2

Cellular Nonlinear Networks: State of the Art
and Applications

2.1 Introduction

Solving some of the open problems using the principles of natural computing
exposed in the previous chapter led to the idea of developing a computing para-
digm called cellular computing. The structure of such a computing system is de-
fined by a grid (often two-dimensional) of locally interconnected cells. Each cell
may be in a number of states (ranging from 2 to infinity) and the state of a cell
depends by its own previous state and the previous states of its neighbors through
a nonlinear functional, which may be defined in different ways. This functional is
associated with a practical implementation of the cell and includes a set of tunable
parameters grouped as a gene vector [7]. By tuning the gene parameters one can
achieve programmability, i.e. different emergent behaviors within the same basic
cellular architecture.

The cell assumes an initial state and may have one or more external inputs. In a
cellular system, computation can be considered any form of meaningful emergent
global phenomenon resulted from a proper design of the cell. Usually the initial
state and the inputs code the problem to be solved while the answer to this prob-
lem is coded in an equilibrium state. For instance, in the character segmentation
example provided in Chap. 8, the initial state contains a visual field with black/white
pixels (e.g. handwritten figures) while the steady state result of the emergent dynam-
ics is a collection of rectangles, each enclosing a compact handwritten character.
More complicated dynamics (e.g. oscillatory or chaotic) can also encode a solution
to the problem posed as initial state. This is the case when cellular systems are used
to generate pseudo-random sequences, a widely known application of the cellular
systems.

The first cellular computers were theoretical constructs introduced by Stanislaw
M. Ulam in the 1950’s [18]. He then suggested John von Neumann to use what he
called “cellular spaces” to build his self-reproductive machine [19]. Konrad Zuse
(who built the first programmable computers between 1935-1941) was the first to
suggest that the entire universe is being computed on a computer, possibly a cellu-
lar automaton (CA) [16]. Many years later similar ideas were also published by
Edward Fredkin [20,21] and recently (2002) by Stephen Wolfram [17]. In 1982
Fredkin and Toffoli published a paper [22] where cellular computation based on

R. Dogaru: Cellular Nonlinear Networks: State of the Art and Applications, Studies in Computational
Intelligence (SCI) 95, 7-13 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008



8 2 Cellular Nonlinear Networks: State of the Art and Applications

conservative logic was proposed as a nondissipative cellular system. Their approach
is interesting while we recall that in general any natural computing system is
regarded as a dissipative system.

Initially cellular automata (CA) were developed to explain various natural phenom-
ena. Choosing the proper genes in the form of local rules defining the behavior of each
cell was the equivalent of programming in serial computers. The well known “Game
of Life” rule introduced by Conway in the 1970s [23] gained popularity due to the
complex and diverse patterns emerging in such a simply defined system. Designing
a proper set of local rules was then a matter of intuition and educated guess rather
than the outcome of a well-defined procedure. It was proved that such a simple
machine (this is a 2 state per cell cellular automata with a very simple local rule) is
capable of universal computation (i.e. it is a universal Turing machine [24]). Following
the line of von Neumann, a lot of research has been devoted to the study of cellular
automata and local rules leading to emergent properties such as self-reproduction and
artificial life. An overview of these nonconventional computers can be found in [25].
Simulation software for a wide palette of cellular paradigms including von Neumann’s
self-reproducing machine can be found at [26].

Recently, starting with the work of Chua and Yang [27] a novel cellular com-
puting paradigm called cellular neural network was developed. It inherits the basic
ideas of cellular computing and in addition bore some interesting ideas from the
field of neural computation. While most of the previously described cellular com-
puting paradigms were conceptual, the CNN was from the beginning circuit oriented,
i.e. intended for practical applications as an integrated circuit. Moreover, in 1993
Roska and Chua [28], proposed a revolutionary framework called a CNN Universal
Machine, in fact a specialized programmable cellular computer which is capable
to execute complex image processing tasks and which found numerous applica-
tions in vision, robotics and remote sensing [29]. Nowadays this paradigm is
successfully exploited in various applications dealing mainly with extremely fast
nonlinear signal processing and intelligent sensors. In [7] it is demonstrated that
the CNN paradigm includes cellular automata as a special case. Therefore many of
the research in the area of cellular automata can be easily mapped into the CNN
formalism with the advantage of exploiting a range of powerful chip implementa-
tions that have been developed over the years [30,31].

To date several types of emergent computation were identified as meaningful
and useful either for computing applications (e.g. in the area of vision and image
processing) or for modeling purposed (e.g. models of the cell membrane) by what
I would generically call “evolutionary strategies”. An interesting example is the
development of a relatively large library of CNN genes (templates) over the last
decade [32]. Many of these genes were discovered by chance, studying the dy-
namic evolution of the CNN and identifying certain dynamic behaviors with
meaningful computational primitives such as edge or corner detection, hole filling,
motion detection, and so on. Although some theoretical approaches, mainly inspired
from the techniques of filter design were successfully employed to design new
chromosomes, there is still much to do for a systematic design of the cells and
genes. This book offers several novel approaches and solutions to this problem.



