Chapter 7
Shape Analysis and C%-Algorithms

In the preceding chapters, we have studied first order properties of subdivision sur-
faces in the vicinity of an extraordinary point. Now we look at second order proper-
ties, such as the Gaussian curvature or the embedded Weingarten map, which char-
acterize shape. To simplify the setup, we assume k& > 2 throughout. That is, second
order partial derivatives of the patches x’" exist and satisfy the contact conditions
(4.7%2) and (4.82) between neighboring and consecutive segments. However, most
concepts are equally useful in situations where the second order partial derivatives
are well defined only almost everywhere. In particular, all piecewise polynomial
algorithms, such as Doo—Sabin type algorithms or Simplest subdivision, can be an-
alyzed following the ideas to be developed now.

In Sect.7.1/26, we apply the higher-order differential geometric concepts of
Chap. 215 to subdivision surfaces and derive asymptotic expansions for the funda-
mental forms, the embedded Weingarten map, and the principal curvatures. In par-
ticular, we determine limit exponents for LP-integrability of principal curvatures in
terms of the leading eigenvalues of the subdivision matrix. The central ring will
play a key role, just as the characteristic ring for the study for first order properties.

In Sect. 7.2134, we can leverage the concepts to characterize fundamental shape
properties. To this end, the well-known notions of ellipticity and hyperbolicity
are generalized in three different ways to cover the special situation in a vicin-
ity of the central point. Properties of the central ring reflect the local behavior,
while the Fourier index F(u) of the subsubdominant eigenvalue p of the subdi-
vision matrix is closely related to the variety of producible shapes. In particular,
F(p) D {0,2,n — 2} is necessary to avoid undue restrictions. Further, we intro-
duce shape charts as a tool for summarizing, in a single image, information about
the entirety of producible shape.

Conditions for C%-algorithms are discussed in Sect.7.31«. Following Theo-
rem 2.14ps, curvature continuity is equivalent to convergence of the embedded
Weingarten map. This implies that the subsubdominant eigenvalue p must be the
square of the subdominant eigenvalue A\, and the subsubdominant eigenrings must
be quadratic polynomials in the components of the characteristic ring. These ex-
tremely restrictive conditions explain the difficulties encountered when trying to
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126 7 Shape Analysis and C¥-Algorithms

construct C}-algorithms. In particular, they lead to a lower bound on the degree of
piecewise polynomial schemes, which rules out all schemes generalizing uniform
B-spline subdivision, such as the Catmull-Clark algorithm.

Section 7.4 presents hitherto unpublished material concerning a general prin-
ciple for the construction of Ck-algorithms, called the PTER-framework. This
acronym refers to the four building blocks: projection, turn-back, extension, and
reparametrization. The important special case of Guided subdivision, which inspired
that development, is presented in Sect. 7.51.

7.1 Higher Order Asymptotic Expansions

We focus on symmetric standard CZ-algorithms and assume, for simplicity of expo-
sition, that the subdominant Jordan blocks are singletons, i.e.,

1>)\2:)\1:)\2>|)\3‘, Uy =10y =0.

All subsequent arguments are easily generalized to the case of subdominant Jordan
blocks of higher dimension (see Sect. 5.3s0), but the marginal extra insight does not
justify the higher technical complexity. We obtain the structure

(1,0) = (A, 0) ~ (A, 0) = (A3, €3) ~ -+ ~ (Ag, £g) = (Ag+15Lg+1)

for the eigenvalues, and denote by p the common modulus of the subsubdominant
eigenvalues and by ¢ the size! of the corresponding Jordan blocks minus one:

po=sl = =|Agl, lLi=l3=--=1,

Consider a subdivision surface x corresponding to generic initial data Q. Follow-
ing Definition 2.11xs, we denote by n° the central normal, and by (t§,t$,n®) an
orthonormal system defining the central frame F¢,

Cc . t‘i C._ TC
v 6], [,

With (4.284), the second order asymptotic expansion of the rings x™ reads
X" = X+ A"p[py; pa] + p™ d™, (7.1)
The term

q
dm = i fypg
q=3

summarizes the contribution of the subsubdominant eigencoefficients p, and eigen-
rings f,. The directions d, = A;/p, as defined in (4.3155), are numbers on the

! Note that the symbol £ does not indicate the size of the subdominant Jordan block, as in earlier
chapters, but the size of the subsubdominant Jordan block.
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complex unit circle, referring to the angles of the potentially complex subsubdomi-
nant eigenvalues Az, ..., Ag.

According to (4.21m), the scaling factor in (7.1ns) is p™¢ = (7})u™* pro-
vided that m > /. Hence, if . = 0, the rings x" become entirely flat after a few
steps. To exclude this trivial situation, we assume ;& > 0 throughout. Appropriate
asymptotic expansions of the rings of the tangential and the normal component of
the transformed spline x,. = (x — x°) - F¢, as defined in (4.11s4), are given by

£ = (x" —x°) - T® = A" [p1; po] - T
and
2™ = (x™ —x°) - n® = p™fd™ - nC, (7.2)

*

respectively. We will focus on algorithms without negative or complex directions d.
For if, say d3, is negative or complex then d5* oscillates, and if the corresponding
coefficient p3 - n® dominates then 2" repeatedly attains positive and negative values
as m is growing. In other words, the rings x"™ repeatedly cross the central tangent
plane, an undesirable behavior for applications. We therefore focus on algorithms
with the following properties:

Definition 7.1 (Algorithm of type (A, i, ¢)). A subdivision algorithm (A, G) is

said to be of type (A, p, £), if

o (A,G) is a symmetric standard C?-algorithm, and
o the subsubdominant Jordan blocks have a unique positive eigenvalue,

M:A3::>\q>0, 6:63::6(7, (M,£)>(Aq+1,€q+1)

Let us briefly discuss some simple consequences of the assumptions made here: In
view of Definition 5.3, we have a double subdominant eigenvalue,

1>)\Z:)\1:)\2>|)\3‘, {1 =49 =0.
Further, by Definition 5.9 and Theorem 5.1801, the Fourier index of A must be
FA) ={lin—1}

to ensure that the characteristic ring 1) is uni-cyclic.
For an algorithm of type (\, p, £),

TEATE =L, L:i=[pi;ps)- T
q
=™z, z:=d™-n°= Z fqpq - m°. (7.3)

The planar ring & = +) L is an affine image of the characteristic ring. By (2.51),

“DE = *Dap det L, (7.4)
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i.e., it is regular and injective if and only if L is invertible. From

L0
[P1;p2;n°] - F = [O J

we conclude that
det L = det[p1; p2; n°] = £||p1 X p2||- (7.5)

Hence, L is invertible if and only if p; and p» are linearly independent. In particular,
£ is regular and injective for generic initial data. Since, by assumption, d, = 1 for
q = 3,...,q, the factors d;”_e in the definition of d”* disappear so that the real-
valued ring Z = d™ - n®, appearing in the formula for 2", is independent of m.
Together, we find the expansion

x, = (x™ —x°) - F° = [\"g, p™'z] = [€, z] diag(\™, A", ™), (7.6)

where the asymptotic equivalence of sequences is understood component-wise. That
is, the tangential and the normal component are specified exactly up to terms of order
o(A™) and o(u™*), respectively. Equation (7.612s) shows that, up to a Euclidean
motion, the rings X" are asymptotically just scaled copies of the surface [E, 2] . For
the forthcoming investigation of curvature and shape properties, this surface plays a
most important role.

