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1 Introduction

The aim of these notes is to illustrate a proof of the following remarkable Theo-
rem of Alberti (first proved in [1]). Here, when µ is a Radon measure on Ω ⊂ R

n,
we denote by µa its absolutely continuous part (with respect to the Lebesgue mea-
sure L n), by µ s := µ − µa its singular part, and by |µ | its total variation measure.
Clearly, |µ |a = |µa| and |µ |s = |µ s|. When µ = Du for some u ∈ BV (Ω,Rk),
we will write Dsu and Dau. If ν is a nonnegative measure, µ/ν will denote the
Radon–Nykodim derivative of µ with respect to ν . Finally we recall the polar
decomposition of Radon measures, namely the identity µ = µ

|µ| |µ |, which implies
that the vetor Borel map µ/|µ | has modulus 1 µ-a.e.

Theorem 1.1. Let u ∈ BV (Ω,Rk) for some open set Ω ⊂ R
n. Then rank(Du/

|Du|(x)) = 1 for |Dsu|-a.e. x ∈ Ω.

We start by discussing what can be inferred from the “standard theory” of BV
functions without much effort. A first conclusion can be drawn from the BV Struc-
ture Theorem (see Sect. 3.6, Theorem 3.77, and Proposition 3.92 of [3]) for which
we first need some terminology. Given an L1 function u we say that u is approx-
imately continuous at x if there exists ũ(x) ∈ R

k such that limr r−n ∫
Br(x) |u(y)−

ũ(x)|dy = 0. We denote by Su the set of points where u is not approximately contin-
uous and we say that x ∈ Su is an approximate jump point if there exists ν(x) ∈ Sn−1
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62 C. De Lellis

and u±(x) ∈ R
k such that

lim
r↓0

1
rn

(∫

B+
r (x)

|u(y)−u+(x)|dy +
∫

B−
r (x)

|u(y)−u−(x)|dy

)

= 0,

where B±
r (x) = {y ∈ Br(x) : ±(y− x) ·ν(x) > 0}. The triple (ν(x),u+(x),u−(x)) is

unique up to a change of sign of ν(x) and a permutation of u+(x) and u−(x). The
set of approximate jump points is denoted by Ju.

Finally, we recall that an (n− 1)-dimensional rectifiable set R ⊂ R
n is a Borel

set which can be covered H n−1-almost all by a countable family of C1 (n− 1)-
dimensional surfaces. Here, H k denotes the k-dimensional Hausdorff measure.

Theorem 1.2 (Structure Theorem for BV functions). If Ω ⊂ R
n is open and

u ∈ BV (Ω,Rk), then Ju is a rectifiable (n− 1)-dimensional set, H n−1(Su \ Ju) =
|Du|(Su \ Ju) = 0 and Dsu can be decomposed as Dcu + D ju, where

• |Dcu|(E) = 0 for every Borel set E with H n−1(E) < ∞;
• D ju = (u+−u−)⊗νH n−1 Ju.

Here and in what follows, given a measure µ and a Borel set E we denote by
µ E the measure given by µ E(A) = µ(E ∩A). Following [5], we call Dcu and
D ju respectively Cantor part and Jump part of the measure Du. Thus, Theorem 1.2
implies the statement of Theorem 1.1 when we replace |Dsu| with |D ju|.

A second fact that can be inferred from the “standard theory” of BV functions is
the following dimensional reduction:

Proposition 1.3. Theorem 1.1 holds if and only if it holds for Ω = B1(0) ⊂ R
2 and

R
k = R

2.

This proposition will be proved in Sect. 2. Thus, the key point of Theorem 1.1 is
to show that M has rank one |Dcu|-a.e. when u is a BV planar map. A first heuristic
idea of why this property indeed holds is given in Sect. 3. The key remark of that
section is the following lemma, which has a quite simple proof.

Lemma 1.4. Let Ω ⊂ R
2 be connected and u ∈ BV (Ω,R2) be such that Du/|Du| is

a constant matrix M of rank 2. Then, Du = cML 2 Ω for some c > 0.

Building on this lemma and on a “blow-up” argument, we prove in Sect. 3
a particular case of Theorem 1.1. However, this simple strategy cannot prove
Theorem 1.1 in its full generality (see Sect. 3, in particular Proposition 3.3). Alberti’s
strategy relies on replacing Lemma 1.4 with Lemma 1.5 below. From now on a set
C ⊂ R

2 will be called a closed convex cone if there exist e ∈ S1 and 0 < a < 1 such
that C = C(e,a) := {x : x · e ≥ a|x|}.

