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1 Introduction

When we look at a differential equation in a very irregular media (composite
material, mixed solutions, etc.) from very close, we may see a very compli-
cated problem. However, if we look from far away we may not see the details
and the problem may look simpler. The study of this effect in partial differen-
tial equations is known as homogenization. The effect of the inhomogeneities
oscillating at small scales is often not a simple average and may be hard to
predict: a geodesic in an irregular medium will try to avoid the bad areas, the
roughness of a surface may affect in nontrivial way the shapes of drops laying
on it, etc. ..

The purpose of these notes is to discuss three problems in homogenization
and their interplay.

In the first problem, we consider the homogenization of a free boundary
problem. We study the shape of a drop lying on a rough surface. We discuss
in what case the homogenization limit converges to a perfectly round drop. It
is taken mostly from the joint work with Antoine Mellet [5].

The second problem concerns the construction of plane like solutions to the
minimal surface equation in periodic media. This is related to homogenization
of minimal surfaces. The details can be found in the joint paper with Rafael
de la Llave [2].

The third problem concerns existence of homogenization limits for solu-
tions to fully nonlinear equations in ergodic random media. It is mainly based
on the joint paper with Panagiotis Souganidis and Lihe Wang [7].

We will try to point out the main techniques and the common aspects.
The focus has been set to the basic ideas. The main purpose is to make this
advanced topics as readable as possible. In every case, the original papers are
referenced.
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2 Homogenization of a Free Boundary Problem:
Capillary Drops

The shape of a drop lying on a surface tries to minimize its energy for a given
volume. The energy has a term proportional to the capillary area A between
the water and the air, another term related to the contact area W between the
drop and the surface, and a third term related to the gravitational potential
energy.

Energy = 0 A — oW + I' Gravitational Energy

For the time being, we will neglect the effect of gravity (I" = 0) and
consider o = 1.

»——Area: A

Volume: V DI‘Op The shape minimizes
Energy := A — fW + Grav.
for given volume V'

wet surface: W

Fig. 1. A drop lying on a plane surface

The surface of the drop that is not in contact with the floor will have a
constant mean curvature. We can see this perturbing its shape in a way that
we preserve volume. If we add a bit of volume around a point and we subtract
the same amount around another point, we obtain another admissible shape
and so the corresponding area must increase. This implies that the mean
curvature at both points must coincide.

S

N\ a volume preserving perturbation

Fig. 2. Suitable perturbations show that the free surface has a constant mean
curvature

The parameter 3 is a real number between —1 and 1 that depends on
the surface and is the relative adhesion coefficient between the fluid and the
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surface. Its effect on the shape of the drop is to prescribe the contact angle at
the free boundary: cosvy = .

cosy =/

Fig. 3. The contact angle depends on (3

A value 8 > 0 will cause the shape of the drop to expand trying to span a
larger wet surface. When 8 < 0 (hydrophobic surface) on the other hand, the
wet surface will tend to shrink. In the limit case 8 = 1 the wet surface would
try to cover the whole plane, whereas for § = —1, the optimal shape would
be a sphere that does not touch the floor at all.

8>0 8=0 g<0

£

Fig. 4. Different shapes depending on the value of

Under these conditions, it can be shown that there is a minimizer for the
energy, and the shape of the corresponding drop is given by a sphere cap. The
case we are interested however is when the drop rests on an irregular surface.
Namely, we will consider a variable §(x), oscillating fast and bounded so that
|8(z)| < X < 1. To capture the effect of a very oscillating adhesion coefficient,
we fix a periodic function § and consider 5(z/¢) for a small e. The energy is
then given by

A () @

Our purpose is to study the existence and regularity for a given € > 0 of
a shape that minimizes the energy. And we want to understand the way it
behaves as ¢ — 0. We will see that the absolute minimizers of J. converge
uniformly to a spherical cap that corresponds to the minimizer of

Jo=A—- ()W
where (3) = f 8 du is the average of j.
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However, the same conclusion cannot be taken for other critical points of
Je. In general, the shapes of drops will not achieve an absolute minimizer.
Any local minimum of J. would be a stable shape for a drop. The limits of
these other solutions behave in a way that is harder to predict and many
interesting phenomena can be observed. The most spectacular effect is the
hysteresis: the contact angle depends on how the drop was formed. If the
drop was formed by advancing the liquid, the final contact angle is greater
than (3). If the equilibrium was achieved by receding the liquid (like in a
process of evaporation), the angle obtained is less than (3).

The existence of a minimizer for each € can be done in a very classical way
in the framework of sets of finite perimeter. We will study some regularity
properties of the minimizers. First we will show that the surface of the drop
separates volume in a more or less balanced way. Secondly, we will see that
the boundary of the contact set has a finite n — 1 Hausdorff measure. Then
we will use those estimates together with a stability result to show that the
minimizers of J. converge to spherical caps as ¢ — 0. To conclude this part,
we will discuss the phenomena of Hysteresis.

2.1 Existence of a Minimizer

In order to prove existence, we have to work in the framework of boundaries
of sets of finite perimeter.

Roughly, a set of finite perimeter (2 is the limit of polyhedra, (2, of finite
area, i.e.

|QAQ] — 0

and Area(9§2) < C for all k.
Sets of finite perimeter are defined up to sets of measure zero. We normalize
E so that

0 < |ENB,(z)| < |By(z)] forallz€ Eandr >0

There is a well established theory for such sets. The classical reference is
[13].

We will consider a set E C R™ x [0, +00) that represents the shape of the
drop. We denote (z, z) an arbitrary point with x € R™ and z € [0, +00). Our
energy functional reads

J.(B) = Area(dE N {z > 0}) — / B (g) x5 dz 2)

z=

(In the following, we will omit the € in J. unless it is necessary to stress it
out).

