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Introduction

The Langlands Program, conceived as a bridge between Number Theory and
Automorphic Representations [L], has recently expanded into such areas as
Geometry and Quantum Field Theory and exposed a myriad of unexpected
connections and dualities between seemingly unrelated disciplines. There is
something deeply mysterious in the ways the Langlands dualities manifest
themselves and this is what makes their study so captivating.

In this review we will focus on the geometric Langlands correspondence for
complex algebraic curves, which is a particular brand of the general theory.
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Its origins and the connections with the classical Langlands correspondence
are discussed in detail elsewhere (see, in particular, the reviews [F2, F6]),
and we will not try to repeat this here. The general framework is the fol-
lowing: let X be a smooth projective curve over C and G be a simple Lie
group over C. Denote by “G the Langlands dual group of G (we recall this
notion in Section 2.3). Suppose that we are given a principal “G-bundle F on
X equipped with a flat connection. This is equivalent to F being a holomor-
phic principal *G-bundle equipped with a holomorphic connection V (which
is automatically flat as the complex dimension of X is equal to one). The pair
(F,V) may also be thought of as a “G-local system on X, or as a homomor-
phism 71(X) — LG (corresponding to a base point in X and a trivialization
of the fiber of F at this point).

The global Langlands correspondence is supposed to assign to E = (F,V)
an object Autg, called Hecke eigensheaf with eigenvalue F, on the moduli
stack Bung of holomorphic G-bundles on X:

holomorphic *G-bundles

. . — Hecke eigensheaves on Bun ‘
with connection on X & G

FE— AutE

(see, e.g., [F6], Sect. 6.1, for the definition of Hecke eigensheaves). It is ex-
pected that there is a unique irreducible Hecke eigensheaf Autg (up to iso-
morphism) if E is sufficiently generic.

The Hecke eigensheaves Autg have been constructed, and the Langlands
correspondence proved, in [FGV, Ga2] for G = GL,, and an arbitrary irre-
ducible GL,-local system, and in [BD1] for an arbitrary simple Lie group G
and those “G-local systems which admit the structure of a “G-oper (which is
recalled below).

Recently, A. Kapustin and E. Witten [KW] have related the geometric
Langlands correspondence to the S-duality of supersymmetric four-dimen-
sional Yang-Mills theories, bringing into the realm of the Langlands corre-
spondence new ideas and insights from quantum physics.

So far, we have considered the unramified “G-local systems. In other
words, the corresponding flat connection has no poles. But what should hap-
pen if we allow the connection to be singular at finitely many points of X7

This ramified geometric Langlands correspondence is the subject of
this paper. Here are the most important adjustments that one needs to make
in order to formulate this correspondence:

e The moduli stack Bung of G-bundles has to be replaced by the moduli
stack of G-bundles together with the level structures at the ramification
points. We call them the enhanced moduli stacks. Recall that a level struc-
ture of order N is a trivialization of the bundle on the Nth infinitesimal
neighborhood of the point. The order of the level structure should be at
least the order of the pole of the connection at this point.
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e At the points at which the connection has regular singularity (pole of order
1) one can take instead of the level structure, a parabolic structure, i.e., a
reduction of the fiber of the bundle to a Borel subgroup of G.

e The Langlands correspondence will assign to a flat “G-bundle E = (F,V)
with ramification at the points yi,...,y, a category Autp of Hecke
eigensheaves on the corresponding enhanced moduli stack with eigen-
value E|x\{y,,..y,},» Which is a subcategory of the category of (twisted)
D-modules on this moduli stack.

If F is unramified, then we may consider the category Autg on the moduli
stack Bung itself. We then expect that for generic E this category is equivalent
to the category of vector spaces: its unique (up to isomorphism) irreducible
object is Autg discussed above, and all other objects are direct sums of copies
of Autg. Because this category is expected to have such a simple structure, it
makes sense to say that the unramified geometric Langlands correspondence
assigns to an unramified “G-local system on X a single Hecke eigensheaf,
rather than a category. This is not possible for general ramified local systems.

The questions that we are facing now are

(1) How to construct the categories of Hecke eigensheaves for ramified local
systems?
(2) How to describe them in terms of the Langlands dual group “G?

In this article I will review an approach to these questions which has been
developed by D. Gaitsgory and myself in [FG2].

The idea goes back to the construction of A. Beilinson and V. Drinfeld
[BD1] of the unramified geometric Langlands correspondence, which may be
interpreted in terms of a localization functor. Functors of this type were in-
troduced by A. Beilinson and J. Bernstein [BB] in representation theory of
simple Lie algebras. In our situation this functor sends representations of the
affine Kac-Moody algebra g to twisted D-modules on Bung, or its enhanced
versions. As explained in [F6], these D-modules may be viewed as sheaves
of conformal blocks (or coinvariants) naturally arising in the framework of
Conformal Field Theory.

The affine Kac-Moody algebra g is the universal one-dimensional central
extension of the loop algebra g((t)). The representation categories of g have a
parameter k, called the level, which determines the scalar by which a generator
of the one-dimensional center of g acts on representations. We consider a
particular value k. of this parameter, called the critical level. The completed
enveloping algebra of an affine Kac-Moody algebra acquires an unusually large
center at the critical level and this makes the structure of the corresponding
category g, -mod very rich and interesting. B. Feigin and I have shown [FF3,
F3] that this center is canonically isomorphic to the algebra of functions on
the space of “G-opers on D*. Opers are bundles on D* with flat connection
and an additional datum (as defined by Drinfeld-Sokolov [DS] and Beilinson-
Drinfeld [BD1]; we recall the definition below). Remarkably, their structure
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group turns out to be not G, but the Langlands dual group G, in agreement
with the general Langlands philosophy.

This result means that the category g, -mod of (smooth) g-modules of
critical level “lives” over the space Opr(D*) of “G-opers on the punctured
disc D*. For each x € Oprg(D*) we have a “fiber” category @, -mod,
whose objects are g-modules on which the center acts via the central character
corresponding to x. Applying the localization functors to these categories,
and their K-equivariant subcategories g, —modf for various subgroups K C
G][t]], we obtain categories of Hecke eigensheaves on the moduli spaces of
G-bundles on X with level (or parabolic) structures.

Thus, the localization functor gives us a powerful tool for converting local
categories of representations of g into global categories of Hecke eigensheaves.
This is a new phenomenon which does not have any obvious analogues in the
classical Langlands correspondence.

The simplest special case of this construction gives us the Beilinson-
Drinfeld Hecke eigensheaves Autz on Bung corresponding to unramified ©G-
local systems admitting the oper structure. Motivated by this, we wish to
apply the localization functors to more general categories g, —modf of g-
modules of critical level, corresponding to opers on X with singularities, or
ramifications.

These categories gy, -mod, are assigned to LG-opers x on the punctured
disc D*. It is important to realize that the formal loop group G((t)) naturally
acts on each of these categories via its adjoint action on g, (because the
center is invariant under the adjoint action of G((t))). Thus, we assign to each
oper x a categorical representation of G((t)) on g, -mod,.

This is analogous to the classical local Langlands correspondence. Let
F be alocal non-archimedian field, such as the field F,((¢)) or the field of p-adic
numbers. Let W, be the Weil-Deligne group of F, which is a version of the
Galois group of F' (we recall the definition in Section 2.1). The local Lang-
lands correspondence relates the equivalence classes of irreducible (smooth)
representations of the group G(F') (or “L-packets” of such representations)
and the equivalence classes of (admissible) homomorphisms W5 — LG. In the
geometric setting we replace these homomorphisms by flat “G-bundles on D*
(or by L'G-opers), the group G(F) by the loop group G((t)) and representations
of G(F) by categorical representations of G((t)).

This analogy is very suggestive, as it turns out that the structure of the
categories g, -mod, (and their K-equivariant subcategories g, —modXK ) is
similar to the structure of irreducible representations of G(F') (and their sub-
spaces of K-invariants). We will see examples of this parallelism in Sects. 7
and 8 below. This means that what we are really doing is developing a local
Langlands correspondence for loop groups.

To summarize, our strategy [FG2] for constructing the global geometric
Langlands correspondence has two parts:
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(1) the local part: describing the structure of the categories of g-modules of
critical level, and

(2) the global part: applying the localization functor to these categories to
obtain the categories of Hecke eigensheaves on enhanced moduli spaces of
G-bundles.

We expect that these localization functors are equivalences of categories
(at least, in the generic situation), and therefore we can infer a lot of informa-
tion about the global categories by studying the local categories g, -mod,, of
g-modules. Thus, the local categories g, -mod, take the center stage.

In this paper I review the results and conjectures of [FG1]-[FG6] with
the emphasis on unramified and tamely ramified local systems. (I also discuss
the case of irregular singularities at the end.) In particular, our study of the
categories of g,_-modules leads us to the following conjecture. (For related
results, see [AB, ABG, Bezl, Bez2].)

Suppose that E = (F, V), where J is a “G-bundle and V is a connection on
F with regular singularity at a single point ¥ € X and unipotent monodromy
(this is easy to generalize to multiple points). Let M = exp(2miu), where
u € TG be a representative of the conjugacy class of the monodromy of
V around y. Denote by Sp,, the Springer fiber of u, the variety of Borel
subalgebras of g containing u. The category Autg of Hecke eigensheaves
with eigenvalue E may then be realized as a subcategory of the category of
D-modules on the moduli stack of G-bundles on X with parabolic structure
at the point y. We have the following conjectural description of the derived
category of Autg:

DY(Autg) ~ D*(QCoh(SpP%)),

where QCoh(SpEG) is the category of quasicoherent sheaves on a suitable
“DG enhancement” of SpEG. This is a category of differential graded (DG)
modules over a sheaf of DG algebras whose zeroth cohomology is the structure
sheaf of SpP¢ (we discuss this in detail in Section 9).

Thus, we expect that the geometric Langlands correspondence attaches
to a “G-local system on a Riemann surface with regular singularity at a
puncture, a category which is closely related to the variety of Borel subgroups
containing the monodromy around the puncture. We hope that further study
of the categories of g-modules will help us to find a similar description of the
Langlands correspondence for connections with irregular singularities.

The paper is organized as follows. In Sect. 1 we review the Beilinson-
Drinfeld construction in the unramified case, in the framework of localiza-
tion functors from representation categories of affine Kac-Moody algebras to
D-modules on on Bung. This will serve as a prototype for our construction of
more general categories of Hecke eigensheaves, and it motivates us to study
categories of g-modules of critical level. We wish to interpret these categories
in the framework of the local geometric Langlands correspondence for loop
groups. In order to do that, we first recall in Sect. 2 the setup of the classi-
cal Langlands correspondence. Then in Sect. 3 we explain the passage to the
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geometric context. In Sect. 4 we describe the structure of the center at the crit-
ical level and the isomorphism with functions on opers. In Sect. 5 we discuss
the connection between the local Langlands parameters (©'G-local systems on
the punctured disc) and opers. We introduce the categorical representations
of loop groups corresponding to opers and the corresponding categories of
Harish-Chandra modules in Sect. 6. We discuss these categories in detail in
the unramified case in Sect. 7, paying particular attention to the analogies be-
tween the classical and the geometric settings. In Sect. 8 we do the same in the
tamely ramified case. We then apply localization functor to these categories
in Sect. 9 to obtain various results and conjectures on the global Langlands
correspondence, both for regular and irregular singularities.

Much of the material of this paper is borrowed from my new book [F7],
where I refer the reader for more details, in particular, for background on
representation theory of affine Kac-Moody algebras of critical level.

Finally, I note that in a forthcoming paper [GW] the geometric Langlands
correspondence with tame ramification is studied from the point of view of
dimensional reduction of four-dimensional supersymmetric Yang-Mills theory.

Acknowledgments. I thank D. Gaitsgory for his collaboration on our
joint works which are reviewed in this article. I am also grateful to
R. Bezrukavnikov, V. Ginzburg, D. Kazhdan and E. Witten for useful dis-
cussions.

I thank the organizers of the CIME Summer School in Venice, especially,
A. D’Agnolo, for the invitation to give lectures on this subject at this enjoyable
conference.

1 The Unramified Global Langlands Correspondence

Our goal in this section is to construct Hecke eigensheaves Autp correspond-
ing to unramified *G-local systems E = (F,V) on X. By definition, Autg
is a D-module on Bung. We would like to construct Autg by applying a
localization functor to representations of affine Kac-Moody algebra g.

Throughout this paper, unless specified otherwise, we let g be a simple Lie
algebra and G the corresponding connected and simply-connected algebraic
group.

The key observation used in constructing the localization functor is that
for a simple Lie group G the moduli stack Bung of G-bundles on X has a
realization as a double quotient. Namely, let x be a point of X. Denote by
X the completion of the field of rational functions on X at x, and by O,
its ring of integers. If we choose a coordinate ¢t at x, then we may identify
Ky ~ C((t), 0, ~ CJ[[t]]. But in general there is no preferred coordinate, and
o0 it is better not to use these identifications. Now let G(X,) ~ G((t)) be
the formal loop group corresponding to the punctured disc D) around z.
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It has two subgroups: one is G(0O,) ~ G[[t]] and the other is Goyt, the group
of algebraic maps X\z — G. Then, according to [BeLa, DrSi|, the algebraic
stack Bung is isomorphic to the double quotient

(1.1) Bung =~ Gou\G(Ka)/G(O,).

Intuitively, any G-bundle may be trivialized on the formal disc D, and on
X\z. The transition function is then an element of G(X), which characterizes
the bundle uniquely up to the right action of G(0,,) and the left action of Goys
corresponding to changes of trivializations on D, and X\z, respectively.

The localization functor that we need is a special case of the following
general construction. Let g be a Lie algebra and K a Lie group (g, K') whose
Lie algebra is contained in g. The pair (g, K) is called a Harish-Chandra pair.
We will assume that K is connected. A g-module M is called K-equivariant
if the action of the Lie subalgebra Lie K C g on M may be exponentiated to
an action of the Lie group K. Let g-mod” be the category of K-equivariant
g-modules.

Now suppose that H is another subgroup of G. Let Dy ¢/ x-mod be
the category of D-modules on H\G/K. Then there is a localization functor
[BB, BD1] (see also [F6, FB])

A g—modK — D\g/K -mod.

Now let g be a one-dimensional central extension of g which becomes trivial
when restricted to the Lie subalgebras Lie K and Lie H. Suppose that this
central extension can be exponentiated to a central extension G of the corre-
sponding Lie group G. Then we obtain a C*-bundle H\G/K over H\G/K.
Let £ be the corresponding line bundle and D the sheaf of differential oper-
ators acting on L. Then we have a functor

Ap :ﬁ—modK — Dr, -mod.

In our case we take the formal loop group G(X.), and the subgroups
K = G(0,) and H = Goyut of G(X,). We also consider the so-called critical
central extension of G(X.). Let us first discuss the corresponding central
extension of the Lie algebra g ® X,. Choose a coordinate ¢ at x and identify
Ky =~ C((t)). Then g ® K, is identified with g((¢)). Let x be an invariant
bilinear form on g. The affine Kac-Moody algebra g, is defined as the
central extension

0—C1l—g,—g(t) —0.

As a vector space, it is equal to the direct sum g((¢))®C1, and the commutation
relations read

(1.2) [A® f(t), B@g(t)] = [A,B] @ f(t)g(t) — (k(A, B) Res fdg)1,

and 1 is a central element, which commutes with everything else. For a simple
Lie algebra g all invariant inner products are proportional to each other.
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Therefore the Lie algebras g, are isomorphic to each other for non-zero inner
products k.

Note that the restriction of the second term in (1.2) to the Lie subalgebra
g @tV C[[t]], where N € Z., is equal to zero, and so it remains a Lie subalgebra
of gx. A gy-module is called smooth if every vector in it is annihilated by
this Lie subalgebra for sufficiently large N. We define the category g, -mod
whose objects are smooth g.-modules on which the central element 1 acts
as the identity. The morphisms are homomorphisms of representations of g,.
Throughout this paper, unless specified otherwise, by a “g,.-module” will al-
ways mean a module on which the central element 1 acts as the identity.! We
will refer to k as the level.

Now observe that formula (1.2) is independent of the choice of coordinate ¢
at z € X and therefore defines a central extension of g ® X,, which we denote
by §,z. One can show that this central extension may be exponentiated to a
central extension of the group G(X,,) if k satisfies a certain integrality condi-
tion, namely, kK = krg, where k € Z and kg is the inner product normalized
by the condition that the square of the length of the maximal root is equal to
2. A particular example of the inner product which satisfies this condition is
the critical level k. defined by the formula

(1.3) ke(A, B) = f%Trg ad Aad B.

Thus, k. is equal to minus one half of the Killing form on g.? When » = &,
representation theory of g, changes dramatically because the completed
enveloping algebra of g, acquires a large center (see below).

Let G, be the corresponding critical central extension of G(X;). It is
known (see [BD1]) that in this case the corresponding line bundle L is the
square root K1/2 of the canonical line bundle on Bung.? Now we are ready to
apply the localization functor in the situation where our group is G(X,), with
the two subgroups K = G(0,) and H = Gout, so that the double quotient
H\G/K is Bung.* We choose £ = K'/2. Then we have a localization functor

Apow t Onon -mod“=) — D, mod.

We will apply this functor to a particular g, ,-module.
To construct this module, let us first define the vacuum module over ﬁnw
as the induced module R
Voo = Indget 561G,
! Note that we could have 1 act instead as A times the identity for A € C*; but
the corresponding category would just be equivalent to the category gx.-mod.
2 Tt is also equal to —h" ko, where h" is the dual Coxeter number of g.
3 Recall that by our assumption G is simply-connected. In this case there is a
unique square root.
4 Since Bung is an algebraic stack, one needs to be careful in applying the local-
ization functor. The appropriate formalism has been developed in [BD1].
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where g ® O, acts by 0 on C and 1 acts as the identity. According to the
results of [FF3, F3], we have

Endg, Vo, ~ FunOprg(Dy),

where Opr(D,) is the space of £G-opers on the formal disc D, = Spec O,
around xz. We discuss this in detail in Section 4.