Lemma 1.5. Let C1 and C2 be two closed convex cones such that C1 ∩C2 = (−C1)∩
C2 = {0}. Let Ω ⊂R

2 be open and v1,v2 ∈ BV(Ω) be two scalar functions such that
Dvi/|Dvi|(x) ∈ Ci for |Dvi|-a.e. x. If µ ≥ 0 is a measure such that µ << |Dvi| for
i = 1,2, then µ << L 2 Ω.



A Note on Alberti’s Rank-One Theorem 63

This lemma will be proved in Sect. 4. We want to stress here the analogies with
Lemma 1.4. Set v = (v1,v2). By the polar factorization, the main assumption of
Lemma 1.5 could be restated as Dv/|Dv| belongs (|Dv|-almost everywhere) to a
suitably small neighborhood of a constant matrix M of rank 2. Moreover the last
sentence is equivalent to |Dv| << L 2 Ω. Thus, we can consider Lemma 1.4 as a
rigidity result and Lemma 1.5 as its quantitative counterpart.

Now consider u∈ BV(Ω,R2) and the Borel set E := {x : rank(Du/|Du|(x))= 2}.
Standard arguments show that E can be decomposed in countably many Borel pieces
Ei where Du/|Du| is very close to a single constant matrix Mi. Thus the relaxed
assumption of Lemma 1.5 suggests that we could use a “decomposition” approach,
in contrast with the “blow-up” argument which builds on the rigidity Lemma 1.4.
More precisely, we will show in Sect. 5 that the decomposition in Borel pieces Eis
can be chosen so that

• If we fix any i and set µ := |Du| Ei, then there are two BV scalar functions v1

and v2 such that v1, v2 and µ satisfy the hypotheses of Lemma 1.5.

Clearly, the decomposition stated above and Lemma 1.5 show that µ is absolutely
continuous, i.e. they prove Theorem 1.1. The construction of the vis is the second
key idea of Alberti’s proof. The argument combines a simple geometric considera-
tion on the level sets of the uis together with a clever use of the coarea formula for
BV scalar functions.

Recently, Alberti, Csorniey and Preiss, (see [2]) have proposed a different proof
of the Rank-One Theorem. This new proof uses as well the coarea formula, but it
avoids Lemma 1.5, and relies instead on a general covering result for Lebesgue-null
sets of the plane. Let us mention, in passing, that this last result has many other deep
implications in real analysis and geometric measure theory; see [2].

2 Dimensional Reduction

Proof of Proposition 1.3. Assume that Theorem 1.1 holds for maps u ∈ BV (B1(0),
R

2) with B1(0) ⊂ R
2. Clearly, by translating and rescaling, we immediately con-

clude the theorem when u ∈ BV (B,R2) for any two-dimensional ball B. The state-
ment of Theorem 1.1 is trivially true if Ω ⊂ R or if k = 1 Moreover, any open set
Ω ⊂ R

n can be written as countable union of balls. Hence it suffices to prove the
theorem when Ω is a ball of R

n, n ≥ 2, and k ≥ 2.

From n = 2 to n generic. Here we prove Theorem 1.1 for maps u ∈ BV(B,R2)
whenever B is an n-dimensional ball. We argue by contradiction and let u ∈
BV (B,R2) be such that rank(Du/|Du|(x)) = 2 on some set E with |Dsu|(E) > 0.
Set M = Du/|Du| and choose coordinates x1, . . . ,xn on B and u1,u2 on R

2. Clearly,
M has n(n−1)/2 different minors, corresponding to the choice of coordinates xi,x j

with 1 ≤ i < j ≤ n: We denote them by Mi j. If we set Ei j := {x : rank(Mi j(x))
= 2}, then E =

⋃
i j Ei j, and hence |Dsu|(Ei j) > 0 for some i and j. Without loss
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of generality we assume i = 1 and j = 2. Consider the matrix valued measure
(µ)lα = (∂xl uα)lα with l,α = 1,2. Then, rank(µ/|µ |(x)) = 2 for |µ |-a.e. x ∈ E12

and |µ s|(E12) > 0.
For any y ∈ R

n−2 we define By = {(x1,x2) ∈ R
2 : (x1,x2,y) ∈ B}. Clearly, By is

either empty or it is an open two-dimensional ball. Moreover, we define

vy : By → R
2 by vy(x1,x2) = u(x1,x2,y).

By the slicing theory of BV functions (see Theorem 3.103, Theorem 3.107, and
Theorem 3.108 of [3]) we have:

(a) vy ∈ BV (By,R
2) for L n−2-a.e. y ∈ R

n−2;
(b) µ = Dvy ⊗L n−2 and |µ | = |Dvy|⊗L n−2.