The theory of finite perimeter set provides the necessary compactness re-
sults to show existence of a minimizer, as long as we restrict F/ to be a subset
of a bounded set I'rr := {|z| < R,z < T'}. Of course, we must take R and
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T large enough so that we can fit at least one set E of volume V inside. To
obtain an unrestricted minimizer of (2), we must prove that for R and T
large enough, there is one corresponding minimizer Err that does not touch
the boundary of I'gp. Since (8 is periodic, it is enough to show that Egrr re-
mains bounded independently of R and T'. If the diameter of Ery is less than
R/2, we can translate it an integer multiple of ¢ inside of I'rr to obtain an
unrestricted minimizer. The detailed proof can be found in [5]

2.2 Positive Density Lemmas

The first regularity results we obtain for minimizers are related to the nonde-
generate way the surface of the drop separates volume. All the proofs of these
lemmas follow the same idea. An ordinary differential equation is constructed
that exploits the nonlinearity of the isoperimetric inequality.

But before, we will make a few simple observations. Let F be a minimizer
for a volume V;, and let A be its free perimeter (A = Area(0E N{z > 0})).
Above every point on the wet surface E N {z = 0}, there must be a point in

the free surface: OF. Then
1
Az/ Xpdz > < / (%) dx
z2=0 )\ z2=0 9

And therefore
(1-MNA<J(E)

From the isoperimetric inequality we have A > wnHVO"Tl. Since a sphere
B with volume Vj that does not touch the floor {z = 0} is an admissible set,
we also have:

(1-NA < J(E) < J(B) = wir Vy

And thus we have both estimates:
VTt <A< OV

Now we want to compare the minimum energy for two different volumes.

volume=Vj volume=Vy+0d volume=V)

__1
min J < min J< min J+C1V, "o (3)

The first inequality can be obtained simply taking the minimizer for
volume = Vy 4+ § and chopping a piece at the top of volume §. Thus we
obtain an admissible set of volume V}, for which the energy J decreased.

For the second inequality, we consider the set E with volume V; that
minimizes J and take a vertical dilation E; = {(x,t) : (z,(1 +t)"'2) € E}.
Then for t = 6/Vp, E; is an admissible set of volume Vy + 6. The contact
surface did not change, so its only difference in the energy is given by the free
surface. Let A be the free perimeter of F, then the perimeter of E; is less than
(1+t)A, so their respective energies differ at most by tA. Then
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min J— min J<tA

volume=Vy+4d volume=V)

n

0
S 70 ClVO 1

__1_
S cl‘/o n+16

The first lemma we want to prove is actually a classical result in minimal
surfaces adapted to this case. We will come back to this lemma again when
we study plane like minimal surfaces in periodic media in the second part of

these notes.

Before starting with the lemmas it is worth to point out an elementary
fact of calculus that will come handy. If we have a nonnegative function u such
that v’ > cu™ then u is a nondecreasing function that can stay equal to zero
for any amount of time. But if ¢y = sup{t : u(t) = 0}, then u(t) > c(t — to)"

for any t > tg.

Lemma 2.1. Let (xg, z9) € OF with zg > 0. There exists a universal constant

¢ such that for all r < zy we have

| B, (0, 20) N E| > er™tt
| B, (20, 20) \ E| > er™t!

Proof. We define

Ui(r) = |Br(z0, 20) \ E| S1(r) = Area(9B,(zg, 20) \ E)

UQ(’I") = ‘BT(LL'(),Z())QE| SQ(T)
A(r) = Area(B, N JOE)

Area(9B,(xg, 20) N E)

By estimating J(E U B,.) and J(F \ B,) and using (3), we can compare

S1 and Sy to A.

JEUB,)> min J>J(E)

volume=Vy+U,
J(E)+S1— A > J(E)
S1—A>0
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We also know by the isoperimetrical inequality that U;"™" < C(A + S).
If we combine this with the above inequality we obtain

Uit < 08,

But now we observe that S1(r) = U{(r), so we obtain the ODE: Uj(r) >

cU;" ™. Moreover, we know U;(0) = 0 and Uy(r) > 0 for any 7 > 0. This
implies the result of the lemma.
For Us, a similar argument is done using the other inequality in (3).

With almost the same proof, we can also obtain a similar lemma for (z, 2g)
in the boundary of the wet surface EN{z = 0}.

Lemma 2.2. Given g € R™, let Iy = {(z,2) : |x — 20| <r A0 <z <t}
There exist two universal constants cg,c1 > 0 such that for any minimizer
E of J with volume Vy such that
{(z,t) : |x —x0| <ro} CE (resp. CCE)
Jz € (0,t) such that (x,z) € OF
then
ICEN L] > cor™ (resp. |E N Toy| > cor™™)
for all r <1y (resp. for all r < rg such that |[EN Ly < V).
Remark. When we say {(z,t) : |t —zo| < r} C E, we actually mean that

the trace of F on {(z,t) : |t — x| < r} is constant 1. Sets of finite perimeter
have a well defined trace in L'.

<r} {(z,0) : [ — ol <71}
p— Emrrt
or
—E°nNIl, X/t
rN
To

Fig. 5. Lemma 2.2

Proof. We proceed in a similar fashion as in the proof of Lemma 2.1. Let
U(r) = I\ E|
S(r) = Area(0l+ \ E)
A(r) = Area(l+ N OE)
(r)

W(r) = Area({z=0}NT+\ E) = / (1—xg)dr
z=0A|z—xo|<T
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5{‘4 —

s v
Lo s
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Since above any point in the wet surface, there is a point in 0F N I,
W < A. Therefore, also |w| < AA.
By comparing J(FE) with J(E U I}.;), we get

(
J(E) < J(E)+ S(r) — A(r) + w(r)
0<S(r)—A(r) +w(r)
0<S(r)—(1-NA(r)

By the isoperimetric inequality we know that
Ut < c(A+S+W)
Combining the above inequalities we obtain:
Untt < C S(r)

And we observe that S(r) = U'(r) to obtain the nonlinear ODE: U’ (r) >
cU 1. Moreover, U(0) = 0 and U(r) > 0 for any 7 > 0, then U(r) > ¢+,

This proves the first case of the lemma. The other case follows almost in
the same way but exchanging E and CFE. Since in that case we have to use
the other inequality in (3), we must use that |[RN 4| < ¢1 V) to control the
extra term.

Corollary 2.1. If (z¢,0) € OF, then
|EN B (0,0)] > ¢r™
|CE N B} (20,0)] > cr™t?
for every v such that |E N B (zg,0)] < c1Vp.