Now, given x; € Oprg(D;), we obtain a maximal ideal I(x,) in the
algebra Endamc Vo, Let Vo(xz) be the ﬁﬁc,w—module which is the quotient of
Vo,» by the image of I(x,) (it is non-zero, as explained in Section 7.3). The
module V , is clearly G(0O,)-equivariant, and hence so is Vo (x). Therefore
Vo(xz) is an object of the category @x. « -mod %),

We now apply the localization functor A, ., to Vo(x,). The following
theorem is due to Beilinson and Drinfeld [BD1].

Theorem 1. (1) The D,, -module A,_.(Vo(xz)) is non-zero if and only if
there exists a global L'g-oper on X, x € Oprg(X) such that x, € Oprg(D,)
is the restriction of x to D,.

(2) If this holds, then Ay, »(Vo(xz)) depends only on x and is independent
of the choice of = in the sense that for any other pointy € X, if xy = X|p
then Ay, +(Vo(xz)) = Ar.y(Vo(xy))-

(3) For any x = (F,V,Frp) € Oprg(X) the D, -module A, »(Vo(xz))
is a non-zero Hecke eigensheaf with the eigenvalue E, = (F,V).

y?

Thus, for any x € Oprg(X), the Dy -module A, (Vo(xz)) is the sought-
after Hecke eigensheaf Autg, corresponding to the LG-local system E, under
the global geometric Langlands correspondence.® For an outline of the proof
of this theorem from [BD1], see [F6], Sect. 9.4.

A drawback of this construction is that not all “G-local systems on X ad-
mit the structure of an oper. In fact, under our assumption that G is simply-
connected (and so “G is of adjoint type), the local systems, or flat bundles
(F,V), on a smooth projective curve X that admit an oper structure corre-
spond to a unique “G-bundle on X described as follows (see [BD1]). Let (2;(/2
be a square root of the canonical line bundle {2x. There is a unique (up to an
isomorphism) non-trivial extension

0— Y= Fy— 07 .

Let Fpar, be the PG Ly-bundle corresponding to the rank two vector bundle
Fo. Note that it does not depend on the choice of Q;(/Q. This is the oper
bundle for PGLs. We define the oper bundle Fr for a general simple Lie
group “G of adjoint type as the push-forward of Fpgr, with respect to a
principal embedding PGLs — G (see Section 4.3).

® More precisely, Autg, is the D-module Ay, +(Vo(xa)) ® K~Y2 but here and
below we will ignore the twist by K/2.
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For each flat connection V on the oper bundle Fr there exists a unique
L B-reduction J1 g satisfying the oper condition. Therefore Op (D) is a subset
of Locr g (X), which is the fiber of the forgetful map Locrg(X) — Buncg over
Fra-

Theorem 1 gives us a construction of Hecke eigensheaves for “G-local sys-
tem that belong to the locus of opers. For a general “G-local system outside
this locus, the above construction may be generalized as discussed at the end
of Section 9.2 below.

Thus, Theorem 1, and its generalization to other unramified *G-local sys-
tems, give us an effective tool for constructing Hecke eigensheaves on Bung.
It is natural to ask whether it can be generalized to the ramified case if we
consider more general representations of g, .. The goal of this paper is to
explain how to do that.

We will see below that the completed universal enveloping algebra of gy .
contains a large center. It is isomorphic to the algebra FunOp., (D)) of
functions on the space Oprs (DY) of LG-opers on the punctured disc D.
For x, € Oprg(DY), let gy, »-mod,, be the full subcategory of g, . -mod
whose objects are gy, ;-modules on which the center acts according to the
character corresponding to x..

The construction of Hecke eigensheaves now breaks into two steps:

(1) we study the Harish-Chandra categories gy, » —modféz for various sub-
groups K C G(0,);
(2) we apply the localization functors to these categories.

The simplest case of this construction is precisely the Beilinson-Drinfeld
construction explained above. In this case we take x, to be a point in the
subspace Oprg(D;) C Oprg(D)). Then the category @y, . —modfcfo’”) is
equivalent to the category of vector spaces: its unique up to an isomorphism
irreducible object is the above Vi(x,), and all other objects are direct sums
of copies of Vo(x.) (see [FG1] and Theorem 3 below). Therefore the local-
ization functor A, , is determined by A, »(Vo(xz)), which is described in
Theorem 1. It turns out to be the desired Hecke eigensheaf Autg . More-
over, we expect that the functor A, ., sets up an equivalence between
Bror —modffol') and the category of Hecke eigensheaves on Bung with eigen-
value Fy.

For general opers x, with ramification, the (local) categories g, » —modfz
are more complicated, as we will see below, and so are the corresponding
(global) categories of Hecke eigensheaves. In order to understand the structure
of the global categories, we need to study first of local categories of g, .-
modules. Using the localization functor, we can then understand the structure
of the global categories. We will consider examples of the local categories in
the following sections.

It is natural to view our study of the local categories g, ,-mod,, and
[ —modffw as a geometric analogue of the local Langlands correspondence.
We will explain this point of view in the next section.
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2 Classical Local Langlands Correspondence

The local Langlands correspondence relates smooth representations of reduc-
tive algebraic groups over local fields and representations of the Galois group
of this field. In this section we define these objects and explain the main
features of this correspondence. As the material of this section serves moti-
vational purposes, we will only mention those aspects of this story that are
most relevant for us. For a more detailed treatment, we refer the reader to the
informative surveys [Vog, Ku] and references therein.

The local Langlands correspondence may be formulated for any local non-
archimedian field. There are two possibilities: either F' is the field Q,, of p-adic
numbers or a finite extension of Q,, or F' is the field F,((t)) of formal Laurent
power series with coefficients in Fy, the finite field with ¢ elements (where ¢
is a power of a prime number). For the sake of definiteness, in what follows
we will restrict ourselves to the second case.

2.1 Langlands Parameters

Consider the group GL,,(F'), where F = F,((t)). A representation of GL, (F)
on a complex vector space V' is a homomorphism 7 : GL,(F) — End V' such
that m(gh) = w(g)w(h) and (1) = Id. Define a topology on GL,(F) by
stipulating that the base of open neighborhoods of 1 € GL,,(F) is formed by
the congruence subgroups

Ky ={g€GL,(F[t]])|g =1 mod t"}, NeZ,.

For each v € V' we obtain a map «(-)v : GL,(F) — V,g — w(g)v. A repre-
sentation (V) ) is called smooth if the map 7(-)v is continuous for each v,
where we give V' the discrete topology. In other words, V' is smooth if for any
vector v € V there exists N € Z such that

m(g)v = v, Vg € Kn.

We are interested in describing the equivalence classes of irreducible
smooth representations of GL,,(F'). Surprisingly, those turn out to be related
to objects of a different kind: n-dimensional representations of the Galois
group of F.

Recall that the algebraic closure of F' is a field obtained by adjoining to
F the roots of all polynomials with coefficients in F'. However, in the case
when F' = F,((t)) some of the extensions of F' may be non-separable. We
wish to avoid the non-separable extensions, because they do not contribute
to the Galois group. Let F' be the maximal separable extension inside a given
algebraic closure of F. It is uniquely defined up to an isomorphism.

Let Gal(F/F) be the absolute Galois group of F'. Its elements are the
automorphisms o of the field F such that o(y) =y for all y € F.
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Now set F' = F,(()). Observe that we have a natural map Gal(F/F) —
Gal(F,/F,) obtained by applying an automorphism of F to F, C F. The group
Gal(F,/F,) is isomorphic to the profinite completion Z of 7. (see, e.g., [F6],
Sect. 1.3). Its subgroup Z C Z is generated by the geometric Frobenius
element which is inverse to the automorphism z — z¢ of ﬁq. Let W be the
preimage of the subgroup Z C Gal(F,/F,). This is the Weil group of F.
Denote by v be the corresponding homomorphism Wy — Z.

Now let Wi = Wg x C be the semi-direct product of Wr and the one-
dimensional complex additive group C, where W acts on C by the formula

(2.1) oxo~ ! = ¢z, o€ Wp,xeC.

This is the Weil-Deligne group of F.

An n-dimensional complex representation of W/, is by definition a ho-
momorphism p’ : Wi — GL,(C) which may be described as a pair (p, N),
where p is an n-dimensional representation of Wg, N € GL,,(C), and we have
p(a)Np(o)™' = ¢"(?)p(N) for all o € W. The group W is topological, with
respect to the Krull topology (in which the open neighborhoods of the identity
are the normal subgroups of finite index). The representation (p, V) is called
admissible if p is continuous (equivalently, factors through a finite quotient
of Wr) and semisimple, and N is a unipotent element of GL,,(C).

The group W} was introduced by P. Deligne [De2]. The idea is that by
adjoining the unipotent element N to W one obtains a group whose complex
admissible representations are the same as continuous ¢-adic representations
of W (where £ # p is a prime).

2.2 The Local Langlands Correspondence for GL,,

Now we are ready to state the local Langlands correspondence for the group
GL,, over a local non-archimedian field F'. It is a bijection between two differ-
ent sorts of data. One is the set of the equivalence classes of irreducible smooth
representations of GL,(F). The other is the set of equivalence classes of
n-dimensional admissible representations of W},. We represent it schematically
as follows:

n-dimensional admissible irreducible smooth
representations of W, representations of GL,, (F)

This correspondence is supposed to satisfy an overdetermined system of
constraints which we will not recall here (see, e.g., [Ku]).

The local Langlands correspondence for GL,, is a theorem. In the case
when F' = F,((t)) it has been proved in [LRS], and when F' = Q, or its finite
extension in [HT] and also in [He].
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2.3 Generalization to Other Reductive Groups

Let us replace the group GL, by an arbitrary connected reductive group G
over a local non-archimedian field F. The group G(F) is also a topological
group, and there is a notion of smooth representation of G(F') on a complex
vector space. It is natural to ask whether one can relate irreducible smooth
representations of G(F’) to representations of the Weil-Deligne group Wp.. This
question is addressed in the general local Langlands conjectures. It would take
us too far afield to try to give here a precise formulation of these conjectures.
So we will only indicate some of the objects involved referring the reader to
the articles [Vog, Ku] where these conjectures are described in great detail.

Recall that in the case when G = GL,, the irreducible smooth representa-
tions are parametrized by admissible homomorphisms W — GL,(C). In the
case of a general reductive group G, the representations are conjecturally para-
metrized by admissible homomorphisms from W7, to the so-called Langlands
dual group “G, which is defined over C.

In order to explain the notion of the Langlands dual group, consider first
the group G over the closure F of the field F. All maximal tori T of this
group are conjugate to each other and are necessarily split, i.e., we have an

isomorphism T(F) =~ (FX) For example, in the case of GL,, all maximal

tori are conjugate to the subgroup of diagonal matrices. We associate to T'(F')
two lattices: the weight lattice X*(T) of homomorphisms T(F) — F* and

the coweight lattice X.(T') of homomorphisms F - T(F). They contain
the sets of roots A C X*(T') and coroots AV C X,(T), respectively. The
quadruple (X*(T), X, (T), A, AV) is called the root datum for G over F. The
root datum determines G up to an isomorphism defined over F. The choice
of a Borel subgroup B(F) containing T'(F) is equivalent to a choice of a basis
in A, namely, the set of simple roots A, and the corresponding basis AY in
AV,

Now, given vy € Gal(F/F), there is g € G(F) such that g(y(T(F))g~! =
T(F) and g(v(B(F))g~! = B(F). Then g gives rise to an automorphism of
the based root data (X*(T), X.(T), As, AY). Thus, we obtain an action of
Gal(F/F) on the based root data.

Let us now exchange the lattices of weights and coweights and the sets of
simple roots and coroots. Then we obtain the based root data

(X (T), X™(T), A{, A,)

of a reductive algebraic group over C which is denoted by “G°. For instance,
the group GL,, is self-dual, the dual of SOg,,+1 is Spay, the dual of Spy, is
S02,41, and SOy, is self-dual.

The action of Gal(F/F) on the based root data gives rise to its action on
L@Ge°. The semi-direct product G = Gal(F/F) x “G® is called the Langlands
dual group of G.
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According to the local Langlands conjecture, the equivalence classes of
irreducible smooth representations of G(F') are, roughly speaking, parame-
terized by the equivalence classes of admissible homomorphisms W, — LG.
In fact, the conjecture is more subtle: one needs to consider simultaneously
representations of all inner forms of G, and a homomorphism W — L@ cor-
responds in general not to a single irreducible representation of G(F), but
to a finite set of representations called an L-packet. To distinguish between
them, one needs additional data (see [Vog] and Section 8.1 below for more
details). But in the first approximation one can say that the essence of the
local Langlands correspondence is that

Irreducible smooth representations of G(F) are parameterized in terms of ad-
missible homomorphisms W, — LG.

3 Geometric Local Langlands Correspondence over C

We now wish to find a generalization of the local Langlands conjectures in
which we replace the field F' = F,((¢)) by the field C((¢)). We would like to
see how the ideas and patterns of the Langlands correspondence play out in
this new context, with the hope of better understanding the deep underlying
structures behind this correspondence.

So let G be a connected simply-connected algebraic group over C, and
G(F) the loop group G(t) = G(C((t))). Thus, we wish to study smooth
representations of the loop group G((t)) and try to relate them to some
“Langlands parameters”, which we expect, by analogy with the case of local
non-archimedian fields described above, to be related to the Galois group of
C((t)) and the Langlands dual group G.

3.1 Geometric Langlands Parameters

Unfortunately, the Galois group of C((t)) is too small: it is isomorphic to the
pro-finite completion Z of Z. This is not surprising from the point of view of
the analogy between the Galois groups and the fundamental groups (see, e.g.,
[F6], Sect. 3.1). The topological fundamental group of the punctured disc is
Z, and the algebraic fundamental group is its pro-finite completion.
However, we may introduce additional Langlands parameters by using a
more geometric perspective on homomorphisms from the fundamental group
to L'G. Those may be viewed as “G-local systems. In general, 'G-local systems
on a compact variety Z are the same as flat LG-bundles (F,V) on Z. If the
variety is not compact (as in the case of D*), then we should impose the
additional condition that the connection has regular singularities (pole of
order at most 1) at infinity. In our case we obtain “G-bundles on D* with
a connection that has regular singularity at the origin. Then the monodromy
of the connection gives rise to a homomorphism from 7, (D*) to “G. Now we
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generalize this by allowing connections with arbitrary, that is regular and
irregular, singularities at the origin. Thus, we want to use as the general
Langlands parameters, the equivalence classes of pairs (F,V), where ¥ is a
LG-bundle on D* and V is an arbitrary connection on .

Any bundle F on D* may be trivialized. Then V may be represented by
the first-order differential operator

(3.1) V=08, +A1t),  Alt) € La(t).

where ©g is the Lie algebra of the Langlands dual group “G. Changing the
trivialization of F amounts to a gauge transformation

Vi V' =0 +gAg~" — (0ig)g ™"

with g € LG((t)). Therefore the set of equivalence classes of “G-bundles with
a connection on D* is in bijection with the set of gauge equivalence classes
of operators (3.1). We denote this set by Locrg(D*). Thus, we have

(3-2) Locig(D*) = {d: + A(t), A(t) € *a()}/*G(2).

We declare that the local Langlands parameters in the complex setting
should be the points of Locrg(D*): the equivalence classes of flat ©G-bundles
on D* or, more concretely, the gauge equivalence classes (3.2) of first-order
differential operators.

Having settled the issue of the Langlands parameters, we have to decide
what it is that we will be parameterizing. Recall that in the classical setting the
homomorphism W}, — G parameterized irreducible smooth representations
of the group G(F), F' = F,((t)). We start by translating this notion to the
representation theory of loop groups.

3.2 Representations of the Loop Group
The loop group G((t)) contains the congruence subgroups
(3.3) Ky={gcG[t]]lg=1mod t"}, NecZ,.

It is natural to call a representation of G((t)) on a complex vector space V
smooth if for any vector v € V there exists N € Z, such that Ky -v = v.
This condition may be interpreted as the continuity condition, if we define a
topology on G((t)) by taking as the base of open neighborhoods of the identity
the subgroups Ky, N € Z,, as before.

But our group G is now a complex Lie group (not a finite group), and
so G((t)) is an infinite-dimensional Lie group. More precisely, we view G((t))
as an ind-group, i.e., as a group object in the category of ind-schemes. At
first glance, it is natural to consider the algebraic representations of G((t)).
We observe that G((t)) is generated by the “parahoric” algebraic groups P;
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corresponding to the affine simple roots. For these subgroups the notion of
algebraic representation makes perfect sense. A representation of G((¢)) is then
said to be algebraic if its restriction to each of the P;’s is algebraic.

However, this naive approach leads us to the following discouraging fact:
an irreducible smooth representation of G((t)), which is algebraic, is neces-
sarily trivial (see [BD1], 3.7.11(ii)). Thus, we find that the class of algebraic
representations of loop groups turns out to be too restrictive. We could relax
this condition and consider differentiable representations, i.e., the representa-
tions of G((t)) considered as a Lie group. But it is easy to see that the result
would be the same. Replacing G((t)) by its central extension G would not help
us much either: irreducible integrable representations of G are parameterized
by dominant integral weights, and there are no extensions between them [K2].
These representations are again too sparse to be parameterized by the geo-
metric data considered above. Therefore we should look for other types of
representations.

Going back to the original setup of the local Langlands correspondence,
we recall that there we considered representations of G(F,((t))) on C-vector
spaces, so we could not possibly use the algebraic structure of G(F,((t))) as an
ind-group over F,. Therefore we cannot expect the class of algebraic (or dif-
ferentiable) representations of the complex loop group G((t)) to be meaningful
from the point of view of the Langlands correspondence. We should view the
loop group G((t)) as an abstract topological group, with the topology defined
by means of the congruence subgroups, in other words, consider its smooth
representations as an abstract group.

So we need to search for some geometric objects that encapsulate repre-
sentations of our groups and make sense both over a finite field and over the
complex field.

