt < oo. Then Ly s C Dom(d).

Definition 2.4.3 ((Ben03a)). Let the stochastic process X; = X;(w) be such
that (MY X)(t) exists and belongs to Dom(d). Then we define the Skorohod
integral with respect to fBm B as

/R X,0BH = /R (MY X)(1)5B,

for the underlying Wiener process B.

Evidently, F fR X 0BH = 0. Of course, we can define in the usual way

the Skorohod integral with finite limits and indefinite integral f(f X 0BH t e
[0,T7]. Tt is easy to compare now the Skorohod and Wick integral w.r.t. fBm.

Theorem 2.4.4. Let MPX € Dom(5), E [p|X:[*dt < oo and
E [o(MHP|X|)(t))?dt < 0o. Then

/XtéBtH :/XtoBtHdt.
R R

Proof. According to (HOUZ96, Theorem 2.5.9), the condition MHX ¢
Dom(8) ensures the existence of [ (M X)(t) ¢ Bydt and the equalities:

H > _ H _ H
/R(J\L X)(t) & Bydt = /R(M, X)(t)§B; = /RXt(SBt .
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Further, according to Theorem 2.3.11, in our case

/ (MEX)(t) & Bdt = / X, & BHat,
R R

whence the proof follows. ]

Remark 2.4.5. Let Y € LE[0,T). Then Y is a Skorohod integrable adapted
stochastic process. Indeed, it is nonrandom thus adapted. From (2.3.4) and
(HOUZ96, Theorem 2.5.9), Y (t) & BM is S*-integrable, and

T
/ Y(t)QBi”dt:/M_?(t)-Btdt
0 R
0 0

where § means Skorohod integration, and the last integral is the It6, and even
the Wiener, integral. Note that, according to Corollary 1.9.4 (for H > 1/2, or
1/H < 2) L[0,T] C Li[0,T]. We obtain that the S*-integral for nonrandom

functions from L2[0,T] coincides with the Wiener integral fOT Y (t)dBH from
Definition 1.6.1.

Another approach to Skorohod integration w.r.t. fBm was developed in
the papers (AN02), (Nua03), (Nua06). The main idea is to use the basic tools
of a stochastic calculus of variations (Malliavin calculus) with respect to B,
Recall some of these notions for H € (1/2,1). (For H € (0,1/2) see, for
example, (AMNOO).)

Let S be a family of smooth random variables of the form

F=fB[. .. B

with f € Cp°(R™) and t; € [0,7],1 < i < n. Let H be a closure of the linear
space of step functions defined on [0, 7] with respect to the scalar product

t s
(110,49, Lj0,s])H = 20&H/ / lr — u|**~Ydu dr.
0 0

Then the derivative operator D : S — L, ({2, H) for p > 1 is defined as
DyF = } :%(35735, B4
i=1 "

Let Dy, ,(H) be the Sobolev space, the closure of S with respect to the norm

k
IEIIR,, = E(EP) + Y E(ID"F|f,),

j=1



2.4 Skorohod, Forward, Backward and Symmetric Integration 161

where D7 is the jth iteration of D. The Skorohod integral (divergence op-
erator) oy is defined as the adjoint of Dy : Dy 2(H) C La(£2) — Lo(2,H),
defined by the means of the duality relationship

E(GéH(u)) = E<DHG, u)H,u S L2(Q7H),G es.

Its domain is denoted by Dom(dp).
Introduce the Banach space |H| ® |H| as the class of all the measurable
functions ¢ : [0,7]?> — R such that

2
||<P|||H\®|H\

= (QQH)Z/ \ [ouwll@s.tl]s — u|20‘*1\t - v\za*ldudv dsdt < oo,

)

and denote |H| := |Ry| with the norm || - |||z, |2 (see (1.6.7)). Denote also
n
Sjn| the family of |H|-valued random variables of the form F' = ) Fjh;,

n

where F; € S and h; € [H|. Put D*F := 3" D*F; ® h;, and define the space
i=1

Dy »(|H]|) as the completion of Sjy; with respect to the norm

k
IFIE i = EAEI ) + S ED FI o1 )-
i=1

Then D1 2(|H|) € Dom(dx). The basic property of the divergence operator is
that for every u € Dq o(|H|) we have

E(5(u)?) < ullf, qm-

Consider the forward integral w.r.t. fBm ((AN02), (LT02)). It is defined as

t t
/ ugdBH~ .= p — lim 5*1/ us(B{l oyn — B )ds. (2.4.1)
0 e 0
(Note that in a similar Way the Symmetric Stratonovich integral can be de-
t _
fined: fo usdBHE:~ = — lim._o(2¢)~ fo us( {Z-s-a)/\t — B(S o) At)ds and
also backward integral can be defined.) In (LT02) the ucp-limit is consid-
ered instead of the P-limit, where ucp-convergence is uniform convergence
in probability on [0,7]. Moreover, it is mentioned in (AN02) that forward,
backward and symmetric integrals with integrand w and w.r.t. fBm coin-
cide with each other under the following suppositions: u € Dj o(|H|) with
fot fot |Dyu,||r — s|?*~tdsdr < oo a.s.). Also, it was proved that for processes

u € Dy o(|H|) with fot fot |Dsuy||r — s|?*~tds dr < oo a.s. we have the equality

t t ot
/ usdBHS = 5 (u) + 2aH/ / |Du,||r — 8| Ldrds. (2.4.2)
0 Jo

0
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Evidently, for u € C?[0,T] with 3+ H > 1 all the integrals, symmet-
ric, forward, backward, and pathwise, coincide. We use this fact in order to
establish the conditions of coincidence of Skorohod integrals introduced in
(Ben03a) and in (ANO02).

Theorem 2.4.6. Fiz a time interval [0,T]. Let ¢ € C1(R) and satisfy, to-
gether with its derivative ¢, the growth condition |¢(x)] < Cexp(\z®) for
some A >0 and 0 < b < 2. Then the integrals g (¢(BH)) and fot ¢(BH)§BH
coincide on [0,T] a.s.

Proof. According to Proposition 3.3 (Nua06), under the condition of the
theorem (even under the less restrictive condition |¢(z)| < Cexp(Az?) for
A < (4T%H)~1) the divergence operator 6 (¢(BH)) exists on [0, 7] and sat-
isfies the relation

T T
Su(o(B") = [ o(BINABI ~ H [ 9(BI)sds s,
0 0

where fOT #(BH)dBH is the pathwise integral. According to Theorem 2.3.7,
under conditions (2.3.10), which evidently hold now, the same equal-
ity is valid for the integral fOT #(BH) O dBH . Therefore, 65 (p(BM)) and
fOT ¢(BH) & dBE coincide a.s. on [0,T)]. Further, the conditions of Theo-
rem 2.4.4 also hold now. Indeed, for example, E [, ((MH|X|)(t))?dt can be
bounded in our case by CfOT |¢(BH)|2ds. Therefore, fOT #(BHE)SBH exists
and equals fOT (B & BHdt. Finally, we use Theorem 2.3.1 and Corollary
2.3.2 and obtain the proof.

O

Remark 2.4.7. A general S-transform approach to the stochastic fractional
integration is presented in (Ben03b); see also (CC00) and (Cou07).

2.5 Isometric Approach to Stochastic Integration with
Respect to fBm

2.5.1 The Basic Idea

Some special approach to stochastic integration w.r.t. fBm was considered in
(MV00). We will work with a continuous stochastic process {X;,0 <t < T}
defined on a complete probability space (£2, F, P). Let F; := F;X be the sigma-
field generated by X on [0,¢]. We assume that Xy, = 0. Given a partition
= {t; : 0=ty <t1 <--- <t, =T} and X a stochastic process, define
AX; by AX; == Xy, — Xy, , for 1 <i < n. Assume first that the integrand
[ is a simple predictable process: f; = _ fily,_,.,)(t), where the random

7
variables f; are assumed to be F;, , measurable and t; € m,; denote the
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class of simple predictable processes by L®. With such an f € L® and any
(continuous) process X, define the stochastic integral of f with respect to X
by

(f. X) = Z_fiAXi.

Assume now that |m,| — 0 as n — oo. If the process X is the standard
Brownian motion B, f := Ly(P®A)-lim f”, where X is the Lebesgue measure
on [0,T], one can define the integral (f, B) as the Lo-limit of the simple
stochastic integrals (f(™), B) using the classical It isometry

T
B(f.B? = [ (70)ds. (251)
0

Assume now that the process X is any continuous stochastic process and f is
a simple predictable process. Define now a semi-norm for (f, X) using (2.5.1).
Note that such a semi-norm does not depend on the process X. It is the main
feature of this approach. If the process X is the standard Brownian motion,
then the semi-norm is a norm and the integrals of simple function converge
to the classical stochastic integral defined by Ito. For an arbitrary integrator
X, even if the semi-norm is a norm, it may happen that the integrals of
simple functions of processes have no limit. However, they have a limit in the
completion of the space integral sums with respect to this norm. In this sense
we generalize the It6 construction of stochastic integrals.

