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1 Introduction

The aim of these notes is to illustrate a proof of the following remarkable Theo-
rem of Alberti (first proved in [1]). Here, when u is a Radon measure on Q C R”,
we denote by u? its absolutely continuous part (with respect to the Lebesgue mea-
sure Z"), by p* := u — p? its singular part, and by || its total variation measure.
Clearly, || = |u“| and |u|* = |u*|. When u = Du for some u € BV (Q,RF),
we will write D*u and D%. If v is a nonnegative measure, (/v will denote the
Radon—Nykodim derivative of p with respect to v. Finally we recall the polar
decomposition of Radon measures, namely the identity u = ‘ﬁ—‘ ||, which implies

that the vetor Borel map p /|| has modulus 1 u-a.e.

Theorem 1.1. Let u € BV (Q,R*) for some open set Q C R". Then rank(Du/
|Du|(x)) =1 for |D°ul-a.e. x € Q.

We start by discussing what can be inferred from the “standard theory” of BV
functions without much effort. A first conclusion can be drawn from the BV Struc-
ture Theorem (see Sect. 3.6, Theorem 3.77, and Proposition 3.92 of [3]) for which
we first need some terminology. Given an L' function u we say that u is approx-
imately continuous at x if there exists i(x) € R¥ such that lim, 7" Jp, o () =
ii(x)|dy = 0. We denote by S, the set of points where « is not approximately contin-
uous and we say that x € S, is an approximate jump point if there exists v(x) € §"~!
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and u™ (x) € R such that

. 1 + —
iz ([ a0 = @y [ )= wlay) <o,

where B> (x) = {y € By(x) : &(y —x) - v(x) > 0}. The triple (v(x),u™ (x),u"(x)) is
unique up to a change of sign of v(x) and a permutation of u™ (x) and u~ (x). The
set of approximate jump points is denoted by J,,.

Finally, we recall that an (n — 1)-dimensional rectifiable set R C R" is a Borel
set which can be covered 7#"*~!-almost all by a countable family of C! (n—1)-
dimensional surfaces. Here, 7% denotes the k-dimensional Hausdorff measure.

Theorem 1.2 (Structure Theorem for BV functions). If Q C R" is open and
u € BV(Q,RK), then J, is a rectifiable (n — 1)-dimensional set, NS\ T =
|Du| (S, \ Ji) = 0 and D°u can be decomposed as D°u+ D’u, where

o |Du|(E) = 0 for every Borel set E with " (E) < oo;
o Diu=u"—u )ov" 'LJ,.

Here and in what follows, given a measure y and a Borel set £ we denote by
UL_E the measure given by ul_E(A) = u(E NA). Following [5], we call Du and
D/u respectively Cantor part and Jump part of the measure Du. Thus, Theorem 1.2
implies the statement of Theorem 1.1 when we replace |D*u| with [D/u|.

A second fact that can be inferred from the “standard theory” of BV functions is
the following dimensional reduction:

Proposition 1.3. Theorem 1.1 holds if and only if it holds for Q = B1(0) C R? and
Rt = R2.

This proposition will be proved in Sect. 2. Thus, the key point of Theorem 1.1 is
to show that M has rank one |D u|-a.e. when u is a BV planar map. A first heuristic
idea of why this property indeed holds is given in Sect. 3. The key remark of that
section is the following lemma, which has a quite simple proof.

Lemma 1.4. Let Q C R? be connected and u € BV (Q,R?) be such that Du/|Du| is
a constant matrix M of rank 2. Then, Du = cM.£*_Q for some ¢ > 0.

Building on this lemma and on a “blow-up” argument, we prove in Sect.3
a particular case of Theorem 1.1. However, this simple strategy cannot prove
Theorem 1.1 in its full generality (see Sect. 3, in particular Proposition 3.3). Alberti’s
strategy relies on replacing Lemma 1.4 with Lemma 1.5 below. From now on a set
C C R? will be called a closed convex cone if there exist e € S! and 0 < a < 1 such
that C = C(e,a) :={x:x-e > alx|}.