Definition 7.2 (Central ring and central spline). Consider a subdivision surface
x = BQ € C*(S,,,R?) generated by an algorithm of type (), i, £) with central
normal n°, central frame F¢, and eigencoefficients P := V‘lQ. Let P be a vector
of points in R3 with the same block structure as P, see (4.25m), and all entries zero
except for

I_)O = 07 [1317132] = [P1§P2]‘FC7 132 = [07 pq'nc]a q:377q
The central ring T and the central spline X corresponding to x are defined by

F:=FPc CFSY,R?, x:=BVPcCHS,,R?.

Recalling (7.3n2), we find [p1; P2] = [L, 0] and
r:.= [E, E].

Further, we observe the following: According to the structure defined in (4.25n4),
Py is the first entry in the block P, of P, while p, = p}, is the last entry in the
block P,,. Hence, when computing the ring X = F'J™P of the central spline, the
summands with index ¢ = 3, ..., 7 are F,J/"P, = pu™ f, ). We obtain

q
XM = |:)\7”£, um Z fqﬁ2:| = Fdiag(A™, \"™, ™)
q=3
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and see that these rings are scaled copies of T. The central point and the central
normal of X are given by
5 &
% =Po=0, n°=-L7P2 o 0,0,1], (1.7)
[P1 x P2l

respectively.

Unlike the characteristic ring, the central ring depends on the initial data via the
eigencoefficients p1, . .., pqg in (7.3127). If these data are generic then the central ring
is regular, i.e., DT # 0. More precisely, using (7.4:2), one easily shows that

IPDx|| = |"DE| = "Dp | det L]

where we recall that, by definition, “D1) > 0 for a standard algorithm. We start with
a lemma concerning the first and second fundamental form.

Lemma 7.3 (Asymptotic expansion of fundamental forms). For generic initial
data consider a subdivision surface x = BQ € C*(S,,,R3) with segments X}
generated by a subdivision algorithm of type (X, 1, £). Then we obtain the following
asymptotic expansions:

o The first fundamental form of X7 is a symmetric matrix I]" € Cck-1 (Z’O, R2x2)
with

]]m = \2m I;, where I;:= ng ~ng. (7.8)

o There exists m such that the inverse (I]’-”“)f1 exists for allm > m, j € Z,, and
satisfies

my—1 x y—2m 7—1
(L)~ t= a7t (7.9)

o Let] ; and II ; denote the first and second fundamental form of the segments of
the central ring T. The second fundamental form of XJ" is a symmetric matrix

1 e CF=2(2° R**2) with

det I; —
m . ml —
It = p™" 1;,  where II; := Ffjﬂj' (7.10)
Proof. The first formula, (7.8:1), follows immediately from the definition I} :=

Dx7* - Dx7" and the expansion

DxI" = A" DE TS, (7.11)

To compute (I7*) ™", we note that the inverse of any (2 x 2)-matrix M with det M #
0 can be expressed in the form

1

M=
det M

(C-M)-C, where C:= {(1)_(1)},
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where we recall that the dot operator transposes its right argument. Now, using
(7.4n2),

det I7* = A det I; = X" ("DE;)? = A*™ ("Dap,)?(det L)*. (7.12)

By (7.5m), (det L)? = ||p1 x p2]|? does not vanish for generic initial data, while
("D j)2 > ¢;j > 0 for some constant c¢; by regularity of % ;, compactness of the
domain X°, and continuity of D1 ;- Hence, the right hand side in the last display
is bounded away from zero so that there exists an integer m with det 17" > 0 for all
m>m, j € Ly, and

(det I7") =" = A™*™(det I;) " (7.13)
As claimed in (7.9:120), we obtain

1 /\72m
O I 0= (C-T)-C =) "2l
;") dethm(C 7-c deth(C ;)-C =X ;

To prove (7.1012), we conclude from (7.6:2)
det[D; Dypx; DXT'] = X*™ ™" det|D; DyX;; “DR;).
Then, by comparing the components

det[D; Dyx1"; DX det[D; DX ;; DX,
()i = i/dijm =, (I)ik = [ £ = i
et I7 V/det I§

of II'" and II§ according to (2.819) and using (7.13nx), we obtain the given
expansion. 0

In the following, we will assume without further notice that, if required, m > m so
that /7" is invertible. With the help of the expansions for the fundamental forms, we
are now able to derive the expansion for the embedded Weingarten map of the rings.

Theorem 7.4 (Asymptotic expansion of W™). Under the assumptions of Lemma
7.3, the embedded Weingarten maps of the rings x™ € C*(SY R?) are rings
W™ e CF=2(SY R3*3) with

I

W™ = g™ (T WTS, o= = (7.14)
where W is a symmetric (2 X 2)-matrix with segments
W; = (DE;)"'1I; - (DE;)™", j € Ln. (7.15)

Moreover, consecutive rings W, W™ *1 join smoothly in the sense that the seg-
ments satisfy the contact conditions (4.8s2) up to order k — 2.

Proof. Recalling Definition 2.4, and using (7.11/120) and (7.912), the pseudo-inverse
of Dx" is
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(Dx")F = A7 ((T9)" - DE;)(DE; - DE;) ™" = A~ (T°)"(DEg;) ™"

Together with (7.101»), we find the desired expansion. The C*~2-contact of
consecutive and neighboring segments is shown as follows. Using the fractional
power embedding 7r, as introduced in Example 3.10, we define the reparametrized
surface X := x o w~!, which is not a spline, but an almost regular standard
Ck-surface. Its embedded Weingarten map W is well defined and CF~2 away
from the origin. Because the images of x and X coincide, so do the corresponding
embedded Weingarten maps, see Theorem 2.52. Hence, smooth contact of the
segments W7 follows from smoothness of Ww. U

Now, using the formulas (2.11,2) and the identities
trace((T¢)' WT) = trace W, [|(T)" WT||p = | W],

we easily find the asymptotic expansions

m, 4
KL= 5 trace W (7.16)
for the mean curvature, and
Kt = (m)? (trace? W — |[W||%) = (™°)? det W (7.17)
G 2 r) =0 € .

for the Gaussian curvature. Let us derive two further asymptotic formulas from these
expansions. First, we see immediately that the principal curvatures 7"y of x" and
the eigenvalues k7', of W are related by

KM= 0™ Y e {1,2). (7.18)

m
Second, let R := det IT / det I denote the Gaussian curvature of the central ring.
Then, with the definitions (7.101) of II and (7.1513) of W, we further find using

PDE| = Vdet I
-2
det I
mo_* m,l —
Kg = (g detI) Rg. (7.19)

In particular, this formula shows that elliptic and hyperbolic points of the central
ring T correspond to elliptic and hyperbolic points of the rings x™, respectively,
for sufficiently large m. Of course, parabolic points of T do not admit a similar
conclusion.

The preceding formulas, and in particular (7.18:1), indicate that the ratio p =
1/ A\? together with the dimension ¢ of the subsubdominant Jordan block governs
the limit behavior of the principal curvatures of the rings. Clearly, o < 1 implies
convergence to 0, while (g, ¢) = (1,0) guarantees boundedness. However, it is not
obvious that (p, ¢) > (1, 0) necessarily causes divergence since both eigenvalues of
W could still be 0. This case is excluded by the following lemma.
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Lemma 7.5 (Generically, W # 0). For generic initial data P, the matrix W does
not vanish identically.