In particular, we show that if X is a fractional Brownian motion B¥ , then
we can define a norm by putting

Bl = (5 [ s2a5)"”

in the space G of random variables of the form {g € G : G = (f, BY), f € L*}.
Even more turns out to be true: for any & > 2 define random variables
(f, X)) by the formula

(£, X0) =3 fi(AXy)"
and define again a semi-norm for such random variables by putting

o], = (e )"

Again, if the process X is a fractional Brownian motion B, then
(£, (BH)*)]| . is a norm. Denote by LY"(P ® A) the space of predictable
process f with the property EfOT f2ds < oo. Now, let f € LY (P ® \) be a
predictable process and f(™) a sequence of simple predictable processes such
that
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— 0
L2(P®X)

s

as n — oo. Define the higher-order generalized integral (f, (B¥)(*)) as a limit
in the Banach space (J*, ||| ), which is the space of some kind of extended
random variables g, which are limits of the sequences of the form (f, (Bf)*))
with respect the norm ||-|| 5.

2.5.2 First- and Higher-order Integrals with Respect to X
Wiener Integrals

Further, if (Y, ||-||y) is a complete metric space, then the Y-lim stands for
the limit on the space Y with respect to the norm |[|-||,. Assume that f is a
simple deterministic process, fy = >, fily, .+ (t). Then ||-[|; is a norm if
and only if

(f,X)=> fidXi=0<= fi=0,1<i<m. (2.5.2)

i=1

Let X = (Xi)iejo,7) be a square integrable process with EX; = 0, X, = 0,
and write R(t, s) for the covariance function, R(t,s) = E X;X,. Consider the
quadratic forms

Bm = E((f, X))*

where f € L° has deterministic coefficients f;;1 < ¢ < m. Then condition
(2.5.2) is equivalent to the following:

The quadratic form B, is positive definite for each m > 1. (2.5.3)

We can write B,, in terms of the correlation function R:

i t“t 2R(ti_1, )+R(z 1,ti— 1))}

Z fifi[R(ti; ;) — R(ti—1,t5) — R(ti, tj—1) + R(ti—1,tj-1)].
1#£j,4,j<m

(2.5.4)
Put
0ii == R(ti t;) —2R(ti—1,t;) + R(ti—1,ti—1)

and
8ij == R(t;, t;) — R(ti—1,t;) — R(ts, tj—1) + R(ti—1,tj—1).

Then condition (2.5.3) is equivalent to the property that the matrix (6;5)i j<m
is positive definite for each m > 1. Assume that condition (2.5.2) is valid for
the process X and assume that f € Ls[0,7]. Then there exists f* € L°
such that || f™ — f||L2[0,T] — 0 as n — oo. Moreover, the sequence (f",X)
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is a Cauchy sequence in the space (E®, ||| ), where E® is the subspace of
L? consisting of deterministic simple functions f. Complete E® with respect
the norm ||| ;. and denote this Banach space by E. Define now the integral
fOT fsdX, as the limit of (", X) in the space E. We say that fOT fsdX, is the
generalized Wiener integral with respect to process X. Note that L® in dense
in Ly[0,T] and hence also E* is dense in E, by using the isometry.

We clarify the connection between random variables and Wiener integrals
defined above. Let (™ be a sequence of random variables of the form

"= (" X)

with some f™ € L°. Assume now that ( = P-lim,, (" and || f — f”||L2[0 71— 0,
n — oo. We show later that it may happen that P{|{| < oo} < 1 or even
P{|¢] < oo} = 0. But even in the above situation the limit

T
/ fodX, = E-lim(f™, X)
O n

defines the generalized Wiener integral. In this kind of situation we say that
the random variable ( is one of the representatives of fOT fsdXs in the space
of random variables and fOT fsdX is one of the representatives of the random

variable ¢ in the space E: write this as ¢ < fOT fsdX. It is easy to check that
if X is a process with non-correlated increments and with the property

EX?>EX? (2.5.5)

where s < ¢, then condition (2.5.2) is satisfied. Note first that condition (2.5.5)
is equivalent to the condition E(X; — X;)? > 0 for s < ¢. Since the process X
has non-correlated increments, we have that

E(ifiAXi>2 = ifizE(AXi)z =0
i=1 i=1

if and only if f; = 0,7 < m. Note that if X is a square integrable martingale
and EX? > EX2 s <t, then (2.5.2) is satisfied.

Similarly, if X is a stationary process with so-called orthogonal vector mea-
sure ¢(d\) such that the spectral measure F(d)\) := E|p(d)\)|? is equivalent
to the Lebesgue measure, then condition (2.5.2) is satisfied.

If the process X is the standard Brownian motion B, then

(£ Bl g = E(f, B)* = ||fll 0,77

and then the limits of simple integrals (™), B) in the space E and in Ly(P)
are the same. Similarly, if the process X is a continuous square integrable
martingale M with the angle bracket (M), = fot asds, where 1/ K < FEa, < K,

the limits in the space E and Ly(P) are the same.
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First-order Stochastic Integrals with Respect to X

Let F := {F,t € [0,T]} be a filtration on (§2,F, P) satisfying the usual
conditions of right continuity and completeness.

The notation X € F means that X; is F; measurable. So, let X € F be a
process and introduce the space G* of random variables ¢:

m
£=Y LAX,
i=1
where f; € Fi,_, and f; € L2(P),1 <i<m,m > 1. Let f be as above, i.e.,
f € L* and the coefficients f;,1 < i < m satisfy f; € F;,_, and f; € Ly(P).
Then we can define a surjection Z from L® — G*® by

i—1

I(f) = (£, X) =D [:AX,.
i=1
Introduce the following semi-norm on G*:
m 1/2
1 X e = (BY f20 = tin)) (2:5.6)
i=1

It is easy to check that the condition
(f,X)=0 P-as.ifand only if f; =0 P-as.for 1 <i<m (2.5.7)

is a necessary and a sufficient condition for Z to be a bijection and |[-||,. to
be a norm.
Let X be a square integrable process, which satisfies (2.5.7). Now let f be a

predictable process with F fOT f2ds < co. Then there exist processes f* € L*
such that

T
B [ (= g2ds =0
0
as n — oo. Now L® is the space of elementary “predictable” processes g,
where g, == 37" fily, ,4)(t), and f; € Fy,_,1 < i < m. Complete again

the space G* with respect to the norm ||-||.. The integral fOT fsdXs =1 Z(f)
is defined using the extension of the isometry 7 on the completed Banach
space G. The sequence f" is a Cauchy sequence with respect the norm ||-||&

and the integral fOT fsdXs is the limit of the elementary integrals (f™, X) in

the space (G, ||||z). We say that the integral fOT fsd X defined for predictable
f € LY (P ® ) is the first order generalized stochastic integral with respect

to the process X. Later we will use the notation fOT fstgl) for this integral.
If "™ be a sequence of random variables of the form

"= (fan)
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with some f" € L® and assume that ¢ = P-lim,, " and ||f — anL’z’"'(P@/\) —
0, n — oo. Hence also

T
/ £,dX, = G-lim(f™, X).
0 n

It may happen that P{|(| < oo} < 1 or even P{|{] < oo} = 0. Again the
random variable ¢ is one of the representatives of the integral fOT deXs(l) in
the space of random variables and fOT fsdX 5(1) is one of the representatives of

the random variable ¢ in the space G: write this again as ¢ « fOT deX‘gl).
The first-order integral is linear: (af + bg, X) = a(f, X) + b(g, X).

Higher-order Stochastic Integrals with Respect to X

Let (X, F) be again a stochastic process defined on (§2, F, P). Introduce the
space G*F of the random variables ¢:

£:= ) f(AX)"

i=1
where k > 1, f; € F1,_,, fi € L2(P),1 <i <m.If f € L* is a predictable step
function, define a surjection Z* from L*® to G** by putting

m

TH) = (5, XR) = f(AX)k,

i=1

We suppose that any simple function has different values on the adjoining seg-

ments of the partition. With this assumption only one partition corresponds

to a simple function, we have only one zero function and Z* is a surjection.
Introduce the following semi-norm on G*:*:

H(f’X(k))Hcs,k = (Eif?(ti - tifl))l/2 =1l pex -
i=1

Let f and g be simple predictable processes, defined with respect to different
partitions m¢ and m,. Consider f + g on the partition 7 := 7y U 74, put
(f, X®)) 4 (g, X®)) .= (f + g, X*)) and see that

Jirxrcx, < fox], s fox,, o es

Gs,k

Again it is easy to check that the condition

(f, X)) =0 P-as. if and only if f; =0 for 1 < i < m,

when f € L®, f = Zfil[tifl,ti)(.) (259)

i=1
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is a necessary and sufficient condition for Z* to be a bijection, for G** to be
a linear space and for ||-||..» to be a norm.

If f is a predictable process from LY (P ® M), take f™ € L® such that
If = f"l1,(pory — 0O- Assume that property (2.5.9) holds for the process

X with some k > 1. Define the integral fo fst(k) = TF(f) as the limit
of (f*,X®*)) in the completed Banach space (G 7H'||§k)7 where G is the
completion of G** with respect to norm ||-|| ;... We say that such an integral

fOT fsdX s(k) is the kth order generalized stochastic integral of f with respect
to the process X.