Lemma 1.5. Let Cy and C, be two closed convex cones such that CyNCy = (—C1)N
C = {0}. Let Q C R? be open and vy, v, € BV(Q) be two scalar functions such that
Dv;/|Dvi|(x) € C; for |Dvi|-a.e. x. If i > 0 is a measure such that i << |Dv;| for
i=1,2, then u << Z’LQ.
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This lemma will be proved in Sect. 4. We want to stress here the analogies with
Lemma 1.4. Set v = (v, v;). By the polar factorization, the main assumption of
Lemma 1.5 could be restated as Dv/|Dv| belongs (|Dv|-almost everywhere) to a
suitably small neighborhood of a constant matrix M of rank 2. Moreover the last
sentence is equivalent to |Dv| << .Z2L_Q. Thus, we can consider Lemma 1.4 as a
rigidity result and Lemma 1.5 as its quantitative counterpart.

Now consider u € BV (Q,R?) and the Borel set E := {x: rank (Du/|Du|(x)) = 2}.
Standard arguments show that £ can be decomposed in countably many Borel pieces
E; where Du/|Du| is very close to a single constant matrix M;. Thus the relaxed
assumption of Lemma 1.5 suggests that we could use a “decomposition’” approach,
in contrast with the “blow-up” argument which builds on the rigidity Lemma 1.4.
More precisely, we will show in Sect. 5 that the decomposition in Borel pieces E;s
can be chosen so that

o If we fix any i and set u := |Du|L_E;, then there are two BV scalar functions v,
and v; such that vy, v, and u satisfy the hypotheses of Lemma 1.5.

Clearly, the decomposition stated above and Lemma 1.5 show that u is absolutely
continuous, i.e. they prove Theorem 1.1. The construction of the v;s is the second
key idea of Alberti’s proof. The argument combines a simple geometric considera-
tion on the level sets of the u;s together with a clever use of the coarea formula for
BV scalar functions.

Recently, Alberti, Csorniey and Preiss, (see [2]) have proposed a different proof
of the Rank-One Theorem. This new proof uses as well the coarea formula, but it
avoids Lemma 1.5, and relies instead on a general covering result for Lebesgue-null
sets of the plane. Let us mention, in passing, that this last result has many other deep
implications in real analysis and geometric measure theory; see [2].

2 Dimensional Reduction

Proof of Proposition 1.3. Assume that Theorem 1.1 holds for maps u € BV (B;(0),
R?) with B (0) C R2. Clearly, by translating and rescaling, we immediately con-
clude the theorem when u € BV (B,R?) for any two-dimensional ball B. The state-
ment of Theorem 1.1 is trivially true if Q C R or if kK = 1 Moreover, any open set
Q C R" can be written as countable union of balls. Hence it suffices to prove the
theorem when Q is a ball of R", n > 2, and k > 2.

From n =2 to n generic. Here we prove Theorem 1.1 for maps u € BV (B,R?)
whenever B is an n-dimensional ball. We argue by contradiction and let u €
BV (B,R?) be such that rank (Du/|Du|(x)) = 2 on some set E with |D*u|(E) > 0.
Set M = Du/|Du| and choose coordinates x1, ..., x, on B and u;,u; on R?. Clearly,
M has n(n— 1) /2 different minors, corresponding to the choice of coordinates x;, x;
with 1 <i < j < n: We denote them by M. If we set E;; := {x : rank (M"(x))
= 2}, then E = |;;Eij, and hence |D°u|(E;;) > 0 for some i and j. Without loss
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of generality we assume i = 1 and j = 2. Consider the matrix valued measure
(U)o = (O e )1 With I, 00 = 1,2. Then, rank (u/|u|(x)) = 2 for |u|-a.e. x € Ep
and |u*|(E12) > 0.

