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N Flow Acoustics
P. Költzsch

Soundpropagation in a flowing mediumis treatedalso in the chapters“J.DuctAcoustics”
and“K. Acoustic Mufflers”, but there mostly with simplifying assumptions.

This chapter uses throughout the“double subscript summation rule”, i.e., terms in an
expression in which a subscript (for example i) appears twice represent a sum over that
term with the multiple subscript as summation index. Terms containing x2

i , for example,
are also cases of the summation rule.

The general convention to symbolise the density of air with �0 and sound velocity
with c0 must be suspended in this chapter,because these quantities may be used in other
than standard conditions. These conditions will always be defined in the context.

N.1 Concepts and Notations in Fluid Mechanics, in Connection
With the Field of Aeroacoustics

� See also: Morfey (2001), Lauchle (1996), Douglas (1986), Roger (1996).

N.1.1 Types of Fluids

Ideal fluids: ‹ = 0, Š = 0 ‹: dynamic viscosity

Š: thermal conductivity

Newtonian fluid: ‹ = constant
Non-Newtonian fluid: ‹ �= constant

The relationship between shear stress ‘ and velocity gradient
∂v/∂n is non-linear.

N.1.2 Properties of Fluids

Density: �, mass per volume,
[
�
]

= kg
m3

Pressure p, normal force pushing against a plane area divided by the
area [p] = N

m2 = Pa

Viscosity: dynamic viscosity ‹, [‹] = N·s
m2 = Pa · s

kinematic viscosity Œ, [Œ] = m2

s

Gas constant R, [R] = J
kg·K

Specific heats at constant volume cv = T
(

∂s
∂T

)
�

=
(

∂u
∂T

)
�

(1)

at constant pressure cp = T
(

∂s

∂T

)
p

=
(

∂h

∂T

)
p

(2)



“Mechel, Springer-Verlag” — 2008/1/9 — 17:15 — page 68 — #14

68 N Flow Acoustics

[
cp, cv

]
=

J

kg · K
with: s specific entropy

u specific internal energy
h specific enthalpy.

Specific heat ratio ‰ = cp/cv, ratio of the specific heat at constant pressure to that
at constant volume. (3)

Speed of sound c, [c] =
m

s

Bulk modulus K, expresses the compressibility of a fluid, [K] = Pa,

adiabatic or isentropic bulk modulus: Ks = �

(
∂p

∂�

)
s

(4)

isothermal bulk modulus: KT = �

(
∂p
∂�

)
T

(5)

The reciprocal 1/Ks or 1/KT is the adiabatic or isothermal
compressibility.

Coefficient of expansion � = −
1
�

(
∂�

∂T

)
p

[
�
]

=
1
K

(6)

Thermal conductivity Š, [Š] = W
m·K

Shear stress ‘, [‘] = Pa

N.1.3 Models of Fluid Flows

Real flow: flow without any assumptions;
ideal flow: flow without viscosity and thermal conductivity.

Inviscid flow: flow without viscosity;
viscous flow: ‹ �= 0.

Incompressible flow: � = constant;
compressible flow: � �= constant.

Adiabatic flow: flow without heat transfer;

isentropic flow:
Ds

Dt
= 0,the specific entropy of each fluid particle along its path

is constant, but may vary from a particle to another (Roger);
inviscid and non heat-conducting gas flow, also frictionless
adiabatic flow

homentropic flow: s = constant throughout the flow, uniform specific entropy;
isothermal flow: T = constant.

Steady flow: no time dependence for v, p, �, T, . . . ; thus
∂ . . .

∂t
= 0;

stationary flow:
∂Ā

∂t
= 0, with Ā = v̄, p̄, �̄, T̄, ..... and Ā = lim

T→∞
1

T

T∫

0

Adt; (7)
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unsteady flow:
∂A
∂t

�= 0, possibly also
∂Ā
∂t

�= 0.

Uniform flow:
∂ v̄
∂s

= 0;

non-uniform flow:
∂ v̄
∂s

�= 0.

Rotational flow: �– = rot�v = curl�v = ∇ × �v =

∣∣∣∣∣∣∣∣

�ex �ey �ez

∂

∂x
∂
∂y

∂
∂z

u v w

∣∣∣∣∣∣∣∣
�= 0 (8)

with: vx = u, vy = v, vz = w.