Assume now that property (2.5.9) holds for all k£ < N. Define the Banach
space GV by

GN =G ' xT x---xa"
and define the norm in GV by

N
gy =D Il
k=1

In view of (2.5.8), |||~ satisfies the triangle inequality and hence it is really
a norm. x
The elements g € G have the form

N T
g= fe(s)ax
A

where fj is a predictable process from Lo(P ® A). Note also that there is
a bijection between such a g from " and (fi,---, fn) € @2 LE (P @A)

equipped with the norm Z 1l (pony-

The following examples clarlfy the definition of the generalized integrals
of higher order. We assume that the process X satisfies property (2.5.9) for
each 1 < k < N below.

Processes with bounded variation. Assume that the process X is a contin-
uous process with bounded variation and consider the random variables X717,

where
m

Xit=> "3 (AXp)"

=1 k=1

When |7| — 0 we have that X7 il X7 and the right-hand side converges in
the space G towards the element

N T
> / dx®
1=1"0
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Here the random variable X7 is a representative of the integral fOT dX 5(1) and

zero is a representative of the sum Z fo X(l)

Standard Brownian Motion. Abbume that X is a standard Brownian mo-
tion, X = B. Define again the random variable X7 by

m

X =" "(ABy)

=1 k=1

Now, when |7| — 0, X7 Lt Br + T, so the constant T is a representative of

. T (2 : . N
the integral [ dBs~ and zero is a representative of the sum ) [ dBs’.
1=3

2.5.3 Generalized Integrals with Respect to fBm
Fractional Brownian Motion and Property (2.5.7)

Theorem 2.5.1. Property (2.5.7) holds for fBm B H € (0,1).

Proof. Assume that > fiABH = 0 almost surely. Assume that mg is the

i<m

largest index for which P{f,,, # 0} > 0. Then from presentations (1.8.17)—
(1.8.18) we have

tmg tmg—1
AB»,ZO :/ mH( mor )dW +/ ’ (mH(tmo,S) _mH(tmo—hs))dWs

tmo—l 0

= Amo + Bmov

For the term B,,, we have B,,, € F;
Then 2. € F; and

mg—1

Put 2. :={w: |fi] < e, i <mg}.

mg—1"°

mo

Z]-!)CfiABZH = zm:lgcfiABlH =

i=1 i=1

Hence we can conclude the following:

20 2
= 5(Sa )

2
— E(( Z 1gcfiABZH) + fiola, Bimg 1 +fm0Am0) .

i§m0—1

(2.5.10)

The right-hand side of (2.5.10) is equal to
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E( > (fiABiHlﬂc)+fm019cBmo—1>2

i<mo—1

+ E(ffnolgc /% (BH(th,s))st).

tmg—1

Hence, from (2.5.10), since

t”’L
/ " (B (b, 8))2ds > 0

t?no -1

we have that f,,,1n, = 0 almost surely for any ¢ > 0 and so f,,, = 0 P-a.s.
This shows that condition (2.5.7) is fulfilled. Hence f; =0 for all i <m. O

Fractional Brownian Motions and Property (2.5.9)

Theorem 2.5.2. Property (2.5.9) holds for fBm B H € (0,1).

Proof. We know from Theorem 2.5.1 that the claim holds for £ = 1. Assume
now that £ > 1 and let mg, Ay, Bm, and W be as in the proof of Theo-
rem 2.5.1. Put ff := 1g f;. Note that ff € 7, for ¢ < mg. Denote by x

the random variable
mofl

= Y FABIY
=1

For the random variable x we have that x € F, _,, and this fact is used
below. Assume that Y. f;(ABH)k = 0. With the above notation we have

i<m
from this assumption that also

k
X+ foe > <k> (Bing)" " (Amy)" = 0. (2.5.11)

T
r=0

Write the expression in (2.5.11) as

h X (5) By

0<r<k, r even

(2.5.12)
S D (I;)(Bmo)’“‘r(flmo)’ =: X1+ X

0<r<k, r odd

The random variable A4,,, is a Gaussian random variable with zero expectation
and hence for odd r E(Ap,)" = 0 and by conditioning on 7, _, in (2.5.12) it
is easy to see that E(x1x2) = 0. So from this we can conclude that Ex3 = 0,
using also (2.5.11) and (2.5.12). But
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X5 = fry (71 +72)

with
k . 2
=y ((T) (Bpm,) T(Amo)r> (2.5.13)
0<r<k, r odd
and
AWE: —r— r
= 3 (1) (5) B (2.5.14)
r#q, r,q odd
All the terms in (2.5.13) are nonnegative and since r + ¢ is even, the same
holds for the expression (2.5.14), too. Note also that if » = 1, then
]{12(3',”0)2’672(147”0)2 > O

almost surely. But at the same time E(f2, (v1 + 72)) = 0. Hence f,, = 0

mo
almost surely. From this follows that f; = 0 almost surely for all ¢ < m. We

have shown that fBm B satisfies property (2.5.9) for all k > 1. O

Some Properties of the Generalized Integrals

In this subsection we discuss some of the properties of the generalized inte-
grals. At this stage we have results mostly on Wiener integrals.
Assume that B is again an fBm with index H. Take

fsn = nvl(T/2_1/2n,T/2+l/2n] (8)

Then || f"]|7, 007 = n* ™" T H € (1/2,1),1/2 < v < H, then [/ 1,100y =
oo and the generalized integral does not exist, but E((f", B7))? = n?—2H
0, and the limit exists in Lo(P). If H < v < 1/2, then E((f™, B7))? — oo,
but || f"[| 0,77 — 0. Hence the integral exists in G and it is = 0, but the limit
does not exist in Lo(P). Note also that here we have that |(f", B)] £ .

Lo-integrals and Wiener integrals, H € (1/2,1). If BH is an fBm with
Hurst index H € (1/2,1), then according to (1.9.2) we have the following
estimate for Lo-integral, valid for any p > 0:

T
/ fdBZ
0

Hence, if (™), B¥) converges in G, it also converges in Ly(P).
Lo-integrals and Wiener integrals, H € (0,1/2). Before the continuation,
we prove the following theorem, which is the opposite to (2.5.15).

Theorem 2.5.3. Let f € L*® and BT is an fBm with Hurst index H €

(0,1/2). Then
T
| fat
0

p
E <cHp

11%, o (2.5.15)

2

E >C Hf”iz[o,T] . (2.5.16)
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Proof. If f € L* and (f, BY) =" f;ABH, then

E(f,B")> =Y (f7EABI)? + > fi (s B(AB ABf!). (2.5.17)
i i#k

But E(ABF ABf) < 0 and hence
[ifB(AB AB!) > | fil /| E(AB ABY).

Use this in (2.5.17) to obtain the inequality

2
E(f,B")’ > E (Z |fz-|ABiH> :

Hence we can assume that f; > 0 for all ¢ < n in proving (2.5.16).

Denote by D(R) the space of functions f with the two properties: f €
C*(R) and f has compact support.

Let ¢ € D(R). Then the Fourier transform ¢ of ¢ belongs to S(R) C Fu C
LI(R) (see Lemma 1.6.8), and moreover,

/ ¢:dBl
R

where cy is some constant.
We want to prove that there exists a sequence (¢")n>1,¢" € D(R) such
that

2 2
E E‘/Rgb’(t)BtHdt :CH/R|¢()\)||/\\’2ad)\, (2.5.18)

/R (" (0B at ) (5, B1). (2.5.19)

To prove (2.5.19) it is sufficient to prove it for f € L®, f, = al[sy(u), s <
t <T and a > 0. Take ¢" € D(R) such that supp(¢™) C [s—1/n,t+1/n] and
¢" =aon [s+1/n,t —1/n]. Then

t+1/n s+1/n
[@y@stian= [ @y@slia [0y sl
R t—1/n s—1/n
and, for example,
i t+1/n . " t+1/n , i "
ol — [ ey @sliad < | [ 6 @B, - B
t—1/n t—1/n
<a sup |Bﬁ1/n - BH|.

u€[t—1/n,t+1/n]

From self-similarity of BH and Remark 1.10.7 with f = 1,7 = 2/n

L2 (P)
sup |Bg-1/n - Bf‘ - 0
w€[t—1/n,t+1/n]
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and so

B(f. B = lim [ 5" (N2
R

Since for any A € R f(A) = lim,, o0 (/b\"()\), we have, using the Fatou lemma
and relation (2.5.18),

2

[ IFOBIAeax < timint [ (@O = B|Y fAB!
We have that
| 1Ty
o R R (2.5.20)
se [ jFpan [ IR
[A[>e M| <e

Put p(A) := [A|7*1[_c ¢ (A). Since H € (0,1/2), we have that p € L1(R). Also,

pt) == /Oo e p(\)d\ = / cos(tA)|A|“dA.

