N Flow Acoustics

P. Koltzsch

Sound propagation in a flowing medium is treated also in the chapters “J. Duct Acoustics”
and “K. Acoustic Mufflers”, but there mostly with simplifying assumptions.

This chapter uses throughout the “double subscript summation rule”,i.e.,termsin an
expression in which a subscript (for example i) appears twice represent a sum over that
term with the multiple subscript as summation index. Terms containing x7, for example,
are also cases of the summation rule.

The general convention to symbolise the density of air with py and sound velocity
with ¢y must be suspended in this chapter, because these quantities may be used in other
than standard conditions. These conditions will always be defined in the context.

N.1 Concepts and Notations in Fluid Mechanics, in Connection
With the Field of Aeroacoustics

» See also: Morfey (2001), Lauchle (1996), Douglas (1986), Roger (1996).

N.1.1 Types of Fluids

Ideal fluids: p=0,A=0 p: dynamic viscosity
A: thermal conductivity

Newtonian fluid: | = constant
Non-Newtonian fluid: p # constant

The relationship between shear stress 1 and velocity gradient
0v/on is non-linear.

N.1.2 Properties of Fluids

Density: p, mass per volume, [p] = %
Pressure p> normal force pushing against a plane area divided by the
area [p] = % =Pa
Viscosity: dynamic viscosity p, [p] = % =Pa-s
kinematic viscosity v, [v] = mTZ
_ _J
Gas constant R,[R] = GX
0 0
Specific heats at constant volume ¢, = T S) (& (1)
oT o oT o
0s oh
at constant pressurec, =T | — ) =| = (2)
oT oT

P P
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Specific heat ratio

Speed of sound

Bulk modulus

Coefficient of expansion

Thermal conductivity

Shear stress

J
[CP’ Cv] - kg -K

with: s  specific entropy
u specific internal energy
h  specific enthalpy.

K = cp/cy, ratio of the specific heat at constant pressure to that
at constant volume. (3)

ol ==
S

K, expresses the compressibility of a fluid, [K] = Pa,

0
adiabatic or isentropic bulk modulus: K = p (8_p) (4)
p
. op :
isothermal bulk modulus: Kt = p % (5)
T

The reciprocal 1/Ks or 1/Kr is the adiabatic or isothermal
compressibility.

__L(oe L

p= P(@T)p [B] = ¢ (6)
LM = 2%

1,[1] = Pa

N.1.3 Models of Fluid Flows

Real flow:
ideal flow:

Inviscid flow:
viscous flow:

Incompressible flow:
compressible flow:

Adiabatic flow:

isentropic flow:

homentropic flow:
isothermal flow:

Steady flow:

stationary flow:

flow without any assumptions;
flow without viscosity and thermal conductivity.

flow without viscosity;
p#o.

p = constant;
p # constant.
flow without heat transfer;
S . . . .
Dt 0, the specific entropy of each fluid particle along its path

is constant, but may vary from a particle to another (RoGER);
inviscid and non heat-conducting gas flow, also frictionless
adiabatic flow

s = constant throughout the flow, uniform specific entropy;
T = constant.

0...
no time dependence for v, p, p, T, ...; thus >t =0;
T
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unsteady flow:

Uniform flow:

non-uniform flow:

Rotational flow:

Vorticity:

Irrotational flow:

Comment:

A 0, possiblyal 0A #0
— , POSS1 also — .
ot 7 O POSSIyaIso o

ov

R
ov
5—7/0.
& €& §&
d=rotv=culv=Vxv=| 2 & #0 (8)

)
]
< 2
s Qo

with: vy = u,vy =v,v, = w.
® = rotv = V x v is a measure of local fluid rotation.

@ =rotv=V xv=0. 9)

From Crocco’s form of the momentum equations it follows that (stationary flow with
constant stagnation enthalpy) @ x v =T - grads.

Consequences:

a rotational flow cannot exist with uniform entropy;
a homentropic flow must be irrotational (except when vorticity field and velocity field

are parallel).