Vorticity: �– = rot�v = ∇ × �v is a measure of local fluid rotation.

Irrotational flow: �– = rot�v = ∇ × �v = 0. (9)

Comment:

From Crocco’s form of the momentum equations it follows that (stationary flow with
constant stagnation enthalpy) �– × �v = T · grad s.

Consequences:

a rotational flow cannot exist with uniform entropy;
a homentropic flow must be irrotational (except when vorticity field and velocity field
are parallel).

Laminar flow: viscous or streamline flow,without turbulence; the particles of
the fluid moving in an orderly manner and retaining the same
relative positions in successive flow cross-sections.

Turbulent flow,
Turbulence:

a random, non-deterministic motion of eddying fluid flow;
characterized by (Morfey):
• three-dimensional velocity fluctuations field;
• unsteady flow;
• viscous flow;
• rotational flow;
• flow with viscous dissipation of energy;
• viscous dissipation takes place at the smallest length scales
of eddies, far removed from the larger scales eddies contain
most of the kinetic energy; the smallest scales � molecular
scales;
• fluctuations cover a wide frequency range and a wide range
of eddy sizes or length scales;
• occurring at high Reynolds numbers.

Turbulence level: based on the averaging of the specific kinetic energy
1

2
v2

i =
1

2

(
v̄i + v′

i

) (
v̄i + v′

i

)
=

1

2
v̄2

i +
1

2
v ′2

i (10)
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three-dimensional
1

2
v2

i =
1

2

(
ū2 + v̄2 + w̄2) +

1

2

(
u′2 + v′2 + w′2

)
(11)

turbulence level:

Tu =

√√√√ 1
3

(
u′2 + v′2 + w′2

)

(ū2 + v̄2 + w̄2)
(12)

in the special case of isotropic turbulence and unidirectional
flow v̄i = {v̄x = U; 0; 0}:

Tu =

√
u′2

U
=

u′
rms

U
(13)

Transition: the fluid flow change from laminar to turbulent flow.

Boundary layer flow: • in the mean flow sense (Morfey):
flow next to a solid surfaces within which the mean flow ū(y)
varies with distance y from the wall, from zero at the wall (at
y = 0) to 99% of its free-stream value at y = ƒ, ƒ is the bound-
ary layer thickness;

• in the acoustic sense (Morfey):
a thin region produced by a sound field next to a solid bound-
ary, within which the oscillatory velocity parallel to the wall
drops to zero as the wall is approached, as a result of viscosity.
The acoustic boundary layer thickness is

ƒ =

√
2Œ

–
	 Š (14)

Reynolds stress: • �vivj in unsteady fluid flow;
vi, vj are fluid velocity components in any of the three orthog-
onal Cartesian coordinate directions;
�vivj represents the transfer rate of j-components fluid mo-
mentum, per unit area;
the double divergence of �vivj represents a source term in
Lighthill’s
inhomogeneous wave equation (acoustic analogy for aerody-
namic sound generation);

• in turbulent flows:
the time-average Reynolds stress �v′

iv
′
j is a term in the time-

averaged momentum equation, as the negative of an effective
stress;
�v′

iv
′
j represents the mean momentum flux due to turbulent

eddies;
the Reynolds stress tensor is ‘ij = �vivj with normal stress if
i = j, and shear stress if i �= j (Morfey)



“Mechel, Springer-Verlag” — 2008/1/9 — 17:15 — page 71 — #17

Some Tools in Fluid Mechanics and Aeroacoustics N.2 71

N.2 Some Tools in Fluid Mechanics and Aeroacoustics

� See also: Telionis (1981),Johnson (1998),Schlichting (1997),Lauchle (1996),Liu (1988),
Hussain (1970), Reynolds (1972)./

N.2.1 Averaging

General quantity: f (�x, t)

Spatial average: f̄spatial =
1

V

∫

V

f (�x, t) dV = f̄
s
(t) (1)

Time average: f̄time = lim
T→∞

1
T

T∫

0

f (�x, t) dt = f̄
t
(�x) = f̄ (2)

with: abbreviation: f̄ .

Root mean square: frms =
√

f 2 =

√√√√√ lim
T→∞

1

T

∞∫

0

f 2 (�x, t) dt = f̄
rms

(�x) (3)

the square root of the mean square value.