Proof. Let us assume that W; = (D) 'II; - (D€;)~" = 0. Because £ is regular
for generic initial data, we have II; = II; = 0 so that the principal curvatures of the
central ring vanish identically. This is possible only if the image of T is contained in
a plane. Now, we consider the central spline X. As we have shown above, its rings
X are scaled copies of T, hence planar, too. Because X is continuous and normal
continuous, the image of X must be a subset of a single plane. In view of (7.71),
this must be the xy-plane,

By Lemma 4.22, the eigenrings f, are linearly independent, implying p, - n® = 0
and det[p1;p2;pg] = 0 for all ¢ = 3,...,¢. This, however, contradicts the
assumption that the initial data P be generic, see Definition 5. 1. 0

As a consequence of the lemma, we can be sure that the factor o™ in the asymptotic
expansion (7.18x3) of the principal curvatures provides not only an upper bound. In
fact, it describes the precise asymptotic behavior of at least one out of 7" and 5"
since, for generic initial data, at least one eigenvalue of W is non-zero. For that
reason, the following critical exponents for LP-integrability of principal curvatures
cannot be improved. We define the LP-norm ||||,, 7 of a spline &, built from rings
k", as the sum of integrals over all surface rings x"* with index m > m, by

p — mo__ ; X
b= X [Iraxn = 30 [ st )P D" dsc

m>m m>m jELy

%

The space of all functions « for which ||«||,, 7 is well defined and finite for suffi-
ciently large 7 is denoted by L, .. Then the following theorem holds and is illus-
trated in Fig. 7. 1ns.

Theorem 7.6 (Curvature integrability). For generic data, let x € C*(S,,,R?) be
a subdivision surface with principal curvatures k;,i € {1,2}. Then, for sufficiently
large m and m > 1, the rings k" are well-defined. Furthermore, r; € L}, . for all
p with

(] p<$n_>l\n“,lf‘ﬂ>A2,

o p<ooifu=Nandl > 0;

o p< oo if(u,f) < (A,0).

2

In any case, k; € L.

Proof. The principal curvatures " are well-defined and continuous if det I™ > 0.
Now, the asymptotic expansion (7.12:30) guarantees the existence of an index m such
that det I > 0 for all m > m. By (7.18s1), both principal curvatures are bounded
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Fig. 7.1 Illustration of Theorem 7.6n13: Limit exponent p of curvature integrability plotted over
subsubdominant eigenvalue p for different values of A.

if and only if (11,¢) < (\2,0). Hence, it remains to consider the case p < oco. We
use (5.7s7), (7.4127), and (7.5n28) to find

IPDx™ || = XD || Ip1r x pa| = A*™|"DE]|.
Hence, with (7.18131),
K7 P DX = (0™ )P [R) PA™ DE| = (m/ o) ) kY,
where we used the abbreviations

up

m and kf = |I€}L'N|p |><DE|

Tp =

Denoting the integral of the ring k¥ by
KP*Z/ kP (s,t,7) dsdt,
JE€ELn
we obtain

Z Z/ (s, t, )P D™ || dsdt = K? Z (m/ o)

m>m jE€ELy m>m

|"‘5z

The latter series converges if and only if 7, < 1. For g > M2, this inequality is
equivalent to p being smaller than the bound given in the first item of the theorem,
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while it is always satisfied for ;# < A2. The final statement, which guarantees square
integrability of the principal curvatures for any algorithm of type (A, u, £), follows
immediately from the above results and p < £. O

7.2 Shape Assessment

As it will be explained in the next section, Cé“-subdivision algorithms are hard to
find, and most schemes currently in use are merely CF. While many popular C*-
algorithms live up to the standards of Computer Graphics, they do not satisfy the
higher demands arising in applications like car body design. To put it shortly, one
could say that most subdivision surfaces are fair from afar, but far from being fair.

When scrutinizing subdivision surfaces by means of shaded images or curvature
plots, one possibly encounters an erratic behavior of shape near the central point.
It would be an oversimplification to explain these observations by just pointing to
the lack of curvature continuity. Rather, it pays off to explore the deeper sources
of shape deficiencies. Based on such additional insight, one can develop guidelines
for tuning algorithms. Even for families of subdivision algorithms where curvature
continuity is beyond reach, this may result in a significant improvement of shape.

As a motivation, consider the following facts regarding Catmull-Clark subdivi-
sion, as discussed in the preceding chapter:

e For standard weights and valence n > 5, the principal curvatures grow unbound-
edly when approaching the central point.

e For standard weights and valence n > 5, the generated surfaces are generically
not convex.

e Even when tuning the weights «, (3, y carefully to get rid of the latter restriction,
the generated surfaces sometimes reveal a hybrid behavior, what means that there
are both elliptic and hyperbolic points in any neighborhood of the central point.

The first observation can be understood when considering the asymptotic expansion
(7.18s31) derived in the preceding section: the ratio o = y/A? > 1 causes divergence
of the principal curvatures. Also the second observation can be explained by spectral
properties of the subdivision matrix. The subsubdominant eigenvalue y has Fourier
index F(u) = {2,n—2}, and we will show below that this generically leads to non-
convex shape. The third observation is quite subtle, and can be explained only with
the help of a so-called shape chart, which summarizes properties of central rings for
all possible choices of initial data.

Before we come to that point, let us start with developing concepts for classifying
shape at the central point. Because, in general, the Gaussian curvature is not well
defined at x°, we have to generalize the notions of ellipticity and hyperbolicity. We
suggest three different approaches, respectively based on:

e The local intersections of the subdivision surface with its tangent plane
e The limit behavior of the Gaussian curvature
e [ocal quadratic approximation
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We will show that in all cases the behavior of the subdivision surface is closely
related to the shape of the central surface ring and, in the first and third case, to
spectral properties of the subdivision matrix. For simplicity, we continue to consider
algorithms of type (A, p, £) according to Definition 7.1n27.

We start by introducing an appropriate notion of periodicity for rings.

Definition 7.7 (P-periodicity). Let P = {k1,...,k,} be a set of indices, which
are understood modulo n. A ring f € C*(SY, K) is called P-periodic, if there exist
functions g;, g; € C’“(EO, K) such that its segments are given by

FCog) = (gisin(2mkij/n) + gi cos(2mkj/n)).
i=1

One easily shows that

Y fg)=0 if 0¢P. (7.20)

JE€ELn

Further, the space of P-periodic functions is linear. The product of a P-periodic
function f and a Q-periodic function g yields an R-periodic function fg, where
R := P £ Q contains all sums and differences of elements of P and O.

By (5.17%) and F(\) = {1,n — 1}, the tangential component £ = [f1, f2]L of
the central ring T is {1, n—1}-periodic, while the third componentz = f; pg-n°
is F(u)-periodic.

Now, we introduce three variants on the notion of an elliptic or hyperbolic point,
which apply to the special situation at the central point. As a first approach, let us
consider a non-parabolic point of a regular C2-surface. If it is elliptic, then the sur-
face locally lies on one side of the tangent plane. By contrast, if it is hyperbolic, then
the surface intersects the tangent plane in any neighborhood. This basic observation
motivates the following generalization. It involves the notion of the central tangent
plane which is the plane perpendicular to n® through the point x°.

Definition 7.8 (Sign-type). The central point x° of a subdivision surface x is called

e elliptic in sign if, in a sufficiently small neighborhood of x°, the subdivision
surface intersects the central tangent plane only in X;

e hyperbolic in sign, if in any neighborhood of x° the subdivision surface has
points on both sides of the central tangent plane.

This classification defines a minimum standard for subdivision surfaces: any high-
quality algorithm should be able to generate both sign-types in order to cover basic
shapes. The sign-type can be established by looking at the third component of the
central ring.