(Here, when α is a measure on Y and y 	→ βy a weakly measurable map from Y into
the space M (X) of Radon measures on X , the symbol βy ⊗α denotes the measure
γ on X ×Y which satisfies

∫

X×Y
ϕ(x,y)dγ(x,y) =

∫

Y

∫

X
ϕ(x,y)dβy(x)dα(y)

for every ϕ ∈Cc(X ×Y ).)
(b) implies two things. First of all,

Dvy

|Dvy|(x1,x2) =
µ
|µ | (x1,x2,y) for L n−2-a.e. y and |Dvy|-a.e. (x1,x2). (1)

Second, if for every y we set Ey := {(x1,x2) : (x1,x2,y) ∈ E}, then

∫

Rn−2
|Dvs

y|(Ey)dL n−2(y) = |µ s|(E) > 0. (2)

Thus, from (a), (1) and (2), we conclude that there exists a y such that vy ∈
BV (By,R

2), |Dvs
y|(Ey) > 0, and rank(Dvy/|Dvy|(x)) = 2 for |Dvy|-a.e. x ∈ Ey. Such

vy contradicts our assumption that Theorem 1.1 holds for maps u ∈ BV(By,R
2).

From k = 2 to k generic. Fix any u ∈ BV (B,Rk), with k ≥ 2 and B n-dimensional
ball, and choose coordinates u1, . . . ,uk on R

k. For any pair of integers 1 ≤ i <
j ≤ k, consider the map ui j := (ui,u j) ∈ BV (B,R2). If M = Du/|Du| and Mi j is
the corresponding 2× n minor, then Dui j = Mi j|Du|. Thus, by the previous step,
rank(Mi j(x)) ≤ 1 for |Dsui j|-a.e. x, and hence for |Dsu|-a.e. x. Set

Ei j :=
{

x : rank(Mi j(x)) ≤ 1
}

and E :=
⋂

1≤i< j≤k

Ei j.

Then, |Dsu|(Rn \E) = 0 and rank(M(x)) ≤ 1 for every x ∈ E . This concludes the
proof. 
�
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3 A Blow-Up Argument Leading to a Partial Result

We start this section by proving Lemma 1.4.

Proof of Lemma 1.4. We let M be the constant matrix Du/|Du| and µ = |Du|. By
standard arguments, it suffices to prove the lemma when Ω is the unit ball B1(0).
Denote by u1 and u2 the two components of u. Then Dui = viµ , where v1,v2 ∈ R

2

are two linearly independent vectors. Let {ϕε}ε>0 be a standard family of mollifiers
supported in Bε(0) and consider the mollifications ui ∗ϕε in B1−ε(0). Notice that
D(ui ∗ϕε) = viµ ∗ϕε , and hence ui ∗ϕε is constant on the direction orthogonal to
vi. Therefore the density of the absolutely continuous measure µ ∗ϕε is a function
fε which is constant along two linearly independent directions. Thus, fε is constant.
Letting ε ↓ 0 we complete the proof. 
�

This simple remark leads to a partial answer to Theorem 1.1, given in Proposi-
tion 3.2.

Definition 3.1. Let µ be a measure on Ω ⊂ R
2 and for any x in the support of µ and

any r ∈]0,dist(x,∂Ω)[ consider the measures µx,r on B1(0) given by

µx,r(A) = µ(x + rA)/|µ |(Br(x)) for any Borel set A ⊂ B1(0).

We say that a measure µ0 is tangent to µ at x if for some sequence rn ↓ 0 we have
µx,rn⇀

∗µ0.
A nonnegative measure µ on Ω ⊂ R

2 is said to have only trivial blow-ups at x, if
every tangent measure to µ at x is of the form cL 2 B1(0). For u ∈ BV (Ω,R2) we
denote by T the set of points where |Dsu| has only trivial blow-ups.

This definition of tangent measure is very similar to that introduced by Preiss in
the fundamental paper [6]. We are now ready to state our

Proposition 3.2. Let u ∈ BV(Ω,R2). Then rank(Du/|Du|(x)) = 1 for |Dsu|-a.e.
x 
∈ T .

Proof. We argue by contradiction and assume that the proposition is false for some
u. Denote by µ the measure |Dsu|. Then, by standard measure-theoretic arguments,
it is possible to find a point x 
∈ T and a sequence rn ↓ 0 such that the following
properties hold:

(i) µx,rn⇀
∗µ0, and µ0 
= cL n B1(0);

(ii) ||Du|− µ |(Br(x)) = o(µ(Br(x)));
(iii) M = Du/|Du|(x) is a matrix of rank > 1 and

lim
r↓0

1
|Du|(Br(x))

∫

Br(x)

∣
∣Du/|Du|(y)−M

∣
∣d|Du|(y) = 0.
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Let ur be the average of u on Br(x) and define the function ur ∈ BV (B1(0),R2) as

ur(y) =
rn−1(u(x + ry)−ur)

|Du|(Br(x))
.