3.3 From Functions to Sheaves

We start by revisiting smooth representations of the group G(F), where
F = F,((t)). We realize such representations more concretely by considering
their matrix coeflicients. Let (V, ) be an irreducible smooth representation of
G(F). We define the contragredient representation V" as the linear span of
all smooth vectors in the dual representation V*. This span is stable under the
action of G(F) and so it admits a smooth representation (VV,7") of G(F).
Now let ¢ be a K -invariant vector in VV. Then we define a linear map

V — C(G(F)/Ky), V= fy,

where
folg) = (7¥(9)9,v).

Here C(G(F)/Ky) denotes the vector space of C-valued locally constant func-
tions on G(F)/Ky. The group G(F) naturally acts on this space by the
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formula (g - f)(h) = f(g~*h), and the above map is a morphism of represen-
tations, which is non-zero, and hence injective, if (V,7) is irreducible.

Thus, we realize our representation in the space of functions on the quo-
tient G(F)/Ky. More generally, we may realize representations in spaces of
functions on the quotient G((¢))/K with values in a finite-dimensional vector
space, by considering a finite-dimensional subrepresentation of K inside V'
rather than the trivial one.

An important observation here is that G(F')/K, where F' = F,((t))) and K
is a compact subgroup of G(F'), is not only a set, but it is a set of points of an
algebraic variety (more precisely, an ind-scheme) defined over the field [F,. For
example, for Ky = G(F,[[t]]), which is the maximal compact subgroup, the
quotient G(F')/Kj is the set of Fy-points of the ind-scheme called the affine
Grassmannian.

Next, we recall an important idea going back to Grothendieck that func-
tions on the set of F,-points on an algebraic variety X defined over F, can
often be viewed as the “shadows” of the so-called f-adic sheaves on X. We
will not give the definition of these sheaves, referring the reader to [Mi, FK].
The Grothendieck fonctions-faisceaux dictionary (see, e.g., [Lal) is formu-
lated as follows. Let I be an f-adic sheaf and = be an Fy,-point of X, where
q1 = q"". Then one has the Frobenius conjugacy class Fr, acting on the stalk
F, of F at x. Hence we can define a function £4, () on the set of F, -points of
V', whose value at z is Tr(Fr,, F,). This function takes values in the algebraic
closure Q, of Q. But there is not much of a difference between Q,-valued
functions and C-valued functions: since they have the same cardinality, Q,
and C may be identified as abstract fields. Besides, in most interesting cases,
the values actually belong to @, which is inside both @, and C.

More generally, if K is a complex of ¢-adic sheaves, one defines a function
£4,(X) on V(Fy,) by taking the alternating sums of the traces of Fr, on the
stalk cohomologies of X at . The map K — £, (X) intertwines the natural
operations on sheaves with natural operations on functions (see [La], Sect.
1.2).

Let Ko(Shx) be the complexified Grothendieck group of the category of
{-adic sheaves on X. Then the above construction gives us a map

Ko(8hx) — ] X(F¢m),

m>1

and it is known that this map is injective (see [La]).

Therefore we may hope that the functions on the quotients G(F)/Kn
which realize our representations come by this constructions from /¢-adic
sheaves, or more generally, from complexes of ¢-adic sheaves, on X.

Now, the notion of constructible sheaf (unlike the notion of a function)
has a transparent and meaningful analogue for a complex algebraic variety X,
namely, those sheaves of C-vector spaces whose restrictions to the strata of a
stratification of the variety X are locally constant. The affine Grassmannian
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and more general ind-schemes underlying the quotients G(F)/Ky may be
defined both over IF, and C. Thus, it is natural to consider the categories of
such sheaves (or, more precisely, their derived categories) on these ind-schemes
over C as the replacements for the vector spaces of functions on their points
realizing smooth representations of the group G(F).

We therefore naturally come to the idea, advanced in [FG2], that the
representations of the loop group G((t)) that we need to consider are not
realized on vector spaces, but on categories, such as the derived category
of coherent sheaves on the affine Grassmannian. Of course, such a category
has a Grothendieck group, and the group G((t)) will act on the Grothendieck
group as well, giving us a representation of G((t)) on a vector space. But we
obtain much more structure by looking at the categorical representation. The
objects of the category, as well as the action, will have a geometric meaning,
and thus we will be using the geometry as much as possible.

Let us summarize: to each local Langlands parameter x € Locrg(D*) we
wish to attach a category C,, equipped with an action of the loop group G((t)).
But what kind of categories should these €, be and what properties do we
expect them to satisfy?

To get closer to answering these questions, we wish to discuss two more
steps that we can make in the above discussion to get to the types of categories
with an action of the loop group that we will consider in this paper.

3.4 A Toy Model

At this point it is instructive to detour slightly and consider a toy model of
our construction. Let G be a split reductive group over Z, and B its Borel
subgroup. A natural representation of G(F,) is realized in the space of complex
(or Q,-) valued functions on the quotient G(F,)/B(F,). It is natural to ask
what is the “correct” analogue of this representation if we replace the field I,
by the complex field and the group G(F,) by G(C). This may be viewed as a
simplified version of our quandary, since instead of considering G(FF,((t))) we
now look at G(F,).

The quotient G(F,)/B(F,) is the set of F,-points of the algebraic variety
defined over Z called the flag variety of G and defined by F1. Our discussion
in the previous section suggests that we first need to replace the notion of
a function on FI(F,) by the notion of an f-adic sheaf on the variety Flp =
Fl %]Fq.

Next, we replace the notion of an f-adic sheaf on Fl considered as an
algebraic variety over IFy, by the notion of a constructible sheaf on Fl¢ =
Fl %}C which is an algebraic variety over C. The complex algebraic group G¢

naturally acts on Flg and hence on this category. Now we make two more
reformulations of this category.

First of all, for a smooth complex algebraic variety X we have a Riemann-
Hilbert correspondence which is an equivalence between the derived
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category of constructible sheaves on X and the derived category of D-modules
on X that are holonomic and have regular singularities.

Here we consider the sheaf of algebraic differential operators on X and
sheaves of modules over it, which we simply refer to as D-modules. The sim-
plest example of a D-module is the sheaf of sections of a vector bundle on V'
equipped with a flat connection. The flat connection enables us to multiply
any section by a function and we can use the flat connection to act on sections
by vector fields. The two actions generate an action of the sheaf of differential
operators on the sections of our bundle. The sheaf of horizontal sections of this
bundle is then a locally constant sheaf of X. We have seen above that there is a
bijection between the set of isomorphism classes of rank n bundles on X with
connection having regular singularities and the set of isomorphism classes of
locally constant sheaves on X of rank n, or equivalently, n-dimensional repre-
sentations of 71 (X). This bijection may be elevated to an equivalence of the
corresponding categories, and the general Riemann-Hilbert correspondence
is a generalization of this equivalence of categories that encompasses more
general D-modules.

The Riemann-Hilbert correspondence allows us to associate to any holo-
nomic D-module on X a complex of constructible sheaves on X, and this gives
us a functor between the corresponding derived categories which turns out to
be an equivalence if we restrict ourselves to the holonomic D-modules with
regular singularities (see [B2, GM] for more details).

Thus, over C we may pass from constructible sheaves to D-modules. In
our case, we consider the category of (regular holonomic) D-modules on the
flag variety Flc. This category carries a natural action of Gg.

Finally, let us observe that the Lie algebra g of G¢ acts on the flag va-
riety infinitesimally by vector fields. Therefore, given a D-module F on Fl¢,
the space of its global sections I'(Flc, ) has the structure of g-module. We
obtain a functor I" from the category of D-modules on Fl¢ to the category of
g-modules. A. Beilinson and J. Bernstein have proved that this functor is an
equivalence between the category of all D-modules on Fl¢ (not necessarily reg-
ular holonomic) and the category €y of g-modules on which the center of the
universal enveloping algebra U(g) acts through the augmentation character.

Thus, we can now answer our question as to what is a meaningful geomet-
ric analogue of the representation of the finite group G(F,) on the space of
functions on the quotient G(F,)/B(F,). The answer is the following: it is an
abelian category equipped with an action of the algebraic group G¢. This
category has two incarnations: one is the category of D-modules on the flag
variety Flc, and the other is the category €y of modules over the Lie algebra g
with the trivial central character. Both categories are equipped with natural
actions of the group Gg.

Let us pause for a moment and spell out what exactly we mean when
we say that the group G¢ acts on the category Cy. For simplicity, we will
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describe the action of the corresponding group G(C) of C-points of G¢.% This
means the following: each element g € G gives rise to a functor Fj; on Cq
such that Fi is the identity functor, and the functor F -1 is quasi-inverse to
F,. Moreover, for any pair g,h € G we have a fixed isomorphism of functors
ig.n : Fyn — Fy o Fp, so that for any triple g,h,k € G we have the equality
ih,klg,hk = g high,k Of isomorphisms Fypy — Fy o Fy o F,.

The functors F, are defined as follows. Given a representation (V, ) of g
and an element g € G(C), we define a new representation Fy,((V, 7)) = (V, mg),
where by definition m,4(x) = w(Adg(x)). Suppose that (V,7) is irreducible.
Then it is easy to see that (V,m,) ~ (V,n) if and only if (V, ) is integrable,
i.e., is obtained from an algebraic representation of G.” This is equivalent
to this representation being finite-dimensional. But a general representation
(V,7) is infinite-dimensional, and so it will not be isomorphic to (V,m,), at
least for some g € G.

Now we consider morphisms in Cy, which are just g-homomorphisms. Given
a g-homomorphism between representations (V,7) and (V',7’), i.e., a linear
map T : V — V' such that Tnw(z) = n'(x)T for all x € g, we set Fy(T) =T.
The isomorphisms i, are all identical in this case.

3.5 Back to Loop Groups

In our quest for a complex analogue of the local Langlands correspondence we
need to decide what will replace the notion of a smooth representation of the
group G(F), where F' = F,((t)). As the previous discussion demonstrates, we
should consider representations of the complex loop group G((t)) on various
categories of D-modules on the ind-schemes G((¢))/K, where K is a “com-
pact” subgroup of G((t)), such as G[[t]] or the Iwahori subgroup (the preimage
of a Borel subgroup B C G under the homomorphism G[[t]] — G), or the
categories of representations of the Lie algebra g((t)). Both scenarios are vi-
able, and they lead to interesting results and conjectures which we will discuss
in detail in Section 9, following [FG2]. In this paper we will concentrate on
the second scenario and consider categories of modules over the loop algebra
a((1).

The group G((t)) acts on the category of representations of g((t)) in the way
that we described in the previous section. An analogue of a smooth represen-
tation of G(F) is a category of smooth representations of g((¢)). Let us observe
however that we could choose instead the category of smooth representations
of the central extension of g((¢)), namely, gj.

5 More generally, for any C-algebra R, we have an action of G(R) on the corre-
sponding base-changed category over R. Thus, we are naturally led to the notion
of an algebraic group (or, more generally, a group scheme) acting on an abelian
category, which is spelled out in [FG2], Sect. 20.

7 In general, we could obtain a representation of a central extension of G, but if G
is reductive, it does not have non-trivial central extensions.



Ramifications of the Geometric Langlands Program 71

The group G((t)) acts on the Lie algebra g, for any r, because the adjoint
action of the central extension of G((t)) factors through the action of G((t)). We
use the action of G((t)) on g, to construct an action of G((t)) on the category
0, -mod, in the same way as in Section 3.4.

Now recall the space Locrg(D*) of the Langlands parameters that we
defined in Section 3.1. Elements of Locrg(D*) have a concrete description
as gauge equivalence classes of first order operators 9; + A(t), A(t) € Lg((t)),
modulo the action of LG((t)) (see formula (3.2)).

We can now formulate the local Langlands correspondence over C as the
following problem:

To each local Langlands parameter xy € Locrg (D) associate a subcategory
9r -mod, of g, -mod which is stable under the action of the loop group G((t)).

We wish to think of the category g, -mod as “fibering” over the space of
local Langlands parameters Loccg(D>), with the categories g, -mod,, being
the “fibers” and the group G((t)) acting along these fibers. From this point
of view the categories g, -mod,, should give us a “spectral decomposition” of
the category g, -mod over Locrg(D*).

In the next sections we will present a concrete proposal made in [FG2]
describing these categories in the special case when k = k., the critical level.

4 Center and Opers

In Section 1 we have introduced the category g.-mod whose objects are
smooth g,-modules on which the central element 1 acts as the identity. As
explained at the end of the previous section, we wish to show that this cat-
egory “fibers” over the space of the Langlands parameters, which are gauge
equivalence classes of ©G-connections on the punctured disc D* (or perhaps,
something similar). Moreover, the loop group G((t)) should act on this cate-
gory “along the fibers”.

Any abelian category may be thought of as “fibering” over the spectrum of
its center. Hence the first idea that comes to mind is to describe the center of
the category g, -mod in the hope that its spectrum is related to the Langlands
parameters. As we will see, this is indeed the case for a particular value of k.

4.1 Center of an Abelian Category

Let us first recall what is the center of an abelian category. Let C be an abelian
category over C. The center Z(C) is by definition the set of endomorphisms
of the identity functor on €. Let us recall such such an endomorphism is a
system of endomorphisms ey € Home (M, M), for each object M of €, which
is compatible with the morphisms in C: for any morphism f: M — N in C
we have foep = eno f. It is clear that Z(€) has a natural structure of a
commutative algebra over C.
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Let S = Spec Z(@). This is an affine algebraic variety such that Z(@) is the
algebra of functions on S. Each point s € S defines an algebra homomorphism
(equivalently, a character) ps : Z(€) — C (evaluation of a function at the point
s). We define the full subcategory C, of C whose objects are the objects of C
on which Z(€) acts according to the character ps. It is instructive to think of
the category C as “fibering” over S, with the fibers being the categories Cj.

Now suppose that € = A-mod is the category of left modules over an
associative C-algebra A. Then A itself, considered as a left A-module, is an
object of €, and so we obtain a homomorphism

Z(€) — Z(Endy A) = Z(A°PP) = Z(A),

where Z(A) is the center of A. On the other hand, each element of Z(A)
defines an endomorphism of each object of A-mod, and so we obtain a ho-
momorphism Z(A) — Z(C€). It is easy to see that these maps set mutually
inverse isomorphisms between Z(C) and Z(A).

If g is a Lie algebra, then the category g-mod of g-modules coincides
with the category U(g)-mod of U(g)-modules, where U(g) is the universal
enveloping algebra of g. Therefore the center of the category g-mod is equal
to the center of U(g), which by abuse of notation we denote by Z(g).

Now consider the category g, -mod. Let us recall from Section 1 that ob-
jects of g, -mod are g,-modules M on which the central element 1 acts as the
identity and which are smooth, that is for any vector v € M we have

(4.1) (g@t"C[[t])) -v=0

for sufficiently large V.

Thus, we see that there are two properties that its objects satisfy. There-
fore it does not coincide with the category of all modules over the universal
enveloping algebra U(g,,) (which is the category of all g,-modules). We need
to modify this algebra.

First of all, since 1 acts as the identity, the action of U(g,) factors through
the quotient

Un(8) & U,(@)/(1 - 1).

Second, the smoothness condition (4.1) implies that the action of U,(g) ex-
tends to an action of its completion defined as follows.

Define a linear topology on U, (g) by using as the basis of neighborhoods
for 0 the following left ideals:

Iy = U@ (s @ t"C[[t]), N >0.

Let U, (§) be the completion of U, (g) with respect to this topology. Note that,
equivalently, we can write

0.(8) = lm U,(@)/In-
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Even though the Iy’s are only left ideals (and not two-sided ideals), one checks
that the associative product structure on U, (g) extends by continuity to an
associative product structure on U,(g) (this follows from the fact that the
Lie bracket on U,(g) is continuous in the above topology). Thus, Uy (g) is a
complete topological algebra. It follows from the definition that the category
8 -mod coincides with the category of discrete modules over U, (g) on which
the action of U, (g) is pointwise continuous (this is precisely equivalent to the
condition (4.1)).

It is now easy to see that the center of our category g, -mod is equal to
the center of the algebra U, (g), which we will denote by Z,(g). The argument
is similar to the one we used above: though U, (g) itself is not an object of
8, -mod, we have a collection of objects U, (g)/In. Using this collection, we
obtain an isomorphism between the center of category 9, -mod and the inverse
limit of the algebras Z(Endg, Uy(g)/In), which, by definition, coincides with
Z,(@).

Now we can formulate our first question:

describe the center Z.(g) for all levels k.

In order to answer this question we need to introduce the concept of G-
opers.

4.2 Opers

Let G be a simple algebraic group of adjoint type, B its Borel subgroup
and N = [B, B] its unipotent radical, with the corresponding Lie algebras
ncbcCag.

Thus, g is a simple Lie algebra, and as such it has the Cartan decomposition

g=n_>ohdn,.

We will choose generators eq,...,ep (vesp., fi,..., f¢) of ny (resp., n_). We
have n,, = Ce;,n_,, = Cf;. We take b = h @ n; as the Lie algebra of B.
Then n is the Lie algebra of V. In what follows we will use the notation n for
ny.
Let [n,n]t C g be the orthogonal complement of [n,n] with respect to a
non-degenerate invariant bilinear form ky. We have

¢
[n,n]"/b ~ @n,m.
i=1

Clearly, the group B acts on nt/b. Our first observation is that there is an
open B-orbit O C nt/b C g/b, consisting of vectors whose projection on each
subspace n_,, is non-zero. This orbit may also be described as the B-orbit of
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the sum of the projections of the generators f;,7 = 1,...,¢, of any possible
subalgebra n_, onto g/b. The action of B on O factors through an action of
H = B/N. The latter is simply transitive and makes O into an H-torsor.

Let X be a smooth curve and = a point of X. As before, we denote by
O, the completed local ring and by X, its field of fractions. The ring O,
is isomorphic, but not canonically, to C[[t]]. Then D, = Spec O, is the disc
without a coordinate and D = Spec K, is the corresponding punctured disc.

Suppose now that we are given a principal G-bundle F on a smooth curve
X, or D,, or DX, together with a connection V (automatically flat) and
a reduction Fp to the Borel subgroup B of G. Then we define the relative
position of V and Fp (i.e., the failure of V to preserve Fg) as follows. Locally,
choose any flat connection V’/ on F preserving Fp, and take the difference
V — V', which is a section of gy, ® £2x. We project it onto (g/b)g, @ 2x. It
is clear that the resulting local section of (g/b)s, ® f2x are independent of
the choice V'. These sections patch together to define a global (g/b)g,,-valued
one-form on X, denoted by V/Fp.