Proof. The set B:r/z (20,0) \ {z < dpr/2} is either completely contained in F

or CE, or the set B:'/Q(xo, 0)\ {z < dor/2} N OF is not empty.
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\ m\
[ I~ |
/ or this region.is completely contained
Either there is a point of OF here in either E or E¢

In the first case, we apply Lemma 2.2 to obtain that both
| B (20,0) N E| > er™tt
| B (20,0) \ E| > er™t?

In the second case, there is a (xg, 2g) € B:r/z(ajo,O) \ {z < dor/2} N OE,
then we use 2.1 for a ball centered at (xo, 29) with radius r/4 to obtain also

| B (x0,0) N E| > er™t
‘Bﬁ(wo,()) \E} > erntl
Corollary 2.2. If (x¢,0) € OF, then
Area(0E N B (x9,0)) > cr™
for every r such that |E N B;f (z0,0)] < a1Vp.
Proof. This is a consequence of Corollary 2.1 combined with the isoperimetric

inequality.

2.3 Measure of the Free Boundary

Our goal now is to show that the boundary of the wet surface d(F N{z = 0})
in R™ has a finite n — 1 Hausdorff measure. We will do it by estimating the
area of the drop close to it.

Now we will estimate the area of the drop that is close to the floor, and
then we will obtain an estimate on the n — 1 Hausdorff measure of the free
boundary by a covering argument using the previous lemma.

Lemma 2.3. There exists a constant C' such that
Area(OEN{0 < z <t}) < OVt

Proof. We will cut from E all the points for which z < ¢t and lower it to touch
the floor again. We call F' the set that we obtain (i.e. F = {(x,2) : (z,z+1) €

E}).
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E \ =

AN

Since E is bounded, |F| < |E| — Ct, and thanks to (3) we have J(E) <
J(F) + Ct. Moreover

J(E)=J(F) = Area(0EN{0 < z < t})—/

z=0

8(2) (el 0) = xr(e,0)) da

t E

/1

Over each point where E differs at level
z =0 and z = t, there must be a piece of OF.

But if = belongs to the difference between EN{z = 0} and E N {z = t},
then there must be a z € (0,t) such that (x,z) € OF. Therefore

/ Ixe(z,0) — xr(z,0)| dv < Area(OEN {0 < z < t})
z=0

Thus we obtain
min(1,1 — A\)Area(0EN{0 < z < t}) < CV it
which concludes the proof.

We are now ready to establish the n — 1 Hausdorff estimate on the free
boundary.

Theorem 2.1. The contact line 0(EN{z = 0}) in R™ has finite n — 1 Haus-
dorff measure and

HiF (A(E N {z = 0})) < CV st

Proof. We consider a covering of 9(E N {z = 0}) with balls of radius r and
finite overlapping.

From Lemma 2.2, in each ball there is at least cr™
area. But by Lemma 2.3, the total area does not

exceed CV iFir, T hus, the number of balls cannot
n—1
exceed CV w1~ (=1 Which proves the result.
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2.4 Limit ase — 0

The n — 1 Hausdorff estimate of the free boundary will help us prove that the
minimizers F converge uniformly to a spherical cap as ¢ — 0.
Let () be the average of § in the unit cube: (§) = le £ dz and

Jo(E) = Area(0E N {z > 0}) + (B)Area(E N {z = 0}) (4)

As it was mentioned before, the minimizer of Jy from all the sets with a
given volume V is a spherical cap B; such that |B:{| =V and the cosine of
its contact angle is ().

Let us check how different J(F) and Jo(F) are. Their only difference is in
the term related to the wet surface. Recall that 8 (2) is periodic in cubes of
size €. For every such cube that is completely contained inside the wet surface
of F it is the same to integrate 3 (f) or to integrate the average of 3. The
difference of J(E) and Jo(E) is then given only by the cells that intersect the
boundary of (E N {z = 0}).

But according the the n — 1 Hausdorff estimate of the free boundary, the
number of such cells cannot exceed C'V ##1 1" Since the volume of each cell
is €™ we deduce: o

|Jo(E) — J(E)| < CAVnFie

The same conclusion can be taken for B;r:
|Jo(BF) — J(BF)| < CAVFie

And noticing that J(E) < J(B/) and Jo(B;) < Jo(E) we obtain
| Jo(E) — Jo(BF)| < CAV e

The convergence of E to B;‘ is then a consequence of the following stability
theorem whose proof we omit.

i

/’\
)

/
N /

S~—~——1

Fig. 6. In the inner cubes, it is the same to integrate 5(z /) or its average. The dif-
ference between Jy and J is concentrated in the cells that intersect the free boundary
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Theorem 2.2. Let E C Bg x [0, R) such that Jo(E) < Jo(B) + . Then
there exists a universal o > 0 and a constant C' (depending on R) such that

|EABY| < Co

Since F is bounded, this stability theorem tells us that ‘EAB,‘H becomes
smaller and smaller as € — 0. To obtain uniform convergence we have to use
the regularity properties of E. By Lemma 2.1 or 2.2, if there was one point of
OF far from 8Bp+, then there would be a fixed amount of volume of EAB:
around it, arriving to a contradiction. We state the theorem:

Theorem 2.3. Given any n > 0, for ¢ small enough

C EcC BF

+
B (14n)p

(I-n)p

2.5 Hysteresis

Although when we consider absolute minimizers of J. there are no surprises
in the homogenization limit, in reality this behavior is almost never observed.
When a drop is formed, its shape does not necessarily achieve an absolute
minimum of the energy, but it stabilizes in any local minimum of J.. That is
why to fully understand the possible shapes of drops lying on a rough surface,
we must study the limits as ¢ — 0 of all the critical points of J..

Let us see a simplified equation in 1 dimension. Let u be the solution of
the following free boundary problem:

u>0 in [0, 1]
U TN u(0) =0
u(l)y=1
77 u'(z) =0 if u(z) >0
tany = 3 %:ﬂ(%) for € 0{u > 0}

This problem comes from minimizing the functional

sw = [ 8 (5) viso da

If 8 is constant, it is clear that there is only one solution, because only
one line from (1, 1) hits the x axis with an angle v = arctan 5. However, if 8
oscillates, there must be several solutions that correspond to several critical
points of J.. There will be a solution hitting the x axis at the point x( as long

1

as - = Jé] (%) For a small € this may happen at many points, as we can

see in Figure 7.
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g ]
<

\
several posible slopes

— Maximal solution
|~ Absolute minimizer

<~—+t+— Minimal solution

Fig. 7. Different solutions for a nonconstant g

Moreover, the set of possible slopes for the solutions gets more and more
dense in the interval [min 3, max ] as € gets small. As ¢ — 0, we can get a
sequence of solutions converging to a segment with any slope in that interval.