— 00 —&

This integral is finite and hence p(+) is the Fourier transform of p(-). Use the
Parceval identity to obtain

/ FOOPIA 2
[A<e

:/R /Rf(s) (/Zcos((t—s))\)|)\|_ad)\> ds

Estimate the right-hand side of (2.5.21) from below by

/_11 /oT e </_ cos((t = SWIM‘“dA) i

Take in (2.5.22) such an ¢ that (T + 1) < 7/3. Then cos((t — s)A) > 1/2 and
the left-hand side of inequality (2.5.21) can be estimated from below, using
the estimate (2.5.22) and the chosen € by the expression

/ " jops| ( / |A|-%u)2 - j‘f_;;f(ow,

but since f is nonnegative, we also have the estimate |f(0)| > |f())|. There-
fore, from the above estimates we obtain

) (2.5.21)
dt.

dt. (2.5.22)

1
2

S1—20¢

Jinjze [FOORIN2dN > =5 [ [FV)[2dn. (2.5.23)
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Take C' = min{e~2%,e172%/(1 — )?} and use (2.5.23) in (2.5.20) to obtain

/R FOORIA2Hax > ¢ / FOVPN = I, 00

O

Random variables and the corresponding integrals. Assume first that H €
(1/2,1). Let f™ € L® be such that f = Ly(P)-lim f". Put ¢" := (f", B¥)
and assume that ¢ := Ly(P)-1lim (™. Let g™ € L*® be another sequence such
that ¢ = La(P)-lim(g", BY). Use the beginning of this subsection to conclude
that the corresponding integral may not exist, and hence the representative
of the random variable ¢ need not to be unique in the space E. On the other
hand, it follows from inequality (2.5.15) that the integral fOT fsdBH has only
one random variable as a representative.

If H € (0,1/2) then the picture is the opposite. Namely, a random variable
¢ can represent only one Wiener integral; this follows from Theorem 2.5.3. On
the other hand, the zero Wiener integral has at least two representatives as
extended random variables, namely ¢ = 0 and { = oo; this follows again from
the beginning of this subsection.

2.6 Stochastic Fubini Theorem for Stochastic Integrals
w.r.t. Fractional Brownian Motion

In this section we prove the generalization of stochastic Fubini theorem for
the Wiener integrals with respect to fBm (Theorem 1.13.1). First, we con-
sider pathwise integrals and the result is for the most part based on Holder
properties of fBm and of corresponding integrals. Then, the extension to Wick
and Skorohod integration is more or less evident, due to comparison results
of Sections 2.3 and 2.4.

Definition 2.6.1. The nonrandom function f : R — R is called piecewise
Holder of order a on the interval [Ty, T5] C R (f € Cp,, [T, T3]), if there exists
a finite set of disjoint subintervals {[a;,b;),1 < i < N | Uﬁil[ai,bi] UTy =
[T1,T»]} and the function f € C%[a;,b;) for 1 <i < N.

As before, we denote

£ () = f(5)]
loamny = sup [F@I+  sup ©l,
a; <t<b; a; <s<t<b; |t - S|
Definition 2.6.2. For f € Cp, [T1, T3], let
”-f”C;}w[ThTz] - 12225\{ ||fHCa[ai7b1i) .



2.6 Stochastic Fubini Theorem for Stochastic Integrals w.r.t. fBm 175

Let f € C%a,b], g € CPla,b] with a + 3 > 1. Then we know that the
Riemann—Stieltjes integral exists,

kn—1

b
/ f(t)dg(t) := lim Z FEAg(ty), (2.6.1)

|7n|—0

where m, = {a =t <t} < - < t’,zn = b}, Ag(ty) = g(tiy) — g(tR),
Tn C Tpt1-

Moreover, according to (FdP01, Theorem 2.1), there exist the se-
quences {fn,gn} € CWJa,b] such that Ifn = fllcopay — 0, n — oo,

lgn — chB[a,b] — 0, n — oo.
We shall use some bounds for integrals involving Holder functions. They
are proved in the next lemma.

Lemma 2.6.3. Let f € C%a,b], g € CPla,b], a + B > 1, fu,gm €
Clla,b],m > 1 and ||fm Flleoagay = 0 9m — gllespan — 0, as m — oco.

Then l)f f(t) = lim,, oo f fm () g, (t)dt;
2) the followmg estzmate holds:

/ f(t)dg(t)

3) if f(a) =0, then

< Cllfllagap  N9lloniap - (b—a)* v (b— a)?);

b
F®dg®)| < Cllfllcagan 19l coas - (0—a)'*e, (2.6:2)

where 0 <e <a+p—1, C >0 is a constant not depending on a and [3.
Proof. 1) Evidently,

/fdg /fmgmdt

kn
/f )dg(t) th"Agt”

=1

kn
/ P05 000 = 3 Jn (1) g8
307029 — 3 Fult) Agm(t)|.
k=1 k=1

According to (2.6.1), for any fixed § > 0 we can choose 7, in such a way that

kan

f )dg(t) =Y f(t7) Ag(ty)

k=1

<. (2.6.3)
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Further, according to (FdP01, Corollary 20),

k

b n
/ POt =S Fun(t) Agin(£)

k=1

< Clmyl™ ||fm‘|ca’[a,b} Nlgmll s [a,b] »

2.6.4
where 0 < o/ <, 0< ' < f,and o/ + ' =1+c. If || fr — cha[a,b] —(>0, :
m — oo, then [|fm = fllgarjqpyy — 0, m — oo for 0 < o < «a, and
[fmllcarjapy < Ci, where Cy does not depend on m > 1. Similarly,
lgmllcer (a5 < Co. From these bounds and from (2.6.4) we obtain that

< Cz|m|°- (2.6.5)

b kn
/ O ()t =3 Fra(t) Agm ()
a k=1

Choose such n that (2.6.3) holds and also Cs |m,|° < §; then for such fixed
n we can choose such m that

=

n

kn
S FEAG(E) =Y fn(t7) Agm (1)
k=1

k=1

< 6. (2.6.6)

It is possible since sup;¢q 4] [9m (t) — 9(£)| < [9m — 9l o) — 0, and the
same is true for f,.

The proof of the first statement follows now from (2.6.3)—(2.6.6).

The third statement follows from 1) and (FdP01, Lemma 19), which states
that the bound (2.6.2) holds for any f € C’él)[a, b] (it means that f € CM[a, b]
and f(a) = 0) and g € CW]a, b].

The second statement follows from 1) and (FdP01, Theorem 22). Indeed,
according to 3)

[ (50~ s0)agto

<C ||f||ca[a,b} : ||g||cfi[a7b] -(b—a)'*e,

whence

b
/ F)dg®)| < Cllflcatap 19l csiay - (0 —a) ™=V (b—a)’).

O

Further we consider H € (3,1). Let f € CJ [a,b] with 3> 1— H. In this
case the sum Zfil f; f(t)dBf exists. The next result means that this sum
can be represented as a unique integral.

Lemma 2.6.4. Let f be piecewise Holder of order 3 > 1— H on the interval
[a,b]. Then there exists the Riemann—Stieltjes integral
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b N b;
/ fwdBH =" / f(u)dBY
a i=17ai

and for an arbitrary sequence m, of partitions of [a,b] it can be represented as
a limit

b kn
H _ . n H
/a fw)ydB, = lﬂl:\rgog_l fup)AByn.

(We suppose that Uf\il[ai, b;) = [a,b), lai,b;) are disjoint and f € C¥[a;,b;)).

Proof. Put 7%, := [a;,b;) N 7, Evidently, |7%| < |m,|. It follows from bound-
edness of f and continuity of B that

b;
> faBlh — [ rabl,

)
Jrug ey,

even in the case when 7, does not contain a; or(and) b;.
n N n
Therefore, Zk:ug@n f(uk)AB% =>. Zk:ugeﬁ f(uk)ABﬁl
N b; b
— > fai f(u)dBf = fa f(u)dBf, as |m,| — 0. O

Let 0 < Ty < Ty, ® = D(t,u,w) : Pr := [T1,Ts]? x 2 — R be the random
function measurable in all the variables.

Theorem 2.6.5. Let there exist the set £ C 2 such that P(£2') =1 and let
for any w € 2’ the function P(s,u,w) satisfy the conditions:

1) Vs € (T1,Tz) ®(t,-,w) is piecewise Holder of order 3 >1— H inu €
[Ty, T3], and there exists C = C(w) > 0 such that ||®(t, ~,w)||cgw ) < O

2) the function ijlz ®(t,u,w)dBE is Riemann integrable in the interval
[Ty, T3].

Then there exist the repeated integrals

T2 T2 T2 T2
I ;:/ (/ @(t,u,w)dBf)dt and I ;:/ (/ @(t,u,w)dt)dBf,
T1 T1 Tl Tl

and Iy = Iy P-a.s.

Proof. We fix w € 2 and omit w throughout the proof. The integral
fTT12 &(t,u)dBH exists according to Lemma 2.6.4 and condition 1); the re-
peated integral I; exists according to condition 2). Since @(t, ) is piecewise
Hélder, then from the evident bound f;? |D(t,u1) — P(t,uz)|ds < C(Ty —
Ty) |ug — uz|® we obtain that fgf &(t,u)ds is piecewise Holder of order o in
u € [Ty, Tz]. Further, since B is Hélder up to order H > % and a+H > 1, the
integral Is also exists. The integral I3 can be presented as a limit of integral
sums,
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kn_l Tg
I, = lim / Dt u)dBH A7, 2.6.7
1= im0 et waB Ak (2.6.7)

For any point ¢} € m,, according to condition 1), there exists a finite
number of points {uyr < uzp < -+ < wyw)kt such that &(-,u) is Holder
between them. Denote

{T1:u0<u1<U2<"'<UL(n):T2}

x>
3

= U {ur e <wop <--- <wgypt U{T1, To}.
k=1

For any interval [u;, u;+1] we consider the sequence of partitions m; ,, 7 > 1
of the form

= Ui+1}, |7Ti,r| — O,T’ — Q.