Let X be a smooth curve, or D,, or D). Suppose we are given a principal
G-bundle F on X, a connection V on ¥ and a B-reduction F5. We will say that
Fp is transversal to V if the one-form V /Fp takes values in Og, C (g/b)5.
Note that O is C*-invariant, so that O ® 2y is a well-defined subset of
(g/b)f’rB ® f2x.

Now, a G-oper on X is by definition a triple (F,V,Fpg), where JF is a
principal G-bundle ¥ on X, V is a connection on ¥ and Fp is a B-reduction
of F, such that Fp is transversal to V.

This definition is due to A. Beilinson and V. Drinfeld [BD1] (in the case
when X is the punctured disc opers were introduced earlier by V. Drinfeld
and V. Sokolov in [DS]).

Equivalently, the transversality condition may be reformulated as saying
that if we choose a local trivialization of Fp and a local coordinate ¢ then the
connection will be of the form

‘
(4.2) V=04 Y vilt)fi + v(t),
i=1
where each 9;(t) is a nowhere vanishing function, and v(t) is a b-valued func-
tion.

If we change the trivialization of Fpg, then this operator will get trans-
formed by the corresponding B-valued gauge transformation. This observa-
tion allows us to describe opers on the disc D, = Spec O, and the punctured
disc D) = SpecX, in a more explicit way. The same reasoning will work on
any sufficiently small analytic subset U of any curve, equipped with a local
coordinate t, or on a Zariski open subset equipped with an étale coordinate.
For the sake of definiteness, we will consider now the case of the base DJ.

Let us choose a coordinate ¢ on D,, i.e., an isomorphism O, ~ C[[t]].
Then we identify D, with D = SpecC[[t]] and D} with D* = Spec C((t)).
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The space Op(D*) of G-opers on D* is then the quotient of the space of all
operators of the form (4.2), where 9;(t) € C((t)),%:(0) # 0,i =1,...,¢, and
v(t) € b((t)), by the action of the group B((t)) of gauge transformations:

g- (0 +A(t) =0+ gAt)g™' — g ' dug.

Let us choose a splitting + : H — B of the homomorphism B — H. Then
B becomes the semi-direct product B = H x N. The B-orbit O is an H-torsor,
and so we can use H-valued gauge transformations to make all functions ;(t)
equal to 1. In other words, there is a unique element of H ((¢)), namely, the
element Hle @i (¥ (t)), where @; : C* — H is the ith fundamental coweight
of G, such that the corresponding gauge transformation brings our connection
operator to the form

4
(4.3) V=0+Y fi+v(t), v(t)eb(t).

i=1

What remains is the group of N-valued gauge transformations. Thus, we ob-
tain that Op (D™ ) is equal to the quotient of the space Op(D*) of operators
of the form (4.3) by the action of the group N((t)) by gauge transformations:

Opa(D*) = Opg (DX)/N((t)).

Lemma 1 ([DS]). The action of N((t)) on Opg(D*) is free.

4.3 Canonical Representatives

Now we construct canonical representatives in the N ((t))-gauge classes of con-
nections of the form (4.3), following [BD1]. Observe that the operator ad p
defines a gradation on g, called the principal gradation, with respect to
which we have a direct sum decomposition g = €, g;. In particular, we have
b =P, bi, where by = b.

Let now

Vi
P-1= Zfz
i=1

The operator adp_; acts from b; 1 to b; injectively for all ¢ > 0. Hence we
can find for each ¢ > 0 a subspace V; C b;, such that b; = [p_1,b,41] B V;. Tt is
well-known that V; # 0 if and only if ¢ is an exponent of g, and in that case
dim V; is equal to the multiplicity of the exponent 4. In particular, V5 = 0.

Let V = @,;cp Vi Cn, where E = {dy,...,d;} is the set of exponents of
g counted with multiplicity. They are equal to the orders of the generators of
the center of U(g) minus one. We note that the multiplicity of each exponent
is equal to one in all cases except the case g = Do, d,, = 2n, when it is equal
to two.
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There is a special choice of the transversal subspace V' = @, Vi. Namely,
there exists a unique element p; in n, such that {p_1,2p,p1} is an sly-triple.
This means that they have the same relations as the generators {e, h, f} of
sl. We have p; = Zle m;e;, where e;’s are generators of ny and m; are
certain coefficients uniquely determined by the condition that {p_1,2p,p1} is
an sly-triple.

Let Ve = @, V" be the space of ad p;-invariants in n. Then p; spans
Vet Let p; be a linear generator of VC‘aLn If the multiplicity of d; is greater
than one, then we choose linearly 1ndependent vectors in VC]"‘n

Each N((t))-equivalence class contains a unique operator of the form V =
Oy + p_1 + v(t), where v(t) € Ve [[t]], so that we can write

Zvj - Pjs v (t) € C[[t]].

It is easy to find (see, e.g., [F6], Sect. 8.3) that under changes of coordinate
t, v; transforms as a projective connection, and v;,j > 1, transforms as a
(d; + 1)-differential on D,. Thus, we obtain an isomorphism

‘
(4.4) Opg (D) = Proj(D*) x @ 2 WY,
=2
where 23" is the space of n-differentials on D* and Proj(D*) is the 023
torsor of projective connections on D*.

We have an analogous isomorphism with D* replaced by formal disc D or
any smooth algebraic curve X.

4.4 Description of the Center

Now we are ready to describe the center of the completed universal enveloping
algebra U,_(§). The following assertion is proved in [F7], using results of [K1]:

Proposition 1. The center of U, (9) consists of the scalars for k # k.

Let us denote the center of U, (§) by Z(§). The following theorem was
proved in [FF3, F3] (it was conjectured by V. Drinfeld).

Theorem 2. The center Z(g) is isomorphic to the algebra Fun OpL (D) in
a way compatible with the action of the group of coordinate changes.

This implies the following result. Let = be a point of a smooth curve
X. Then we have the affine algebra @, . as defined in Section 1 and the
corresponding completed universal enveloping algebra of critical level. We
denote its center by Z(g,).

Corollary 1. The center Z(g,) is isomorphic to the algebra Fun Op (D))
of functions on the space of “G-opers on D .
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5 Opers vs. Local Systems

We now go back to the question posed at the end of Section 3: let
(5.1) Locrg(D*) = {9, + A(t), A(t) € "g(t)} / “G (1)

be the set of gauge equivalence classes of “G-connections on the punctured
disc D* = SpecC((t)). We had argued in Section 3 that Locrg(D*) should
be taken as the space of Langlands parameters for the loop group G((t)).
Recall that the loop group G((t)) acts on the category g, -mod of (smooth)
g-modules of level x (see Section 1 for the definition of this category). We
asked the following question:

Associate to each local Langlands parameter o € Locrg(D™) a subcategory
8 -mod, of g, -mod which is stable under the action of the loop group G((t)).

Even more ambitiously, we wish to represent the category g.-mod as
“fibering” over the space of local Langlands parameters Locrg (D), with
the categories g, -mod, being the “fibers” and the group G((t)) acting along
these fibers. If we could do that, then we would think of this fibration as a
“spectral decomposition” of the category g, -mod over Locrg(DX).

At the beginning of Section 4 we proposed a possible scenario for solving
this problem. Namely, we observed that any abelian category may be thought
of as “fibering” over the spectrum of its center. Hence our idea was to describe
the center of the category g, -mod (for each value of k) and see if its spectrum
is related to the space Locrg(D*) of Langlands parameters.

We have identified the center of the category g, -mod with the center Z,(g)
of the associative algebra T},ﬁ (9), the completed enveloping algebra of g of level
k, defined in Section 4. Next, we described the algebra Z,(g). According to
Proposition 1, if x # k., the critical level, then Z,(g) = C. Therefore our
approach cannot work for  # k.. However, we found that the center Z,_(g)
at the critical level is highly non-trivial and indeed related to “G-connections
on the punctured disc.

Now, following the works [FG1]-[FG6] of D. Gaitsgory and myself, I will
use these results to formulate more precise conjectures on the local Langlands
correspondence for loop groups and to provide some evidence for these con-
jectures. I will then discuss the implications of these conjectures for the global
geometric Langlands correspondence.®

According to Theorem 2, Z,_(g) is isomorphic to Fun Op.4(D>), the al-
gebra of functions on the space of “G-opers on the punctured disc D*. This
isomorphism is compatible with various symmetries and structures on both

8 Note that A. Beilinson has another proposal [Bei] for local geometric Langlands
correspondence, using representations of affine Kac-Moody algebras of levels less
than critical. It would be interesting to understand the connection between his
proposal and ours.
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algebras, such as the action of the group of coordinate changes. There is a one-
to-one correspondence between points x € OpLg(D*) and homomorphisms
(equivalently, characters)

Fun Oprq(D*) — C,

corresponding to evaluating a function at x. Hence points of Op.(D*) para-
metrize central characters 7, (g) — C.
Given a L'G-oper x € OpLs(D>), define the category

9r. -mod,

as a full subcategory of g, -mod whose objects are g-modules of critical level
(hence Uy, (§)-modules) on which the center Z,_(§) C U,.(g) acts according
to the central character corresponding to y. More generally, for any closed
algebraic subvariety Y C Opro(D*) (not necessarily a point), we have an
ideal

Iy C FunOpLg(D*) ~ Z,.,(9)

of those functions that vanish on Y. We then have a full subcategory
8x. -mody of g, -mod whose objects are g-modules of critical level on which
Iy acts by 0. This category is an example of a “base change” of the category
8, -mod with respect to the morphism Y — Opr(D*). It is easy to general-
ize this definition to an arbitrary affine scheme Y equipped with a morphism
Y — OpLG(DX).g

Since the algebra Opz(D*) acts on the category g,.-mod, one can say
that the category g, -mod “fibers” over the space Oprs(D™), in such a way
that the fiber-category corresponding to x € Oprg(D*) is the category
95, -mod,.1°

Recall that the group G((t)) acts on U, (g) and on the category g, -mod.
One can show (see [BD1], Remark 3.7.11(iii)) that the action of G((¢)) on
Zy. (@) C Uy, (@) is trivial. Therefore the subcategories gy, -mod,, (and, more
generally, g, -mody) are stable under the action of G((t)). Thus, the group
G((t)) acts “along the fibers” of the “fibration” g, -mod — Oprs(D*) (see
[FG2], Sect. 20, for more details).

The fibration g, -mod — Oprs(D*) almost gives us the desired local
Langlands correspondence for loop groups. But there is one important differ-
ence: we asked that the category g, -mod fiber over the space LocLg (D) of
local systems on D*. We have shown, however, that g, -mod fibers over the
space Opr(D*) of LG-opers.

® The corresponding base changed categories @, -mody may then be “glued” to-
gether, which allows us to define the base changed category g..-mody for any
scheme Y mapping to Oprs (D).

10 The precise notion of an abelian category fibering over a scheme is spelled out in
[Ga3].
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What is the difference between the two spaces? While a “G-local system is
a pair (F, V), where J is an “G-bundle and V is a connection on F, an ©'G-oper
is a triple (F,V,Frp), where F and V are as before, and Fr 5 is an additional
piece of structure, namely, a reduction of F to a (fixed) Borel subgroup *B C
L@ satisfying the transversality condition explained in Section 4.2. Thus, for
any curve X we clearly have a forgetful map

Oprg(X) — Locrg(X).

The fiber of this map over (F,V) € Locrg(X) consists of all ©B-reductions
of F satisfying the transversality condition with respect to V.

For a general X it may well be that this map is not surjective, i.e., that the
fiber of this map over a particular local system (F, V) is empty. For example,
if X is a projective curve and LG is a group of adjoint type, then there is a
unique “G-bundle Fr such that the fiber over (Fi¢, V) is non-empty, as we
saw in Section 1.

The situation is quite different when X = DX. In this case any “G-bundle
F may be trivialized. A connection V therefore may be represented as a first
order operator J; + A(t), A(t) € “g((t)). However, the trivialization of J is not
unique; two trivializations differ by an element of G/((t)). Therefore the set
of equivalence classes of pairs (F, V) is identified with the quotient (5.1).

Suppose now that (F, V) carries an oper reduction Fr g. Then we consider
only those trivializations of F which come from trivializations of Fr 5. There
are fewer of those, since two trivializations now differ by an element of ©B((t))
rather than L' G/((t)). Due to the oper transversality condition, the connection V
must have a special form with respect to any of those trivializations, namely,

¢
V=0,+ > wilt)fi +v(t),

=1

where each v;(t) # 0 and v(t) € “b((t)) (see Section 4.2). Thus, we obtain
a concrete realization of the space of opers as a space of gauge equivalence
classes

(5.2)
¢
Oprg(D™) = {r% + Y i) fi+v(t), i #0,v(t) € Lb((t))}/ EB((t).
i=1
Now the map

a:Oprg(D*) — Locrg(DX)

simply takes a B((t))-equivalence class of operators of the form (5.2) to its
L@G((t)-equivalence class.

Unlike the case of projective curves X discussed above, we expect that the
map « is surjective for any simple Lie group “G. In the case of G = SL,
this follows from the results of P. Deligne [Del], and we conjecture it to be
true in general.
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Conjecture 1. The map « is surjective for any simple Lie group FG.

Now we find ourselves in the following situation: we expect that there exists
a category € fibering over the space Locrg(D*) of “true” local Langlands
parameters, equipped with a fiberwise action of the loop group G((t)). The
fiber categories C, corresponding to various o € Locrg(D*) should satisfy
various, not yet specified, properties. This should be the ultimate form of the
local Langlands correspondence. On the other hand, we have constructed a
category @, -mod which fibers over a close cousin of the space Locrg(D>),
namely, the space Op.o(D*) of “G-opers, and is equipped with a fiberwise
action of the loop group G((t)).

What should be the relationship between the two?

The idea of [FG2] is that the second fibration is a “base change” of the
first one, that is we have a Cartesian diagram

Ox.-mod —— ¢

(5.3) l l

Oprg(D*) —2— Locrg(DX)

that commutes with the action of G((t)) along the fibers of the two vertical
maps. In other words,

O, -mod ~ € x Oprg(D™).
) Locr o (DX)

At present, we do not have a definition of €, and therefore we cannot make
this isomorphism precise. But we will use it as our guiding principle. We will
now discuss various corollaries of this conjecture and various pieces of evidence
that make us believe that it is true.

In particular, let us fix a Langlands parameter o € Locrg(D*) that is in
the image of the map a (according to Conjecture 1, all Langlands parameters
are). Let x be a “G-oper in the preimage of o, a~1(c). Then, according to
the above conjecture, the category g, -mod, is equivalent to the “would be”
Langlands category C, attached to o. Hence we may take g, -mod, as the
definition of C,.

The caveat is, of course, that we need to ensure that this definition is inde-
pendent of the choice of x in a~!(o). This means that for any two “G-opers,
x and x’, in the preimage of o, the corresponding categories, g, -mod,, and
9. -mod,, should be equivalent to each other, and this equivalence should
commute with the action of the loop group G((t)). Moreover, we should ex-
pect that these equivalences are compatible with each other as we move along
the fiber a=!(o). We will not try to make this condition more precise here
(however, we will explain below in Conjecture 4 what this means for regular
opers).

Even putting the questions of compatibility aside, we arrive at the follow-
ing rather non-trivial conjecture (see [FG2]).
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Conjecture 2. Suppose that x,x" € OpLg(D*) are such that a(x) = a(x’'),
i.e., that the flat “*G-bundles on D* underlying the “G-opers x and X' are
isomorphic to each other. Then there is an equivalence between the categories
9r, -mody, and g, -mod,s which commutes with the actions of the group G((t))
on the two categories.

Thus, motivated by our quest for the local Langlands correspondence, we
have found an unexpected symmetry in the structure of the category g, -mod
of g-modules of critical level.

6 Harish—Chandra Categories

As explained in Section 3, the local Langlands correspondence for the loop
group G((t)) should be viewed as a categorification of the local Langlands cor-
respondence for the group G(F), where F is a local non-archimedian field.
This means that the categories C,, equipped with an action of G((t)), that
we are trying to attach to the Langlands parameters o € Locrg(D*) should
be viewed as categorifications of the smooth representations of G(F") on com-
plex vector spaces attached to the corresponding local Langlands parameters
discussed in Section 2.3. Here we use the term “categorification” to indicate
that we expect the Grothendieck groups of the categories C, to “look like”
irreducible smooth representations of G(F'). We begin by taking a closer look
at the structure of these representations.

6.1 Spaces of K-Invariant Vectors

It is known that an irreducible smooth representation (R, 7) of G(F) is auto-
matically admissible, in the sense that for any open compact subgroup K,
such as the Nth congruence subgroup Ky defined in Section 2.1, the space
R™K) of K-invariant vectors in R is finite-dimensional. Thus, while most of
the irreducible smooth representations (R, ) of G(F') are infinite-dimensional,
they are filtered by the finite-dimensional subspaces R™5) of K-invariant vec-
tors, where K are smaller and smaller open compact subgroups. The space
R™(X) does not carry an action of G(F), but it carries an action of the Hecke
algebra H(G(F), K).

By definition, H(G(F'), K) is the space of compactly supported K bi-
invariant functions on G(F). It is given an algebra structure with respect to
the convolution product

(6.1) (o % fo)(g) = / Fr(gh™) fa(R) dh,

G(F)

where dh is the Haar measure on G(F) normalized in such a way that the
volume of the subgroup Ky = G(0) is equal to 1 (here O is the ring of integers
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of F; e.g., for F =T,((t)) we have O = F,[[t]]). The algebra H(G(F), K) acts
on the space R™X) by the formula

(6.2) f*v:iL@»ﬁ@h*xwmvam7 ve R,

Studying the spaces of K-invariant vectors and their H(G(F'), K)-module
structure gives us an effective tool for analyzing representations of the group
G(F), where F = F,((t)).