This example shows that the situation is not so simple. When we go back
to our problem of the drop in more than one dimension, the expected possible
slopes as ¢ — 0 must be in the interval [arccos max (3, arccos min ]. Exactly
what they are depends on the particular geometry of the problem. If for
example 3 depends only on one variable, let us say x;, then when the free
boundary aligns with the direction of z; we would expect to obtain a whole
range of admissible slopes as in the 1D case. Let us sketch a proof in this
case that there is a sequence of critical points of the functional that do not
converge to a sphere cap as € — 0. We will construct a couple of barriers, and
then find solutions that stay below them.

Suppose that 5 depends on only one variable and it is not constant. As
we have shown in the previous section, the absolute minimizers converge to
a sphere cap B as ¢ — 0. Let S(x1) be a function that touches B at one
end point 1 = —R, but has a steeper slope at that point. Let us choose this
slope S’'(—R) = tan a such that cos a < max 3, we can do this from the extra
room that we have since ( is not constant. Now let us continue S(z;) from
that point first with a constant curvature larger than the curvature of B,j‘,
and then continued as linear. Since S starts off with a steeper slope than B;,
we can make S so that S > B:{ for 1 > —R. Now we translate S a tiny bit
in the direction of x; to obtain S; so that S7 < B; only in the set where S
has a positive curvature that is larger than the one of B;‘. We construct a
similar function Sy in the other side of B;f. See Figure 8.
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Fig. 8. Barrier functions

We will see that we can find a sequence of solutions for € — 0 that remains
under S; and Ss. For suitable choices of €, cosa < S(—R) and also cosa <
B(R). For such ¢, we minimize the energy J. constrained to remain below Sy
and S,. In other words, we minimize J. from all the sets FE subsets of

D={(z1,2"): —R<21 < RNz < Si(z1) ANz < So(z1)}

If F is the constrained minimizer, it will be a critical point (unconstrained)
of J. as long as it does not touch the graphs of S; or Ss. Since only a tiny
bit of B is outside of D, J.(FE) will not differ from J(B) much when ¢ is
small. We can then apply the stability result of section 2.4 to deduce that
OF remains in a neighborhood of aBZ‘. The curvature of F will be constant
where it is a free surface, and no larger than that value where it touches the
boundary of D. Since OF is close to 8Bp+ everywhere, the curvature of the
free part of OF cannot be very different from the curvature of BBFT. Therefore
E cannot touch S7 or Sy in the part where these barriers are curved. The part
where these barriers are straight is too far away from B;, so E' cannot reach
that part either. It is only left to check the boundary 7 = +R and z = 0.
But the contact angle of S; is smaller than arccos 5(x1) at those points, and
then E cannot reach those points either. Thus, £ must be a free minimizer.
Since we can do this for € arbitrarily small, when ¢ — 0 we obtain limits of
the homogenization problem that cannot be the sphere cap B;‘ because they
are trapped in a narrower strip {—R+ ¢ < x7 < R+ §}.

1= Another stable solution.

N pq

\h__f

N LV

,& il
The absolute minimizer.

Fig. 9. Different drops can be formed on irregular surfaces
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Other geometries may produce different variations. It is hard to predict
what can be expected.

We may ask at this point what is then the shape that we will observe in
a real physical drop. The answer is that it depends on how it was formed.
If the equilibrium was reached after an expansion, then we can expect to see
the largest possible contact angle. If on the other hand, the equilibrium was
obtained after for example evaporation, then we can expect to see the least
possible contact angle.

An interesting case is the drop lying on an inclined surface. If we consider
gravity, there is no absolute minimizer for the energy, because we can slide
down the drop all the way down and make the energy tend to —oco. However,
we see drops sitting on inclined surfaces all the time. The reason is that they
stabilize in critical points for the energy. On the side that points down, we
can see a larger contact angle than the one in the other side. This effect would
not be possible in a ideal perfectly smooth surface.

2.6 References

The equations of capillarity can be found in [12]. The case of constant [ is
studied in [G].

The proof of Theorem 2.2, as well as the existence of a minimizer for each
¢ and a comprehensive development of the topic can be found in [5].

Lemma 2.2 is not as in [5]. There a different approach is taken that also
leads to Corollaries 2.1 and 2.2. This modification was suggested by several
people.

The phenomena of Hysteresis, and in particular the case of the drop on an
inclined surface is discussed in [6]. Previous references for hysteresis are [17],
[16] and [15].

Related methods are used for the problem of flame propagation in periodic
media [3], [4].

3 The Construction of Plane Like Solutions to Periodic
Minimal Surface Equations

The second homogenization problem that we would like to discuss is related
to minimal surfaces in a periodic medium.

In two dimensions, minimal surfaces are just geodesics. Suppose we are
given a differential of length a(z,v) in R?, and given two points z,y we want
to find the curve joining them with the minimum possible length. In other
words, we want to minimize

d(z,y) =inf L(y) = / a(z,0)ds

¥
among all curves « joining x to y.
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Here s is the usual differential of length and ¢ the unit tangent vector. We
consider a function a(z, o) that is strictly positive (0 < A < a(z,0) < A) and,
to avoid the formation of Young measures (that is: oscillatory zig-zags) when
trying to construct geodesics, it must satisfy

vla | x, 2 is a strictly convex cone.
|v]
v

We assume that a is periodic in unit cubes. By that we mean that a is
invariant under integer translations, i.e. a(z + h,o) = a(z,0) for any vector
h with integer coordinates. Let us also assume that a is smooth although
this property is not needed. Due to the periodicity, at large distances d(x,y)
becomes almost translation invariant, since for any vector z there is a vector
Z with integer coordinates such that |z — 2| < @ and

|[d(x + z,y + 2) — d(x,y)| = |dx + z,y + 2) —d(x + Z,y + 2)|
<vnA

Another way of saying the same thing is to look at the geodesics from very
far away, that is to rescale the medium by a very small ¢,

x
as(z,0) =a (7,0') .
€
The distance becomes almost translation invariant

lde(z,y) —de(z+ 2,y + 2)| <evn A

and as € goes to zero we obtain an effective norm ||z|| = lim._,¢ de(z,0).