Theorem 7.9 (Central surface and sign-type). Let T = [, %] be the central ring
of the subdivision surface x.

o [fZ>0o0rz <0, then x° is elliptic in sign.
o [fZ changes sign, then x° is hyperbolic in sign.
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Proof. Intersections of x and the central tangent plane correspond to zeros of the
normal component z, of the transformed spline surface x,. According to (7.2127)
and (7.6n2), its rings 2" satisfy

and the assertion follows easily. 0

The last display implies more than is stated in the theorem. We see that the sign map
of 2] is equivalent to the sign map of Z in an asymptotic way. Thus, the distribution
of signs of the normal component z, can be studied with the help of the central ring,
except for points corresponding to zeros of Z. The next theorem relates the sign-type
and the Fourier index of the subsubdominant eigenvalue.

Theorem 7.10 (Fourier index and sign-type). For generic initial data, the central
point x° is hyperbolic in sign unless 0 € F ().

Proof. The function Z is F(u)-periodic. Hence, if 0 ¢ F(u), the sum of its
segments vanishes, ) jez, 25 = 0. Since Z # 0 for generic initial data, it has to
have positive and negative function values. g

The strong consequence of this theorem is that, for any good subdivision algorithm,
one of the subsubdominant eigenvalues must correspond to the zero Fourier block
of the subdivision matrix. Otherwise, the resulting surfaces will locally intersect the
tangent plane at the extraordinary vertex for almost all initial data. For example, the
standard Catmull-Clark algorithm reveals this shortcoming for n > 5: the Fourier
index of y is {2,n — 2} and the generated subdivision surfaces are, for generic data,
not elliptic in sign. In particular, they are not convex.

The second approach to a classification of the central point makes use of the fact
that the Gaussian curvature is well defined for all rings x™ with sufficiently large
index m.

Definition 7.11 (Limit-type). Wherever it is well defined, denote by kg the
Gaussian curvature of a subdivision surface x. The central point x° is called

o elliptic in the limit if ks > 0 in a sufficiently small neighborhood of x¢;
e hyperbolic in the limit if kK < 0 in a sufficiently small neighborhood of x°;
e hybrid, if k¢ changes sign in every neighborhood of x°.

Again, the limit-type of an extraordinary vertex is closely related to the central ring.

Theorem 7.12 (Central surface and limit-type). Denote by k the Gaussian cur-
vature of the central ring T. For generic initial data, the central point is

e clliptic in the limit, if kg > 0;
e hyperbolic in the limit, if ke < 0;
e hybrid, if kg changes sign.

The proof follows immediately from (7.19131). Again, this expansion implies more
than is stated in the theorem. We see that the sign map of the Gaussian curvature
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A% £

Fig. 7.2 Illustration of hybrid case: Hybrid shape of a subdivision surface generated by a modified
Catmull-Clark algorithm. (left) Lighted surface with an undesired pinch-off near the central point.
(right) Part of the surface shaded by Gaussian curvature. Blue and green colors indicate hyperbolic
points, yellow and red colors indicate elliptic points.

of T is equivalent to that of the rings in an asymptotic way. Thus, the distribution
of the sign of the Gaussian curvature in a vicinity of an extraordinary vertex can
be studied with the help of the central ring — except at parameters corresponding
to parabolic points of the central ring. The study of the Gaussian curvature of the
central surface is a basic tool for judging the quality of a subdivision surface since,
in applications, fairness requires that the extraordinary point be either elliptic or
hyperbolic in sign. The hybrid case leads to shape artifacts (see Fig. 7.217). A high
quality subdivision algorithm should therefore exclude the hybrid case completely,
while facilitating both elliptic and hyperbolic shape in the limit-sense. This is a
very strong requirement that is hard to fulfill in practice. To explain the problem,
let us consider two sets of initial data: Q[0] is chosen so that the central ring has
positive Gaussian curvature and Q[1] so that the central ring has negative Gaussian
curvature. Now, we consider any continuous transition Q[t], ¢ € [0, 1], connecting
the two cases. The Gaussian curvature of the corresponding central rings is a family
Ra[t] of functions connecting % [0] > 0 and Rg[1] < 0. If hybrid behavior is to
be excluded then the transition between the positive and the negative case has to be
restricted to isolated ¢-values where % [t] = 0. However, to devise an algorithm with
such a property is challenging since the relation between initial data and curvature
of the central ring is highly non-linear.

Relating < to spectral properties is rather difficult and does not promise re-
sults beyond Theorem 7.10n3. Since we want to be able to distinguish the desired
cup- and saddle-shapes from unstructured local oscillations, we consider a third ap-
proach. As we will show in Theorem 7.1614 of the next section, the subdivision
surface x is C¥ if and only if the function Z is a quadratic polynomial in the sub-
dominant eigenrings f1, fo, i.e., there exists a constant symmetric (2 X 2)-matrix H
such that the components of the central ring satisfy

EH-£—-z=0.
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Then, the Gaussian curvature of the central point is given by det(H/2). In general,
no matrix will satisfy the above identity exactly. But one can still try to determine a
best approximation in the least squares sense. To this end, we define an inner product
for real-valued rings by

(f,9) = Z /20 f(s,t,7)g(s,t,7)dsdt

JELn

and denote the corresponding norm by | - |. Now, for given £ and %, we define H as
the minimizer of the functional

o(H) = ’EH-E—ZF.

The matrix H provides information on the global shape of the central ring in the
sense of averaging, and its determinant is now used to define a third notion of hy-
perbolicity and ellipticity.

Definition 7.13 (Average-type). The central point x° is called

e clliptic in average, if det H > 0;
e hyperbolic in average, if det H < 0.

The average-type is closely related to the Fourier index of the subsubdominant
eigenvalue.

Theorem 7.14 (Central surface and average-type). For generic initial data, the
central point is

e not elliptic in average unless 0 € F(u);
e not hyperbolic in average unless {2,n — 2} C F(u).

Proof. We start with a simple observation for periodic functions. Let f be P-
periodic and g be Q-periodic. By (7.20x3),

(f,gy=0 if  0¢P=£Q, (7.21)

where we recall that P £ Q contains all sums and differences of elements of P and
Q modulo n. To put the optimization problem in a more convenient form, we set

p = + 43, q:= ¢} — 3, r = 2111, and write
o(H) =[tp(LH-L) - —z|* = |ap+ bg + cr — z|° (7.22)

where the coefficients a, b, c are defined by

(7.23)

LH~L::F+b C}.
c a—>

The sign of the determinant of H, which we are going to determine, is given by

sign(det H) = sign(det LH - L) = sign(a® — b* — ¢?).
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Minimizing the functional ¢ according to (7.22x3:) is equivalent to solving the
Gramian system

(0,p) (p,q) (p,7)| |a z
(r,q) (¢, 9) (g,m) | |b| = [(@,2)] - (7.24)
(p;7) {g,m) (r,r) | [c z)

Now, we determine the periodicity of the functions p, g, r. With the rotation matrix

cos(27/n) sin(27/n)

Ri= | _Gu(om/m) cosiemm)

we obtain for the segments

T 1 .
pj = Yol 0 (1) (o) = po
0= %oR| o |- (o)) = cos(mj/n)go — sin(4mj/m)rg
ri = o R _(1) (1) (o R7) = cos(dmij/n)qo + sin(4mj/n)ro

and observe that p is {0}-periodic, while ¢ and r are {2}-periodic. Hence, by
(7.21n3), the off-diagonal elements of the Gramian matrix in the first row and
column vanish, (p,q) = (p,r) = 0. If 0 ¢ F(u), the function Z is P-periodic with
0 ¢ P, and the first entry of the right hand side of (7.24:%) becomes (p,z) = 0.
Thus, a = 0 and sign(det H) = sign(—b? — ¢?) < 0. If {2,n — 2} ¢ F(u), the
function Zz is P-periodic with {2,n — 2} NP = (), and the second and third entry
of the right hand side of (7.24/) become (¢, z) = (r,Z) = 0. Thus, b = ¢ = 0 and
sign(det H) = sign(a?) > 0. O

As a consequence of this theorem, we see that the variety of producible shapes will
cover both basic average-types only if the subsubdominant eigenvalue is at least
triple with Fourier index F (1) D {0,2,n—2}. However, it must be emphasized that
this spectral property is by no means a sufficient condition for a good subdivision
algorithm, but merely a basic requirement.