Ensemble average: over N repeated experiments

f̄ensemble = 〈f (�x, t)〉 = lim
N→∞

1

N

N∑
�=1

f (�) (�x, t) = f̄
en

(�x, t) (4)

Phase average: for periodic flows

f̄phase = 〈f (�x, t)〉 = lim
N→∞

1
N

N∑
n=0

f (�x, t + n‘) = f̄
ph

(�x, t) (5)

with: ‘ period of an externally imposed fluctuation;

f̄phase = 〈f (�x, t)〉 = lim
N→∞

1
N

N∑
n=0

f
(�x, œ0 + n–‘

)
= f̄

ph (�x, œ0
)
(6)

with: 0 < œ0 < 2�; œ = œ0 + n–‘ phase of the periodic flow.

Reynolds averaging: decomposition of a general quantity in theflow in the following
form:

f = f̄ + f ′

with: f̄ = f0 = lim
T→∞

1
T

T∫
0

f dt mean quantity; (7)

f ′ = lim
T→∞

1
T

T∫
0

f ′ dt = 0 fluctuating quantity. (8)
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Mass-weightedor Favre averaging:
decomposition of a general quantity in theflow in the following
form:

f = f̃ f + f ′′f

with: f̃ f =
�f
�̄

filtered part of f ;

f ′′f unresolved or subgrid part of f
f̃ ′′f = 0.

N.2.2 Decomposition (In General)

Decomposition a general flow quantity in three (or four) parts:

f (�x, t) = f̄ (�x) + f̃ (�x, t) + f ′ (�x, t) (9)

with:

f̄ (�x) time-averaged or mean component, obtained by Reynolds averaging:

f̄ (�x) = lim
T→∞

1
T

T∫

0

f (�x, t) dt;

¯̃f = 0

f ′ = 0;

f̃ (�x, t) organized fluctuation: periodicities are in time, periodic mean component of
low can be split into the odd modes f̃ odd and in the even modes f̃ even (see Liu):

f̃ (�x, t) = f̃ odd (�x, t) + f̃ even (�x, t); (10)

f ′ (�x, t) random fluctuations, incoherent fluctuating flow quantities, e.g. small-scale
stochastic fluctuations of the fine-grained turbulence;

f̄phase = 〈f (�x, t)〉 = lim
N→∞

1

N

N∑
n=0

f (�x, t + n‘) = f̄ + f̃ (11)

with:
〈
f ′ (�x, t)

〉
= 0.

f̃ = 〈f (�x, t)〉 − f̄ (12)

Phase averaging with period 2‘ is denoted by 〈〈〉〉 so that
〈〈

f̃ odd
〉〉

= 0.

Therefore the even modes are obtained from〈〈
f̃ odd + f̃ even

〉〉
= f̃ even (13)

and the odd modes from subtracting

f̃ odd = f̃ −
〈〈

f̃ odd + f̃ even
〉〉

. (14)
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N.2.3 Decomposition of the Physical Quantities in the Basic Equations

Decomposition: � = �̄ + �′

p = p̄ + p′

vi = v̄i + v′
i .

Continuity equation:

∂�

∂t
+

∂
(
�vi
)

∂xi
= 0 (15)

∂�′

∂t
+

∂

∂xi

[
�̄v̄i + �̄v′

i + v̄i�
′ + v′

i�
′] = 0 (16)

with assumptions: �′, v′
i 	 �̄, v̄i and �̄ �= f (�x)

Continuity equation in the case of mean flow: ∂v̄i
∂xi

= 0 (17)

and in the case of fluctuating flow
∂�′

∂t
+ �̄

∂v′
i

∂xi
+ v̄i

∂�′

∂xi
= 0(18)

and with the equation of state �′ =
p′

c2
0

:

∂p′

∂t
+ v̄i

∂p′

∂xi
+ �̄c2

0

∂v′
i

∂xi
= 0 (19)

D̄p′

Dt
+ �̄c2

0

∂v′
i

∂xi
= 0 (20)

with: D̄
Dt = ∂

∂t + v̄i
∂

∂xi
(21)

Momentum equation (without viscosity)

∂

∂t

(
�vi
)