Can we find a similar structure in the categorical local Langlands corre-
spondence for loop groups?

6.2 Equivariant Modules

In the categorical setting a representation (R,w) of the group G(F') is re-
placed by a category equipped with an action of G((t)), such as g, -mod,,.
The open compact subgroups of G(F) have obvious analogues for the loop
group G((t)) (although they are, of course, not compact with respect to the
usual topology on G((t))). For instance, we have the “maximal compact sub-
group” Ky = G[[t]], or, more generally, the Nth congruence subgroup Ky,
whose elements are congruent to 1 modulo ¥ C[[t]]. Another important exam-
ple is the analogue of the Iwahori subgroup. This is the subgroup of G[[t]],
which we denote by I, whose elements g(t) have the property that their value
at 0, that is g(0), belong to a fixed Borel subgroup B C G.

Now, for a subgroup K C G((t)) of this type, an analogue of a K-invariant
vector in the categorical setting is an object of our category, i.e., a smooth
8x.-module (M, p), where p : g, — End M, which is stable under the action
of K. Recall from Section 3.5 that for any g € G((t)) we have a new g, -
module (M, py), where py(x) = p(Ady(z)). We say that (M, p) is stable under
K, or that (M, p) is weakly K-equivariant, if there is a compatible system
of isomorphisms between (M, p) and (M, py) for all k € K. More precisely,
this means that for each k € K there exists a linear map Té” : M — M such
that

T () ()1 = p(Ady ()

for all € g,,, and we have
Y =1dy,  TYNTY =TM.,.

Thus, M becomes a representation of the group K.!' Consider the corre-
sponding representation of the Lie algebra € = Lie K on M. Let us assume
that the embedding & < g((¢)) lifts to € — g, (i.e., that the central extension
cocycle is trivial on ¢). This is true, for instance, for any subgroup contained

' In general, it is reasonable to modify the last condition to allow for a non-trivial
two-cocycle and hence a non-trivial central extension of K; however, in the case
of interest K does not have any non-trivial central extensions.
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in Ky = GJ[t]], or its conjugate. Then we also have a representation of £ on
M obtained by restriction of p. In general, the two representations do not
have to coincide. If they do coincide, then the module M is called strongly
K-equivariant, or simply K-equivariant.

The pair (gx,, K) is an example of Harish-Chandra pair, that is a pair
(g, H) consisting of a Lie algebra g and a Lie group H whose Lie algebra is
contained in g. The K-equivariant g,_-modules are therefore called (g, K)
Harish-Chandra modules. These are (smooth) g,_-modules on which the
action of the Lie algebra Lie K C g, may be exponentiated to an action of K
(we will assume that K is connected). We denote by g, -mod” and Or. —modf
the full subcategories of g, -mod and g, -mod,, respectively, whose objects
are (g, , K) Harish-Chandra modules.

We will stipulate that the analogues of K-invariant vectors in the category
9r, -mod,, are (g, i) Harish-Chandra modules. Thus, while the categories
9. -mod,, should be viewed as analogues of smooth irreducible representations
(R, 7) of the group G(F), the categories g, —modf are analogues of the spaces

of K-invariant vectors R™(%) .
Next, we discuss the categorical analogue of the Hecke algebra H (G(F), K).

6.3 Categorical Hecke Algebras

We recall that H(G(F), K) is the algebra of compactly supported K bi-
invariant functions on G(F). We realize it as the algebra of left K-invariant
compactly supported functions on G(F)/K. In Section 3.4 we have already
discussed the question of categorification of the algebra of functions on a
homogeneous space like G(F)/K. Our conclusion was that the categorical
analogue of this algebra, when G(F') is replaced by the complex loop group
G((t)), is the category of D-modules on G((t))/K. More precisely, this quotient
has the structure of an ind-scheme which is a direct limit of finite-dimensional
algebraic varieties with respect to closed embeddings. The appropriate notion
of (right) D-modules on such ind-schemes is formulated in [BD1] (see also
[FG1, FG2]). As the categorical analogue of the algebra of left K-invariant
functions on G(F)/K, we take the category H(G((t)), K) of K-equivariant
D-modules on the ind-scheme G((t))/K (with respect to the left action of K
on G((t))/K). We call it the categorical Hecke algebra associated to K.
It is easy to define the convolution of two objects of H(G((t)), K) by im-
itating formula (6.1). Namely, we interpret this formula as a composition of
the operations of pulling back and integrating functions. Then we apply the
same operations to D-modules, thinking of the integral as push-forward. How-
ever, here one encounters two problems. The first problem is that for a general
group K the morphisms involved will not be proper, and so we have to choose
between the *- and !-push-forward. This problem does not arise, however,
if K is such that I ¢ K C GJ[t]], which will be our main case of interest.
The second, and more serious, issue is that in general the push-forward is
not an exact functor, and so the convolution of two D-modules will not be
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a D-module, but a complex, more precisely, an object of the corresponding
K-equivariant (bounded) derived category D°(G((t))/K)¥ of D-modules on
G((t))/ K. We will not spell out the exact definition of this category here, re-
ferring the interested reader to [BD1] and [FG2]. The exception is the case of
the subgroup Ky = G[[t]], when the convolution functor is exact and so we
may restrict ourselves to the abelian category of Ky-equivariant D-modules
on G((t)/Ko.

Now the category D°(G((t))/K)¥ has a monoidal structure, and as such
it acts on the derived category of (g, K) Harish-Chandra modules (again,
we refer the reader to [BD1, FG2| for the precise definition). In the special
case when K = K, we may restrict ourselves to the corresponding abelian
categories. This action should be viewed as the categorical analogue of the
action of H(G(F),K) on the space R™) of K-invariant vectors discussed
above.

Our ultimate goal is understanding the “local Langlands categories” C,
associated to the “local Langlands parameters o € Locrg(D*). We now
have a candidate for the category €., namely, the category g, -mod,, where
o = a(x). Therefore g, -mod, should be viewed as a categorification of a
smooth representation (R, ) of G(F). The corresponding category gy, —modf
of (gx., K) Harish-Chandra modules should therefore be viewed as a categori-
fication of R™X). This category (or, more precisely, its derived category) is
acted upon by the categorical Hecke algebra H(G((t)), K'). We summarize this
analogy in the following table.

Classical Theory Geometric Theory

Representation of G(F)  |Representation of G((t))
on a vector space R on a category g, -mod,

A vector in R An object of g, -mod,,

The subspace R™) of The subcategory . —modf of
K-invariant vectors of R |(gy., K) Harish-Chandra modules

Hecke algebra H(G(F), K)|Categorical Hecke algebra H(G((t)), K)
acts on R™() acts on g, —modf

Now we may test our proposal for the local Langlands correspondence by
studying the categories gy, —modf of Harish-Chandra modules and comparing
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their structure to the structure of the spaces R™¥) of K-invariant vectors of
smooth representations of G(F') in the known cases. Another possibility is to
test Conjecture 2 when applied to the categories of Harish-Chandra modules.

In the next section we consider the case of the “maximal compact sub-
group” Ky = G[[t]] and find perfect agreement with the classical results about
unramified representations of G(F). We then take up the more complicated
case of the Iwahori subgroup I. There we also find the conjectures and re-
sults of [FG2] to be consistent with the known results about representations
of G(F) with Iwahori fixed vectors.

7 Local Langlands Correspondence: Unramified Case

We first take up the case of the “maximal compact subgroup” Ky = G[[t]]
of G((t)) and consider the categories g, -mod,, which contain non-trivial K-
equivariant objects.

7.1 Unramified Representations of G(F’)

These categories are analogues of smooth representations of the group G(F),
where F' is a local non-archimedian field (such as F,((t))) that contain non-
zero Ky-invariant vectors. Such representations are called unramified. The
classification of the irreducible unramified representations of G(F') is the sim-
plest case of the local Langlands correspondence discussed in Sections 2.2 and
2.3. Namely, we have a bijection between the sets of equivalence classes of the
following objects:

unramified admissible irreducible unramified

(7.1) homomorphisms W}, — LG representations of G(F)

where Wt is the Weil-Deligne group introduced in Section 2.1.
By definition, unramified homomorphisms W} — G are those which
factor through the quotient

ij—?WF—)Z

(see Section 2.1 for the definitions of these groups and homomorphisms). It
is admissible if its image in “G consists of semi-simple elements. Therefore
the set on the left hand side of (7.1) is just the set of conjugacy classes of
semi-simple elements of “G. Thus, the above bijection may be reinterpreted
as follows:

semi-simple conjugacy irreducible unramified

(7.2) classes in LG representations of G(F)
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To construct this bijection, we look at the Hecke algebra H(G(F), Ky).
According to the Satake isomorphism [Sat], in the interpretation of Langlands
[L], this algebra is commutative and isomorphic to the representation ring of
the Langlands dual group G-

(7.3) H(G(F), Ky) ~ Rep “G.

We recall that Rep Z'G consists of finite linear combinations Y, a;[V;], where
the V; are finite-dimensional representations of “G (without loss of generality
we may assume that they are irreducible) and a; € C, with respect to the
multiplication

V]- W] =[VeWw]

Since Rep “G is commutative, its irreducible modules are all one-dimensional.
They correspond to characters Rep “G — C. We have a bijection

semi-simple conjugacy characters

(7.4) classes in *G of Rep*G

where the character ¢, corresponding to the conjugacy class -y is given by the
formula!?

¢y [V = Tr(y, V).

Now, if (R, ) is a representation of G(F), then the space R™(50) of K-
invariant vectors in V' is a module over H(G(F), Kp). It is easy to show
that this sets up a one-to-one correspondence between equivalence classes of
irreducible unramified representations of G(F') and irreducible H(G(F), Ky)-
modules. Combining this with the bijection (7.4) and the isomorphism (7.3),
we obtain the sought-after bijections (7.1) and (7.2).

In particular, we find that, because the Hecke algebra H(G(F), Ky) is com-
mutative, the space R™50) of Ky-invariants of an irreducible representation,
which is an irreducible H(G(F'), K)-module, is either zero or one-dimensional.
If it is one-dimensional, then H(G(F), Ky) acts on it by the character ¢, for
some 7:

(7.5) Hy %v="Te(y,V)v, ve R [V]€ReplaG,

where Hy is the element of H(G(F), Ky) corresponding to [V] under the iso-
morphism (7.3) (see formula (6.2) for the definition of the convolution action).
We now discuss the categorical analogues of these statements.

12 1t is customary to multiply the right hand side of this formula, for irreducible
representation V', by a scalar depending on ¢ and the highest weight of V| but
this is not essential for our discussion.
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7.2 Unramified Categories g,_-Modules

In the categorical setting, the role of an irreducible representation (R, ) of
G(F) is played by the category g, -mod,, for some x € Oprg(D*). The ana-
logue of an unramified representation is a category g, -mod,, which contains
non-zero (gy., G[[t]]) Harish-Chandra modules. This leads us to the follow-
ing question: for what x € Oprg(D*) does the category g, -mod, contain
non-zero (g., G[[t]]) Harish-Chandra modules?

We saw in the previous section that (R,7) is unramified if and only if it
corresponds to an unramified Langlands parameter, which is a homomorphism
W}, — LG that factors through W}, — Z. Recall that in the geometric setting
the Langlands parameters are “G-local systems on D*. The analogues of
unramified homomorphisms W; — LG are those local systems on D* which
extend to the disc D, in other words, have no singularity at the origin 0 € D.
Note that there is a unique, up to isomorphism local system on D. Indeed,
suppose that we are given a regular connection on a “G-bundle F on D. Let
us trivialize the fiber ¥y of F at 0 € D. Then, because D is contractible, the
connection identifies F with the trivial bundle on D. Under this identification
the connection itself becomes trivial, i.e., represented by the operator V = 0.

Therefore all regular £G-local systems (i.e., those which extend to D)
correspond to a single point of the set Locrg (D), namely, the equivalence
class of the trivial local system o¢."® From the point of view of the realization
of Locrg(D*) as the quotient (3.2) this simply means that there is a unique
LG((t)) gauge equivalence class containing all regular connections of the form
O + A(t), where A(t) € Lgl[t]].

The gauge equivalence class of regular connections is the unique local
Langlands parameter that we may view as unramified in the geometric set-
ting. Therefore, by analogy with the unramified Langlands correspondence for
G(F), we expect that the category g,.-mod, contains non-zero (g.,,G|[[t]])
Harish-Chandra modules if and only if the “G-oper x € Op.g(D>) is LG((t)
gauge equivalent to the trivial connection, or, in other words, y belongs to
the fiber a=!(oq) over ay.

What does this fiber look like? Let P* be the set of dominant integral
weights of G (equivalently, dominant integral coweights of “G). In [FG2] we
defined, for each A\ € PT, the space Op?2 of BI[[t]]-equivalence classes of
operators of the form

J4
(7.6) V=0 + Yt Nyi(t) fi+ v(t),

i=1

13 Note however that the trivial G-local system on D has a non-trivial group of
automorphisms, namely, the group “G itself (it may be realized as the group of
automorphisms of the fiber at 0 € D). Therefore if we think of Locr(D*) as a
stack rather than as a set, then the trivial local system corresponds to a substack
pt /FG.
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where ¢;(t) € C[[t]], %:(0) # 0, v(t) € “b[[t]].

Lemma 2. Suppose that the local system underlying an oper x € OprLs(D>)
is trivial. Then x belongs to the disjoint union of the subsets Opi‘G C
Oprg(D*), A € PT.

Proof. It is clear from the definition that any oper in Op? ¢ is regular on
the disc D and is therefore G/((#)) gauge equivalent to the trivial connection.

Now suppose that we have an oper x = (&, V,F ) such that the underly-
ing L'G-local system is trivial. Then V is G((t)) gauge equivalent to a regular
connection, that is one of the form 9; + A(t), where A(t) € Lg[[t]]. We have
the decomposition LG((t)) = LG[[t]]F B((t)). The gauge action of LG[[t]] clearly
preserves the space of regular connections. Therefore if an oper connection V
is L G((t)) gauge equivalent to a regular connection, then its  B((¢)) gauge class
already must contain a regular connection. The oper condition then implies
that this gauge class contains a connection operator of the form (7.6) for some
dominant integral weight A of “G. Therefore x € Opég. O

Thus, we see that the set of opers corresponding to the (unique) unramified
Langlands parameter is the disjoint union | |, p+ Opi‘G. We call such opers
“unramified”. The following result then confirms our expectation that the cat-
egory g, -mod, is “unramified”, that is contains non-zero G|[[t]]-equivariant
objects, if and only if x is unramified (see [FG3] for a proof).

Lemma 3. The category gy, -mod, contains a non-zero (§.,,G[[t]]) Harish-
Chandra module if and only if

(7.7) xe || Opig.
AeP+

The next question is to describe the category g, -modg[m] of (9., G[[t])
modules for x € Opég.

7.3 Categories of G[[t]]-Equivariant Modules

Let us recall from Section 7.1 that the space of Ky-invariant vectors in an
unramified irreducible representation of G(F') is always one-dimensional. We
have proposed that the category g, —modg[[tn should be viewed as a categor-
ical analogue of this space. Therefore we expect it to be the simplest possible
abelian category: the category of C-vector spaces. Here we assume that y
belongs to the union of the spaces Op%G7 where A\ € P, for otherwise the
category gy, —modf“t” would be trivial (zero object is the only object).

In this subsection we will prove, following [FG1] (see also [BD1]), that our
expectation is in fact correct provided that A = 0, in which case Op(L)G =
Oprg(D), and so

X € Oprg(D) C Oprg(DX).
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We will also conjecture that this is true for x € Op%G for all A € PT.
Recall the vacuum module Vo = V,;_(g). According to [FF3, F3], we have

(7.8) Endg, Vo~ FunOp.g(D).

Let x € Oprg(D) C Oprg(D*). Then x defines a character of the algebra
Endg, Vo. Let Vo(x) be the quotient of Vo by the kernel of this character.
Then we have the following result.

Theorem 3. Let x € Oprg(D) C Oprg(D*). The category G, —modg[[t“
is equivalent to the category of vector spaces: its unique, up to isomorphism,
irreducible object is Vo(x) and any other object is isomorphic to the direct
sum of copies of Vo(x).

This theorem provides the first piece of evidence for Conjecture 2: we
see that the categories g, —modg[[tn are equivalent to each other for all y €
OpLG(D).

It is more convenient to consider, instead of an individual regular *G-oper
X, the entire family Op%G = Opr(D) of regular opers on the disc D. Let
Gk, -modeg be the full subcategory of the category g, -mod whose objects
are gy -modules on which the action of the center Z(g) factors through the
homomorphism

Z(g) ~ FunOp.r4(D*) — Fun Op. (D).

Note that the category @, -mod,es is an example of a category g, -mody
introduced in Section 5, in the case when V = Op.(D).

Let g, —mod]igtH be the corresponding G[t]]-equivariant category. It is

instructive to think of g, -mod,eg and Or. —modggt” as categories fibered
over Oprg(D), with the fibers over x € Oprg(D) being g, -mod, and
Ok, —rnodf[[t”7 respectively.

We will now describe the category g, —modggt]]. This description will in
particular imply Theorem 3.

In order to simplify our formulas, in what follows we will use the following
notation for Fun Op.4(D):

3 =3(8) = Fun Op. (D).

Let 3-mod be the category of modules over the commutative algebra j.
Equivalently, this is the category of quasicoherent sheaves on the space
OpLG(D)

By definition, any object of g —moeregt]] is a 3-module. Introduce the
functors

F ge, -mod" — 5-mod, M — Homg, (Vo, M),

reg i
G :3-mod — @, —modggt”, T—Vo7F.
3
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The following theorem has been proved in [FG1], Theorem 6.3 (important
results in this direction were obtained earlier in [BD1]).

Theorem 4. The functors F and G are mutually inverse equivalences of cat-
egories

(7.9) O —mod?egt]] ~ 3-mod .

This immediately implies Theorem 3. Indeed, for each x € OpL(D) the
category @, —modg[[tH is the full subcategory of g, —modfe[g[t]] which are an-
nihilated, as 3-modules, by the maximal ideal I, of x. By Theorem 4, this
category is equivalent to the category of 3-modules annihilated by I,.. But this
is the category of 3-modules supported (scheme-theoretically) at the point ¥,
which is equivalent to the category of vector spaces.