Deeper insight is provided by the concept of shape charts, that classify the space
of shapes that can be generated by a subdivision algorithm. Let us consider a sub-
division algorithm of type (A, i, £) with a triple subsubdominant eigenvalue and
Fourier index F(u) = {0,2,n — 2}. Then the third component of the central
ring is

z=afs+Bfs+fs,
where the coefficients «, 3, depend on the initial data. Further, we observe that
all three shape types of the central point are invariant with respect to regular linear
maps. That is, if P and P = P M are initial data related by an invertible (3 x 3)-
matrix M, then the classifications of the corresponding central points x° and X°
coincide. For that reason, we may assume that the matrix L in (7.233s) is the identity
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and that, without loss of generality,
4+ 32 +41=1, y>0.

This observation implies that we can restrict a basic investigation of possible shapes
to the two-parameter family

0 = [, afs + Bfs+ V1 — a2 — B2fs]

of surface rings, where the parameters vary inside the unit circle,
(a,8) € I':={(a,8) e R*: & + > < 1}.

A shape chart ¢ := I' — 7 is a map which assigns to each «, 3 an indicator for the
shape-type, for instance

1 ifge? >0
Climit (o, ) := < 0 if &% changes sign (7.25)
-1 ifr2” <o,

where Rg’ﬁ is the Gaussian curvature of ¥, By Theorem 7.12x36, the value cjimit
(a, B) indicates whether the corresponding subdivision surface is elliptic, hybrid, or
hyperbolic in the limit. A shape chart thus summarizes, in a single image for all input
data, information about the possible shape in a neighborhood of the central point. In
particular, the hybrid region, i.e., the set of pairs («, 3) such that cjmit (e, 3) = 0,
can be used to assess the quality of a subdivision algorithm: the smaller that region,
the better the algorithm.

Shape charts can be visualized by coloring the different regions of I" and thereby
partitioning the unit circle into two or three subsets as in Fig.7.314. When com-
puting shape charts, possible symmetry properties can be exploited to increase effi-
ciency. Variants on the concept include in particular the following:

e Different normalizations of the triple («,(3,7). For example, max{|«|,|s],
|7|} =1 leads to square-shaped plots.

e Continuous variation of values. For example, the variance of trace W, see
(7.16n31), shows the deviation of the mean curvature of the rings X" from a con-
stant value.

7.3 Conditions for C¥-Algorithms

In this section, we derive necessary and sufficient conditions for curvature continuity
at the central point. It turns out that the sufficient conditions are extremely restric-
tive. This explains the failure of many early attempts to construct such algorithms.
We start with a necessary condition on the spectrum of the subdivision matrix.
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] 05 : 05 1

Fig. 7.3 Illustration of (7.25n0): Shape chart for the Catmull-Clark algorithm with n = 10 and
flexible weights. (left) Perspective view and (right) top view. Respectively, the colors red, green,
and blue indicate elliptic, hybrid, and hyperbolic behavior in the limit.

Theorem 7.15 (Necessity of ;1 < \?). A subdivision algorithm of type (\, i, £) can
be C§ only if (1,) < (\?,0).

Proof. Let us recall the expansion (7.14:13),

* M
WM = Qm,é (Tc)t er]:wc7 0= F
In view of Lemma 7.513, which states that W # 0 for generic initial data, we see
that pointwise convergence of the sequence W™, as required by Theorem 2.14s, is

possible only if o™ converges. g

If # < A% then o < 1 and W™ converges to 0. According to Theorem 2.14s, this
guarantees curvature continuity. However, in this case the central point is necessarily
a flat spot, i.e., the principal curvatures vanish here. For most applications, such a
restriction is not acceptable so that we do not elaborate on that case. Rather, we seek
conditions for nontrivial curvature continuity and assume from now on

(1, 0) = (3, 0).

Then, according to Theorem 2.14.s, a necessary and sufficient condition for curva-
ture continuity is that the limit

00

W= lim W™ = [W 0}
m— 00

be a constant (3 x 3)-matrix, i.e., it does not depend on the arguments (s, ¢, j). Now,

we reparametrize the rings x™ via the inverse of the planar ring £ = ¥ L, which is

an embedding for generic data,

K" (u,v) = xM(s), s:=& (u,v) €8,
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By (2.52), the corresponding embedded Weingarten maps are equal up to sign:
W™ (u,v) = +W™(s).
Following (7.612), the asymptotic expansion of X" is
(X™ —x°) - FC = [Au, A0, \*Z(u, v)],

where Z(u, v) := Z(s). Some elementary computations now yield

DE™=\"TC, (DX™M)T= AT, AT =nS, I =AM [zw z“}
so that L
xrm _x c\t11/ e T Zuu Fuv
W™n = (T)WT, W:= L - ]
Z’U/l) Z’U’U
Hence, the limit WE¢ = +WFE is constant if and only if the three functions Zy,,,, Zyyv,
and 2, are constant. This holds if and only if

z e Span{l,u7v7u2,uv,v2}.

That is, Z is a quadratic polynomial in u, v. Since [u, v] = £(s), and the components
of & are linear combinations of the subdominant eigenrings f; and f>, we obtain the
equivalent condition

z e span{l, f1, fa, [T, frfo, 15 }-

Now, we consider the central spline x according to Definition 7.212s. As observed
above, its rings satisfy

' =r=[£z], X" =[\TE Nz

We know that Z is a quadratic polynomial in the components of £ and write Z =
p(€). Being scaled copies of X", the other rings satisfy similar equations \>™z =
p™(A™E), where the functions p™ := A\2"p(A\~"™-) are also quadratic polynomials.
However, because the rings X join C2, all these polynomials must in fact coincide,
i.e., p™ = p. The resulting relation

)\2mp = p()\m)’ me NOv

shows that p is a homogeneous quadratic polynomial. Hence,

z € span{ f7, f1fa, f3}-

Finally, because
q
2= fopg 0" =arf +azfifo+asf; (7.26)
=3

must hold for any choice of generic initial data, we obtain the following result.
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Theorem 7.16 (Ck-criterion). A subdivision algorithm of type (X, \%,0) is a Ck-
algorithm if and only if the subsubdominant eigenrings satisfy

fqespan{flzaflf27f22}, q:'gv»q

Moreover, ¢ < 5

Proof. The first part of the theorem was derived above. The second part, saying that
the subsubdominant eigenvalue is at most triple, follows from linear independence
of the subsubdominant eigenrings according to Lemma 4.227s. 0

The functional dependence required by the theorem is extremely restrictive and ac-
counts, for instance, for the impossibility of finding C’%—variants on the Catmull—
Clark algorithm. To see this, we now focus on piecewise polynomial algorithms.