For any y € R"~2 we define By = {(x,x2) € R?: (x1,x2,y) € B}. Clearly, By is
either empty or it is an open two-dimensional ball. Moreover, we define

vy i By — R? by vy(x1,x2) = u(x1,x2,y).
By the slicing theory of BV functions (see Theorem 3.103, Theorem 3.107, and
Theorem 3.108 of [3]) we have:

(a) vy € BV(B,,R?) for £ 2-ae.y € R"2;
(b) 4 =Dvy® £" 2 and |u| = |Dv,| @ L 2.

(Here, when o is a measure on ¥ and y — f, a weakly measurable map from Y into
the space .# (X) of Radon measures on X, the symbol f3, ® o denotes the measure
Y on X X Y which satisfies

| edriey) = [ [ oty)dB,)daty)
XxY YJX
forevery ¢ € C.(X xY).)

(b) implies two things. First of all,

Dy,
|Dvy

(x1,x2) = “'Lj—|(x17x27y) for #"2-ae.y and |Dvy|-ae. (x1,x2). (1)
Second, if for every y we set Ey 1= {(x1,x2) : (x1,X2,y) € E}, then

/RH DV (Ey)d.2"72(y) = 1| (E) > 0. )

Thus, from (a), (1) and (2), we conclude that there exists a y such that v, €
BV (By,R?), |Dv}|(Ey) > 0, and rank (Dvy/|Dv,|(x)) = 2 for |Dvy|-a.e. x € Ey. Such
vy contradicts our assumption that Theorem 1.1 holds for maps u € BV (B,,R?).

From k =2 to k generic. Fix any u € BV(BJR"), with k > 2 and B n-dimensional
ball, and choose coordinates uj,...,u; on R¥. For any pair of integers 1 < i <
j <k, consider the map u;; := (u;,u;) € BV(B,R?). If M = Du/|Du| and M;; is
the corresponding 2 x n minor, then Du;; = M;;|Du|. Thus, by the previous step,
rank (M;j(x)) <1 for |D*u;j|-a.e. x, and hence for [D*ul-a.e. x. Set

Ejj := {x:rank(M;j(x)) <1} and E:= () Ej.

1<i<j<k

Then, |D*u|(R"\ E) = 0 and rank (M (x)) < 1 for every x € E. This concludes the
proof. O



A Note on Alberti’s Rank-One Theorem 65

3 A Blow-Up Argument Leading to a Partial Result

We start this section by proving Lemma 1.4.

Proof of Lemma 1.4. We let M be the constant matrix Du/|Du| and y = |Du|. By
standard arguments, it suffices to prove the lemma when Q is the unit ball B;(0).
Denote by u; and u, the two components of u. Then Du; = v;ut, where vi,v, € R?
are two linearly independent vectors. Let { @¢ } ¢~0 be a standard family of mollifiers
supported in B¢ (0) and consider the mollifications u; * @¢ in B;_¢(0). Notice that
D(u; * @) = vill * @, and hence u; * @ is constant on the direction orthogonal to
vi. Therefore the density of the absolutely continuous measure U * ¢ is a function
Je which is constant along two linearly independent directions. Thus, f; is constant.
Letting € | 0 we complete the proof. O

This simple remark leads to a partial answer to Theorem 1.1, given in Proposi-
tion 3.2.

Definition 3.1. Let u be a measure on Q C R? and for any x in the support of 1t and
any r €]0,dist (x,dQ)[ consider the measures (i, on B1(0) given by

Wer(A)=p(x+rA) /|| (B (x)) for any Borel set A C B1(0).

We say that a measure Ll is tangent to u at x if for some sequence 7, | 0 we have
Hx.r, 4*MO~

A nonnegative measure it on Q C R? is said to have only trivial blow-ups at x, if
every tangent measure to i at x is of the form ¢.#?L_B;(0). For u € BV (Q,R?) we
denote by T the set of points where |D*u| has only trivial blow-ups.

This definition of tangent measure is very similar to that introduced by Preiss in
the fundamental paper [6]. We are now ready to state our

Proposition 3.2. Let u € BV(Q,R?). Then rank (Du/|Du|(x)) = 1 for |D*ul-a.e.
x&T.