7.4 The Action of the Spherical Hecke Algebra

In Section 7.1 we discussed irreducible unramified representations of the group
G(F), where F is a local non-archimedian field. We have seen that such repre-
sentations are parameterized by conjugacy classes of the Langlands dual group
L@. Given such a conjugacy class v, we have an irreducible unramified rep-
resentation (R, ), which contains a one-dimensional subspace (R. )™ (¥0)
of Ky-invariant vectors. The spherical Hecke algebra H(G(F'), Ky), which is
isomorphic to Rep “G via the Satake isomorphism, acts on this space by a
character ¢.,, see formula (7.5).

In the geometric setting, we have argued that for any x € OpLg(D)
the category @, -mod,, equipped with an action of the loop group G((t)),
should be viewed as a categorification of (R, 7). Furthermore, its subcate-
gOry G, —modg[[t” of (gx,,G[[t]]) Harish-Chandra modules should be viewed
as a categorification of the one-dimensional space (R,Y)’”(K"). According to
Theorem 3, the latter category is equivalent to the category of vector spaces,
which is consistent with our expectations.

We now discuss the categorical analogue of the action of the spherical
Hecke algebra.

As explained in Section 6.3, the categorical analogue of the spherical Hecke
algebra is the category of G[[t]]-equivariant D-modules on the affine Grass-
mannian Gr = G((t))/G[[t]]. We refer the reader to [BD1, FG2] for the precise
definition of Gr and this category. There is an important property that is sat-
isfied in the unramified case: the convolution functors with these D-modules
are exact, which means that we do not need to consider the derived category;
the abelian category of such D-modules will do. Let us denote this abelian
category by H(G(t), G[[t])-

According to the results of [MV], this category carries a natural structure
of tensor category, which is equivalent to the tensor category Rep “G of rep-
resentations of “G. This should be viewed as a categorical analogue of the
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Satake isomorphism. Thus, for each object V of Rep “G we have an object of
H(G((t)), G[[t]]) which we denote by Hy . What should be the analogue of the
Hecke eigenvector property (7.5)?

As we explained in Section 6.3, the category H(G((t)), G[[t]]) naturally
acts on the category g, —modg[[t“, and this action should be viewed as a
categorical analogue of the action of H(G(F), Ky) on (R, )™ (Ko).

Now, by Theorem 3, any object of g —modg[[t” is a direct sum of copies
of Vo(x). Therefore it is sufficient to describe the action of H(G((t)), G[[t])
on Vy(x). This action is described by the following statement, which follows
from [BD1]: there exists a family of isomorphisms

(7.10) ay : Hy «Vo(x) — V.® Vo(x), Ve Repta,

where V is the vector space underlying the representation V. Moreover, these
isomorphisms are compatible with the tensor product structure on Hy (given
by the convolution) and on V (given by tensor product of vector spaces).

In view of Theorem 3, this is not surprising. Indeed, it follows from the
definition that Hy x V() is again an object of the category g, —modg[[t”.
Therefore it must be isomorphic to Uy ®¢ Vo(x), where Uy is a vector space.
But then we obtain a functor H(G((t)), G[[t]]) — Vect, Hy +— Uy . It follows
from the construction that this is a tensor functor. Therefore the standard
Tannakian formalism implies that Uy is isomorphic to V.

The isomorphisms (7.10) should be viewed as the categorical analogues of
the Hecke eigenvector conditions (7.5). The difference is that while in (7.5) the
action of elements of the Hecke algebra on a Ky-invariant vector in R, amounts
to multiplication by a scalar, the action of an object of the Hecke category
H(G((t)), G[[t]]) on the G[[t]]-equivariant object Vo(x) of g, -mod, amounts
to multiplication by a wvector space, namely, the vector space underlying the
corresponding representation of “G. It is natural to call a module satisfying
this property a Hecke eigenmodule. Thus, we obtain that V() is a Hecke
eigenmodule. This is in agreement with our expectation that the category
Ok, —modg[[tﬂ is a categorical version of the space of Kjy-invariant vectors in
R,.

One ingredient that is missing in the geometric case is the conjugacy class
7 of “G. We recall that in the classical Langlands correspondence this was the
image of the Frobenius element of the Galois group Gal(F,/F,), which does
not have an analogue in the geometric setting where our ground field is C,
which is algebraically closed. So while unramified local systems in the classical
case are parameterized by the conjugacy classes 7y, there is only one, up to
an isomorphism, unramified local system in the geometric case. However, this
local system has a large group of automorphisms, namely, “G itself. One can
argue that what replaces v in the geometric setting is the action of this group
L@ by automorphisms of the category g, -mod,, which we will discuss in the
next two sections.
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7.5 Categories of Representations and D-Modules

When we discussed the procedure of categorification of representations in
Section 3.5, we saw that there are two possible scenarios for constructing
categories equipped with an action of the loop group G((¢)). In the first one
we consider categories of D-modules on the ind-schemes G((t))/K, where K
is a “compact” subgroup of G((t)), such as G[[t]] or the Iwahori subgroup. In
the second one we consider categories of representations g, -mod,. So far we
have focused exclusively on the second scenario, but it is instructive to also
discuss categories of the first type.

In the toy model considered in Section 3.4 we discussed the category of g-
modules with fixed central character and the category of D-modules on the flag
variety G/B. We have argued that both could be viewed as categorifications of
the representation of the group G(F,) on the space of functions on (G/B)(F,).
These categories are equivalent, according to the Beilinson-Bernstein theory,
with the functor of global sections connecting the two. Could something like
this be true in the case of affine Kac-Moody algebras as well?

The affine Grassmannian Gr = G((¢))/G|[t]] may be viewed as the simplest
possible analogue of the flag variety G/B for the loop group G((t)). Consider
the category of D-modules on G((t))/G][t]] (see [BD1, FG2] for the precise
definition). We have a functor of global sections from this category to the
category of g((t)-modules. In order to obtain g, -modules, we need to take
instead the category D, -mod of D-modules twisted by a line bundle L, .
This is the unique line bundle £,_ on Gr which carries an action of g, (such
that the central element 1 is mapped to the identity) lifting the natural ac-
tion of g((t)) on Gr. Then for any object M of D, -mod, the space of global
sections I'(Gr,M) is a g, -module. Moreover, it is known (see [BD1, FG1])
that I'(Gr, M) is in fact an object of g, -mod,egs. Therefore we have a functor
of global sections

I': D, -mod — g, -modyeg -

We note that the categories D-mod and D, -mod are equivalent under the
functor M — M ® L,_. But the corresponding global sections functors are
very different.

However, unlike in the Beilinson-Bernstein scenario, the functor I' can-
not possibly be an equivalence of categories. There are two reasons for this.
First of all, the category g, -mod,e; has a large center, namely, the algebra
3 = Fun Op. (D), while the center of the category D, -mod is trivial.!* The
second, and more serious, reason is that the category D, -mod carries an

14 Recall that we are under the assumption that G is a connected simply-connected
algebraic group, and in this case Gr has one connected component. In general,
the center of the category D, -mod has a basis enumerated by the connected
components of Gr and is isomorphic to the group algebra of the finite group

7T1(G).
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additional symmetry, namely, an action of the tensor category Rep”G of rep-
resentations of the Langlands dual group G, and this action trivializes under
the functor I" as we explain presently.

Over Oprq(D) there exists a canonical principal “G-bundle, which we
will denote by P. By definition, the fiber of P at x = (F,V,Frp) € Opr(D)
is Jo, the fiber at 0 € D of the “G-bundle F underlying y. For an object
V € RepLG let us denote by V the associated vector bundle over Op. (D),
ie.,

V=P x V.
LG

Next, consider the category D,.. -mod® of G[[t]]-equivariant D, -modu-
les on Gr. It is equivalent to the category

D -mod “I = 3¢(G(), G[[H])

considered above. This is a tensor category, with respect to the convolution
functor, which is equivalent to the category Rep“G. We will use the same
notation Hy for the object of D, -mod ¢l corresponding to V € Rep LG.
The category D, -mod® acts on Dy, -mod by convolution functors

M= Hy«M

which are exact. This amounts to a tensor action of the category Rep”G on
Dy, -mod.

Now, A. Beilinson and V. Drinfeld have proved in [BD1] that there are
functorial isomorphisms

D(Gr,Hy «M) = T'(Gr,M) @V, VeRepla,
3

compatible with the tensor structure. Thus, we see that there are non-
isomorphic objects of D,_-mod, which the functor I' sends to isomorphic
objects of gy, -mod,eg. Therefore the category D, -mod and the functor I’
need to be modified in order to have a chance to obtain a category equivalent
t0 G, ~mOdyeg-

In [FG2] it was shown how to modify the category D,;_ -mod, by simulta-
neously “adding” to it 3 as a center, and “dividing” it by the above Rep G-
action. As the result, we obtain a candidate for a category that can be equiv-
alent to gy, -mod,es. This is the category of Hecke eigenmodules on Gr,
denoted by @Efd‘e -mOdyeg.

By definition, an object of DEkae -mod;eg is an object of D, -mod,
equipped with an action of the algebra 3 by endomorphisms and a system
of isomorphisms

ay Hy M =VOM, VeRepla,
3

compatible with the tensor structure.
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The above functor I" naturally gives rise to a functor
(7.11) [Hecke . DSkae -modyeg — G, ~MOdyeg -

This is in fact a general property. Suppose for simplicity that we have an
abelian category € which is acted upon by the tensor category Rep H, where
H is an algebraic group; we denote this functor by M — M x V,V € Rep H.
Let CHecke he the category whose objects are collections (M, {ay }verep ),
where M € € and {ay} is a compatible system of isomorphisms

aV:M*VLK%M, V € RepH,

where V is the vector space underlying V. One may think of GHecke as the
“de-equivariantized” category C with respect to the action of H. It carries a
natural action of the group H: for h € H, we have

h - (M’ {QV}VGRep H) - (Mv {(h & ldM) o aV}VGfRep H)

In other words, M remains unchanged, but the isomorphisms ay get composed
with h.

The category € may in turn be reconstructed as the category of H-
equivariant objects of CHeke with respect to this action, see [Ga3].

Suppose that we have a functor G : € — €/, such that we have functorial
isomorphisms

(7.12) GOMxV) =G 8V,  VeRepH,

compatible with the tensor structure. Then, according to [AG], there exists a
functor GHecke . @Hecke _, @ gyich that G ~ GHekeoInd, where the functor Ind :
@ — CHecke sends M to M+ O, where O is the regular representation of H.
The functor GH**® may be explicitly described as follows: the isomorphisms
ay and (7.12) give rise to an action of the algebra Oz on G(M), and GHecke()
is obtained by taking the fiber of G(M) at 1 € H.

We take € = D,;_-mod, €' = g, -mod,eg, and G = I'. The only difference
is that now we are working over the base Opr (D), which we have to take into
account. Thus, we obtain a functor (7.11) (see [FG2, FG4] for more details).
Moreover, the left action of the group G((t)) on Gr gives rise to its action on
the category Dgfd‘e -mod,¢g, and the functor I'Hecke intertwines this action
with the action of G((¢)) on g, -mod;eg.

The following was conjectured in [FG2J:

Conjecture 3. The functor I''**¢ in formula (7.11) defines an equivalence
of the categories DI:kae -modyeg and gy, ~-M0dyeg .

It was proved in [FG2] that the functor I'e?k¢  when extended to the
derived categories, is fully faithful. Furthermore, it was proved in [FG4] that
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it sets up an equivalence of the corresponding I°-equivariant categories, where
I° = [I,1] is the radical of the Iwahori subgroup.

Let us specialize Conjecture 3 to a point x = (F,V,Frg) € Opra(D).
Then on the right hand side we consider the category g, -mod,, and on the
left hand side we consider the category ’DEkae -mod, . Its objects consist of a
D, -module M and a collection of isomorphisms

(7.13) ay : Hy *M "= Vg, @M, V€ Rep”G.

Here Vi, is the twist of the representation V by the LG-torsor F,. These
isomorphisms have to be compatible with the tensor structure on the category
H(G(@), GI[t])-

Conjecture 3 implies that there is a canonical equivalence of categories
(7.14) DHe*e _mod, ~ g, -mod,, .

It is this conjectural equivalence that should be viewed as an analogue of the
Beilinson-Bernstein equivalence.

From this point of view, one can think of each of the categories DEkae—modX
as the second incarnation of the sought-after Langlands category C,, corre-
sponding to the trivial *G-local system.

Now we give another explanation why it is natural to view the cate-
gory DEkae -mod, as a categorification of an unramified representation of
the group G (F). First of all, observe that these categories are all equivalent
to each other and to the category DI,;Ikae -mod, whose objects are D, _-modules
M together with a collection of isomorphisms

(7.15) ay  Hy *M SV M, V eRepla.
Comparing formulas (7.13) and (7.15), we see that there is an equivalence
CDEkaC -mod,, =~ DE:CI‘C -mod,

for each choice of trivialization of the “G-torsor Fy (the fiber at 0 € D of the
principal “G-bundle F on D underlying the oper x).

Now recall from Section 7.1 that to each semi-simple conjugacy class v in
L@ corresponds an irreducible unramified representation (R, 7,) of G(F) via
the Satake correspondence (7.2). It is known that there is a non-degenerate
pairing

<,> : R7 X R’Y’l — (C,

in other words, R,-1 is the representation of G(F') which is contragredient to
R, (it may be realized in the space of smooth vectors in the dual space to
R,).

Let v € R,-1 be a non-zero vector such that Kov = v (this vector is unique
up to a scalar). It then satisfies the Hecke eigenvector property (7.5) (in which
we need to replace y by 7~ !). This allows us to embed R, into the space of
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locally constant right Ky-invariant functions on G(F') (equivalently, functions
on G(F)/Ky), by using matrix coefficients, as follows:

UER—Y'_’fua fu(g): <u,gv>.

The Hecke eigenvector property (7.5) implies that the functions f, are right
Kp-invariant and satisfy the condition

(7.16) fxHy =Tr(v L V)f,

where % denotes the convolution product (6.1). Let C(G(F)/Kp)y be the
space of locally constant functions on G(F)/Ky satisfying (7.16). It carries
a representation of G(F') induced by its left action on G(F')/Ky. We have
constructed an injective map R, — C(G(R)/G(R))~, and one can show that
for generic + it is an isomorphism.

Thus, we obtain a realization of an irreducible unramified representation
of G(F) in the space of functions on the quotient G(F)/Ky satisfying the
Hecke eigenfunction condition (7.16). The Hecke eigenmodule condition (7.15)
may be viewed as a categorical analogue of (7.16). Therefore the category
DHecke _mod of twisted D-modules on Gr = G((t))/Ky satisfying the Hecke
eigenmodule condition (7.15), equipped with a G((t))-action appears to be a
natural categorification of the irreducible unramified representations of G(F).

7.6 Equivalences Between Categories of Modules

All opers in Opg(D) correspond to one and the same ZG-local system,
namely, the trivial local system. Therefore, according to Conjecture 2, we ex-
pect that the categories gy, -mod, are equivalent to each other. More precisely,
for each isomorphism between the underlying local systems of any two opers
in OpL(D) we wish to have an equivalence of the corresponding categories,
and these equivalences should be compatible with respect to the operation of
composition of these isomorphisms.

Let us spell this out in detail. Let x = (F,V,JFrp) and x’ = (3, V', T )
be two opers in Op. (D). Then an isomorphism between the underlying local
systems (F,V) — (F, V') is the same as an isomorphism Fo — F), between
the LG-torsors Fy and F), which are the fibers of the £G-bundles F and F7,
respectively, at 0 € D. Let us denote this set of isomorphisms by Isom, .
Then we have

Isom,, v = Fo LXG La LXG F,
where we twist “G by Fo with respect to the left action and by F, with respect
to the right action. In particular,

Isom, , = LG% =F L><G AdlG

is just the group of automorphisms of Fj.
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It is instructive to combine the sets Isom, , into a groupoid Isom over
OpL (D). Thus, by definition Isom consists of triples (x, X', ¢), where x, x’ €
Oprg(D) and ¢ € Isom,,, is an isomorphism of the underlying local systems.
The two morphisms Isom — Opr4(D) correspond to sending such a triple to
x and x’. The identity morphism Op. (D) — Isom sends x to (x, x,Id), and
the composition morphism

Isom X Isom — Isom
OpL (D)

corresponds to composing two isomorphisms.
Conjecture 2 has the following more precise formulation for regular opers:

Conjecture 4. For each ¢ € Isom, ,+ there exists an equivalence
Ey : gy, -mody — @, -mod,,

which intertwines the actions of G((t)) on the two categories, such that Erqg =
Id and there exist isomorphisms By.¢' : Egogr ~ Eg o By satisfying

Booo ¢ Bp,er = Bp,¢rop Ber

for all isomorphisms ¢, ', ¢, whenever they may be composed in the appro-
priate order.

In other words, the groupoid Isom over Oprs(D) acts on the category
Gk, -modyeg fibered over Oprg (D), preserving the action of G((t)) along the
fibers.

In particular, this conjecture implies that the group “Gg, acts on the
category g, -mod, for any x € Oprg(D).

Now we observe that Conjecture 3 implies Conjecture 4. Indeed, by Con-
jecture 3, there is a canonical equivalence of categories (7.14),

Hecke ~
D¢ -mod, ~ gy, -mod,, .

It follows immediately from the definition of the category @Sf“ke -mod,,
(namely, formula (7.13)) that for each isomorphism ¢ € Isom, ,/, ie., an
isomorphism of the LG-torsors Fy and F) underlying the opers y and X/,
there is a canonical equivalence

Hecke ~ TyHecke
D5 -mody ~ D" -mod, .

Therefore we obtain the sought-after equivalence Ey :g,, -mod, — g, -mod,.
Furthermore, it is clear that these equivalences satisfy the conditions of Con-
jecture 4. In particular, they intertwine the actions of G((¢)), which affects the
D-module M underlying an object of @Ef"ke -mod,, but does not affect the
isomorphisms ay . /
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Equivalently, we can express this by saying that the groupoid Isom natu-
rally acts on the category DEkae -mod,¢g. By Conjecture 3, this gives rise to
an action of Isom on g, —modrcg.