It follows that Dur = [Du]x,r, and hence |Dur|(B1(0)) = 1. Moreover, since the aver-
age of ur is 0, the Poincaré inequality gives ‖ur‖L1 ≤ C. Thus, we can assume
that a subsequence, not relabeled, of {urn} converges to some u0 ∈ BV (B1(0),R2)
strongly in L1. Now, from (ii) we get |Du|x,r − µx,r⇀

∗0 and from (iii) we con-
clude [Du]x,r −M|Du|x,r⇀∗0. Therefore, by (i), Dur = [Du]x,r⇀∗Mµ0. This implies
Du0 = Mµ0, because urn converges to u0. Applying Lemma 1.4 we conclude
µ0 = cL 2 B1(0), which contradicts (i).

Unfortunately, we cannot hope to prove Theorem 1.1 by showing that singular
parts of BV functions have necessarily nontrivial blow-ups. More precisely we have

Proposition 3.3. There exist BV maps u such that |Dsu|(T ) > 0.

Proof. The example 5.8(1) of [6] gives a nonnegative measure µ on a bounded
interval I which is singular and such that µx,r⇀

∗ 1
2L 1 [−1,1] for µ-a.e. x. Clearly,

any primitive of µ is a bounded BV function which satisfies the requirements of the
proposition. 
�

4 The Fundamental Lemma

Before coming to the proof of the lemma, let us explain its basic ingredients.
Assume for the moment that the vis of the lemma are regular, and that µ = fL 2 ≤
C|∇vi|. Consider the map v = (v1,v2). Since the gradients ∇vi belong everywhere
to the cones Ci and C1 ∩C2 = (−C1)∩C2 = {0}, a simple algebraic consideration
shows that det ∇v controls, up to some constant depending on the Cis, the product
|∇v1||∇v2|, and hence f 2. Thus we can bound the L2 norm of f by the integral of
det ∇v. A second key remark is that the geometric constraints on the Cis imply that
v is almost injective (more precisely, v would be injective if ∇vi ∈ Ci \ {0}). Thus,∫

det ∇v can be computed using the area formula. This means that
∫

f 2 can be bound
in terms, for instance, of the L∞ norm of v, but independently of ∇v. In the proof
below we will extend such a priori estimate to the general case, using truncations
and a suitable regularization procedure.

Remark 4.1. In the rest of these notes we will use extensively the following elemen-
tary fact. Let C = C(e,a) = {x : x · e ≥ a|x|} be a closed convex cone, Ω ⊂ R

2 an
open set and v ∈ BV (Ω,R). Then, it follows easily from the polar decomposition of
measures that Dv/|Dv|(x) ∈C for |Dv|-a.e. x if and only if ∂ev ≥ a|Dv|.
Proof of Lemma 1.5. We can assume without loss of generality that v1,v2 ∈ L∞.
Indeed for every k ∈N set vk

i = min(max(vi,−k),k) and Ek = {|v1|< k}∩{|v2|< k}.
Then, by the locality of |Dv| (see Remark 3.93 of [3]):
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• vk
1,v

k
2 are bounded BV functions which satisfy the assumptions of the lemma;

• µ(Ω\⋃
k Ek) = 0 and µ Ek << |Dvi| Ek = |Dvk

i | Ek ≤ |Dvk
i |.

Therefore, if the lemma holds for bounded BV functions, then we conclude that
µ Ek << L 2 Ω, and hence that µ << L 2 Ω. In addition, since every open
set Ω can be covered by a countable family of convex subsets, we will assume that
Ω is convex. Finally, we can assume, without loss of generality, that µ ≤ N|Dvi|
for some constant N. Indeed, for any N > 0 let EN be the set of points x where
the Radon–Nykodim derivatives µ/|Dvi|(x) ≤ N. Then µ(R2 \ ⋃

N EN) = 0 and
µ EN ≤ N|Dvi|.