Definition 7.17 (C*-9-algorithm). Let { X;}; be a finite family of intervals forming
a partition of the domain X of segments,

==

Aring x™ € C*(S% RY, ) is said to have bi-degree q with respect to { X;}; if x™
restricted to X; is a polynomial of bi-degree at most ¢ for all 4, and a polynomial of
bi-degree g for at least one 7; we write

degx™ = q.
Further, a C*-subdivision algorithm (A, G) is called a C*:9-algorithm, if

max deg g¢ = ¢

for the generating rings gy.
For instance, the Catmull—Clark algorithm is a C —algorlthm and the Doo—Sabin
algorithm is a C1 -algonthm For tensor-product splines with sunple knots, the bi-
degree q exceeds the smoothness k only by 1. However, non-trivial C ?_algorithms
require a substantially higher degree. The results in that direction are all based on
the following observation:

Lemma 7.18 (Degree estimate for ). For n # 4, the characteristic map ¥ of a
standard Cf Lalgorithm satisfies

degv > k.

Proof. Let us assume that degtp < k. Then the segments v, are in fact not
piecewise polynomials on a partition, but simply polynomials on Z’ Equally, two
neighboring segments v ; and v, ,; differ only by a change of parameters,

¢j+1(57 t) = P, (t,—s).

Hence, ¥, = ;, implying that injectivity is possible only for n = 4. O
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For n = 4, the characteristic ring of the Catmull-Clark-algorithm and of the Doo-
Sabin-algorithm have degt = 1. For n # 4, the lemma and Theorem 7.1614
suggest, and the following shows, that the generating system G must have at least
bi-degree 2k + 2 to represent subsubdominant eigenfunctions.

Theorem 7.19 (Degree estimate for C§ I.algorithms). Let n # 4. For a non-
trivial C§ “Lalgorithm with characteristic ring 1,

q > 2degyp > 2k + 2.
In particular, the lowest degree for k = 2 is ¢ = 6.

Proof. By (7.26n4), with the complex characteristic ringf = fi; + ifs, the j-th
segment of the normal component of the central ring can be written as

Zj = a1f12,j +aafi,jfo;+ a3f22,j

= Re(af?) + Bf;1> = Re(awZ f3) + B fol?,

where o := (a1 — az — ia2)/2,0 := (a1 + a3)/2. The last equality follows
from (5.210:), saying that the segments of f are related by f; = wif;. By
Lemma 7.1814, the complex-valued piecewise polynomial fj has degree deg fy >
k+1.

For a bivariate polynomial p of degree d := degp we define the leading coeffi-
cient c[p] # 0 and the leading monomial m/[p](s,t) = s‘t?* by the split

p = c[plmlp] + Tlp],
where the trailing term
d
Tp] := Z st ¢ Z cips'th
i=041 i+k<d

summarizes all terms of degree d which contain at least the factor s and all
terms of degree < d. Obviously, for two polynomials py, pe with m[p;] = m[ps]
it is

clpip2) = clpi] elpa],  mlpipa] = (m[p1])*.

When restricted to a suitable subset of its domain,

fo = clfolmlfo] +Tfo], degm[fo] >Fk+1.

Because the characteristic ring f can be scaled arbitrarily, we may assume without
loss of generality that the leading coefficient is ¢[ fo] = 1. Hence,

fE=mlf))> + T3], |fol* = fofo = (mlfo])*> +T[I£2],
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and the coefficient of Z; to the monomial (m[fo])? is
Re(aw?) + 3.

This expression can vanish for all j € Z, only if « = S = 0. This implies
a; = ag = az = 0 and Z = 0, contradicting the assumption that the initial data be
generic. Hence, m[z;] = (m[fo])? at least for one j, showing that the degree of Z is
bounded by degz > degz; = 2d[fo] > 2(k + 1). O

7.4 A Framework for C;“-Algorithms

In this section, we provide a framework for constructing C%-algorithms. So far, the
algorithm (A, G) was assumed to be given, and 1) was determined as the planar ring
corresponding to the subdominant eigenvalues of the subdivision matrix A. By con-
trast, we now start with a function ¢ € C*(S%,[R?, ) and then derive a matrix A so
that (A, G) defines a C%-algorithm with v := ¢ as its characteristic ring. More pre-
cisely, we say that the planar ring o € C*(S% R2? Q) is a regular C*-embedding
of S with scale factor X if it has the two key properties of a characteristic ring, i.e.,

e ¢ is regular and injective, and
e there exists a real number A € (0, 1) such that ¢ and A¢ join C? according to
(4.82) when regarded as consecutive rings.

For instance, the characteristic ring of the Catmull-Clark algorithm represents a
regular C2-embedding of bi-degree 3, which may be used to construct a 022 6.
algorithm. But as mentioned already above, there is no need to derive ¢ from an
existing algorithm. The image of ¢ is denoted by

2:= p(S)).

Now, we define a family of reparametrization operators, taking rings to functions on
scaled copies of 2.

Definition 7.20 (Reparametrization R,,). For m € Ny, the reparametrization
operator R, maps a ring p € C*(S% R?) to a C*-function q := R,,[p] on
A2 C R,

4 A2 5 € ple (A TE)) € R

The inverse operator R,! maps a C*-function q on A™§2 to aring p := R,![q] €

Cr (S0, RY),
p:S) 35— a(\"p(s)).

The operator R,,, and equally R, !, is linear in the sense that R,,[af + Bg] =
AR [f] + BRmlg]. Given ¢, we denote the space of bivariate polynomials of total
degree 2 restricted to A2 by Py(A\"§2). The following definition is crucial. It
characterizes subdivision algorithms which are able to represent rings corresponding
to quadratic polynomials, and generate such quadratic rings from quadratic rings.
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Definition 7.21 (Quadratic precision). The subdivision algorithm (A, G) has qua-
dratic precision with respect to ¢ if

e for each quadratic polynomial p € P5(§2) there exists a real-valued ring x° €
C*(S%, R, G) with
Ro [XO} =D,

o for consecutive rings x° = GQ and x' = GAQ,
Ro[x°] € Po(£2) implies Ro[x'] € Po(2).

First, we observe that for a subdivision algorithm (A, G) with quadratic precision,
Ro[x°] € P2($2) implies Ro[x™] € P2(£2) and also R, [x™] € Po(A™$2) for all
m. Second, we consider the sequence

Ro[XO], Rl[Xl}, RQ[X2], ey

starting from Ro[x"] € P2(£2). Corresponding to consecutive rings that join C?,
all these polynomials coincide in the sense that they must have the same monomial
expansion. However, strictly speaking, they are not equal because the domains are
different. To account for that fact, we write

Ro[x’] =2 R,[x™], meN.
In particular, if Ro[x"] is a monomial of total degree ¢ < 2, we have
Ro[x™] = MM Ro[x"]. (7.27)
Remarkably, quadratic precision immediately yields an appropriate eigenstructure
for (A, G).

Lemma 7.22 (Quadratic precision yields correct spectrum). Let o be a regular
C*-embedding of SO with scale factor \. If (A, G) has quadratic precision with
respect to p, then there exist eigenvalues \;, eigenvectors v;, and eigenrings f; =
G, satisfying

Mo=1, AM=X=X\ A3=2X=2X5=2)\%
fo=1 [fi.fol=w. fs=f. fa=Ff [s= 13

Here, with a slight abuse of notation, we indexed eigenvalues without assuming that
the whole sequence is ordered by modulus. In particular, further eigenvalues with
modulus greater than \? are not excluded a priori.