In particular, we construct an action of the group (YG)g,, the twist of
LG by the “G-torsor Fy underlying a particular oper y, on the category
Diecke _mod,. Indeed, each element g € (“G)g, acts on the Fo-twist Vi, of
any finite-dimensional representation V' of LG. Given an object (M, (ay))
of DHeke _mod,,, we construct a new object, namely, (M, ((¢ ® Ida) o o).
Thus, we do not change the D-module M, but we change the isomorphisms ay
appearing in the Hecke eigenmodule condition (7.13) by composing them with
the action of g on Vi, . According to Conjecture 3, the category DSkae -mod,,
is equivalent to g, -mod,. Therefore this gives rise to an action of the group
(*G)g, on gx, -mod,. But this action is much more difficult to describe in
terms of g,_-modules.

7.7 Generalization to other Dominant Integral Weights

We have extensively studied above the categories g, -mod, and g, —modf[[t”
associated to regular opers x € OpL(D). However, according to Lemma 2,
the (set-theoretic) fiber of the map o : OpLg(D*) — Locrg(D*) over the
trivial local system o is the disjoint union of the subsets Op%G, A € P*. Here
we discuss briefly the categories g, -mod, and g, —modg[[tn for x € Op’L\G,
where A # 0.

Consider the Weyl module V) with highest weight A,

Vi = U(/g\lic) ® Vix.
U(g[[t]]®C1)

According to [FG6], we have

(7.17) Endg, Vy ~ FunOpi .

Let x € Opi‘G C Oprg(D*). Then x defines a character of the algebra
Endg, V. Let Vy(x) be the quotient of V by the kernel of this character.
The following conjecture of [FG6] is an analogue of Theorem 3:

Conjecture 5. Let y € Op2o C Oprg(D*). Then the category G, —modg[m]
is equivalent to the category of vector spaces: its unique, up to isomorphism,
irreducible object is Vy(x) and any other object is isomorphic to the direct
sum of copies of Vx(x).

Note that this is consistent with Conjecture 2, which tells us that the
categories g, —modg[[t” should be equivalent to each other for all opers which
are gauge equivalent to the trivial local system on D.
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8 Local Langlands Correspondence: Tamely Ramified
Case

In the previous section we have considered categorical analogues of the ir-
reducible unramified representations of a reductive group G(F) over a local
non-archimedian field F'. We recall that these are the representations contain-
ing non-zero vectors fixed by the maximal compact subgroup Ky, C G(F).
The corresponding Langlands parameters are unramified admissible homo-
morphisms from the Weil-Deligne group Wi, to G, i.e., those which factor
through the quotient
W%v — WF — Z,

and whose image in “G is semi-simple. Such homomorphisms are parameter-
ized by semi-simple conjugacy classes in “G.

We have seen that the categorical analogues of unramified representations
of G(F) are the categories g, -mod, (equipped with an action of the loop
group G((t))), where x is a “G-oper on D* whose underlying G-local system
is trivial. These categories can be called unramified in the sense that they
contain non-zero G[[t]]-equivariant objects. The corresponding Langlands pa-
rameter is the trivial “G-local system o on D>, which should be viewed as
an analogue of an unramified homomorphism W}, — L'G. However, the local
system o is realized by many different opers, and this introduces an addi-
tional complication into our picture: at the end of the day we need to show
that the categories g, -mod,, where y is of the above type, are equivalent
to each other. In particular, Conjecture 4, which describes what we expect to
happen when x € OpL(D).

The next natural step is to consider categorical analogues of represen-
tations of G(F') that contain vectors invariant under the Iwahori subgroup
I C G[[t]], the preimage of a fixed Borel subgroup B C G under the evalu-
ation homomorphism GJ[[t]] — G. We begin this section by recalling a clas-
sification of these representations, due to D. Kazhdan and G. Lusztig [KL]
and V. Ginzburg [CG]. We then discuss the categorical analogues of these
representations following [FG2]-[FG5] and the intricate interplay between the
classical and the geometric pictures.

8.1 Tamely Ramified Representations

The Langlands parameters corresponding to irreducible representations of
G(F) with I-invariant vectors are tamely ramified homomorphisms W} —
L@G. Recall from Section 2.1 that Wi = WgxC. A homomorphism W}, — Lag
is called tamely ramified if it factors through the quotient

W;:—>ZI><(C.

According to the relation (2.1), the group Z x C is generated by two elements
F =1 € Z (Frobenius) and M =1 € C (monodromy) satisfying the relation
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(8.1) FMF~' = qM.

Under an admissible tamely ramified homomorphism the generator F' goes
to a semi-simple element v € G and the generator M goes to a unipotent
element N € L'G. According to formula (8.1), they have to satisfy the relation

(8.2) yN~~1 = N¢,

Alternatively, we may write N = exp(u), where u is a nilpotent element of
Lg. Then this relation becomes

yuy~! = qu.
Thus, we have the following bijection between the sets of equivalence
classes
(8.3)
tamely ramified admissible pairs v € “G, semi-simple,

homomorphisms W}, — LG u € Lg, nilpotent, yuy~™! = qu

In both cases equivalence relation amounts to conjugation by an element of
La.

Now to each Langlands parameter of this type we wish to attach an irre-
ducible representation of G(F') which contains non-zero I-invariant vectors. It
turns out that if G = GL,, there is indeed a bijection, proved in [BZ], between
the sets of equivalence classes of the following objects:

(8.4)

tamely ramified admissible — irreducible representations
homomorphisms W} — GL,, (R,7) of GL,(F),R™M) #0

However, such a bijection is no longer true for other reductive groups: two
new phenomena appear, which we discuss presently.

The first one is the appearance of L-packets. One no longer expects to be
able to assign to a particular admissible homomorphism W} — LG a single
irreducible smooth representations of G(F'). Instead, a finite collection of such
representations (more precisely, a collection of equivalence classes of represen-
tations) is assigned, called an L-packet. In order to distinguish representations
in a given L-packet, one needs to introduce an additional parameter. We will
see how this is done in the case at hand shortly. However, and this is the second
subtlety alluded to above, it turns out that not all irreducible representations
of G(F') within the L-packet associated to a given tamely ramified homomor-
phism Wy — L@ contain non-zero I-invariant vectors. Fortunately, there is
a certain property of the extra parameter used to distinguish representations
inside the L-packet that tells us whether the corresponding representation of
G(F) has I-invariant vectors.

In the case of tamely ramified homomorphisms W} — LG this extra pa-
rameter is an irreducible representation p of the finite group C(v,u) of com-
ponents of the simultaneous centralizer of v and u in “G, on which the center
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of LG acts trivially (see [Lul]). In the case of G = GL,, these centralizers
are always connected, and so this parameter never appears. But for other re-
ductive groups G this group of components is often non-trivial. The simplest
example is when G = G5 and wu is a subprincipal nilpotent element of the
Lie algebra ©g.!® In this case for some v satisfying yuy~! = qu the group of
components C(vy,u) is the symmetric group Sz, which has three irreducible
representations (up to equivalence). Each of them corresponds to a particular
member of the L-packet associated with the tamely ramified homomorphism
W}, — LG defined by (v, u). Thus, the L-packet consists of three (equivalence
classes of) irreducible smooth representations of G(F'). However, not all of
them contain non-zero [-invariant vectors.

The representations p of the finite group C'(v, u) which correspond to repre-
sentations of G(F') with I-invariant vectors are distinguished by the following
property. Consider the Springer fiber Sp,. We recall that

(8.5) Sp, = {b' € LG/FB|u € v'}.

The group C(v,u) acts on the homology of the variety Sp. of y-fixed points
of Sp,,. A representation p of C(v,u) corresponds to a representation of G(F)
with non-zero I-invariant vectors if and only if p occurs in the homology of
Spu: He(Spy).

In the case of G2 the Springer fiber Sp,, of the subprincipal element v is
a union of four projective lines connected with each other as in the Dynkin
diagram of D,. For some ~ the set Sp] is the union of a projective line (cor-
responding to the central vertex in the Dynkin diagram of D,) and three
points (each in one of the remaining three projective lines). The correspond-
ing group C(vy,u) = S3 on Sp. acts trivially on the projective line and by
permutation of the three points. Therefore the trivial and the two-dimensional
representations of S5 occur in He(Sp) ), but the sign representation does not.
The irreducible representations of G(F') corresponding to the first two con-
tain non-zero I-invariant vectors, whereas the one corresponding to the sign
representation of S3 does not.

The ultimate form of the local Langlands correspondence for representa-
tions of G(F') with I-invariant vectors is then as follows (here we assume, as
in [KL, CG]), that the group G is split and has connected center):

(8.6)
1

triples (v, u, p), yuy~ ! = qu, — irreducible representations
p € Rep C(v,u) occurs in He(Sp., C) (R,7) of G(F), R™0) £0

Again, this should be understood as a bijection between two sets of equivalence
classes of the objects listed. This bijection is due to [KL] (see also [CG]). It
was conjectured by Deligne and Langlands, with a subsequent modification
(addition of p) made by Lusztig.

15 The term “subprincipal” means that the adjoint orbit of this element has codi-
mension 2 in the nilpotent cone.
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How to set up this bijection? The idea is to replace irreducible representa-
tions of G(F') appearing on the right hand side of (8.6) with irreducible mod-
ules over the corresponding Hecke algebra H(G(F'), I). Recall from Section 6.1
that this is the algebra of compactly supported I bi-invariant functions on
G(F), with respect to convolution. It naturally acts on the space of I-invariant
vectors of any smooth representation of G(F') (see formula (6.2)). Thus, we
obtain a functor from the category of smooth representations of G(F') to the
category of H(G(F),I). According to a theorem of A. Borel [B1], it induces a
bijection between the set of equivalence classes of irreducible representations
of G(F') with non-zero I-invariant vectors and the set of equivalence classes
of irreducible H(G(F), I)-modules.

The algebra H(G(F),I) is known as the affine Hecke algebra and has
the standard description in terms of generators and relations. However, for
our purposes we need another description, due to [KL, CG], which identifies
it with the equivariant K-theory of the Steinberg variety

St =N x ﬂ,

N

where N C g is the nilpotent cone and N is the Springer resolution
N={zeN b c’G/'B|zcb'}.

Thus, a point of St is a triple consisting of a nilpotent element of “g and two
Borel subalgebras containing it. The group “G x C* naturally acts on St,
with G conjugating members of the triple and C* acting by multiplication
on the nilpotent elements,

(8.7) a-(z,6',0") = (a" 2,0, b").
According to a theorem of [KL, CG], there is an isomorphism
(8.8) H(G(F),I) ~ K G*C" (st).

The right hand side is the “G x C*-equivariant K-theory of St. It is an algebra
with respect to a natural operation of convolution (see [CG] for details). It is
also a free module over its center, isomorphic to

K"9%C" (pt) = Rep “G @ Clq,q ']

Under the isomorphism (8.8) the element q goes to the standard parameter
q of the affine Hecke algebra H(G(F'),I) (here we consider H(G(F),I) as a
C[q, q~!]-module).

Now, the algebra K &xC* (St), and hence the algebra H(G(F'),I), has a
natural family of modules which are parameterized precisely by the conjugacy
classes of pairs (v, u) as above. On these modules H(G(F'), I) acts via a central
character corresponding to a point in Spec Rep ‘G %) Cla, q~ '], which is just
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a pair (7, q), where v is a semi-simple conjugacy class in “G and ¢ € C*. In
our situation ¢ is the cardinality of the residue field of F' (hence a power of a
prime), but in what follows we will allow a larger range of possible values of ¢:
all non-zero complex numbers except for the roots of unity. Consider the quo-
tient of H(G(F'),I) by the central character defined by (v, ). This is just the
algebra Khaxer (St), specialized at (v, q). We denote it by Khaxer (5t) (4,q)-

Now for a nilpotent element u € N consider the Springer fiber Sp,,. The
condition that yuy~! = qu means that u, and hence Sp,, is stabilized by the
action of (7y,q) € G x C* (see formula (8.7)). Let A be the smallest algebraic
subgroup of G x C* containing (v, ¢). The algebra KGxcx (St)(4,q) naturally
acts on the equivariant K-theory K“(Sp,) specialized at (v, q),

KA(Spu)(%q):KA(Spu) @ Ciyq)-
Rep A

It is known that K“(Sp,)(y,e is isomorphic to the homology Ha(Spy) of the
~-fixed subset of Sp,, (see [KL, CG]). Thus, we obtain that K“(Sp,,)(y,q) is &
module over H(G(F), I).

Unfortunately, these H(G(F), I)-modules are not irreducible in general,
and one needs to work harder to describe the irreducible modules over
H(G(F),I). For G = GL,, one can show that each of these modules has
a unique irreducible quotient, and this way one recovers the bijection (8.4).
But for a general groups G the finite groups C(v,u) come into play. Namely,
the group C(v,u) acts on K“(Sp,)(y.,q), and this action commutes with the

action of K" GxC” (St)(5,q)- Therefore we have a decomposition

(7.9

KA(Spu)(’Y,q) = @ p®KA(Spu)(’Y,q,p)7
p€lrrep C(v,u)

of K4(Sp,)(y,q) as a representation of C(v,u) x H(G(F),I). One shows (see
[KL, CG]| for details) that each H(G(F),I)-module K*(Sp,)(,.4, has a
unique irreducible quotient, and this way one obtains a parameterization of
irreducible modules by the triples appearing in the left hand side of (8.6).
Therefore we obtain that the same set is in bijection with the right hand
side of (8.6). This is how the tame local Langlands correspondence (8.6), also
known as the Deligne-Langlands conjecture, is proved.

8.2 Categories Admitting (g, ) Harish-Chandra Modules

We now wish to find categorical analogues of the above results in the frame-
work of the categorical Langlands correspondence for loop groups.

As we explained in Section 6.2, in the categorical setting a representation
of G(F) is replaced by a category g, -mod, equipped with an action of G((t)),
and the space of I-invariant vectors is replaced by the subcategory of (g, )
Harish-Chandra modules in g,, -mod,. Hence the analogue of the question
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which representations of G(F') admit non-zero I-invariant vectors becomes
the following question: for what x does the category g, -mod, contain non-
zero (g, ,I) Harish-Chandra modules?

To answer this question, we introduce the space Op?% (D) of opers with
regular singularity. By definition (see [BD1], Sect. 3.8.8), an element of this
space is an £ N[[t]]-conjugacy class of operators of the form

(8.9) V=0 +t"(p1+v(1),

where v(t) € Fb[[t]]. One can show that a natural map Opig(D) —
OpLg(D*) is an embedding.

Following [BD1], we associate to an oper with regular singularity its
residue. For an operator (8.9) the residue is by definition equal to p_; +v(0).
Clearly, under gauge transformations by an element x(t) of L N[[¢]] the residue
gets conjugated by x(0) € N. Therefore its projection onto

L9/~ G = Spec(Fung)" = Spec(Fun )" = §* /W

is well-defined.

Given p € h*, we write w(u) for the projection of p onto h*/W. Finally,
let P be the set of integral (not necessarily dominant) weights of g, viewed as
a subset of h*. The next result follows from [F3, FG2].

Lemma 4. The categoryg,, -mod,, contains a non-zero (g, 1) Harish-Chan-
dra module if and only if

(8.10) xe || OpE&(D)wn).
veEP/W

Thus, the opers x for which the corresponding category g, -mod, contain
non-trivial I-equivariant objects are precisely the points of the subscheme
(8.10) of Oprg(D*). The next question is what are the corresponding LG-
local systems.

Let Loc?cs;’u]rll C Locrg(D*) be the locus of “G-local systems on D>
with regular singularity and unipotent monodromy. Such a local system is
determined, up to an isomorphism, by the conjugacy class of its monodromy
(see, e.g., [BV], Sect. 8). Therefore Loclfg’um is an algebraic stack isomorphic
to N/LG. The following result is proved in a way similar to the proof of
Lemma 2.

Lemma 5. If the local system underlying an oper x € Opro(D*) belongs to

Loclz”g’uni, then x belongs to the subset (8.10) of Oprg(D™).

Indeed, the subscheme (8.10) is precisely the (set-theoretic) preimage of

Loc?cs;’uni C Locrg(D*) under the map a : Oprg(D*) — Locrg(D*).
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This hardly comes as a surprise. Indeed, by analogy with the classical
Langlands correspondence we expect that the categories gy, -mod, contain-
ing non-trivial [-equivariant objects correspond to the Langlands parame-
ters which are the geometric counterparts of tamely ramified homomorphisms
Wi — L'G. The most obvious candidates for those are precisely the ©G-local
systems on D* with regular singularity and unipotent monodromy. For this
reason we will call such local systems tamely ramified.

Let us summarize: suppose that o is a tamely ramified “G-local system
on D*, and let x be a “G-oper that is in the gauge equivalence class of
o. Then x belongs to the subscheme (8.10), and the corresponding cate-
gory g, -mod, contains non-zero I-equivariant objects, by Lemma 4. Let
k. —modi be the corresponding category of I-equivariant (or, equivalently,
(9x.,I) Harish-Chandra) modules. Note that according to Conjecture 2, the
categories gy, -mod,, (resp., g, -modi) should be equivalent to each other for
all x which are gauge equivalent to each other as ©G-local systems.

In the next section, following [FG2], we will give a conjectural description
of the categories g, —modi for x € Opf‘é(D)w(_p) in terms of the category
of coherent sheaves on the Springer fiber corresponding to the residue of x.
This description in particular implies that at least the derived categories of
these categories are equivalent to each other for the opers corresponding to
the same local system. We have a similar conjecture for y € Opgg (D)) for
other v € P, which the reader may easily reconstruct from our discussion of
the case v = —p.