Proof. We argue by contradiction and assume that the proposition is false for some
u. Denote by p the measure |D*u|. Then, by standard measure-theoretic arguments,
it is possible to find a point x ¢ T and a sequence r, | O such that the following
properties hold:

(i) My, —"Uo, and Uy # c.Z"LB;(0);
(i) |[Duf — u|(B/(x)) = o((B/(x)));
(iii) M = Du/|Dul(x) is a matrix of rank > 1 and

. 1
8 07 o P/1P410) — D) =0
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Let 7, be the average of u on B,(x) and define the function u, € BV (B;(0),R?) as

Pt n) —w)
4 0) = (B, ()

It follows that Du, = [Duly », and hence |Du,|(B1(0)) = 1. Moreover, since the aver-
age of u, is 0, the Poincaré inequality gives ||u,||;; < C. Thus, we can assume
that a subsequence, not relabeled, of {u,,} converges to some uy € BV (B1(0),R?)
strongly in L'. Now, from (ii) we get |Dul., — t,,—*0 and from (iii) we con-
clude [Du]y — M|Dul, ,—*0. Therefore, by (i), Du, = [Du],,—*My. This implies
Duy = MUy, because u,, converges to up. Applying Lemma 1.4 we conclude
Uo = ¢.Z?L_B;(0), which contradicts (i).

Unfortunately, we cannot hope to prove Theorem 1.1 by showing that singular
parts of BV functions have necessarily nontrivial blow-ups. More precisely we have

Proposition 3.3. There exist BV maps u such that |D°u|(T) > 0.

Proof. The example 5.8(1) of [6] gives a nonnegative measure [ on a bounded
interval / which is singular and such that g, ,—* %.,2” "L[—1,1] for u-a.e. x. Clearly,
any primitive of i is a bounded BV function which satisfies the requirements of the
proposition. a

4 The Fundamental Lemma

Before coming to the proof of the lemma, let us explain its basic ingredients.
Assume for the moment that the v;s of the lemma are regular, and that u = .22 <
C|Vv;|. Consider the map v = (vy,v). Since the gradients Vy; belong everywhere
to the cones C; and C; NC, = (—C) NG, = {0}, a simple algebraic consideration
shows that det Vv controls, up to some constant depending on the C;s, the product
|[Vv1||Vv2|, and hence f2. Thus we can bound the L? norm of f by the integral of
det Vv. A second key remark is that the geometric constraints on the C;s imply that
v is almost injective (more precisely, v would be injective if Vv; € C; \ {0}). Thus,
[ det Vv can be computed using the area formula. This means that | f> can be bound
in terms, for instance, of the L norm of v, but independently of Vv. In the proof
below we will extend such a priori estimate to the general case, using truncations
and a suitable regularization procedure.

Remark 4.1. In the rest of these notes we will use extensively the following elemen-
tary fact. Let C = C(e,a) = {x: x-e > a|x|} be a closed convex cone, Q C R? an
open set and v € BV (Q,R). Then, it follows easily from the polar decomposition of
measures that Dv/|Dv|(x) € C for |Dv|-a.e. x if and only if d,v > a|Dv|.

Proof of Lemma 1.5. We can assume without loss of generality that vi,vo € L™.
Indeed for every k € N set v¢ = min(max (v;, —k), k) and Ex = {|v1| <k} N {[v2| <k}.
Then, by the locality of |Dv| (see Remark 3.93 of [3]):
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e vk VA are bounded BV functions which satisfy the assumptions of the lemma;
o U(Q\UEr) =0and uLEy << |Dv;|LE; = |DVF|LE; < |DVX|.

Therefore, if the lemma holds for bounded BV functions, then we conclude that
uLE, << £?Q, and hence that u << £?L_Q. In addition, since every open
set Q can be covered by a countable family of convex subsets, we will assume that
Q is convex. Finally, we can assume, without loss of generality, that yu < N|Dv;|
for some constant N. Indeed, for any N > 0 let Ey be the set of points x where
the Radon-Nykodim derivatives i /|Dv;|(x) < N. Then u(R?\ UyEn) = 0 and
UL Ey < N|Dvi|.