Tir = {uz == U(O) z('l < - ET,:.LT)

- -<u
Then 7, = U 1 U{T, To} = {Ty = u!¥ < - < o) = Ty}
is a partition of interval [T},T5] w.r.t. argument wu, its diameter |7.| =
MaX| << (n)—1 |71'\i’r7 and |7,| — 0,7 — oco.
Estimate the difference |I; — I|:

kn—1N,—
[y — I < |I — Z Z NAB <J>Atk
k=0 j=0
N,.—1 -1
+ I — Z b(ty, ul)) Aty ABH | = AT"+477. (268)
J=0 k=
Further,
kn—1
AT <L - Z/ o(t7, u)dBHE . A2
kn—1 N,.—1
+ Z / o(tp, w)dBl — Y oty ul))ABH, | Aty
=0

Since @ is piecewise Holder, then, according to Lemma 2.6.4,

Ty N,—1 _
| ot wdBl = 3 aeg ) ABY, |~ 0 - .
T =0 ur
According to (2.6.7), k” 0 T Dt ,u)dBE - At} — 0,n — .

Therefore,
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lim lim A" =0. (2.6.9)
n—oo r—o0
Further,
NT Ts
Ag’”‘ S IQ / @ t u(]) dt AB (J)
j=0 7T
(2.6.10)
N,.—1k,—1 tk+1
+ / ( tud)) — oty u ))dt ABM NOIE
j=0 k=0 Ytk
The second term can be expanded as
k=1 g Ny—1 _
3 / 3 (qs(t,ugﬂ) — Bt u ))AB dt (2.6.11)
k=0 Ytk §=0
kn—1L(N)—1
-X X L7 % (ot - ot ) anan.

(J)em .

Since the function @(s,u) — $(t7,w) is Holder on any interval [u;, u;t1), we
have that

Jdim ST (0 ul) - (p,u)) ABL,
A ugaj)ém r

_ / M (#(t,u) — @(1p,w))dBY. (26.12)

Moreover, V 0 < i < L(n) — 1 the sequence fI'(¢,t}) =3 o, ( (t, u(J))

— P(th,u ul? ))> ABg-” has the integrable dominant. Indeed, we can use the
bounds from (FdP01, Corollary 20), Lemma 2.6.3, and the boundedness of
Hoélder norms, and obtain that

w9

r n r n s n H
< e - [ (o0 - ot w)ds!

w)

v / f“(qﬁ(t,u)_gp(tg,u))dBf

U(TJ)

< . € . o) — n-, . . 7. H . . ’
< Clmig|” - |@(8, ) — D(tg, )HC[uS”,u(TQl]ﬁ 1B HC[u?),uiﬁl]H
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U(TJ-21

(@(t, w) — (1, u))dBf

o (2.6.13)

[ (@t — ot )asy).

ul?)

<C+

where ' < 3, H < H and ' + H' > 1.
Using the second statement of Lemma 2.6.3 and condition 1) of this the-
orem, we obtain the bound

w)
Uyia

(@(t, w) — (L, u))dBf

u
< Ot ) = D W iy - 1B |y g < - (2:6.14)

Estimates (2.6.13) and (2.6.14) mean that we can use the Lebesgue dom-
inant convergence theorem and obtain that

t;j tk+1 “z+1
lim frt,thdt = / / B(t,u) — Bt} ))dBHdt
tk

T™—00

where the integrand f o ( (t,u)—D(t}, u))dBf is measurable and bounded
in t.

Therefore,
kn—1 L(n)—1 tiiq . .
Tim Z Z / (90t uf) — B(tf, u)) A i

(J)G i
Fn—1 tiyr T2
- Z/ / (qs(t,u)—qﬁ(tg,u))ddet
k=0 'tk Ty
T
:/ (/ B(t, udBH dt — Z/ u)dBH At} (2.6.15)
T

T

According to condition 2) of this theorem, the integral qul * &(t,u)dBE is Rie-
mann integrable in ¢, therefore

T> Ts
lim Z/ B, u) BHAt,F/ (/ @(t,u)dBf)dt. (2.6.16)

T T

Z / b(t, u(r) dt - AB% ) 0,as n — oo. (2.6.17)

Now the proof follows from (2.6.8)—(2.6.17). O
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Let I(t fo YdBE for some stochastic process f with trajectories
from CB[O T] with 5 + H > 1. Consider the integral (H € (1,1)) Ji(t) =

fot I (t,s)I(s)ds that will appear in connection with the Girsanov theorem
and btochastic differential equations in subsections 2.8.2 and 3.2.3, and also,

let Ja(t) = o £(u) ([ (£, $)ds ) dBE
Lemma 2.6.6. Both the integrals, J, and Js, exist and J; = Jo P-a.s.

Proof. It follows from (FdPO01) that the trajectories of I(t), t € [0,T] are
Holder of order H — ¢ for any 0 < ¢ < H, whence the existence of J(t)
follows. Further, elementary calculations

w2 1 U2 Ug
/ (t—s) s %ds < B {/ (t —s)"%%ds Jr/ 2O‘ds] (ug —up )t =2
w1 ug w1y

demonstrate that the function f(u f Ly (t, s)ds is Holder up to order SA (1—
2a) > 1— H, and J,(t) exists. We can present these integrals in the following

way:
Jl—/ot(/otqﬁ(s,u)dBf)ds, Jz—/ot(/oté(s,Mds)dBf,

where @(s,u) = lg(t,s) f(u)l{o<u<s)-

The function @ will satisfy both the conditions of Theorem 2.6.5, if we put
Ty =0and Ty =t—0 forany 0 < § < % In particular, @(s,-) is piecewise
Holder of order 8 on [6,t — §] with one point u = s of Holder discontinuity for
any s € [6,t — 4]

Therefore, the following equality holds a.s.:

t—o s t—o t—o
/6 Lu(t, ) /5 F(u)dB T ds — /5 ) /u L (t, 5)dsdBY.

The last equality can be rewritten as
J1 — Ry = Ja — Ry, (2.6.18)

where

R _/O(S lH(t,s)(/Osf(u)dBf)ds+/;6lH(t,s)(/05 f(u)dBf)ds

t s
—l—/ I (t,s) (/ f(u)dBf)ds =: R11 + R12 + R3;
t—5 0

/ /lHtsds dBH / flu / Z(t,s)ds)dBf

+/ / I (t s)ds)dBH : Ro1 + Rag + Ras.
ti
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According to (FdP01, Theorem 22), there exists C' > 0 such that
| [y f(u)dB| < Cs"~¢ for any fixed 0 < & < §. Therefore,

é
|R11| < C/ s%_a(t —8) s < Ct' (1 — a)_léé_E —0asd—0.
0

Similarly,

|R12| < C15H7€ ST §lm 0 and |R13‘ < Cztéistslia —0asd — 0,
where C'y and Cs are some constants, possibly depending on w.

As mentioned above, the process f(u) - fi I (t,s)ds is Holder of order
BA(1—2a) > 1—H. Therefore, by using again (FdP01, Theorem 22), we obtain
the bounds |Rgi| < CHH ¢ |Raa| < Cy(t —28)7 75, and |Ra3| < 67— with
some constants C, C, depending on w. Taking in (2.6.18) a limit as § — 0,
we obtain from all these estimates that J; = Js a.s. O

2.7 The Ito6 Formula for Fractional Brownian Motion

2.7.1 The Simplest Version

First, we present a very elegant proof of the It6 formula involving fBm from
(Shi01).

Lemma 2.7.1. Let BY be an fBm with H € (1/2,1), F € C*(R). Then for
anyt >0

1«35)—1«@#/¢F%35M35.
0

Proof. The Taylor formula with the reminder term in the integral form gives
us

F(a) = Fy) + P =) + [ F(w(e - ude
y
Let the sequence of partitions 7, = {0 =t§ <1} <--- <tp =1}, 7| — 0,
kn
n — oo. Then F(Bff) — F(0) = Y. [F(t}) — F(t}_,)]
k=1

ko kn  BH
= kzl F'(Bfl )(Bff —Bfi )+ R{, where R} = kz;l Jprt F"(w) (Bl —u)du.

n
tk—1

Furt_her, sup |F"(BL)| < oo a.s. and for H € (1/2,1), and

0<u<t

ki )

P-lim § Bﬁ—Bg‘ ~0.

n— o0 k k—1
k=1

Ekn 2 p
Therefore |R}?| < 4 sup |F”(BH)| > ‘Bﬁ — BE ’ — 0. Even if we do
o0<u<t E=1 k k=1

kn
i . 1 pH H _ pH :
not know that the limit of integral sums k§:1F (Bin_ )(Bin — By ) exists
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(but we know it from Theorem 2.1.7), we can obtain this existence now and,
moreover,

F(BI) - F(0) = /Ot F'(BHydBH

2.7.2 Ito Formula for Linear Combination of Fractional Brownian
Motions with H; € [1/2,1) in Terms of Pathwise Integrals and It6
Integral

Denote CP~[a,b] = No<y<p C7a,bl.