Let any such vis and Ω satisfy all these assumptions, and let C1 and C2 be the
cones of the lemma. Recall that Ci = C(ei,ai) for some 1 > ai > 0 and ei ∈ S1.
Given two vectors z1,z2 ∈ R

2 we measure the angle θ (z1,z2) between z1 and z2

in counterclockwise direction. By possibly exchanging the indices we can assume
θ (e1,e2) < π . Then, the assumptions C1 ∩C2 = (−C1)∩C2 = {0} translate into
the existence of a constant δ0 > 0 such that δ0 ≤ θ ( f1, f2) ≤ π − δ0 for every pair
( f1, f2) ∈C1 ×C2. Therefore, for δ = sinδ0 > 0,

det( f1, f2) = | f1|| f2|sinθ ( f1, f2) ≥ δ | f1|| f2| ∀( f1, f2) ∈C1 ×C2. (3)

By Remark 4.1, ∂eivi ≥ ai|Dvi|. Set wi(x) = vi(x)+ arctan(x · ei) and w = (w1,w2)
and note that

(a) ∂ei wi ≥ ai|Dwi|;
(b) [∂ei wi](Br(x)) > 0 for every ball Br(x) ⊂ Ω;
(c) µ ≤ N|Dvi| ≤ Na−1

i ∂eivi ≤ Na−1
i ∂ei wi.

Let {ϕε} be a standard family of nonnegative mollifiers supported in Bε(0) and
consider the mollifications w∗ϕε in the open sets Ωε := {x ∈ Ω : dist(x,∂Ω) > ε}.
We claim that

(a’) ∇(wi ∗ϕε)(x) ∈Ci for any i and any x ∈ Ωε ;
(b’) w∗ϕε : Ωε → R

2 is injective;
(c’) µ ∗ϕε ≤ Na−1

i ∂ei(wi ∗ϕε).

From (a) we get ∂ei(wi ∗ϕε) ≥ ai|Dwi| ∗ϕε ≥ ai|D(wi ∗ϕε)|, which, by Remark 4.1
and the smoothness of wi ∗ϕε , implies (a’). (c’) follows from µ ≤ Na−1

i ∂eiwi. We
now come to (b’). Note that, by (b), ∂ei(wi ∗ϕε) > 0. So ∇wi ∗ϕε(x) 
= 0 for every
x ∈ Ωε , and hence belongs to Ci \ {0}. Let x 
= y ∈ Ωε , and set f := (x− y)/|x− y|.
We claim that, for some i,

| f · z| > 0 for all z ∈Ci \ {0}. (4)

Otherwise, there are z1 ∈ C1 and z2 ∈ C2 with |zi| = 1 and zi ⊥ f . Therefore, either
z1 = z2 or z1 = −z2, contradicting C1 ∩C2 = (−C1)∩C2 = {0}. Next, write

wi ∗ϕε(y)−wi ∗ϕε(x) =
∫ |y−x|

0
∇wi ∗ϕε (x + σ f ) · f dσ . (5)
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Recall that ∇wi ∗ϕε (x + σ f ) ∈ Ci \ {0}. Moreover, since Ci \ {0} is connected, (4)
implies that the integrand in (5) is either strictly positive, or strictly negative. In any
case, wi ∗ϕε(y) 
= wi ∗ϕε(x), which gives (b’).

We are now ready for the final step. (a’), (b’), (c’) and the area formula give

‖w1‖∞‖w2‖∞ ≥ ‖w1 ∗ϕε‖∞‖w2 ∗ϕε‖∞ ≥ L 2(w∗ϕε(Ωε))
(b′)
=

∫

Ωε
det(∇(w∗ϕε)(x))dx

(a′)+(3)
≥ δ

∫

Ωε
|∇(w1 ∗ϕε)(x)||∇(w2 ∗ϕε)(x)|dx

≥ δ
∫

Ωε
[∂e1(w1 ∗ϕε)](x) [∂e2 (w2 ∗ϕε)](x)dx

(c′)
≥ δN−2a1a2

∫

Ωε
(µ ∗ϕε(x))2 dx.

Hence, ‖µ ∗ϕε‖2
L2(Ωε ) ≤ N2(a1a2δ )−1‖w1‖∞‖w‖∞, which, letting ε ↓ 0, gives µ =

fL 2 for some f ∈ L2(Ω). 
�

5 Proof of Theorem 1.1 in the Planar Case

We will argue by contradiction, and hence in a different way with respect to what
said in Sect. 1. However, this is only to make the presentation more transparent:
The ideas presented in this section can be easily adapted to prove the general
decomposition property claimed at the end of the introduction.

So, let u = (u1,u2) ∈ BV (B,R2) where B is a two-dimensional disk. Define

E :=
{

x : rank(Du/|Du|(x)) = 2
}
, (6)

and assume that |Dsu|(E) > 0. Without loss of generality, we can assume u ∈ L∞.
Indeed, for every k truncate u1 and u2 by setting uk

i = min{max{ui,−k},k}, and
define

uk := (uk
1,u

k
2) and Ek :=

{
x : rank(Duk/|Duk|(x)) = 2

}
.