Let any such v;s and Q satisfy all these assumptions, and let C; and C; be the
cones of the lemma. Recall that C; = C(e;,a;) for some 1 > a; > 0 and ¢; € St
Given two vectors z1,22 € R2 we measure the angle 0(z1,z2) between z; and zp
in counterclockwise direction. By possibly exchanging the indices we can assume
0(e1,e2) < m. Then, the assumptions C; NC, = (—C;) NC, = {0} translate into
the existence of a constant 8y > 0 such that 8§y < 0(f1,f>) < w — 8 for every pair
(f1,/2) € C x C,. Therefore, for § = sindg > 0,

det(f1,/2) = |fill 2sin@(f1,£2) > 8[fillf2l  Y(fi,o) ECLxCo. (3)

By Remark 4.1, d,;v; > aj|Dv;|. Set wi(x) = v;(x) + arctan(x- ¢;) and w = (wy,ws)
and note that

(@) de;wi > ai|Dwl;
(b) [Oe;wi](Br(x)) > 0 for every ball B,(x) C Q;
(c) H <N|Dv;| < Na;lﬂeivi < Naflﬂe,.w,'.

Let {@g} be a standard family of nonnegative mollifiers supported in B, (0) and
consider the mollifications w * @, in the open sets Qg := {x € Q : dist(x,dQ) > €}.
We claim that

(@) V(wix@e)(x) € C; for any i and any x € Q,;

() wx Qe : Q¢ — R? is injective;

©) ux@e < Na;lae,. (Wi @g ).

From (a) we get d,, (Wi * @¢) > a;|Dwi| * @ > a;|D(w; * @¢)|, which, by Remark 4.1
and the smoothness of w; x ¢, implies (a’). (¢’) follows from p < Naf&eiw,'. We
now come to (b’). Note that, by (b), d,; (Wi * @¢) > 0. So Vw; * @¢(x) # 0 for every
x € Qg, and hence belongs to C; \ {0}. Let x # y € Q,, and set f := (x —y)/|x—y|.
We claim that, for some i,

|f-z] > 0forall z € C;\ {0}. 4)

Otherwise, there are z; € Cy and z; € C, with |z;] = 1 and z; L f. Therefore, either
7] =22 Or 71 = —2, contradicting C; NCy, = (—C1) NCy = {0}. Next, write

[y—x]
wix Qe(y) —wix @e(x) = /0} Vwix @z (x+0f)- fdo. (5)
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Recall that Vw; x @ (x+ 0 f) € C;\ {0}. Moreover, since C; \ {0} is connected, (4)
implies that the integrand in (5) is either strictly positive, or strictly negative. In any
case, w; * Qg (y) # w; * @g(x), which gives (b”).

We are now ready for the final step. (a’), (b’), (¢’) and the area formula give

[willeollWalleo > [[W1 % @elles |2 % Gells > L% (W e(Qe))
& / det(V (w @) (x)) dx
Qe

(a)+(3)
> 6/Q [V (w1 @e) (x)[|V (w2 * e ) (x) | dx

€

> 5 /Q [0, (W15 @e)](x) [Oey (w2 % 9)](x) dx

()
> 5N72a1a2/ (% @ (x))? dx.
Q

€

Hence, || * (pg||i2(gg> < N?(ayay8) " ||wi ||| wl|e, Which, letting & | 0, gives y =
f£? for some f € L*(Q). o

5 Proof of Theorem 1.1 in the Planar Case

We will argue by contradiction, and hence in a different way with respect to what
said in Sect. 1. However, this is only to make the presentation more transparent:
The ideas presented in this section can be easily adapted to prove the general
decomposition property claimed at the end of the introduction.

So, let u = (uy,uy) € BV(B,R?) where B is a two-dimensional disk. Define

E := {x:rank(Du/|Du|(x)) =2}, (6)

and assume that |[D*u|(E) > 0. Without loss of generality, we can assume u € L.
Indeed, for every k truncate u; and u, by setting u¥ = min{max{u;, —k},k}, and
define

ub = (uk ub) and Ej := {x:rank (Du* /| Du|(x)) = 2}.