Laminar flow:

Turbulent flow,
Turbulence:

Turbulence level:

viscous or streamline flow, without turbulence; the particles of
the fluid moving in an orderly manner and retaining the same
relative positions in successive flow cross-sections.

a random, non-deterministic motion of eddying fluid flow;
characterized by (MoOREEY):

o three-dimensional velocity fluctuations field;

o unsteady flow;

e viscous flow;

o rotational flow;

o flow with viscous dissipation of energy;

e viscous dissipation takes place at the smallest length scales
of eddies, far removed from the larger scales eddies contain
most of the kinetic energy; the smallest scales > molecular
scales;

o fluctuations cover a wide frequency range and a wide range
of eddy sizes or length scales;

e occurring at high Reynolds numbers.

based on the averaging of the specific kinetic energy
1= l— —

2 _ b b — 52 '2
SV = E(Vi +vi’) (Vi +vi’) = Evi + Evi (10)
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Transition:

Boundary layer flow:

Reynolds stress:

three-dimensional
1— 1 1 — —
Eviz = 5 (1_12+\72+v_v2)+5 (ll/2+V/2+W/2) (11)

turbulence level:

%(?+W+W)
Tu = 12
(@2 + V2 +w?) (12)

in the special case of isotropic turbulence and unidirectional
flow v; = {vyx = U;0;0}:
Vuzr ou

Tu = = —ms 13
u=— U (13)

the fluid flow change from laminar to turbulent flow.

e in the mean flow sense (MORFEY):

flow next to a solid surfaces within which the mean flow u(y)
varies with distance y from the wall, from zero at the wall (at
y = 0) to 99% of its free-stream value at y = §, 6 is the bound-
ary layer thickness;

e in the acoustic sense (MORFEY):

a thin region produced by a sound field next to a solid bound-
ary, within which the oscillatory velocity parallel to the wall
drops to zero as the wall is approached, as a result of viscosity.
The acoustic boundary layer thickness is

2
§=/= <« A (14)
(69)

e pv;v;j in unsteady fluid flow;

vi, vj are fluid velocity components in any of the three orthog-
onal Cartesian coordinate directions;

pviv; represents the transfer rate of j-components fluid mo-
mentum, per unit area;

the double divergence of pv;v; represents a source term in
Lighthill’s

inhomogeneous wave equation (acoustic analogy for aerody-
namic sound generation);

e in turbulent flows: L

the time-average Reynolds stress pvi’vj’ is a term in the time-
averaged momentum equation, as the negative of an effective
stress;

pvi’vj’ represents the mean momentum flux due to turbulent
eddies;

the Reynolds stress tensor is 1 = pv;v; with normal stress if
i = j,and shear stress if i # j (MORFEY)
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N.2 SomeTools in Fluid Mechanics and Aeroacoustics

» See also: Telionis (1981),Johnson (1998), Schlichting (1997), Lauchle (1996), Liu (1988),
Hussain (1970), Reynolds (1972)./

N.2.1 Averaging

General quantity: f(x,t)
Spatial average: fspaﬁal = % / f(x,0)dv =£ (t) (1)
v
T
Time average: fime = lim 1 / fEtdi=f () =f (2)
T—oo T
0

with: abbreviation: f.

(o]

— 1 - —ms
Root mean square: frms = V2= Tlim T / f2(x,t)dt =f () (3)
— 00
0

the square root of the mean square value.

Ensemble average: over N repeated experiments

_ 1 Y _

fensembie = (f (%, 1) = lim = le fORy=f"&y ()
Phase average: for periodic flows

N
- . 1 - Fph
fohase = {f (%, 1) = lim §7of(x,t+m)=f &0 ()

with: T period of an externally imposed fluctuation;

N
- .1 - o
fonase = (F (X, 1) = lim > f (%, o + neor) = £ (%, 90) (6)
n=0

with: 0 < @y < 2m; ¢ = @ + not phase of the periodic flow.

Reynolds averaging: decomposition of a general quantity in the flow in the following
form:
f=f+f
. T
with: f=1f = Tlim 1 [fdt mean quantity; (7)
- 0

f’dt =0 fluctuating quantity. (8)
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Mass-weighted or Favre averaging:
decomposition of a general quantity in the flow in the following

form:
f=f+f1
= pf
with: ff = PT filtered part of f;
P
£t unresolved or subgrid part of
f//f =0

N.2.2 Decomposition (In General)

Decomposition a general flow quantity in three (or four) parts:

fEY=f@®+{E 1)+ (1) (9)
with:
f () time-averaged or mean component, obtained by Reynolds averaging:
T
f (%) = lim —/f(x t) dt;
T-oco T

B 0

f=0

= 0;

f(& 1) organized fluctuation: periodicities are in time, periodic mean component of
low can be split into the odd modes f 0dd 31d in the even modes f¢Ve" (see L1v):

f(%,t) = fodd (%, t) + foven (%, t); (10)

f’(x,t) random fluctuations, incoherent fluctuating flow quantities, e.g. small-scale
stochastic fluctuations of the fine—grained turbulence;

fohase = (F (X, 1)) = Jim —Zf(x t+nt) =1+ (11)
with:  (f'(X,1))=0
f=(f&X ) -f (12)

Phase averaging with period 2t is denoted by (()) so that <<f°dd>> =0.