Then, |Dsuk|(Ek) → |Dsu|(E) as k ↑ ∞.
Hence, from now on we assume that u ∈ BV ∩L∞. For each point x ∈ E , we set

wi(x) := Dui/|Du|(x), which must be nonzero vectors. Thus, we can define ei(x) :=
wi(x)/|wi(x)|, which is paralell to Dui/|Dui|(x) and pointing in the same direction.
Next, let

• Fk be the set of pairs ( f1, f2)∈S1×S1 which form an angle≥1/k and≤π−1/k;
• Fk := {x ∈ E : (e1(x),e2(x)) ∈ Fk}.
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Since E =
⋃

k Fk, obviously |Dsu|(Fk) > 0 for some k. Fix any such k and for any
( f1, f2) ∈ Fk and any ε > 0 define

F( f1, f2,ε) :=
{

x ∈ Fk : e1(x) ∈C( f1,1− ε),e2(x) ∈C( f2,1− ε)
}
.

We claim that there exist ( f1, f2) ∈ Fk such that |Dsu|(F( f1, f2,ε)) > 0 for every
ε > 0. Otherwise, by compactness of Fk, we can find N pairs ( f j

1 , f j
2 ) and N positive

numbers ε j > 0 such that

Fk ⊂
N⋃

j=1

C( f j
1 ,1− ε j)×C( f j

2 ,1− ε j)

and |Dsu|(F( f j
1 , f j

2 ,ε j)) = 0. This would give |Dsu|(Fk) ≤ ∑ j |Dsu|(F( f j
1 , f j

2 ,ε j))
= 0.

Therefore, fix ( f1, f2)∈Fk such that |Dsu|(F( f1, f2,ε)) > 0 for every positive ε .
Note that, since f1 and f2 are linearly independent, for ε sufficiently small the closed
convex cones Ci = C( fi,1−ε) satisfy C1 ∩C2 = (−C1)∩C2 = {0}. We choose such
an ε and we define

F ′ :=
{

x :
Dui

|Dui| (x) ∈Ci for both is

}

. (7)

Theorem 1.1 is then implied by the following

Proposition 5.1. Let C = C(e,a) be a closed convex cone, v ∈ BV ∩L∞(B,R) and

G :=
{

x :
Dv
|Dv| (x) ∈C

}

. (8)

For any convex cone C′ = C(e,a′) with a′ < a there exists w ∈ BV ∩L∞(B,R) such
that |Dv| G << |Dw|, and

Dw
|Dw| (x) ∈C′ for |Dw|-a.e. x. (9)

Proof of Theorem 1.1. We recall that we argue by contradiction. The discussion
above gives a bounded BV map u : B → R

2 and two closed convex cones C1 and
C2 such that

• C1 ∩C2 = (−C1)∩C2 = {0};
• If E and F ′ are defined as in (6) and (7), then |Dsu|(E ∩F ′) > 0.

Now, by definition of E , |Dsu| E << |Dui| for both i = 1,2. Thus, if we set µ :=
|Dsu| (E ∩F ′), then µ is a singular measure such that µ << |Dui| F ′ for both
i = 1,2.

Next choose two larger closed convex cones C′
1 and C′

2 so that C′
1 ∩C′

2 = (−C′
1)∩

C′
2 = {0}. Apply Proposition 5.1 to find v1 and v2 such that Dvi/|Dvi|(x) ∈ C′

i for
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|Dvi|-a.e. x, and |Dui| F ′ << |Dvi|. Thus, we have µ << |Dvi| for both i = 1,2.
Applying Lemma 1.5 we conclude that µ is absolutely continuous, which is the
desired contradiction. 
�

Therefore, we are left with the task of proving Proposition 5.1. A special case
of this proposition is when v is the indicator function of a set (which therefore is a
Caccioppoli set). This case turns out to be an elementary geometric remark, but it is
the key to prove the proposition in its full generality, via the coarea formula.

Proof of Proposition 5.1 when v is the indicator function of a set A. Since v is a BV
function, A is a Caccioppoli set. We denote by ∂ ∗A its reduced boundary (see
Sect. 3.5 of [3] for the definition) and by η the approximate exterior unit normal to
∂ ∗A. Since Dv = ηH 1 ∂ ∗A, the set G is given by {x∈ ∂ ∗A : η(x)∈C}. Since ∂ ∗A
is rectifiable (cp. with Theorem 3.59 of [3]), G can be decomposed as G0 ∪⋃∞

i=1 Gi,
where:

• H 1(G0) = 0 and for i ≥ 1 each Gi is the subset of a C1 curve γi;
• η |Gi coincides with the normal to the curve γi.

Step 1. For each i we claim that there are Lipschitz open sets {Si, j} j∈N such that:
the exterior normal to ∂Si, j belongs H 1-a.e. to C′ and {∂Si, j} j is a covering of Gi.