Then, |D*u¥|(E}) — |D*u|(E) as k T oo.

Hence, from now on we assume that # € BV N L”. For each point x € E, we set
wi(x) := Du;/|Du|(x), which must be nonzero vectors. Thus, we can define ¢;(x) :=
wi(x)/|wi(x)|, which is paralell to Du;/|Du;|(x) and pointing in the same direction.
Next, let

e 7 be the set of pairs (fi, f2) €S! x S! which form an angle >1/kand < —1/k;
o Fi={xcE:(e1(x),e2(x)) € F}.
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Since E = |J; Fy, obviously |D*u|(F;) > 0 for some k. Fix any such k and for any
(f1,/2) € F and any € > 0 define

Flfisfo€) i= {x € F:e1(x) € C(fi,1—€),ea(x) € C(2, 1~ ) }.
We claim that there exist (fi, f2) € F such that |[D*u|(F (f1, f2,€)) > 0 for every

€ > 0. Otherwise, by compactness of .7, we can find N pairs (f{, f3) and N positive
numbers €; > 0 such that

C(fl, 1—&)xC(ff.1—¢)

C=

ﬁkC

J=1

and |D°ul(F(f],],€;)) = 0. This would give |D*u|(F,) < 3, |D°ul(F(f], ],€)))
=0.

Therefore, fix (f1, f2) € % such that |D*u|(F (f1, f2,€)) > 0 for every positive €.
Note that, since f; and f, are linearly independent, for € sufficiently small the closed
convex cones C; = C(f;,1 — g) satisfy C; NC, = (—Cy) NC, = {0}. We choose such
an € and we define

Du;
F' = {x: |DZ'|(x) €C;  forboth is}. (7)

Theorem 1.1 is then implied by the following

Proposition 5.1. Let C = C(e,a) be a closed convex cone, v € BV NL*(B,R) and

Dy
G = i —M)eC,. 8
{r: pnwec) ®)
For any convex cone C' = C(e,d’) with d’ < a there exists w € BY NL*(B,R) such
that |Dv|L_G << |Dw|, and
D
ﬁ(x) €C  for |Dw|-ae. x. )

Proof of Theorem 1.1. We recall that we argue by contradiction. The discussion
above gives a bounded BV map u : B — R? and two closed convex cones C; and
C, such that

e CINGC=(—-C)NCy = {0};
e If E and F’ are defined as in (6) and (7), then [D*u|(ENF") > 0.

Now, by definition of E, |D’u|LE << |Du;| for both i = 1,2. Thus, if we set yt :=
|DSulLL(ENF’), then u is a singular measure such that 4 << |Du;|LLF’ for both
i=1,2.

Next choose two larger closed convex cones C} and C} so that C; NCh = (—C})N
C} = {0}. Apply Proposition 5.1 to find v; and v, such that Dv;/|Dv;|(x) € C} for
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|Dvi|-a.e. x, and |Du;|L_F’ << |Dv;|. Thus, we have u << |Dv;| for both i = 1,2.
Applying Lemma 1.5 we conclude that u is absolutely continuous, which is the
desired contradiction. O

Therefore, we are left with the task of proving Proposition 5.1. A special case
of this proposition is when v is the indicator function of a set (which therefore is a
Caccioppoli set). This case turns out to be an elementary geometric remark, but it is
the key to prove the proposition in its full generality, via the coarea formula.

Proof of Proposition 5.1 when v is the indicator function of a set A. Since v is a BV
function, A is a Caccioppoli set. We denote by 0*A its reduced boundary (see
Sect. 3.5 of [3] for the definition) and by 1) the approximate exterior unit normal to
d*A. Since Dv =n.#"'_9*A, the set G is given by {x € 9*A : n(x) € C}. Since 9*A
is rectifiable (cp. with Theorem 3.59 of [3]), G can be decomposed as Gy U7~ | Gi,
where:

o ! (Go) =0 and for i > 1 each G; is the subset of a C! curve Y
o 1|g, coincides with the normal to the curve ¥;.