2.2 Typical Applications of Cellular Computers 9

2.2 Typical Applications of Cellular Computers

A search done several years ago on the IEEE Xplore database reveals the following
distribution of applicative areas for cellular automata and cellular neural network

architectures (Fig. 2.1).

)
;9

R
~.
O Pqun
ULy
—

=
0

8 SI01RI5 45

Wopue; py,,

|
VLSI - 305 i o N
|'\ § \\ \ ('0, "&f‘-‘ .‘\
é D, Y0, D\
\ / m \\{)Q:".';- .,} 7o\
\ / W ~ "(}/ . \\
’ — /s

Fig. 2.1. Paper distribution on various applicative subjects; Based on IEEE publications
between 1988 and 2003. The number within each category is the number of papers found to
deal specifically with a certain item (e.g. VLSI) while having the words “cellular automata”

or “cellular neural network” also in the article title

The above figure reveals that most of the applications of cellular computers are
related to VLSI implementations. They are either digital implementations (custom
or reconfigurable) or mixed-signal. A notable example from the mixed-signal
category is the CNN-UM (CNN universal machine) mentioned before.

The massive parallelism of the cellular computing architecture is the more ap-
pealing feature for a VLSI implementation. The result is a fast signal-processing
engine, outperforming a conventional signal processor several orders of magni-
tudes. This is particularly effective for multi-dimensional signal processing, i.e.

image processing.

Another popular application of cellular computers is that of pattern recognition.
Several papers proposed so far the use of cellular computers as classifiers, work-
ing on a different principle than classic feed-forward neural networks. Here the
classes are associated with a finite number of attractors and the initial state
with the pattern to be recognized. Convergence towards an attractor or another
indicates the membership of the initial state pattern to a certain category. While



10 2 Cellular Nonlinear Networks: State of the Art and Applications

cellular computers may have hundreds of thousands of cells they can process large
databases such as images or other multi-dimensional signals. For instance cellular
computing systems can extract edges, corners and other features of interest from
an image regardless the size of that image. Besides pattern recognition, cellular
systems are capable of various linear and nonlinear filtering tasks.

Ciphering is another popular application of cellular computing. Indeed several
patents have been filled for such applications where cells are designed such that a
complex, chaotic dynamics, emerge in the array of cells. Unlike other methods for
random number generation (e.g. the linear feedback shift registers) the CA-based
method is scalable, i.e. one can add more cells without changing the essence of the
dynamics behavior. By employing a larger number of cells, the probability of de-
ciphering decreases making such systems extremely reliable in terms of security.
In a recent paper [33] the use of cellular automata as ciphering systems is carefully
investigated and several benchmarks are computed showing that highly reliable
random number generators can be obtained using relatively simple cells (e.g. four
input Boolean cells) arranged in one-dimensional arrays of several hundreds of
cells.

The pseudo-random and complex dynamics of cellular systems is also exploited
for built in self test (BIST) systems. Such systems are required to perform func-
tional analysis of complex circuits and detect functional failures. In doing so, a
convenient solution is to embed a cellular system acting as a pattern generator.
The CA is designed such that a large sequence of patterns is generated as a result
of the CA dynamics. The length of the sequence is optimized as a tradeoff be-
tween a reasonable testing time (demanding thus not a very long sequence) and
enough information in the sequence to detect certain failures. In the parlance of
emergence ideal BIST sequence generators are operated in the “edge of chaos”
regime, i.e. they are neither random signal generators with very long cycles nei-
ther orderly systems with very small length limit cycles.

Signal compression is another interesting application of cellular automata. Several
solutions were reported so far. For instance [34] proposes a solution called a “CA
transform” where a signal (image or sound) is decomposed as a binary weighted
sum of basis signals. The basis signals are generated by properly tuned cellular
automata with certain genes (cell parameters). In order to reconstruct the signal
one needs only the set of binary weights and the (relatively) short description of
the CA cells generating the basis signals.

In order to demonstrate the idea of image compression using cellular automata
we proposed recently a novel approach where generalized cellular automata
(GCA) can be used. Using the following simple Matlab programs, a wide palette
of images can be obtained (one pixel corresponds to one cell in the image), part of
which are depicted in Fig. 2.2. Each image in Fig. 2.2 displays above the set of 17
generating parameters.