Recall that C′ = C(e,a′), and choose coordinates x1,x2 in R
2 in such a way that

e = (0,1). For any x ∈ Gi, the normal νi(x) belongs to C(e,a), and thus it is transver-
sal to (1,0). Since γi is C1, this implies that we can choose an open ball Bx centered
at x such that γi ∩Bx is the graph {(x1, f (x1))} of a C1 function f : I → R, where I
is some bounded open interval of R. Moreover, by continuity of the normal νi, we
can choose Bx so that νi(y) ∈C′ for every y ∈ γi ∩Bx.

Fix any such y. Note that the angle θ between e and νi(y) is equal to the angle
between (0,1) and the tangent to γi at y. Since νi(y) ∈C(e,a′), we conclude that

θ = arccos(νi(y) · e) ≤ arccos(1/a′).

Thus | f ′| ≤ tan(arccos(1/a′)) ≤√
a′2 −1, and hence f is a Lipschitz function with

constant less than
√

a′2 −1. It is an elementary well-known fact that f can be
extended to a function f̃ : R → R with the same Lipschitz constant. If we define
Sx := {(x1,x2) : x2 < f̃ (x1)}, then Sx is a Lipschitz open set, the normal to Sx belongs
everywhere to the cone C′, and ∂Sx covers Bx∩γi (Fig. 1). Since we can cover γi with
a countable family of these balls Bx, the corresponding Sx form the desired countable
covering {Si, j} j

Step 2. Consider the sets {Si, j}i, j. Their boundaries have all finite lengths, which
we denote by �i, j and they cover H 1-a.e. G. Let λi, j be a collection of positive
numbers such that ∑i, j λi, j ≤ 1 and ∑i, j λi, j�i, j ≤ 1. Let w be the function

∑
i, j

λi, j1Si, j .
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νi
e

Bx

γi

same angle θ

x

Sx

Fig. 1 The set Sx and the ball Bx

First of all, ‖w‖∞ ≤ ∑i, j λi, j ≤ 1. Second, w ∈ BV and |Dw| is the nonnegative
measure ∑i, j λi, jH 1 ∂Si, j. Thus, |Dv| G = H 1 G << |Dw|. Finally,

‖w‖BV = ‖w‖L1 + |Dw|(B) ≤ 2π +∑
i, j

λi, j�i, j ≤ 2π + 1.


�
Proof of Proposition 5.1. Fix v, C, G and C′ as in the statement, set c := ‖v‖∞ and
for every t ∈ [−c,c] consider the function vt := 1{v>t}. Then, it follows from the
coarea formula (see Theorem 3.40 of [3]) that:

(i) vt is a BV function for L 1-a.e. t, i.e. {v > t} is a Caccioppoli set, and we
denote by νt its exterior unit normal;

(ii) νt(x) = Dv/|Dv|(x) for L 1-a.e. t and H 1-a.e. x ∈ ∂ ∗{v > t};
(iii) |Dv| = ∫ c

−c |Dvt |dL 1(t).

(Here, when α is a measure on Y and y 	→ βy a weakly measurable map from Y
into the space M (X) of Radon measures on X , the symbol

∫
βy dα(y) denotes the

measure γ on X which satisfies
∫

ϕ(x)dγ(x) =
∫

Y

∫

X
ϕ(x)dβy(x)dα(y)

for every ϕ ∈Cc(X).)
Therefore, for L 1-a.e. t, vt , C, G, and C′ satisfy the hypotheses of the propo-

sition. We denote by wt the corresponding BV function given by the special case
of this proposition, proved above. We will show below that wt can be selected in
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such a way that the map t 	→ wt ∈ L∞ is weakly∗ measurable, i.e. that t 	→ ∫
ϕwt

is measurable for every ϕ ∈ L1(B). Having a map with this property, we choose
λ ∈ L1([−c,c]) such that λ > 0 and

∫ c

−c
λ (t)

(‖wt‖∞ +‖wt‖BV
)

dt < ∞.

Assuming this fact, we set w(x) :=
∫ c
−c λ (t)wt(x)dL 1(t). Then w is bounded, |Dw|

is a measure and |Dw| ≤ ∫ c
−c λ (t)|Dwt |dL 1(t), which is a finite measure. Therefore

w ∈ BV ∩L∞. Next, recall that C′ = C(e,a′) for some real a′ and some e ∈ S1. By
Remark 4.1, ∂ewt ≥ a′|Dwt |. Thus ∂ewt is a nonnegative measure for L 1-a.e. t.
From this we conclude

∂ew =
∫ c

−c
λ (t)∂ewt dL 1(t) ≥ a′

∫ c

−c
λ (t)|Dwt |dL 1(t) ≥ a′|Dw|,

which, by Remark 4.1, gives Dw/|Dw|(x)∈C′ for |Dw|-a.e. x. Finally, |Dvt | G <<
|Dwt |, from which we get

|Dv| G =
∫ c

−c
|Dvt | GdL 1(t) <<

∫ c

−c
λ (t)|Dwt |dL 1(t)

≤ a′
∫ c

−c
λ (t)∂ewtdL 1(t) = a′ ∂ew ≤ a′ |Dw|.