Step 1. For each i we claim that there are Lipschitz open sets {S; ;} jen such that:
the exterior normal to 9S; ; belongs #!-a.e. to C’ and {95, ;}, is a covering of G;.

Recall that C' = C(e,a’), and choose coordinates x1,x; in R2 in such a way that
e =(0,1). For any x € G, the normal v;(x) belongs to C(e,a), and thus it is transver-
sal to (1,0). Since ¥ is C!, this implies that we can choose an open ball B, centered
at x such that % N By is the graph {(x1, f(x;))} of a C' function f : I — R, where I
is some bounded open interval of R. Moreover, by continuity of the normal v;, we
can choose By so that v;(y) € C' forevery y € ;N B,.

Fix any such y. Note that the angle 0 between e and v;(y) is equal to the angle
between (0, 1) and the tangent to ¥; at y. Since v;(y) € C(e,a’), we conclude that

6 = arccos(v;(y)-e) < arccos(1/d).

Thus |f’| < tan(arccos(1/a’)) < va’? — 1, and hence f is a Lipschitz function with
constant less than v/a’2— 1. It is an elementary well-known fact that f can be
extended to a function f : R — R with the same Lipschitz constant. If we define
Se:={(x1,x2) :x2 < f(x1)}, then S, is a Lipschitz open set, the normal to S, belongs
everywhere to the cone C’, and 95, covers B, N; (Fig. 1). Since we can cover ¥ with
a countable family of these balls By, the corresponding S, form the desired countable
covering {S; j};

Step 2. Consider the sets {S; j}; ;. Their boundaries have all finite lengths, which
we denote by /; ; and they cover 5#!-a.e. G. Let A;; be a collection of positive
numbers such that 3; ; 4, ; < 1 and ¥; ; 4; j¢; j < 1. Let w be the function

> Aijls, ;-
i,
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same angle 0

Fig. 1 The set S, and the ball B,

First of all, |w.. <3, ;Ai; < 1. Second, w € BV and |Dw| is the nonnegative

measure ¥, ; A; ;-7 LdS; j. Thus, |Dv|LG = #'_G << |Dw|. Finally,

[wllay = lwll1 +Dw[(B) <27+ Y Aijlij <2m+1.
iy

O

Proof of Proposition 5.1. Fix v, C, G and C’ as in the statement, set ¢ := ||v||. and
for every € [—c,c| consider the function v, := 1y,~,. Then, it follows from the
coarea formula (see Theorem 3.40 of [3]) that:

(i) v is a BV function for .#!-ae. t, i.e. {v >t} is a Caccioppoli set, and we
denote by Vv; its exterior unit normal;
(ii) vi(x) = Dv/|Dv|(x) for £!-ae.tand #'-ae. x € I*{v>1t};
(i) [Dv|= [, |Dv,|dL(1).

(Here, when o is a measure on ¥ and y — f, a weakly measurable map from ¥
into the space .# (X) of Radon measures on X, the symbol [ fB,dc(y) denotes the
measure Y on X which satisfies

Jowarw = [ [ ot1ap,x)daiy)

forevery ¢ € C.(X).)

Therefore, for Z!-ae. t, v, C, G, and C’ satisfy the hypotheses of the propo-
sition. We denote by w; the corresponding BV function given by the special case
of this proposition, proved above. We will show below that w;, can be selected in
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such a way that the map ¢ — w, € L is weakly* measurable, i.e. that t — [ @w;
is measurable for every ¢ € L'(B). Having a map with this property, we choose
A € L'([—c,c]) such that A > 0 and