Proof. With & = (x,y), we define the monomials

po(&) =1, p1(&) =z, p2(€) =y, ps(€) = 2%, pa(€) = zy, ps(€) =¥°

in Py(£2). Fori = 0,...,5, we have \; = A%, where /; is the total degree of p;.
By definition of quadratic precision, the function f; := Ry '[pi] = pi o ¢ can be
written as f; = Gu! for some vector v} # 0. By (7.27m), Ro[GA™v]] = Nimp;,
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and hence, applying R ! on both sides,
/ /
GA™v; = A\ fi = A" Gwj.

If G is linearly independent, it follows immediately that v, is an eigenvector of A to
A, but we have to show that the same is true in general.
For k € Ny, let v; := )\i_kAkvg. Then

Gui = A\ "G AR, = f;

shows that v; is another possible choice of coefficients corresponding to the poly-
nomial p;. As before,

With A = VJV ! the Jordan decomposition of A, let

w =Vl wi= Vo = AR TR
Recalling (4.25r), F' and w are partitioned into blocks F). and w,. corresponding to
the Jordan blocks J,. of J. Condition (7.28,47) yields the equivalent system

m — m — s
E.J M w, = \N"Fow,, r=0,...,7.

When determining solutions w,., we distinguish two cases: First, if the eigenvalue
corresponding to J, is A, = 0, then w, = A, kafw’T = 0 is the only solution for &k
chosen sufficiently large.

Second, if A, # 0, then Lemma 4.22,s guarantees that the eigenfunction fTO does
not vanish. Of course, the trivial solution w,. = 0 is possible. Otherwise, if w, # 0,
let v denote the largest index of a non-vanishing component, i.e., w’. = 0 for i > v
and wY # 0. By (4.2774), we have the asymptotic expansion

m — m o ymuv 20, v
AN Frw, = FoJMw, = A flw),

implying \; = A, and v = 0. Hence, w, = [w?;0;...;0] is an eigenvector of
J to the eigenvalue \;. Summarizing, we have J,.w, = \;w, for all r. Therefore,
Jw = )\iw and Avi = )\ﬂ}i.

For ¢ = 0,...,5, we obtain the eigenvalues A\g = 1,A\;1 = Ay = A and \3 =
A4 = A5 = A2, as stated. The corresponding dominant and subdominant eigenrings
are fo = 1, and [f1, f2] = @. Hence, f3 = p3op =pjop = (p1op)® = ff,and
equally f4 = f1f2, f5 = [3. O

Together, Lemma 7.22:145 and Theorem 7.16,143 show that quadratic precision and
scalable embeddings yield promising candidates for C-algorithms.

Theorem 7.23 (Quadratic precision suggests C5-algorithm). Let o be a regular
C*-embedding of S° with scale factor . If the symmetric C*-subdivision algorithm
(A, G) has quadratic precision with respect to p, and if |\;| < \? for all i > 5,
then (A, G) is of type (\, \?,0) and defines a C-algorithm.
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Now, we describe a four-step procedure which yields subdivision algorithms with
quadratic precision. The four steps reparametrization — extension — turn-back — pro-
Jjection suggest the acronym PTER for the framework, where as usual the concate-
nation of operators is from right to left.

Let us assume that a C*-system G of generating rings and a regular C*-
embedding ¢ with scale factor A are given and have the following properties:

e The generating rings g, are piecewise polynomial with maximal degree ¢ in the
sense of Definition 7.1714.

e In view of Theorem 7.19:4, the embedding ¢ = G[v1, v2] has degree deg ¢ <
k/2.

e There exist vectors vs, v4, v5 With

GU3 = (G’Ul)Z, GU4 = (le)(Gvg), GU5 = (G’Ug)2

to account for Theorem 7.16ns. In particular, this assumption is fulfilled if G
spans the space of all piecewise polynomials with respect to the given partition
and the given order of continuity.

To simplify notation, we describe how to compute x* = GQ! from x° = GQ for
given initial data Q. But the whole procedure is linear and independent of the level
m so that it defines a stationary algorithm. The building blocks are characterized as
follows:

R - Reparametrization: Reparametrize the ring x° as a function y° on 2,
0 0
y = Ro[x"].

E — Extension: Extend y° to a function y'! defined on \§2 such that quadratic poly-
nomials are extended by themselves,

yo =yl if y? e Py(02).

We note that smooth contact is required only for quadratic polynomials. In
general, y° and y! do not need to join continuously. Since G is not necessarily
linear independent, y'* may depend not only on y°, but also directly on the
initial data Q. We write in terms of the linear extension operator €

y'=£[Q.y°].

Some examples of £ are as follows:

(1) A projection from the space of functions on 2 onto some finite dimensional
space IP(§2) of bivariate polynomials containing Py (§2). This projection could
be obtained, e.g., by a least squares fit or by an interpolant §° € P(£2) of y°.
Then, the extension is defined by the polynomial ¥, i.e., y' = §°. In the same
way, also spaces of piecewise polynomials can be used.

(i1) The minimizer of some positive semi-definite quadratic fairness functional
F, acting on functions defined on A\f2, with the property that F vanishes on
P> (AS2). For instance, for functions y1 joining C* with yO, one can consider
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F(yh ;:/ Akyl(€)d¢ — min
A2

or discrete variants thereof. Also here, if y* € P(§2), then y! =2 y° because
F(y') =0fory! € Py(\2).
T — Turn-back: Convert the function y' back into a ring,

=Ry

In general, this ring is neither in the span of G, nor does it join smoothly
with x°.

P — Projection: Project X! into the subspace of C*(S% R? () consisting of rings
that join C* with x°. The coefficients Q' of the resulting ring x! = GQ' are
obtained by a linear operator P,

Q' = P[Q,x'],

where the first argument provides information to enforce the C*-condition.
Crucially, P has to be chosen such that x! = %! if X! is a quadratic polynomial
in the components of ¢, i.e., if Ro[X!] € Po(£2). Thus, P is typically defined
by a constrained least squares fit with respect to some inner product, either
continuous or discrete,

|X' — GQ'| — min.
We note that, if G is linearly dependent, P is not uniquely determined by the
above optimization problem.

Together, the PTER-framework yields the new coefficients

AQ = Q' :=P[Q, R;'[£[Q. Ro[GQJ]]].

The columns of A are obtained by substituting in unit vectors for the argument Q.
Then, any ineffective eigenvectors should be removed from A according to Theo-
rem 4.2077 to obtain a genuine subdivision matrix A.

Theorem 7.24 (The PTER-framework works). The PTER-framework yields a
Calgorithm (A, G) if | \i| < A2 fori > 5.

Proof. Tracing subdivision of the ring x° corresponding to a quadratic function
R[x™], one easily sees that the so constructed algorithm (A, G) has quadratic
precision and the assumptions of Theorem 7.23:4 are satisfied. U

7.5 Guided Subdivision

The framework in the previous section is inspired by and closely related to that of
Guided subdivision. Guided subdivision aims at controlling the shape by means of
a so-called guide surfaces, or guide for short. This guide g serves as an outline
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of the local shape of the subdivision surface x to be constructed, and is not changed
as subdivision proceeds. The sequence of rings will be defined such that consec-
utive rings join C2 and the reparametrization of x™ approximates the guide on
A2 = A" p(S2). For a given regular C*-embedding ¢ of SY with scale factor ),
we expect

Rin[x™] ~ gama,

or equivalently
x™ ~ R, gl

Thus, the shape of the spline surface approximates the shape of the guide.