Thus w satisfies the requirements of the proposition.

Proof of the existence of a measurable selection t 	→ wt . In order to show the
existence of such a selection, we will use a general Measurable Selection Theorem
due to Aumann (see Theorem III.2 in [4]). More precisely, consider the set S of
functions z such that z ∈ BV ∩L∞ and Dz/|Dz|(x) ∈ C′ for |Dz|-a.e. x. We endow S
with the L∞ weak∗ topology.

Next, set Ft := {z ∈ S : |Dvt | G << |Dz|} if vt ∈ BV , and Ft = /0 otherwise. In
order to apply Aumann’s Theorem we need that:

• S and [−c,c] are both locally compact and separable;
• The set F := {(t,u) : u ∈ Ft} ⊂ [−c,c]×S is a Borel set;
• Ft 
= /0 for L 1-a.e. t.

This last condition has been already shown. Moreover, [−c,c] is compact and sepa-
rable. Thus it remains to show that S is locally compact and separable and that F is
a Borel set.

S is locally compact and separable. For every N ∈ N consider the set SN :=
S∩{‖z‖∞ ≤N}. Since on bounded sets the L∞ weak∗ topology is metrizable, clearly
SN is separable. Therefore, S is separable. We next show that SN is compact, which
implies that S is locally compact. Indeed consider any sequence {zn} ⊂ SN . By
weak∗ compactness we can assume that zn⇀

∗z for some z ∈ L∞: Our task is to
show that z ∈ S. Recall that a′∂ezn ≥ |Dzn|. Thus {∂ezn} is a sequence of nonneg-
ative measures which converge distributionally to ∂ez. Therefore, these measures
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are uniformly bounded, i.e. ‖zn‖BV is uniformly bounded. Thus Dzn⇀
∗Dz. Up to

extraction of a subsequence we can assume that |Dzn| converges in the sense of
measures to some ν . Then,

|Dz| ≤ ν = w∗ lim
n
|Dzn| ≤ a′w∗ lim

n
∂ezn = a′∂ez.

This implies that z ∈ S.

F is a Borel set. Denote by M 2 the set of R
2-valued Radon measures on B and

by M + the set of nonnegative Radon measures. Define T : M +×M 2 → R by

T (ν,µ) :=
∫ ν

|µ | (x)d|µ |(x).

Note that ν << |µ | if and only if T (ν,µ) = ν(B). Thus,

F =
{
(t,z) ∈ [−c,c]×S : T (|Dvt | G,Dz) = |Dvt |(B∩G)

}
.

Since the map t 	→ |Dvt | can be chosen Borel-measurable, in order to prove that F
is a Borel set it suffices to show that T is a Borel function.

First of all, note that

T (ν,µ) = sup
n∈N

∫

min

{

n,
ν
|µ | (x)

}

d|µ |(x) = sup
n∈N

n
∫

min

{

1,
ν/n
|µ | (x)

}

d|µ |(x).

Therefore, it suffices to show that the map T̃ : M +×M 2 → R given by

T̃ (α,µ) =
∫

min

{

1,
α
|µ | (x)

}

d|µ |(x)

is Borel measurable. Note that T̃ (α,µ) = inf{α(A) + |µ |(B \ A) : A ⊂ B is
measurable}. Therefore,

T̃ (α,µ) = inf
f∈Cc(B),0< f<1

[∫

(1− f )dα +
∫

f d|µ |
]

= inf
f∈Cc(B),0< f<1

[∫

(1− f )dα + sup
g∈Cc(B,R2),0≤|g|< f

∫

g ·dµ

]

.

Let F1 be a countable dense subset of { f ∈Cc(B) : 0 < f < 1} and F2 a countable
dense subset of Cc(B,R2). Then

T̃ (α,µ) = inf
f∈F1

sup
g∈F2,0≤|g|< f

[∫

(1− f )dα +
∫

g ·dµ
]

. (10)
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Since for each ( f ,g) ∈ F1 ×F2 the map

(α,µ) 	→
∫

(1− f )dα +
∫

g ·dµ

is weakly∗ continuous, (10) implies that T̃ is a Borel function. 
�
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