Therefore the even modes are obtained from

<<fodd i feven» — feven (13)
and the odd modes from subtracting

fost = [ 4 ) (1)
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N.2.3 Decomposition of the Physical Quantities in the Basic Equations

Decomposition: p=p+p
p=p+p
Vi =Vi+ Vi/.

Continuity equation:

o (pvi

o o(pvi) _ (15)
ot OXj

8p/ a - =/ = >

E+8—Xi[pvi+pvi+vip +vip']=0 (16)

with assumptions: p’, v/ < p, Vi and p # f (X)

Continuity equation in the case of mean flow: g—; =0 (17)
op’ : op’
and in the case of fluctuating flow @° +p—+ Vi—p =0(18)
ot 0%; 0%;
/
and with the equation of state p’ = p—2:
o
op’ op’ ov!
P a5l (19)
ot 0%; 0%;
Dp' ,0v]
+pc;— =0 20
Dt PO%x (20)
with: D% = % +\_/i£ (21)
Momentum equation (without viscosity)
G G ~
o (Vi) + 5;;(Pvﬂﬁ*‘P5ﬁ)“0 (22)
Ov; op
mean flow f)\_/j—l + P _ 0 (23)
0x; 0%
ov! ov! ov; ovi op
fluctuating flow (with linearisation) p—t + pvi—- + p'Vi— + pvi — + P _ 0(24)
g % pv; PV %
ot OX; OX; ) 0x; 0%
with constant mean flow
( tion: ; is uniform) SRS (25)
assumption: v; is uniform —L t+pvi—L + — =
HmPHORE VIS E Pt T Pox T ox;
Wave equation
op’ op’ ov!
following from the continuity equation a—I; + Via—z + ﬁcga—xf =0 (26)
1 1
) _ovi __ovl op
and the momentum equations p— —L 4+ =0 (27)
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, , ?p 16 _ o7,
Result: convective wave equation: S-S5 | = tvi— | pP=0 (28)
0x; ¢y Lot 0%;
, o _ o (o .. &  __ &
with: —+vi— | = — +2V; + ViV (29)
ot 0%; ot? 0x;0t 0% 0X;

Navier-Stokes equation:
Double decomposition of quantities and time averaging: Reynolds averaging.

Assumptions: incompressible flow

_ov  10p oW 5(V{Vj’)

for the mean flow: vj— =-—— +v— — —— Reynolds equation (30)
OX; p 0% 5Xj OX;
) oy Ty Ty pu?  puv puw
with stress tensor , [ — = —
of fluctuating flow By Oy Ty | ST puv pvE o pvW (31)
/ R - S
Te Ty O puw’  pv'w  pw’?

Triple decomposition of quantities and time averaging (TELIONTS):

fFER)=fE+fE )+ &1

o 1o 2(7) (W) o)

for the mean flow:  v;— 2
0 poxi  0x 0x; 0%

with two Reynolds stress terms on the right-hand side of the equa-
tion: non-linear contributions due to the random fluctuations and
due to organized fluctuations.

for the organized fluctuations:
oV o _ovi_ 10p i, g (Vivj) 0 (Vf"j’) 0 (<V{Vj’>)

j_+Vj_+Vj_ V—2 + - (33)
ot OX; OX; OX; p 0% (’3xj OX; OX; OX;

ov;

N.2.4 Correlations

T
1

Rp(1) = Tlim T / p(t)p(t + 1)dt autocorrelation function (34)

— 00

0
R;(0) = p*(t) (35)
L

1

Ry(©) = - | pOIpx + ) (36)
0

R = E’z correlation function, fluctuations of velocity (37)
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N.2.5 Scales
1 oo
= Ry(1)d integral ti 1 38
Tc R,(0) / p(n)dr integral time scale (38)
0
1 oo
= / Ry (8)dg integral length scale (39)
R;(0)
0
Ep (ke integral length scale,
L= n( /12)1<1 0 limiting value of the power spectrum (40)
AV s as k; approaches zero.
Vi (k/ke)* 2 (k/k,? Power spectral density for isotropic
Ek) =« _— v P (41)
ke (1+ (k/ke)?)!7/6 turbulence (von Kdrman spectrum)
with (LONGATTE):
o~ 1.453
ke ~ 0.747/
= (V) /e
€ = dissipation rate of turbulent kinetic energy
k, = (e/v)/!
2(t
lf =P ( )2 differential time scale (42)
8
(%)
R, (0
T2 — p(0) (43)
0’R,(0)
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