Theorem 2.7.2. Let the process X; = . 0B}, where Hy = 1/2 and
i=1
H; € (1/2,1) for 2 <i < m. Let the function F € C*(R). Then for anyt >0

¢ m t 2 t
F(Xt):F(O)+01/O F’(XS)dWS—l—Zai/O F’(XS)dBSHi—FOQ—l/O F(X,)ds.
=2

Proof. Note that fg |F'(X,)|* ds < oo and fg |F"(X,)|ds < oo a.s., so, the Itd
integral fot F'(X,)dW; exists and is a local square-integrable martingale, and
the Lebesgue integral fot F"(X;)ds also exists. As to integrals fot F'(X,)dBH:
for 2 < i < m, they exist as pathwise integrals because X € C/27(0,1],
BHi e CHi=[0,t] and H; + 1/2 > 1. Further calculations are obvious: we use
the Taylor formula and pass to the limit, as usual, taking into account that
. . Ky, H; H; H; H; P

foranyl<i<mand2<j<m),;", (Bt;; — Bt};,l) (Bt';; — Bt',’;,l) —0
as n — oo.

Now, consider the process Y; = aiBf"', where H; € (1/2,1) for any

=1

iz
1 < i < m. We can forecast that in this case the class C! (R) of functions can

be used.
Theorem 2.7.3. LetY; = Z 0: B where H; € (1/2,1) for any 1 <i < m.
i=1

Let F € CY(R), and F' € CB[OJ] with (8+1)min H; > 1 for any t > 0. Then
foranyt >0

F(Y;) — F(0) = ia /Ot F'(Ys)dB:. (2.7.1)

Proof. Clearly, condition (8 4+ 1)min H; > 1 ensures the existence of
fg F'(Y;)dBH:i as the limit of Riemann sums for any i > 1. Consider convo-
lutions F,, = F' x ¢, with ¢, from Lemma 2.1.8. Then F,, € C*°(R), formula
(2.7.1) holds for any F;, and for any 1 —min H; < 7 < - min H; we have that
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D{,F] — DJ,F"in Li[a,b] as n — oo for any a,b € R, which can be proved
similarly to (2.1.10). Therefore,

/0 (F(Y.) — FL(Y2))dB

sup |Ys]
0<s<t

< sup ‘Dtl:vaIj(s)‘ / | Dy, F(s) — Dy F'(s)| ds — 0,
0<s<t
~ wip Vil
0<s<t

whence the proof follows. a

Remark 2.7.4. Theorems 2.7.2 and 2.7.3 can be extended to the functions F’
of several variables, depending also on t. The It6 formula has the following
form: let Y,! = fo fi(s)dBH: where H; = 1/2, H; € (1/2,1),2<i<m—1,

= fo s)ds, fo f2(s)ds < oo as., f; € CP0,t] as. for B; + H; > 1,
fo lg(s)|ds < 00 a.s., F=F(t,z) : Ry xR" - R, F € Cl(R+) x C%(R)

x CH(R"1), the integrals fot (gTF (Z )fl(s)) ds < o0, fo 9(Zy)| ds < oo,
fg ‘%(Z f2(s)ds < oo, and fo 6:51 Zs)| lg(s)|ds < oo aus, W( ) fi

€ C7[0,t] as. for v + H; > 1 and any t > 0, where Z, = (s,Y},...,Y™).
Then

OF
1 my __ H,
FYE Y = PO + | Gz +§1:/0 (20 fi(s)dB!
L oF 1 [tO*F 5
+ faxm(Zs)g(s)dst5 i aT%(Z“’) 2(s)ds.  (2.7.2)

In particular, for the process Y; = fo s)dBH + fo s)ds we have that
t t
F(t,Y;) = F(0,Yp) +/ F/(s,Y,)ds —|—/ Fl(s,Y5)b(s)ds
0 0
t
+/ Fl(s,Yy)a(s)dBH, H € (1/2,1). (2.7.3)
0

2.7.3 The Ito6 Formula in Terms of Wick Integrals

The next result is a direct consequence of Theorems 2.3.8 and 2.7.3.

Theorem 2.7.5. Let the function F = F(t,z) : R x R — R be con-
tinuously differentiable in t and twice continuously differentiable in x. Let
Y; be as in Theorem 2.7.2, E|8F t Yt)|2+8 < 0o, t > 0 for some e > 0,
E sup [(%f(s,YS))Q + (aﬁ (s, Y)) ] < o0, t>0. Then

0<s<t
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L OF LOF
P Y0~ P0.0) = [ GhYads+ [ Sl v)oar,

Z (TZO'kCH o, (H; + Hy) / I 2 s,Ys)s Hit =1, (2.7.4)
i,k=1

2.7.4 The It6 Formula for H € (0,1/2)

We use the integral representation of fBm via the underlying Wiener process
B on the finite interval [0,¢] :

¢
=/ mpy(t,s)dB
0
t t s
=C’1(L16)to‘/ ufa(t—u)adBu—Cgs)a/ st </ ua(s—ua)dBu> ds.
0 0 0

Let the function F € C3(R) and we want to expand F(Bf). Note that
Bf' = BfY,, where for 0 < z < t B, = =0 e Joum(t —u)*dB,
—CWa [Z 521 (2 u=(s — u)~*dB,) ds. Therefore

F(Bf) :F(0)+/ F'(B)d. th+ 5
0

t
(6))2/ F”(Bft)(t—z)2adz
0
t z
= F(0) + ozC'l(L?) / F'(Bft)zaf1 / u”(t — u)*dB,dz
0 0

t
+CW [ F(B)(t - 2)dB,
0

t z
—ans)/ F’(Bft)zafl(/ ufa(t—ufo‘)dBu)dz
0 ' 0
L (6)\2 ! 1 nH 2
5(0 )2 / F'(B;)(t —2)"dz. (2.7.5)
0
Further,
z t
Bft:Bf—i—aCS)za/ u_o‘/ (v —u)*"tdvdB,
=B 1 aCc¥2 a/ / —w)* 'dB,dv, (2.7.6)

whence

F'(BY,) :F’(Bf)—i—/ F"(BH+aC§§ P / / (v — u)*"dB dv)

X aC}?)za/ u*(r —u)* rdB,dr =: F'(B?) + ¢(F", 2,t), (2.7.7)
0
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and similar relation holds for F”(Bft). But

/ / (v —u)* 'dB,dv = ! /OZ u” Y [(r—uw)* = (z —u)*]dBy. (2.7.8)

o
Substituting (2.7.6)—(2.7.8) into (2.7.5), we obtain the following result.

Theorem 2.7.6. Let H € (0,1/2), BH be an fBm with Hurst index H,
represented as B = fg mpy(t,s)dBs. Denote Y, , := ng) Jo uw(r—u)*dBy,
0<2<r, Y, =Y, .. Then

t t
F(BtH):F(O)—&—/ F’(Bf)aza_liﬁ7zdz+0§?)/ F'(BH)(t - 2)*dB,
0 0
t t
704/ F'(BP)22Y, Ldz + - (0(6)) /F“(Bf)(tfz)zo‘derRt,
0
where
t t
Rt:a/ qS(F”,z,t)azo‘*l}ﬁzdz—FC'g)/ O(F", 2, t)(t — 2)*dB,

—a/ O(F", 2, 1)2° i adz 4 5 c<6) / (F" 2, t)(t — 2)**dz.

Remark 2.7.7. The different approaches to the It6 formula for fBm with
H € (1/2,1) are contained in the papers (Lin95), (DH96), (DU99), (AN02),
(DHP00), (BO04), (CCMO03), (FdP01). An elegant version of the It6 formula
for F(B) for any H € (0,1) was obtained by C. Bender in (Ben03a) and
(Ben03c), but in terms of distributions. If the distribution F' is of function
type, continuous at 0 and of polynomial growth, the form of such an It6 for-
mula coincides with (2.7.4) for m = 1. For the other forms of the It6 formula
for fBm with H € (0,1/2) see also (Nua03), (GRV03), (ALNO01), (AMNO0O),
(CNO5).

2.7.5 Ito Formula for Fractional Brownian Fields

First, we prove one auxiliary result for Holder two-parameter functions. Let
the function

F:R =R, FeC*R),F" is the Lipschitz function, f(t) := F(g(t)),
g € CM#2(RY) with p; > 1/2, i =1,2. (2.7.9)
Let the rectangle P, = [0,t] C R% be fixed, 7, := {O =" <t = ti},
where tfc’" = 2n L fae = f(A, %),

AL = fixik — firr A% f = fiks1 — firs Ainf = Appr f — ALy
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Lemma 2.7.8. Under assumption (2.7.9) lim I? =0, 1 < j < 7, where

n—oo

2" —1 2" —1 2" —1
Z A; ]ngzkg; I2 - Z A; kazkgy I3 - Z fzkAzkgA k9,
i,k=0 i,k=0 i,k=0
2! 2 & A 2 32 ~ (Al
Iy = ‘kZ;OfikAikgAikQ; I = ‘kZ;oAik (A%9)°, 1§ = kZ; (Aik )?A 'Lk;g)
21 )
=3 F’”(gi’k)Azkg(Alkg)
i,k=0
Proof. Consider I7" (17 is similar). We can rewrite I] = f”Pt fndg, where
Ju= Alf for s € Af o= [, U500} o [Ba BDE ) Further,