[ 2Ol llav) di < o

Assuming this fact, we set w(x) := [ A (¢)w;(x)d-Z1(¢). Then w is bounded, | Dw|
is a measure and |Dw| < [€_A(t)|Dw,|d£ (t), which is a finite measure. Therefore
w € BV NL”. Next, recall that C' = C(e,a’) for some real @’ and some e € S'. By
Remark 4.1, d,w; > a'|Dw,|. Thus d,w, is a nonnegative measure for .Z'-a.e. .
From this we conclude

dow= [ Aamd 2 t)>d [ A()|Dwi|d L (t) > d|Dwl,

which, by Remark 4.1, gives Dw/|Dw|(x) € C’ for |Dw|-a.e. x. Finally, |Dv;|_G <<
|Dw, |, from which we get

IDVLG = / Dv|LGd L (1) << [ 2()|Dwild L (1)
<d [ A6)awd L (1) = d dow < d |Dwl.

Thus w satisfies the requirements of the proposition.

Proof of the existence of a measurable selection t — wy. In order to show the
existence of such a selection, we will use a general Measurable Selection Theorem
due to Aumann (see Theorem III.2 in [4]). More precisely, consider the set S of
functions z such that z € BV N L™ and Dz/|Dz|(x) € C' for |Dz|-a.e. x. We endow S
with the L* weak™ topology.

Next, set F; := {z € S : [Dv|LG << |Dz|} if v, € BV, and F, = 0 otherwise. In
order to apply Aumann’s Theorem we need that:

e Sand [—c,c] are both locally compact and separable;
o Theset F:={(t,u):u€ F} C[—c,c]xSisaBorel set;
o F,#0for L' -ae.t.

This last condition has been already shown. Moreover, [—c, c] is compact and sepa-
rable. Thus it remains to show that § is locally compact and separable and that F' is
a Borel set.

S is locally compact and separable. For every N € N consider the set Sy :=
SN{|lz]l-- < N}. Since on bounded sets the L™ weak™ topology is metrizable, clearly
Sy is separable. Therefore, S is separable. We next show that Sy is compact, which
implies that S is locally compact. Indeed consider any sequence {z,} C Sy. By
weak® compactness we can assume that z,—*z for some z € L*: Our task is to
show that z € S. Recall that @'d,z, > |Dz,|. Thus {d,z,} is a sequence of nonneg-
ative measures which converge distributionally to d,z. Therefore, these measures
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are uniformly bounded, i.e. ||z,||gy is uniformly bounded. Thus Dz,—*Dz. Up to
extraction of a subsequence we can assume that |Dz,| converges in the sense of
measures to some V. Then,

|Dz| < v = w*lim|Dz,| < d'w*limd,z, = d'd.z.
n n

This implies that z € S.

F is a Borel set. Denote by .#? the set of R?-valued Radon measures on B and
by .#* the set of nonnegative Radon measures. Define T : .#Z " x .#> — R by

)= [ ol

Note that v << || if and only if T(v,u) = v(B). Thus,
F = {(t,z) € [~c,c] x S: T(|Dv|LG,Dz) = |Dv;|(BNG)}.

Since the map ¢ — |Dv;| can be chosen Borel-measurable, in order to prove that F
is a Borel set it suffices to show that 7 is a Borel function.
First of all, note that

r(v.) = sop [min {29 bl ) = supn fmin {1 Y200 b aluo).

neN neN

Therefore, it suffices to show that the map T : .#* x .#* — R given by

w = [min{1, )}l

is Borel measurable. Note that T(o,u) = inf{o(A) + |u|(B\A) : A C B is
measurable }. Therefore,

Tlaww) = ol [ [a-paat [ fd|u|]

—  inf /l—f do+  sup /g dul .
feC:(B),0<f<1 l ( ) 9€C.(B,R2) 0<|g|<f

Let .# be a countable dense subset of {f € C.(B) : 0 < f < 1} and .%, a countable
dense subset of C.(B,R?). Then

T(o,u) = inf sup [/(1 —f)doc+/g-du} . (10)

TeP1 ge.7y,0<g|< s
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Since for each (f,g) € % x %, the map

(@p)— [(1=fda+ [g-du
is weakly* continuous, (10) implies that T is a Borel function. O
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