+
∂

∂xj

(
�vivj + pƒij

)
= 0 (22)

mean flow �̄v̄j
∂ v̄i

∂xj
+

∂p̄
∂xi

= 0 (23)

fluctuating flow (with linearisation) �̄
∂v′

i

∂t
+ �̄v̄j

∂v′
i

∂xj
+ �′v̄j

∂ v̄i

∂xj
+ �̄v′

j
∂ v̄i

∂xj
+

∂p′

∂xi
= 0(24)

with constant mean flow

(assumption: v̄i is uniform) �̄
∂v′

i

∂t
+ �̄v̄j

∂v′
i

∂xj
+

∂p′

∂xi
= 0 (25)

Wave equation

following from the continuity equation
∂p′

∂t
+ v̄i

∂p′

∂xi
+ �̄c2

0

∂v′
i

∂xi
= 0 (26)

and the momentum equations �̄
∂v′

i

∂t
+ �̄v̄j

∂v′
i

∂xj
+

∂p′

∂xi
= 0 (27)
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Result: convective wave equation:
∂2p′

∂x2
i

−
1

c2
0

[
∂

∂t
+ v̄i

∂

∂xi

]2

p′ = 0 (28)

with:
[

∂

∂t
+ v̄i

∂

∂xi

]2

=
(

∂2

∂t2
+ 2v̄i

∂2

∂xi∂t
+ v̄iv̄j

∂2

∂xi∂xj

)
(29)

Navier-Stokes equation:

Double decomposition of quantities and time averaging: Reynolds averaging.

Assumptions: incompressible flow

for the mean flow: v̄j
∂ v̄i

∂xj
= −

1

�

∂p̄

∂xi
+ Œ

∂2v̄i

∂x2
j

−
∂
(
v′

iv
′
j

)

∂xj
Reynolds equation (30)

with stress tensor
of fluctuating flow




�′
x ‘′

xy ‘′
xz

‘′
xy �′

y ‘′
yz

‘′
xz ‘′

yz �′
z


 = −




�u′2 �u′v′ �u′w′

�u′v′ �v′2 �v′w′

�u′w′ �v′w′ �w′2


 (31)

Tripledecomposition ofquantities and timeaveraging (Telionis):

f (�x, t) = f̄ (�x) + f̃ (�x, t) + f ′ (�x, t)

for the mean flow: v̄j
∂ v̄i

∂xj
= −

1

�

∂p̄

∂xi
+ Œ

∂2v̄i

∂x2
j

−
∂
(
v′

iv
′
j

)

∂xj
−

∂
(
ṽiṽj

)

∂xj
(32)

with two Reynolds stress terms on the right-hand side of the equa-
tion: non-linear contributionsdue to the random fluctuations and
due to organized fluctuations.

for theorganizedfluctuations:

∂ ṽi

∂t
+ v̄j

∂ ṽi

∂xj
+ ṽj

∂ v̄i

∂xj
+ ṽj

∂ ṽi

∂xj
= −

1
�

∂p̃
∂xi

+ Œ
∂2ṽi

∂x2
j

+
∂
(
ṽi ṽj

)

∂xj
+

∂
(
v′

iv
′
j

)

∂xj
−

∂
(〈

v′
iv

′
j

〉)

∂xj
(33)

N.2.4 Correlations

Rp(‘) = lim
T→∞

1
T

T∫

0

p(t)p(t + ‘)dt autocorrelation function (34)

Rp(0) = p2(t) (35)

Rp(�) =
1
L

L∫

0

p(x)p(x + �)dx (36)

R =
v′

1v
′
2√

v′2
1 v′2

2

correlation function, fluctuations of velocity (37)
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N.2.5 Scales

‘c =
1

Rp(0)

∞∫

0

Rp(‘)d‘ integral time scale (38)

  =
1

Rp(0)

∞∫

0

Rp(�)d� integral length scale (39)

 x =
E11(k1)k1→0

4v′2
rms

integral length scale,
limiting value of the power spectrum
as k1 approaches zero.

(40)

E(k) = �
v ′2

rms

ke

(k/ke)4

(1 + (k/ke)2)17/6
e−2 (k/kŒ )2 power spectral density for isotropic

turbulence (von Kármán spectrum)
(41)

with (Longatte):
� ≈ 1.453
ke ≈ 0.747/ 
  = (v2)3/2/—
— = dissipation rate of turbulent kinetic energy
kŒ = (—/Œ3)1/4

l2‘ =
p2(t)(
∂p
∂t

)2
differential time scale (42)

l2‘ = −
Rp(0)

∂2Rp(0)

∂‘2

(43)
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