Fudg = / (Dg192 ) (s) (DI =02, _)(s)ds,
Py Py

where 1—p; < a; < pi, 1 =1,2. Since |(D%:O‘11_0‘2g1_)(5)’ < C for some C' >
0, it is sufficient to prove that nILH;o fPt ‘(Dg—lk% fn)( )‘ ds = 0, and in turn, for
this purpose it is sufficient to prove that fpt |pn.i(s)]ds — 0,1 < i <4, where
Dna(s) = 57753 Fa(5), bna(s) = 557 J3 (Fal8) — Falon,92)) 51 Ly,
¢n,3(s) = s;a 2(fn( ) fn(817 ))( S2 — U)_l_QQdU7

bna(s) = fo ® Avofn(s)(s1 — u) 17 (sy — v)"1"*2dudv. The relation
fp |¢)n 1 |ds — 0 is ev1dent Further, if & < s < (Hl) , then

|pn,2(5) 55" fo (81 —up) 71T dy - 27 whence
J», |¢n,2 s |d8 < C'f02 55 % dsg - 2(@171) (0 n — co. Similarly,
f’pt |¢n,3(s)|ds — 0, n — oo. Finally, fPt |pn.a(s)| ds < C27 "

om_1
x> fA’Fk Jo giomy (81— w) "1 (s — v 427" )H2m 2" Ly du dsy dsy
im0 TR T

= Conleatoe—m—p2) _, () n — oo. Of course, similar estimates hold for I3
and I}. As to Ig, I and I7, their estimates resemble each other, so, we con-
sider only Ig'. Note that

2" —1
lim S, = lim_ D FE) (Al gisazn)? < lim € 2m 272 =0,

n—00

Now, present the sum S,, as

2" —1

Su =Y (fik(Air9)* + 2fix AikgAlig + A% F(Al9)” + A% f(Airg)”
ik=0

+ 245 fALgAIRg) = > Sni,

1<i<5
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where S, ; < C .27 2Mmti2=1) (0 n — oo, similarly, S, 4 — 0, Sp5 — 0,

n — 00. According to previous estimates lim S, 2 = lim I§ = 0. Therefore,
n—oo n—oo
lim [P = lim S, 3=0. (]
n—oo

n—oo

Remark 2.7.9. Let F: R — R, F € C3(R) and F" is the Lipschitz function,
the field g(t) is a linear combination of the fractional Brownian fields,

- HiHL . i1 .
gt):;th ! 2W1tth>§, i=12 1<i<m.
Clearly, the previous lemma holds for such ¢(¢) and f(¢) = F(g(t)).
Theorem 2.7.10. For anyt € Ri

F(g(t)) = F(0) + . F'(g)dg + . F"(g)d1g dag.

Proof. According to the one-parameter It6 formula (Theorem 2.7.3)

t1
F(g(t)) = F(0) + F'(g(s1,t2))d1g(s1,t2)
0
on
= F(O) + JLII;O Z f(tZQ”)A}72"gi+1,2" a.s.
i=0
The prelimit sum can be presented as

2" —1 2" —1 2" —1

D Fg(ti) g+ Y F (gth)ARgANg+ Y F'(g(siF) AngAig

i,k=0 i,k=0 i,k=0

2" —1
1 n
+ 5 Z F”/(g( zk))( zkg g+ Z F”/ ik zkg) Aikga

i,k=0 zk 0
(2.7.10)

2" —1

where 05, € A?. According to Theorem 2.2.9, > F'(g(t}))Aig —
i,k=0

fp F’(g)dg a.s. Furthermore, according to Theorem 2.2.17 and Lemma 2.7.8,

271 271

kZOF”(g(t?k))A #9459 = [p, F"(9)d1g dag, kZ F"(g(s7)) Airg A9 — 0,

i,k= 1,k=0

1 At 2 A1 A

53 Fo(t)(A40)° Ak — 0.5 S F(9(t5))(459) Ag — 0, and

n
due to the Lipschitz properties of F’, 1 kzjoF’”(g(Gfk))(A?kg)QAgkg -0,

k=
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271

L5 F"(g(0%))(A%,9)%Aig — 0, n — o0, as., and the assertion of the
i,k=0

theorem is proved. O

Remark 2.7.11. The theorem holds even for F' € C?(R), such that F” is the

Lipschitz function. To prove this, we must rewrite the sum of second and
2" —1

fourth term on the right-hand side of (2.7.10) as Y. F"(g(0%,))AL gA%g.
i,k=0

Then we can prove that this sum has a limit fPt F"(g)d1gdag, similarly to
Theorem 2.2.17. Also, the sum of third and fifth terms can be rewritten as

2" —1
> F"(g(0%.))AikgA?,g, and we can prove that its limit is zero.
i,k=0

2.7.6 The Itd Formula for H € (0,1) in Terms of Isometric
Integrals, and Its Applications

Definitions

If f € L>(P®)), fis predictable, 7 is a partition, then f, is the step function
fﬂ' = Z f(ti—l)]‘[tifl,ti)(t)'

Define the class of functions @ as follows: 7) € @ if the following conditions
are satiiﬁed:

(i)' f = (f" :i > 1), where f© € L*(P ® )), f* is predictable and
El_: HleLQ(P®)\) < oo.

(ii) ? is uniformly tight: P{sup,.ssup; |f*(t)| > C} — 0 as C' — oc.
(iii) The random variable u defined by u := 3(fZ, (B¥)®) (for the no-

tations see Section 2.5.2) does not depend on the partition 7, and the series
—
converges absolutely with probability one, when f € &.
— . .
Write (7,BH) for the sum S (f,(BMT)®) and put U = {u : u =

— T3, —
(f,Bf), f € ®}. Let &, be the projection of @ to the first p coordinates.
The following example shows that I/ is nonempty.

Ezample 2.7.12. Assume that f € Cp°(R): then
F(BF) = £(0) =) _Af(B])
=1
and if f*:= (1/k!)f® k> 1, then

FBH) - f(0) = (F.BY),

f(BH) — f(0) eL[and?e@,(fl,...,fp) € @, for any p > 1.
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s — )
Lemma 2.7.13. IfucU,u= ( f,B") withu =0, then f' =0,i > 1.

Proof. Since u does not depend on the partition, take first the partition {0, T'}.
The random variable u has a representation

U= ng(Bgﬁ)i, (2.7.11)

where f¢ are real numbers, since JF is the trivial o-algebra. But since u = 0
from (2.7.11) it follows that for almost all y € R we have that > fiy* = 0 and

hence f¢ =0 for all i > 1.
Next, consider the partition {0,¢,7}. We have that

w=> Jo(B)' + 3 fi(Bf — B)' =0.

From the above we get that f& = 0 for all i > 1 and hence also f} = 0 for all
1> 1. O

The It6 Formula for Isometric Integrals

The following is an analogue of the It6 formula in this context.

Theorem 2.7.14. Assume that the Hurst index H satisfies H € (0,1/2).
There exists one-to-one correspondence between U and the set

(1/H]

V= {v Tv= Z (f%, (BH)(i))}.

i=1
Proof. We must show that there exists one-to-one correspondence between U
and @[y p). Assume that f € @[,y Then there exists a vector g € @ such
that fi = g* for i < [1/H]. Assume that 7 is another element from & such
that f* = h' for i < [1/H]. Put u:= (¢, B") and v := (h, B"). Then
u—v= Y (¢ =h,(BMY).
i=|1/H|+1

On one hand, since u and v are independent of the partition 7, we can take a
partition 7 such that || < 1. Then for any ¢ > 0 we have that

P{lu—v|>e} < P(D)+ P{lu—v| >¢,2\ D} (2.7.12)

and D is the set D := {sup,<sup; |f{ — gi| > C}. But

C ,
P{lu— N\DV< = E ABH|
(lh-vi>e0\Dy< T 3 B3 IABY

i>1/H
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and since

EY |AB{[' < CT(|x)™*~"
k

we have that

P{lu—v|>¢,2\D} -0
as |w| — 0. By property (iii) of & we can choose C such that P(D) < § for any
d > 0. Use these estimates in (2.7.12) to conclude that u = v. On the other

—

— — — —
hand, if u = ( f,B) = (h, B¥) we have from Lemma 2.7.13 that f = h.
To finish, note that from Example 2.7.12 it follows that the random variable

f(BH) — £(0) is a representative of Z[: 1/H](1/d!) fOT f(i)(acs)dBf(i). O

=1

Ezample 2.7.15 (Fractional Doleans exponent). Assume that [1/H] = 2p,
where p € N. Then the random variable y; = exp(Bf —t/(2p)!) — 1 is a

representative of
2p—1

I :
§ 7/ ysd(Bf)(Z)'
i- v o

We say that y is the Doleans exponent of BH .

2.8 The Girsanov Theorem for fBm and Its Applications

2.8.1 The Girsanov Theorem for fBm

Consider the kernel Iy (t, s) = C’S)s*“(t —s5)7*, 0<s<t. Let
Fi=o0 {Bf,O <s < t} = 0{Bs,0 < s < t}, where B is underlying Wiener
process in the representation

t t
MH :/ ly(t,s)dB, B, :a/ s“dMH.
0 0

Assume that the random process {¢;,t > 0} is adapted to filtration F; and
satisfies

t
/ lp(t,s)|ps|ds < oo, t >0, P-as. (2.8.1)
0
Assume also that we have the representation
t t
/ L (t, 8)bods = a/ 5ods, t> 0, (2.8.2)
0 0
with some F;-adapted process § satisfying

t
/ |0s] ds < 00, P-a.s.,t >0, (2.8.3)
0
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and .
E/ s2*6%ds < oo, t > 0. (2.8.4)
0

Define a square-integrable martingale L by L; := fot §*0sdBs.
Theorem 2.8.1. Assume that we have (2.8.1)—(2.8.4) and the martingale L
satisfies

Eexp{L:—1/2(L);} =1, t>0.