Only a few parameters (17 parameters, underlined above) control the diversity of
the obtained images. Such images or part of them can be combined to approximate



2.2 Typical Applications of Cellular Computers 11

% 1 function implementing the cell. It also contains the gene

function y=gca_u_cell(u1,u2,u3,u4,u5,u6,u7,u8,ud)

Z=[0.9,0.3,0.3,2,0.3,.6,05; B=0.5%[1.11110111 1J;
sigm=B(1)*ul+B(2)*u2+B(3)*u3+B(4)*u4+B(5)*us+B(6)*u6+B(7)*u7+B(8)*u8+B(9)*u9;
w=Z(1)+Z(2)*u5+Z(3)*sigm-abs(Z(4)+Z(5)*us+Z(6)*sigm)+Z(7)*abs(sigm);

y=Wi

% 2 main program running the GCA for a given number of steps
function y=gca_u(steps)
% e.g. steps=100 (runs the GCA for 100 iterations)
x0=-0nes(199,199);
x0(100,100)=1;
[m n]=size(x0);
i=1:m; j=1:n;
left_j=[n,1:n-1];
right_j=[2:n,1];
up_i=[m,1:m-1];
low_i=[2:m,1]; y=x0;
for s=1:steps
u9=y(up_ileft_j); u8=y(up_ij); u7=y(up_iright_j);
ub=y(i,left_j); us=y; ud=y(i,right_j);
ud=y(low_i,left_j); u2=y(low_i,j); ul=y(low_i right_j);
y=gca_u_cell(ul,u2,u3,ud,us,u6,u7,u8,u9);
end
set(1,'Position‘,[291 180 505 540]);
image(20*y+32);
axis image;
colormap gray

any part of a real image. The extreme case is when one of the resulting images has
to be compressed. Then since it is the result of running the above programs (acting
as decompressing engines) an extremely high compression rate is achieved. As-
suming that each of the 17 parameters as well as the pixels from the image are rep-
resented with 8bits, for a 200 x 200 pixels image a compression rate of

2353 _200x200

can be obtained. This is a rate far beyond any of the actual com-

pression scheme. A challenging task remains to find families of cellular systems
capable to approximate quite well larger blocks from real natural images. The
larger the blocks the higher the compression rate, which in the limits can reach
values as high as thousands or tens of thousands. The advantage of a very simple
decompression scheme (the above programs) shall be exploited in making
compressed documents such as journals, books or compact encyclopedias.



12 2 Cellular Nonlinear Networks: State of the Art and Applications

A 40 @ B0 100 10 140 160 180

100 120 140 160 180

Fig. 2.2. Several different images obtained with the same “decompression” software
starting from different sets of cell parameters. The compression rate achieved is of the order
of thousands since each image is defined by only 17 parameters (depicted above)

2.3 Hardware Platforms for Implementing Cellular
Computers

Cellular computers are particularly attractive for hardware implementation because
is only in hardware where their full computational power come to a life. More-
over, since they are interconnected arrays of regular cells they are simple to
implement starting from the design of cell, which is multiplied as needed. The
designer of a cellular system focuses on cell-design while interconnection often



2.3 Hardware Platforms for Implementing Cellular Computers 13

comes naturally by arranging the cells given the technology constraint. Often the
arrays are two-dimensional with each cell connected to the immediate neighbors.

In digital technologies cellular computers can be realized either as dedicated
VLSI products but in this case they are less flexible and have large development
costs or better using the FPGA (field-programmable-gate-array) technology which
offers a high degree of flexibility and programmability as a results of allowing
random interconnection between a number of identical yet reconfigurable digital
cells. Several FPGA implementations of cellular systems were reported so far
[35], including a CNN prototyping board. Digital technologies have the disadvan-
tage of a low density of cells.

This is why an alternative solution is the use of mixed-signal cells, where com-
pact cells based on nonlinear computation in analog devices are used. The CNN
paradigm was from the beginning oriented to such a technology. So far a series of
chips (today called visual microprocessors or imagers) was developed. Among the
latest implementation solution of a CNN universal machine is the ACE16k chip
[36] which has optical input and can implement the standard CNN model. It has a
number of about 16,000 cells, each cell being associated with an image pixel. Cer-
tain high-speed processing tasks were demonstrated such as the task of classifying
objects (medical pills) presented to the optical input with a speed of 20,000 objects
per second. Several other mixed-signal cell architectures were proposed, for
instance the architecture described in [37], which is based on a nested (recurrent)
utilization of a nonmonotone nonlinear function to reduce the complexity and
implement arbitrary Boolean functions. Arbitrary Boolean functions with n inputs
can be implemented with a linear complexity in n. A schematic of this function is
presented in Chap. 3.

A novel implementation medium, although yet experimental, is represented by
the use of nano-technologies [38]. Browsing the literature of the last 2 years, we
found an increased interest in the “quantum dot” cellular computing paradigm
[39], abbreviated QCA (from quantum cellular automata). Recently [40] the para-
digm evolved into molecular QCA. More details and java simulations of QCA
systems can be found at http://www.nd.edu/~qcahome/. A quantum dot is a nano-
meter scale active cell. Quantum dots are interconnected by proximity so there is
no need for additional metal layers as in standard electronic technologies. A state
change in a QCA cell propagates to its neighbors and this is exactly the basis for
cellular computation. When arranged properly such cells are capable to do various
computational tasks.



2 Springer
http://www.springer.com/978-3-540-76800-5

Systematic Design for Emergence in Cellular Monlinear
Metworks

with Applications in Natural Computing and Signal
Frocessing-

Dogaru, R,

2008, ¥Il, 166 p. 80 illus., Hardcover

ISBM: 978-3-540-76800-5