Fig. 10. The distance is almost translation invariant

The question we are interested to study is the following: given any line
L={\o,\ € R}

Can we construct a global geodesic S that stays at a finite distance from L?
That is S remains trapped in a strip, around L whose width depends only on
A A
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Fig. 11. Line like geodesic

The answer is yes in 2D (Morse) and no in 3D (Hevlund). An inspec-
tion of Hevlund counterexample shows that, unlike classical homogenization,
where diffusion processes tend to average the medium, geodesics try to beat
the medium by choosing specific paths, and leaving bad areas untouched.

In the 80’s Moser suggested that in R™, unlike geodesics, minimal hyper-
surfaces should be forced to average the medium, and given any plane =, it
should be possible to construct plane like minimal surfaces for the periodic
medium.

More precisely given a differential of area form, we would like to consider
surfaces S that locally minimize

- Y - =g fl
*“\.«,._FF.;‘*
& ""‘\rl?‘\J - =
s. »#5‘. :‘;N ~2
A
NN P
Kok Pl
. | ?‘\ll ;ﬁ | J
|j PN Ny ‘%
T e
L& o U

L=

Fig. 12. Hevlund Counterexample: It costs one to travel inside narrow pipes, a
large K outside. Then, the best strategy is to jump only once from pipe to pipe,
i.e., the effective norm is ||z|| = |z| + |y| + | 2]

A%(S) = [3 a(z,v) dA

where dA is the usual differential of area, v the normal vector to A, and a, as
before satisfies,
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i 0<A<a(z,v)<A
ii. |v|a(x,v/[v]) is a strictly convex cone.
iii. a is periodic in x.
These conditions for a, translate in the following properties of A*.
i. Mrea(S) < A*(S) < AArea(S).
ii. A*(S) = A*(7.S), for any translation 7, with integer coordinates.
By a local minimizer of A*, we mean a surface S such that if another

surface S; coincides with S everywhere but in a bounded set B, then A*(SN
B) < A*(S1 N B).

Fig. 13. Plane-like minimal surface in a periodic medium (for instance a medium
with a periodic Riemman metric)

The main theorem is the following:

Theorem 3.1. There exists a universal constant M (X, A,n) such that: for
any unit vector vy there exists an A* local area minimizer S contained in the
strip mar = {z : |{x,v0)| < M}.

A first attempt to construct such local area minimizer is to look at surfaces
that are obtained by adding a periodic perturbation to the plane 7 = {x :
(x,v9) = 0}. This will be possible if 7 has a rational slope, or equivalently
that m can be generated by a set of n — 1 vectors eq,...,e,_1 with integer
coordinates. The advantage of this case is that a translation in the direction
of each e; fixes m as well as the metric, so we can expect that we can find
a local A* minimizer that is also fixed by the same set of translations. If we
can prove Theorem 3.1 in this context and the constant M does not depend
on the vectors ey, ..., e,_1 but only on A, A and dimension, then the general
case (irrational slope) follows by a limiting process.

We will work in the framework of boundaries of sets of locally finite peri-
meter.

A set of locally finite perimeter (2 is a set such that for any ball B, BN {2
has a finite perimeter (as in the first part of these notes, see [13]) For such sets,
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differential of area of 02, and unit normal vectors are well defined, under our
hypothesis A* makes sense and is lower semicontinuous under convergence in
measure for sets.

Main Steps of the Proof

We will consider the family of sets D such that 2 € D if 2 is a set of
locally finite perimeter, 7., ({2) = §2 for every j (where 7., (§2) := £2+¢;), and

Ty = {7z, ) > M} C 2 C il ={x: (v,10) < M}

And within D, we will consider those sets {2y that are local A*-minimizers
among sets {2 € D. Since we are in the context of periodic perturbations of a
plane, a local A*-minimizer is simply a minimizer of A* of the portion of 02
inside the fundamental cube given by all the points of the form A\jeq + --- +
An—1€n—1+ Apvp where A; € [0,1] for j =1,...,n—1and \, € [-M, M].

Of course, such an (2 is not a free local minimizer since whenever 92
touches the boundary of 7~ or 71 we are not free to perturb it outwards.

Our objective is to show that if M is large enough Sy = 02y does not see
this restriction. In other words, 29 would be a local A*-minimizer not only
among the sets in D but also among all sets of locally finite perimeter.

The main ingredients are:

a) A positive density property
b) An area estimate for 912

M

Fig. 14. Restricted Minimizer

¢) Minimizers are ordered

Lemma 3.1 (Positive density). There are two universal constants co,Cy
> 0 such that a minimizer 082y of A* satisfies

[£20 N B,.(x0)]

S Cl’l"n
| B |

cor™ <

for any xg € 082.
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Proof. This lemma is actually the same as Lemma 2.1 in a slightly different
context. The only difference is that instead of (3), we must use now that 92
is a minimal surface. We include the proof here for completeness.

We define

Ui(r) = |Br(x0,20) \ 2] S1(r) = Area(9dB,(xo, 20) \ 20)
Us(r) = |B(z0, 20) N £20] Sa(r) = Area(dB,(xq, 20) N £20)
A(r) = Area(B, N 02)

s, —

Since 92y is a minimal surface,

A(r) < ~A*(B, N8 < %A*(@Br(xmzo) \ 2) < %Sl(r)

> =

Similarly A(r) < %SQ(T).

We also know by the isoperimetrical inequality that U*"" < C(A + S1).
If we combine this with the above inequality we obtain

Uit < 08,

But now we observe that S(r) = U;(r), so we obtain the ODE: Uj(r) >

cUl"ﬁ. Moreover, we know U;(0) = 0 and Uy(r) > 0 for any r > 0. This
implies the result of the lemma.
In the same way, we obtain the result for Us,.