Then the process EtH = B — fot ¢sds is an fBm with respect to measure
Q, where the measure @ is defined by

1
d7P . = exp {Lt — 2<L>t} .

Proof. Note first that the integral

t ¢ t
MH = / Iy (t,s)dBH = / I (t,s)dBHI — / L (t,8)psds (2.8.5)
0 0 0
exists, since both integrals exist as pathwise integrals (the first integral was
studied in Section 1.8 and (2.8.2) ensures the existence of the second integral).
Moreover, from (2.8.2) it follows that

. t t t
M = M —&/ 65ds:&</ s~dB, —/ bods ).
0 0 0

Evidently, {MH} = I|3—‘lim S (MHE — MH |)? exists and equals {MH} =
t 7| =0 t;ex * - t

t1=2o Therefore, for any 6 € R we have for J\ZH = a]\ZH that

. 2 t t 2 412«
oaty — & [MH] T Li— (L = / s “dB, - 0/ s — 2
2 t 2 0 0

21-2a

¢ 1/t ¢
—|—/ §%0,dBs — f/ §2262ds = / (0s™% + s“65)dBs
0 2 Jo 0

t
- %/ (62572% — 26,0 + 0%5>*)ds =: R, — %<R>t, (2.8.6)
0

where R is a square-integrable martingale given by R; := fot (0s™*+5%05)dBs.
But (2.8.6) means that the process

AH 92 AH 1
Ky = exp 0N — - [M"] + L~ (L),

is a local P-martingale. This implies, in turn, that the process
eXp{G]/W\tH — % {J/W\H] } is a local @-martingale. From (El82, Theorem
t
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13.22), we can conclude that MH is a local @Q-martingale with the angle
bracket (ﬂH>t = fot s~2%ds and so M, = ajot s~%dB,, where B is a standard
Brownian motion with respect to @ (and is obtained from B by subtracting
a drift). This means that

t t
/ Iy (t,s)dBH :a/ s~ “dB. (2.8.7)
0 0

Now, using two representations for B¥, (2.8.5) and (2.8.7), we can obtain
(1.8.17) for BY and then conclude from Remark 1.8.2 that it is the fBm with
respect to the measure Q. O

2.8.2 When the Conditions of the Girsanov Theorem Are
Fulfilled? Differentiability of the Fractional Integrals

If we analyze the conditions of the Girsanov theorem, we see that condition
(2.8.2) is a principal concern. Now we shall establish that in one particular but
1mportant case this condition holds. Let the process I(t fo I (t, s)p(s)ds
with ¢(t) fo s,w)dBH where the integrand a = a(s,w) Rx N2 - R
is measurable in its variables and for a.a. w € §2 is Holder in s with some
index 8 € (1/2,1). According to Theorem 2.1.7, the integral ¢(t) exists as
a pathwise integral for w € ', P({2') = 1 Moreover, according to Lemma
2.6.6, there exists a repeated integral J (¢ fo U,w) qu lg(t,s)ds dBE and
the equality I(t) = J(t) holds for w € .(Z’

Lemma 2.8.2. Let a € C?[0,t] for anyt > 0 and for anyw € 2/, P(2') =1
p € (1/2,1). Then for any t > 0 I(t) admits the representation

I(t) =CPi- 2a/5d$

where 6, = s2°72 [T ul™%(s —u)"“a(u,w)dBl

s and 0 € L1]0,t] for any t > 0,
we .

Proof. Further we suppose everywhere that w € {2/ and argument w will be
omitted. We rewrite J(t) as

== 2“/ / u)ly(1,s)ds dBH

= Cg’)tl_%‘/ / §272(s —u)"*u' ~%a(u)ds dBH =: CS)tl_Q“M(t).
0

Consider now the function

/ 20— 2/ —a 1 e} (U)dBHdS
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The following results ensure its existence:
(i) According to (NVV99, Lemma 2.1), for the function g € C?[0,T] with
0<~vy+08<1, f(0) =0 the integral fot(t —u)7dg(u) exists and equals

| =gt = lim(gle - ) - 9(0)
0

+t79(t)+7/0E(Q(U)—g(t))(t—U)”ldU)- (2.8.8)

(ii) According to Lemma 2.6.3, for f € C7[a,b], g € CPla,b], v+ 3 > 1,
O<e<y+p-1

b
/ F®)dg(®)| < Cllflleniap 9l coay (b= a)F= v (b—a)?),  (2.8.9)

where C' does not depend of f and g. Using (2.8.8)—(2.8.9), we obtain the
following estimates for 0 < s7 < s9 < t:

s2
lim (—E/ a(v)dBH
e—0 S2—¢€

+ (82— 81)_0‘/ a(z)dBf + a/ (89 — z)_l_o‘

S1 S1 z

/:2 a(z)(sy — 2)"*dBH

1

S2

a(v)ddez)‘
< 1 (C ellao 11" g0 (52 = 5117 v (52— s1)~+1)

S1

where H' is any constant not exceeding H and 0 < ¢ < p+ H — 1. Evidently,
the right-hand side of (2.8.10) can be estimated by CKj(t)(sy — s1) T,
where Ki(t) < [lallcop 4 | BH (t v 1)1*+e=H" " C does not depend on

p, B t. Further,
S2 S2 u
/ (59 —u)"%u'"*a(u)dB = / ul~d (/ (s2 — z)_aa(z)dBf)
s1

S1 S1

H CH'[0,t]

S2 S2 u
= sé_a/ (59 — 2)"“a(2)dBH — (1 - oz)/ ufa/ (53 — 2)"“a(z)dBH du
S1 S1 S1
=: L(s1, $2).
The estimate

|L(s1,82)| < Csy Ky (t)(s2 — s1) 0+

O = a)K (1) / P — s) o dy

S1

< CKy (%) (s;*a(SQ — s) 7T H 4 (55— 51)1—2a+H’) (2.8.11)
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means that |L(0, s)| < CK (t)s'—20+H"
Now it is clear that

t
|Vy| < C’Kl(t)/ g2 2gl—20H gg C’Kl(t)tH, < oo.
0
Consider the function

t s—e
N(t) ::/ sQa_Ql{SE[E,t]}/ ut (s — u)"“a(u)dB ds.
0 0

Evidently, for any € > 0 the function

¢s(sa u) = l{se[a,t],Ogugs—a}szaizulia(5 - u)iaa(u)

is piecewise-Holder in w with index p A (1 — «) > 1/2 (u = s — € is the point
of Holder discontinuity), and the function

t s—¢e
Ve(s) :=/ ¢ (s, u)dB, = Sza‘gl{se[e,t]}/ (s — u)"*u'"“a(w)dBy!
0 0

is Riemann integrable on [0,t]. Therefore, ¢.(s,u) satisfies the conditions of
the stochastic Fubini Theorem 2.6.5, whence N, () exists and equals

t—e t
M (t) :== / ulfo‘a(u)/ s207%(s —u)"*dsdBY.
0 u+te

Further,

t s
|N(t) — N:(t)] < / 520‘72/ u' (s —u) " “a(u)dB? ds
/ 320‘72/ ut (s — u) " “a(u)dBH ds

0 0

t
g/ SQa—QOKl(t)(Sl—aa—a—o—H’+€1—2a+H’)dS
€

_|_

g
4 / S2a—2CK1 (t)81—2a+H/ds
0
< CK (t)(e o 1) 50, e — 0.

For M(t) — M*=(t) we use one of the integral transformations from (NVV99,
Lemma 2.2): for p € R, v > —1, ¢ > 1 the integral [ t#(t —1)"dt

_ rl-1/c U(l

=/ s7(1 — 8)7#7¥~2ds, and as a result obtain the bound
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t—e u+te
/ a(u)ut=* / §2072(s —u)"“dsdBH
0 u
t t
/ a(u)ul_o‘/ §2072(s —u)"*dsdBH
t—e u

t—e fre==
/ a(u)/ 571 —s)"*dsdBX
0 0
t 1
/ a(u) / 571 —s)"*dsdBHY
t—e 0

According to the stochastic Fubini theorem 2.6.5,

t—e
C/ “(1-y9) O‘/ a(u)dBHds
0

t e(1—s)

JrC'/ sfa(lfs)fa/ b a(u)dBH ds
e/t 0

|M(t) — Mc(t)| < C

+C

=C

e —: Ai(e) + Az(e).

and
t(1—s)
C/ *(1—s9) a/ a(u)dBH ds.
t—e
Therefore,
t—e e\ @ /¢ l—«
< Hi (] _ = c
()| < C /0 awsB | (1-2) " (6)
1 1— H’
+CK1(t)/ sTH1L—9)” (5( S)> ds — 0, £ — 0,
e/t S
and

e/t ,
|[Az(e)] < C’Kl(t)/ 571 —8)"%e—ts)" ds — 0, £ — 0.
0

Therefore, N(t) = M (t), and our lemma is proved.
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