It is instructive to explain the concept of Guided subdivision by means of a con-
crete and actually quite simple setting. Just like the framework, it has many op-
tions, generalizations and extensions, such as algorithms for triangular patches or
for higher smoothness and precision.

Let {X,}3_, be the natural partition of XY into three squares with side length
1/2, and choose smoothness k& = 2 and bi-degree ¢ = 7. Bi-degree 7 is not minimal,
but chosen to simplify the exposition of Hermite sampling below.

Due to the partition, for 0 < ¢ < k = 2 and all j € Z,, the functions

D{Xm(1/2,-7j)7 Dgxm(71/27])

defining the inner boundary of x™ are polynomials of degree at most ¢q. Hence, the

C?-contact conditions (4.8x2) imply that the corresponding functions
D{Xerl(la'aj)a Dgxm+1('717j)v

at the outer boundary of x™*! are also not piecewise polynomial but each a single

polynomial of degree ¢ = 7 or less. Therefore, we define G = [§1,...,Jg] tobe a

system of rings spanning the linear subspace of all C2-rings with bi-degree ¢ = 7,

and for which

D{gf(L)j)a Dégé(ala])a ngék‘:2a

are polynomials of degree < 7. Then a ring in C*(S% R?, G) is uniquely defined

by its partial derivatives up to order (452, 251) = (3, 3) at the 4n points

2 2
1. 1 2. ; 3. ; 4. ; ;
Sj T (1/2507.7)7 S_j T (1707.])7 Sj T (1/271/2a.7)a Sj T (1517.7)7 J 6(33’9)

see Fig.7.41s1. To formalize the construction of rings from partial derivatives, we
define the tensor-product Hermite operator H of order (3, 3). The operator H maps
aring x° to the (4 x 4)-matrix
01 . B0
HE = [DID2X] 0,0y <0<
of partial derivatives up to order (3, 3).
For simplicity, we consider polynomial guides only. To represent them in mono-

mial form, let
M, = [m%u]v—‘ruﬁh mu,u(may) =Ty,
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o O

Fig. 7.4 Illustration of (7.29150): Hermite sampling at the marked points determines the rings.

span the space P,. of bivariate polynomials of total degree < r. It is convenient to
define the algorithm by means of a diagonal matrix J and a corresponding system
F of eigenrings. Let F' = [f, u]u+.<, be the set of rings f,, € C*(S2,R,G)
interpolating the reparametrized monomials Ry *[m,, ] up to order (3,3) at the
points sj-,
H{fo — Ry mu]](sh) =0, i=1,...,4, j € Zy,.

According to the labelling of generating rings f, ., the vector of initial data has the
form P := [p,, |, +p<r sO that

T

XO =FP = Z i fu,upl/,,u-

v=0 pu=0

Since the values of a monomial m, , on A2 and on A\™ 2 are related by a
scale factor \¥*#, and since this monomial corresponds to the rings fu,v» Guided
subdivision can be defined by a simple scaling process. We define the diagonal
matrix

J = diag ([N "], 4 u<r])
to obtain the recursion
X" = FP", P"i=J"P = \"p, e

Although this is needed neither for the analysis nor for an implementation, we
briefly discuss a possible conversion of the setup into a subdivision algorithm (4, G)
in its genuine form. Let B, = [b,,,],+.<, denote the vector of bivariate Bernstein
polynomials of total degree < r on the unit triangle. Because these Bernstein poly-
nomials are linearly independent, monomials can be represented as linear combi-
nations of them. That is, there exists an invertible matrix V' with M, = B,V and
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B, = M, V!, Then we define
G:=FV™' Q:=VP, A:=VJV !
to obtain
=FJ"P =GA™Q.

Because the elements g, , of the generating system G are Hermite interpolants to
the Bernstein polynomials, they form a partition of unity. Further, A represents just
de Casteljau’s algorithm with scale factor A,

B(A6)Q = Br(§)AQ, ¢ = (z,y),

showing that the rows of A sum to 1.

Definition 7.25 (Guided 02 ,--subdivision). For » > 2, the subdivision algorithm
(A, G) with A and G as deﬁned above is called Guided 02 - "_subdivision. The poly-
nomial

U A2 3¢ B(9QeRr?

meENy
is called the guide to the initial data Q.

Although the minimal value r» = 2 is impeccable from a theoretical point of view,
one typically chooses much larger values for r to define a space of rings which
covers a sufficiently rich variety of shapes. Let us discuss some implications of the
above definition.

First, the subdivision matrix A and the diagonal matrix J = V1AV are similar
so that we can easily read off the common spectrum and see that the structure of the
leading eigenvalues is just right.

Second, because J is diagonal, we have

T r—v

" =FJ"P = Z Z )\m(yﬂt)mu,upu,m
v=0 pu=0

showing that x" interpolates the reparametrization of g\m ¢,

T r—U

H[x™ = R gl (sh) =D > ATy, H(f, — Ry 'mal(sh) = 0.
v=0 pu=0
Hence, by the chain rule,
D Dyx™(sh) = 20T DYDY x™+ ()
DozDﬁ m(s ) _ 2(x+[j‘D(xDﬁ m+1(s )
for (a, 8) < (3,3). Since, for £ < 2,

Dfxm(la"j)’ Déxm( ) De m+1(2’.’j) DZ m+1(727j)
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are all polynomials of degree at most 7, we conclude that coincidence of partial
derivatives at the points s} implies

x™(1/2,-,§) = 2'Di{x" (1, -, 5)
sz (-, 1/2,5) = 2" Dix™ (-, 1, 4).

This shows that consecutive rings join C? so that Guided subdivision (4, Q) is
indeed a C2-algorithm.

Third, the surfaces x and g have third-order contact at the points 27™ z . In
particular, the points

x(27"s}) = g(A"E)), &5 = (sh)
and also the embedded Weingarten maps

Wi (277s)) = W (A";)
coincide. This property accounts for our initial statement, saying that the image of
g yields a good approximation of the image of x. As one approaches the center,
the interpolation points become denser and denser so that the shapes are closer and
closer.

While the latter observation is relevant for a qualitative assessment of shape, the
next theorem verifies analytic smoothness.

Theorem 7.26 (Guided C -subd1v1smn works). For r > 2, Guided CQQZ
subdivision (A, G) defines a C "_algorithm.

Proof. For v + pu < 2, the ring Ry '[m, ] lies in C?(S%, R, &), and hence
fu = Ry *[my,)- Since J is a diagonal matrix, we can easily read off the non-zero
eigenvalues A%, and see that the functions f,, , are the corresponding eigenrings.
The eigenring to the dominant eigenvalue \g = A\ = 1 is

foo =R [moo] =1,
the eigenrings to the subdominant eigenvalue A\ = Ao = ) are
[f1.0, fou] = Ry HImae,moa] = ¢,

and the eigenrings to the subsubdominant eigenvalue A3 = Ay = A5 = A2 are

[f2,0, f1,17 f0,2] = Ral[mzo, mi1, mo,z] = [f12,o7 fl,OfO,la f(?ﬂ
All other eigenvalues are, by construction, smaller so that the claim follows from
Theorem 7.16/14. 0

Guided 0327 -subdivision fits the pattern of the PTER-framework. The extension
process yields the guide g restricted to the domain A\{2, while the projecting step
into the appropriate space is defined via Hermite sampling at the points E;.
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fairness, Freeform splines should have deserved better.

11. The Guided subdivision of Karciauskas and Peters [KP0O5, KPO7b, KMPO06] is
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