Lemma 3.2. There are two universal constants cq,C1 > 0 such that a mini-
mizer 082y of A* satisfies

Cofin_1 S H”_l(aﬂo n BR) S Can_l
for large values of R.

Proof. Notice that the set 2 = {z : (z,v) < 0} is an admissible set in
D. Then A*(9f29 N fundamental cube) < A*(9f2; N fundamental cube). Be-
sides, Area(0f2; Nfundamental cube) < Area(9§2oNfundamental cube). Thus,
Area(0§2y N Br) and Area(0f2; N Bg) are comparable when R is large.
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This would be the same as the result of the lemma if it was true that
the area of the boundary of a set of finite perimeter coincides with its n — 1
Hausdorff measure. Unfortunately, that is not always true. In general we can
say that the n — 1 Hausdorff measure is only greater or equal to the area. But
in this case we can compare them thanks to Lemma 3.1. If we take a finite
overlapping covering with balls of radius r centered at 92y N Bg, by Lemma
3.1 plus the isoperimetric inequality, the surface of 942y inside each ball cannot
be less than cor™ 1. Then, there cannot be more than CR"~! /r"~! such balls,
and the Hausdorff estimate follows.

Lemma 3.3. Minimizers are ordered, that is if {29 and 21 are minimizers,
then so are 20U 21 and 25N (2.

Proof. 0820 U0y = 0(£20 U 21) U (29 N §21) and thus if we add the areas
(A*) inside the fundamental cube of 92y and 92y, it is the same as adding
the corresponding ones for 9(§2o N £21) and (29 U £21). But since 2y and 2,
are A* area minimizers, necessarily all those areas are the same and then both
20U 27 and 25 N 21 must be minimizers too.

Using Lemma 3.3, we can construct the smallest minimizer 2 in D by
taking the intersection of all minimizers in ID. We point out the similarity
with Perron’s method.

2 recuperates an important property, the Birkhoff property: If 7, is an
integer translation with (z,19) < 0 (resp. > 0) then

.(2) C 2 (resp. D )

Indeed 7.(£2) N 2 and 7 (£2) U 2 are minimizers respectively for 7. () and
mar, while 2 and 7,(§2) are the actual smallest minimizers.

——_ - - — 7 ~An integer translation

—_

Fig. 15. Birkhoff Property. Integer translations send 7,({2) inside {2 or 2 inside
72(£2) depending on whether (z,19) <0 or (z,19) >0

Lemma 3.2 tells us that for large balls Br(0), the number N of disjoint
unit cubes intersecting 042y must be of order N ~ C;R"~! independently
of M. Since the strip 7y, N Bg has roughly M R"~! cubes, many cubes in
7y N Br must be contained in 2y or C{2.
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Combining the above properties we see the following:

i) There are many clean cubes that do not intersect 92, and thus they are
contained in either {2 or its complement. Moreover, there are many such
cubes that are not too close to the boundary of my;.

ii) Any integer translation 7, (Q) of a cube Q C §2 with (z,v9) < 0 is contained
in (2. Conversely for a cube Q C Cf2, if (z,v9) > 0 then 7.(Q) C Cf2.

A

R s i

L -~ T —T
4 C ] //{é'\% _—
2% S\ | | L —+—7T cube completely
/////_Q outside (2
—

Fig. 16. If one cube is outside of 2, then any cube whose center is above the dotted
line is outside of 2

From i), we can find a clean cube @ that is not too close to the boundary
of mas. If this cube @ is contained in £2 and M is large, then the union of all
the translations 7,(Q) for z with integer coordinates and (z,p) < 0 covers a
strip around the bottom of 7 (see Figure 16 upside down). But then we have
a thick clean strip, which means that we could translate {2 a unit distance
down and still have a local minimizer, which would contradict the fact that
(2 is the minimum of them.

Therefore, we must be able to find a clean cube contained in Cf2. Arguing
as above, this implies that there is a complete clean strip around the top of
7wy (like in Figure 16). Thus, we are free to perturb upwards. Moreover, we
can lift the whole set 2 by an integer amount and obtain another minimizer
that does not touch the boundary of 7w, and then {2 is a free minimizer.

In this way we prove the theorem when 7 has a rational slope. Since M
depends only on A, A and dimension, we approximate a general 7w by planes
with rational slopes and prove the theorem by taking the limit of the respective
minimizers (or a subsequence of them).

3.1 References

The content of this part is based on the joint paper with Rafael de la Llave [2].
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The problem had been proposed by Moser in another C.I.M.E. course
[M1] (See also [M2], [18]). The interest of constructing line like geodesics was
related to foliating the torus with them or at least laminate it.

4 Existence of Homogenization Limits for Fully
Nonlinear Equations

Let us start the third part of these notes with a review on the definitions of
fully nonlinear elliptic equations.

A second order fully nonlinear equation is given by an expression of the
form

F(D?*u, Du,u,z) =0 (5)

for a general nonlinear function F : R"*™ x R™ x R x R™ — R. For simplicity,
we will consider equations that do not depend on Du or u. So they have the
form

F(D?*u,x) =0 (6)

The equation (6) is said to be elliptic when F(M + N,x) > F(M, x) every
time N is a positive definite matrix. Moreover, (6) is said to be uniformly
elliptic when we have \|N| < F(M+N,z)—F(M,z) < A|N| for two positive
constants 0 < A < A and where |N| denotes the norm of the matrix N. The
simplest example of a uniformly elliptic equation is the laplacian, for which
F(M,z) =tr M.

Existence, uniqueness and regularity theory for uniformly elliptic equations
is a well developed subjet. It is studied in the framework of viscosity solutions
that is a concept that was first introduced by Crandall and Lions for Hamilton
Jacobi equations. We will consider only uniformly elliptic equations thoughout
this section.

A continuous function w is said to be a wviscosity subsolution of (6) in an
open set {2, and we write F(D?u,z) > 0, when each time a second order
polynomial P touches u from above at a point z¢ € 2 (i.e. P(xg) = u(xp)
and P(x) > u(z) for  in a neighborhood of zg), then F(D?P(zq),z0) > 0.
Respectively, u is a supersolution (F(D?u,x) < 0) if every time P touches u
from below at zg then F(D?P(z0), 7o) < 0. For the general theory of viscosity
solutions see [8] or [1].

In the same way as for subharmonic and superharmonic functions, sub- and
supersolutions of uniformly elliptic equations satisfy the comparison principle:
if u and v are respectively a sub- and supersolution of an equation like (6)
and u < v on the boundary of a bounded domain {2, then also v < v in the
interior of (2.

Suppose now that we have a family of uniformly elliptic equations (with the
same A and A) that do not depend on x (are translation invariant): F;(D?u) =
0for j =1,...,k. Let us suppose that at every point in space we choose one of
these equations with some probability. To fix ideas, let us divide R™ into unit
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cubes with integer corners and in each cube we pick one of these equations
at random with some given probability. The equation that we obtain for the
whole space will change on each cube, it will not look homogeneous, it will
not be translation invariant, and it will strongly depend on the random choice
at every cube. However if we look at the equation from far away, somehow
the differences from point to point should average out and we should obtain
a translation invariant equation.

In each black square we have Fy(D?*u) =0
In each white square we have Fy(D?u) =0

From close, we see black and white squares  From far, we just see gray

Fig. 17. A chessboard like configuration

Let (S,u) be the probability space of all the possible configuration. For
each w € S we have an z-dependent equation

F(D*u,z,w) =0

What we would expect is that if we consider solutions uf, of the equation
(with same given boundary values)

F(D?ug,, =, w) = 0 (7)

with probability 1, they would converge to solutions ug of a translation in-
variant (constant coefficients) equation

F(D?*up) =0

thus, in this limiting process that corresponds to looking at the medium from
far away, the differences from point to point should dissapear. An moreover,
it should lead to the same uniform equation for almost all w.

Our purpose is to prove the existence of this limiting equation.

The appropriate setting for the idea of mixed media that from far away
looks homogeneous is ergodic theory. Out assumptions are:
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1. For each w in the probability space S, ;1 we have a uniformly elliptic equa-
tion
F(D*u,z,w) =0
defined in all R™.

2. Translating the equation in any direction z with integer coordinates is the
same as shifting the configuration w, i.e.

FM,z — z,w) = F(M,z,7,(w))

and we ask this transformation w +— 7,(w) to preserve probability.
3. Ergodicity assumption: For any set S C S of positive measure, the union
of all the integer translations of S covers almost all S

H<U TZ(S)> =1

zZEL™
Under these conditions, we obtain the following theorem:

Theorem 4.1. There exists an homogenization limit equation

F(D?*ug) =0

to which solutions of the problem (7) converge almost surely.

4.1 Main Ideas of the Proof

When we have a translation invariant equation F(D?u) = 0, if u is a solution
of such equation, that means that for each point z, the matrix D?u(x) lies
on the zero level set {M € R"*" : F(M) = 0}. We can describe the equation
completely if we are able to classify all quadratic polynomials P as solutions,
subsolutions or supersolutions, because that would tell us for what matrices
M, F(M) is equal, greater or less than zero.

Let us choose a polynomial P, in a large cube Qg and let us compare
Py + t|z|* with the solution of

F(D*u,z,w) =0 in Qg
uw=Py+t|z| in 0Qr

If ¢ is very large, Py +t |nc|2 will be a subsolution of the equation and thus
Py+t |;10|2 < u in Qg. Equally, if X is very negative then Py + ¢ |ac|2 > uin
Qr. For some intermediate values of t, Py + ¢ |:E|2 and w cross each other, so
for these values it is not so clear at this point if Py + ¢ |:c|2 is going to be a
sub or supersolution of the homogenization limit equation.
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Let us forget about the term ¢ \J;|2 for a moment. Given a quadratic poly-
nomial P =37, M;;x;z;, we want to solve the equation

F(D*u®, =, w) =0 in Q

u® =P on dQ;

xT
9

(8)

for a unit cube Q1. Subsolutions of our homogenized equations are those poly-
nomials for which u® tends to lie above P as ¢ — 0. Similarly, supersolutions
are those for which u® tends to be below P. If the polynomial P is borderline
between these two behaviors, then it would be a solution of the homogeniza-
tion limit equation.

It is important to notice that we can either think of the problem at scale
in a unit cube (with u®) or we can keep unit scale and consider a large cube.
To look at the equation (8) for ¢ — 0 is equivalent to keep the same scale
and consider larger cubes. Indeed, if we consider u(z) = %uf(ex), then for

R =¢"!, we have

F(D*u,z,w) =0 in Qg

u=P in 0Qpg ©)

For a cube Qg of side R. It is convenient to choose R to be integer, in order
to fit an integer number of whole unit cubes in @Qr. Now instead of taking
€ — 0, we can take R — 400. We will be switching between these two points
of view constantly.
Let v be the solution of the corresponding obstacle problem. The function
v is the least supersolution of the equation (9) such that v > P:
F(D?v,z,w) <0 in Qg
v=P in0dQg
v > P in QR

F(D*v,z,w) =0 in the set {v > P}

P Y
;N

Fig. 18. The polynomial P, the free solution u and the least supersolution above
the polynomial v
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We also call v¢ = e2v(z/¢), the solution of the obstacle problem at scale e.
Let p be the measure of the contact set {v = P} in Qg:

p(Qr) = [{v= P}

The value of p controls the difference between u and v. A small value of
p means that v touches P at very few points, and thus it is almost a free
solution. The idea is that if p remains small compared to |Qr| as R — 400,
then P would be a subsolution of the homogenized equation. A large value of
p means that v touches P in many points. If ﬁ — 1 as R — oo, that would
mean that P is a supersolution. Moreover, we will show that every time ‘Qiplﬂ
converges to a positive value, then u® — P.

The first thing we must prove is that ﬁ indeed converges to some value
as R — +oo (or € — 0). Notice that ‘QLRl is the measure of the contact set at
scale e: |[{v® = P}|.

In this problem, what plays the role of the Birkhoff property is a subad-
ditivity condition for p, as the following lemma says.

Lemma 4.1. If a cube Q is the disjoint union of a sequence of cubes Q;, then
p(@Q) <D p(Q)
J

Proof. Let v be the solution of the obstacle problem in the cube @ that
coincides with P on 0Q). Let v; be the corresponding ones for the cubes Q;.
Since v > P in @, v > v; on 0Q);. Then by comparison principle v > v; in Q.
Therefore the contact set {x € Q : v(z) = P(x)} is contained in the union of
the contact sets {z € Q; : v;(x) = P(x)}, and the lemma follows.

This subadditivity condition plus the ergodicity condition and

P(Qr(r — 2),w) = p(Qr(z), - (w)

Q1= Q2UQ3

Ql Q2

Fig. 19. Pay attention to the contact sets: p is subadditive



70 L. Caffarelli and L. Silvestre

are the conditions for a subadditive ergodic theorem (which can be found in
[9]) that says that as R go to infinity % converges to a constant hg with
probability 1. We will characterize polynomials P as sub- or supersolutions

according to whether hg = 0 or hg > 0.

Lemma 4.2. If hy =0, then

liminfu® > P

e—0

Proof. Using the Alexandrov-Backelman-Pucci inequality (See for example
[1]), we can obtain a precise estimate of v — u® depending on p:

supv® —u® < CRpl/"
Qr

where C is a universal constant.

Fig. 20. If the contact set if small, then v and v are close

If hy =0, as € goes to zero we have:

uf(z) > v° (x) — Cep'/™

>P—o0(1)
Then, as € — 0, u® tends to be above P, and we finish the proof of the lemma.

The last lemma suggests that P is a subsolution of the homogenization
limit equation if hg = 0. Now we will consider the case hy > 0. In order to
show that in that case u. tends to be below P, we have to use that v® separates
from P by a universal quadratic speed depending only on the ellipticity of the
equation.
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Quadratic upper bound

Fig. 21. Quadratic separation

The quadratic separation from the contact set is a general characteristic
of the obstacle problem. What it means is that if v°(z¢) = P(z¢), then

v¥(z) — P(z) < Clz — :EO|2

for a constant C' depending only on A, A and dimension.
The quadratic separation in this problem plays the role of the positive
density in the previous ones.

Lemma 4.3. If hy > 0, then

limsupu® < P

e—0

Proof. We will show that the contact set {v® = P} spreads all over the unit
cube. Then, using the quadratic separation we show that v* — P as € — 0.

We want to show that if we split the unit cube in m smaller cubes of
equal size, for any value of m, then for € small enough there is a piece of the
contact set in each small cube. We know that the measure of the contact set
H{z € Q1 : v°(z) = P(x)}| converges to hy > 0. The unit cube @ is split into
m smaller cubes. Let @) be any of these cubes, we have v > P on 9Q, so v¢ is a
supersolution of the corresponding obstacle problem in () and MQ:PW
cannot converge to any value larger than hg as ¢ — 0. If in some cube the
contact set is empty {z € Q : v°(x) = P(z)} = @, then, since the whole
contact set covers a proportion hg of the measure of the unit cube, there
must be one of the smaller cubes where the contact set covers more than hg
times the measure of this cube (at least for a sequence e, — 0). And that is a
contradiction, which means that the contact set {v® = P} must spread all over.

But if {v®* = P} spreads all over the unit cube, then v® converges
to P uniformly due to the universal quadratic separation. Since v¢ > wuf,
limsup,_,ou® < P.

So, now we have a way to classify every polynomial as subsolution to
the homogenization limit equation (F(D2P) > 0) if hy = 0 or supersolution
(F(D?*P) < 0) if hg > 0. There is still a little bit of ambiguity because a
polynomial could be both things at a time (if it is precisely a solution). That
is easily solved by considering Py + ¢ |w|2 for small values of t. We say that Py
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Fig. 22. Each small cube must contain about the same amount of contact set when
e<<1

>{v:P}
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is a sub or supersolution if we can check it for Py +¢ |LL‘|2 for arbitrarily small
values of t.
In this way we are able to completely characterize the zero level set of F.
Moreover, if we want to construct the complete function F, then we have
to identify all its level sets, not only the zero level set. To do that we just
consider the problem:

F(D%E,g,w) —t=0

to describe the level set F (M) =t. And we recover F completely.

Now, based on our construction of F, it is easy to show that for any
boundary data, problem (7) will converge with probability 1 to a function ug
that satisfies comparison with polynomials in the right way to be a viscosity
solution of F(D?ug) = 0. We finish with the theorem:

Theorem 4.2. Let u® be the solutions to

F(Dgug,g,w)zo in §2
(11)
ut =g in IR

for a domain 2 and a continuous function g on 0f2. Then as € — 0, almost
surely u® converge uniformly to a function u that solves

F(D*u)=0 in
(12)
u=g in ol

Proof. Due to the uniform ellipticity of F', the functions u® are uniformly
continuous, and therefore by Arzela-Ascoli there is a subsequence u®* that
converges uniformly to a continuous function u.

Let us suppose that a quadratic polynomial P touches u from above at a
point zg. Then we can lower P a little bit by subtracting a small constant §;
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such that P(z¢) < u(xg) and P(z) > u(x) for z in the boundary of a small
cube Qg, (o) centered at xg.

Since u®* converge to w uniformly, the same property holds for them.
Namely, for large enough k&

P(Zo) S u* (.130) - 51

P(z) > u®*(x) for z € 0Qs,(xo)
Let w;, be the solutions to

F(Dka, g,w) =0 in Qs,(zo) (13)
wy =P in 8Q52 (xO)

By comparison principle, wy, < u*, then wg () < P(xg) — 01 for large k.
So, we can apply Lemma 4.3 to obtain that the value of hy corresponding to
P cannot be positive. Then F(D?P) > 0.

In a similar way, we can show that if a quadratic polynomial touches
from below then it must be a supersolution of F.

Therefore u must be a viscosity solution of (12). Since (12) has a unique
solution, all the convergent subsequences of u® must converge to the same
limit. Thus the whole sequence u® converges uniformly to u.

4.2 References

This part in homogenization is based on the joint work with Panagiotis
Souganidis and Lihe Wang [7], where actually a more complete theorem is
proved. The fact that equations that depend on Vu are considered in that
paper adds some extra complications.

Some of the ideas have their roots in the work of Dal Maso and Modica
([9] and [10]) for the variational case.

Periodic homogenization for second order elliptic equations was considered
in [11].
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