8.3 Conjectural Description of the Categories of (g« ,I)
Harish-Chandra Modules

Let us consider one of the connected components of the subscheme (8.10),
namely, OpPL{%(D)w(, p)- Here it will be convenient to use a different realization
of this space, as the space Oprﬁlg) of nilpotent opers introduced in [FG2].
By definition, an element of this space is an ©N{[t]]-gauge equivalence class

of operators of the form
(8.11) vV =0, +p_1+v(t)+%,

where v(t) € Lb[[t]] and v € In. It is shown in [FG2] that Opﬁig’ o~
Op{%(D)w(_p). In particular, Opgig” is a subspace of Opr(D*).

We have the (secondary) residue map
il L L
Res : Opy 2 — ng,, . =%cpo LXB n,
sending a gauge equivalence class of operators (8.11) to v. By abuse of nota-
tion, we will denote the corresponding map

Opﬁig) —In/lB=N/tG
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also by Res. .

For any x € Opglg) the “G-gauge equivalence class of the corresponding
connection is a tamely ramified “G-local system on D*. Moreover, its mon-
odromy conjugacy class is equal to exp(2mi Res(x)).

We wish to describe the category gy, -modi of (g,,I) Harish-Chandra
modules with the central character y € Opgig) . However, here we face the first
major complication as compared to the unramified case. While in the ramified
case we worked with the abelian category g, —modf[m], this does not seem to
be possible in the tamely ramified case. So from now on we will work with the
appropriate derived category D°(g,. —modX)I . By definition, this is the full
subcategory of the bounded derived category DP(g., -mod,,) whose objects
are complexes with cohomologies in g, —modi.

Roughly speaking, the conjecture of [FG2] is that D?(g,, -mod, ) is equiv-
alent to Db(QCoh(SpReS(X))), where QCoh(Spgeg(y)) is the category of quasi-
coherent sheaves on the Springer fiber of Res(x). However, we need to make
some adjustments to this statement. These adjustments are needed to ar-
rive at a “nice” statement, Conjecture 6 below. We now explain what these
adjustments are the reasons behind them.

The first adjustment is that we need to consider a slightly larger category
of representations than D(g,, -mod,)!. Namely, we wish to include exten-
sions of I-equivariant g,_-modules which are not necessarily I-equivariant, but
only I°-equivariant, where I° = [I,I]. To explain this more precisely, let us
choose a Cartan subgroup H C B C I and the corresponding Lie subalgebra
h C b C LieI. We then have an isomorphism I = H x I°. An I-equivariant
8r.-module is the same as a module on which b acts diagonally with eigenval-
ues given by integral weights and the Lie algebra Lie I° acts locally nilpotently.
However, there may exist extensions between such modules on which the ac-
tion of b is no longer semi-simple. Such modules are called I-monodromic.
More precisely, an I-monodromic g, -module is a module that admits an in-
creasing filtration whose consecutive quotients are [-equivariant. It is natural
to include such modules in our category. However, it is easy to show that an
I-monodromic object of g, -mod, is the same as an I O_equivariant object of

9, -mod,, for any x € Oplzig’ (see [FG2]). Therefore instead of I-monodromic

modules we will use I°-equivariant modules. Denote by D?(§,. -mod,)’" the

the full subcategory of D°(g,. -mod,,) whose objects are complexes with the
cohomologies in g, -modio.

The second adjustment has to do with the non-flatness of the Springer
resolution N'— N. By definition, the Springer fiber Sp,, is the fiber product

N x pt, where pt is the point v € N. This means that the structure sheaf of
N

Sp,, is given by

(8.12) OSPu = Of\[ ® C.
On
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However, because the morphism N — N is not flat, this tensor product func-
tor is not left exact, and there are non-trivial higher derived tensor products
(the Tor’s). Our (conjectural) equivalence is not going to be an exact functor:

it sends a general object of the category g, —modf(0 not to an object of the
category of quasicoherent sheaves, but to a complex of sheaves, or, more pre-
cisely, an object of the corresponding derived category. Hence we are forced to
work with derived categories, and so the higher derived tensor products need
to be taken into account.

To understand better the consequences of this non-exactness, let us con-
sider the following model example. Suppose that we have established an
equivalence between the derived category D®(QCoh(N)) and another derived
category D’(€). In particular, this means that both categories carry an action
of the algebra Fun N (recall that N is an affine algebraic variety). Let us sup-
pose that the action of Fun N on D®(€) comes from its action on the abelian
category C. Thus, C fibers over N, and let €, the fiber category corresponding
to u € N. This is the full subcategory of C whose objects are objects of C
on which the ideal of u in FunN acts by 0.!6 What is the category D?(C,)
equivalent to?

It is tempting to say that it is equivalent to D®(QCoh(Sp,,). However,
this does not follow from the equivalence of D’(QCoh(N)) and D?(C) because
of the tensor product (8.12) having non-trivial higher derived functors. The
correct answer is that D®(@,) is equivalent to the category D?(QCoh(SpP®),
where SpBG is the “DG fiber” of N — N at u. By definition, a quasicoherent
sheaf on SpP¢ is a DG module over the DG algebra

L
(8.13) Ogpre =05 ® C.,
O

where we now take the full derived functor of tensor product. Thus, the cat-
egory D®(QCoh(Sp2®)) may be thought of as the derived category of quasi-
coherent sheaves on the “DG scheme” SpP¢ (see [CK] for a precise definition
of DG scheme).

Finally, the last adjustment is that we should consider the non-reduced
Springer fibers. This means that instead of the Springer resolution N we should
consider the “thickened” Springer resolution

N="=LgxN,
Lg

where g is the so-called Grothendieck alteration,

Lg={zclg b ct*G/FB |z cb'}).
The variety N is non-reduced, and the underlying reduced variety is the
Springer resolution N. For instance, the fiber of N over a regular element

16 The relationship between € and €., is similar to the relationship between @, -mod
and and @, -mod,, where x € Oprg (D).
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in N consists of a single point, but the corresponding fiber of N is the spec-
trum of the Artinian ring hy = Funh/(Fun’h)¥. Here (Fun’h)!” is the
ideal in Fun “h generated by the augmentation ideal of the subalgebra of W-
invariants. Thus, Spec hg is the scheme-theoretic fiber of @ : ' — Lh/W at
0. It turns out that in order to describe the category D°(g,, -mod, )! * we need
to use the “thickened” Springer resolution.

Let us summarize: in order to construct the sought-after equivalence of
categories we take, instead of individual Springer fibers, the whole Springer

resolution, and we further replace it by the “thickened” Springer resolution N
defined above. In this version we will be able to formulate our equivalence in
such a way that we avoid DG schemes.

This means that instead of considering the categories g, -mod, for in-
dividual nilpotent opers x, we should consider the “universal” category
Gr, -modyip, which is the “family version” of all of these categories. By de-
finition, the category g,.-mody, is the full subcategory of g, -mod whose
objects have the property that the action of Z(g) = Fun Oprs(D) on them
factors through the quotient Fun Opr (D) — Fun OpIL‘ig’ . Thus, the category
Gk, -modyilp is similar to the category @, -mod,e; that we have considered
above. While the former fibers over Opilig’ , the latter fibers over Opw (D).
The individual categories g, -mod, are now realized as fibers of these cate-
gories over particular opers x. )

Our naive idea was that for each x € OpIL“le’ the category D (g, -mod,,
is equivalent to QCoh(Spges(y)). We would like to formulate now a “family
version” of such an equivalence. To this end we form the fiber product

)"

It turns out that this fiber product does not suffer from the problem of the
individual Springer fibers, as the following lemma shows:

Lemma 6 ([FG2],Lemma 6.4). The derived tensor product

L
Fun’g ® Funln
Funlg

is concentrated in cohomological dimension 0.

The variety “n may be thought of as the family of (non-reduced) Springer
fibers parameterized by “n C Tg. It is important to note that it is singular,
reducible and non-reduced. For example, if g = sls, it has two components,
one of which is P! (the Springer fiber at 0) and the other is the doubled affine
line (i.e., Spec C[z,y]/(y?)).

We note that the corresponding reduced scheme is

(8.14) I =N xIn.
N
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However, the derived tensor product corresponding to (8.14) is not concen-
trated in cohomological dimension 0, and this is the reason why we prefer to
use In rather than n.
Now we set _
O nllp _ Opnilp % LE/LB

LG Ln/LB

where we use the residue morphism Res : Opnlllo — Ln/EB. Thus, informally

nilp nilp

MOpnllp may be thought as the family over Op;;
is the (non reduced) Springer fiber of Res(x).

The space MOpnllp is the space of Miura opers whose underlying opers
are nilpotent, 1ntr0duced in [FG2].

whose fiber over x € Op,

We also introduce the category g, - -mod’.  which is a full subcategory of

nllp
k. -modyjp, whose objects are I O_equivariant. Let Db(ﬁ,{c —modnilp)I ’ be the
corresponding derived category.

Now we can formulate the Main Conjecture of [FG2]:

Conjecture 6. There is an equivalence of categories
(8.15) D" (G, -modyip)! =~ DY(QCoh(MOp}F))

which is compatible with the action of the algebra Fun OpIL]ig) on both cate-
gories.

Note that the action of Fun Opmllp on the first category comes from the
action of the center Z(g), and on the second category it comes from the fact
that MOpnllp is a scheme over Op™iP,

Another important remark is that the equivalence (8.15) does not preserve

the t-structures on the two categories. In other words, (8 15) is expected in
general to map objects of the abelian category g, -mod?

Db(QCoh(MOpmlp)), and vice versa.

There are snnllar conjectures for the categories corresponding to the spaces
Opmlp’ of nilpotent opers with dominant integral weights A\ € P*.

In the next section we will discuss the connection between Conjecture 6
and the classical tamely ramified Langlands correspondence. We then present
some evidence for this conjecture.

nilp 10 complexes in

8.4 Connection between the Classical and the Geometric Settings

Let us discuss the connection between the equivalence (8.15) and the real-
ization of representations of affine Hecke algebras in terms of K-theory of
the Springer fibers. As we have explained, we would like to view the cate-
gory D®(g,.-mod )I for y € OpnlllD as, roughly, a categorification of the
space R™M) of I-invariant vectors in an irreducible representation (R, ) of
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G(F). Therefore, we expect that the Grothendieck group of the category
Db(g,.. —modX)I0 is somehow related to the space R™(/).

Let us try to specialize the statement of Conjecture 6 to a particular oper

X =(F,V,Fep) € OprP.

DG .
Let Spres(y) be the DG fiber of MOpglg’ over x. By definition (see Section 8.3),
the residue Res(x) of x is a vector in the twist of “n by the © B-torsor Frpo

—~—DG
It follows that Spgeg(y) is the DG fiber over Res(x) of the i p g-twist of the
Grothendieck alteration.
If we trivialize Frp o, then u = Res(x) becomes an element of In. By

—~DG
definition, the (non-reduced) DG Springer fiber Sp,, is the DG fiber of the
Grothendieck alteration “g — g at u. In other words, the corresponding
structure sheaf is the DG algebra

L
O~pec =07 ® C
Sp, g O v
g

(compare with formula (8.13)).

To see what these DG fibers look like, let «w = 0. Then the naive Springer
fiber is just the flag variety “G /B (it is reduced in this case), and Og;, 1
the structure sheaf of G/ B. But the sheaf ng)DG is a sheaf of DG algebras,

0
which is quasi-isomorphic to the complex of differential forms on *G /% B, with

the zero differential. In other words, g?)ODG may be viewed as a “Z-graded man-
ifold” such that the corresponding supermanifold, obtained by replacing the
Z-grading by the corresponding Z/2Z-grading, is IIT(*G /L B), the tangent
bundle to “G/* B with the parity of the fibers changed from even to odd.

IO

We expect that the category gy, -mod;, is flat over OprL‘ig) . Therefore,

specializing Conjecture 6 to a particular oper x € Opﬁig? , we obtain as a

corollary an equivalence of categories

—~ —~DG
(8.16) D" (§y., -mod,)"" =~ D*(QCOL(Sppey(y)))-

This bodes well with Conjecture 2 saying that the categories g, -mod,, and
8s.-mod,, (and hence D(g,. —modxl)Io and D°(g,. —modx2)10) should be
equivalent if the underlying local systems of the opers x; and x» are isomor-
phic. For nilpotent opers x; and x» this is so if and only if their monodromies
are conjugate to each other. Since their monodromies are obtained by expo-
nentiating their residues, this is equivalent to saying that the residues, Res(x1)
and Res(x2), are conjugate with respect to the JFr g o-twist of L@. But in this
case the DG Springer fibers corresponding to X1 and yo are also isomorphic,
and so D(g., —moXm)I0 and D®(g,, -mod,,)’ are equivalent to each other,
by (8.16).
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—~DG
The Grothendieck group of the category D’(QCoh(Sp, )), where u is
any nilpotent element, is the same as the Grothendieck group of QCoh(Sp,,).
In other words, the Grothendieck group does not “know” about the DG or

the non-reduced structure of é?)f G. Hence it is nothing but the algebraic
K-theory K(Sp,). As we explained at the end of Section 8.1, equivariant
variants of this algebraic K-theory realize the “standard modules” over the
affine Hecke algebra H(G(F), I). Moreover, the spaces of I-invariant vectors
R™() as above, which are naturally modules over the affine Hecke algebra, may
be realized as subquotients of K (Sp,). This indicates that the equivalences
(8.16) and (8.15) are compatible with the classical results.

However, at first glance there are some important differences between the
classical and the categorical pictures, which we now discuss in more detail.

In the construction of H(G(F'), I)-modules outlined in Section 8.1 we had
to pick a semi-simple element v of “G such that yuy~! = qu, where ¢ is the
number of elements in the residue field of F'. Then we consider the specialized
A-equivariant K-theory K A(Spu)(.yyq) where A is the the smallest algebraic
subgroup of G x C* containing (7, q). This gives K(Sp,,) the structure of
an H(G(F),I)-module. But this module carries a residual symmetry with
respect to the group C(v,u) of components of the centralizer of v and u in
L@, which commutes with the action of H(G(F),I). Hence we consider the
H(G(F), I)-module

KA(Spu)(%qm) = HomC('y7u) (pa K(Spu))a

corresponding to an irreducible representation p of C(vy,u). Finally, each of
these components has a unique irreducible quotient, and this is an irreducible
representation of H(G(F), I) which is realized on the space R™), where (R, )
is an irreducible representation of G(F') corresponding to (7, u, p) under the
bijection (8.6). How is this intricate structure reflected in the categorical set-
ting?

Our category Db(QCoh(gﬁSG)), where u = Res(x), is a particular cate-
gorification of the (non-equivariant) K-theory K(Sp,,). Note that in the clas-
sical local Langlands correspondence (8.6) the element w of the triple (v, u, p)
is interpreted as the logarithm of the monodromy of the corresponding rep-
resentation of the Weil-Deligne group Wp. This is in agreement with the
interpretation of Res() as the logarithm of the monodromy of the *G-local
system on D* corresponding to x, which plays the role of the local Langlands
parameter for the category g, -mod,, (up to the inessential factor 27i).

But what about the other parameters, v and p? And why does our category
correspond to the non-equivariant K-theory of the Springer fiber, and not the
equivariant K-theory, as in the classical setting?

The element v corresponding to the Frobenius in W}, does not seem to
have an analogue in the geometric setting. We have already seen this above in
the unramified case: while in the classical setting unramified local Langlands
parameters are the semi-simple conjugacy classes v in “G, in the geometric
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setting we have only one unramified local Langlands parameter, namely, the
trivial local system.

To understand better what’s going on here, we revisit the unramified case.
Recall that the spherical Hecke algebra H(G(F'), Ky) is isomorphic to the rep-
resentation ring Rep “G. The one-dimensional space of Ky-invariants in an ir-
reducible unramified representation (R, 7) of G(F') realizes a one-dimensional
representation of H(G(F), Ky), i.e., a homomorphism Rep G — C. The un-
ramified Langlands parameter v of (R, x), which is a semi-simple conjugacy
class in G, is the point in Spec(Rep “G) corresponding to this homomor-
phism. What is a categorical analogue of this homomorphism? The categori-
fication of Rep “G is the category Rep “G. The product structure on Rep “G
is reflected in the structure of tensor category on Rep G. On the other hand,
the categorification of the algebra C is the category Vect of vector spaces.
Therefore a categorical analogue of a homomorphism Rep “G — C is a func-
tor Rep G — Vect respecting the tensor structures on both categories. Such
functors are called the fiber functors. The fiber functors form a category of
their own, which is equivalent to the category of “G-torsors. Thus, any two
fiber functors are isomorphic, but not canonically. In particular, the group of
automorphisms of each fiber functor is isomorphic to *G. (Incidentally, this
is how LG is reconstructed from a fiber functor in the Tannakian formalism.)
Thus, we see that while in the categorical world we do not have analogues of
semi-simple conjugacy classes v (the points of Spec(Rep “G)), their role is in
some sense played by the group of automorphisms of a fiber functor.

This is reflected in the fact that while in the categorical setting we have a
unique unramified Langlands parameter, namely, the trivial ©G-local system
oo on D> this local system has a non-trivial group of automorphisms, namely,
LG. We therefore expect that the group “G should act by automorphisms
of the Langlands category C,, corresponding to oo, and this action should
commute with the action of the loop group G((t)) on Cy,. It is this action
of “G that is meant to compensate for the lack of unramified Langlands
parameters, as compared to the classical setting.

We have argued in Section 7 that the category g, -mod,, where x =
(F,V,Frp) € OpLg(D), is a candidate for the Langlands category €,,. There-
fore we expect that the group “G (more precisely, its twist “Gg) acts on the
category gy, -mod,. In Section 7.6 we showed how to obtain this action using
the conjectural equivalence between g,;, -mod, and the category DEkae -mod,,
of Hecke eigenmodules on the affine Grassmannian Gr (see Conjecture 3). The
category DEkae -mod,, was defined in Section 7.5 as a “de-equivariantization”
of the category D, -mod of twisted D-modules on Gr with respect to the
monoidal action of the category Rep “G.

Now comes a crucial observation which will be useful for understanding
the way things work in the tamely ramified case: the category Rep “G may
be interpreted as the category of “G-equivariant quasicoherent sheaves on the
variety pt = Spec C. In other words, Rep G may be interpreted as the cate-
gory of quasicoherent sheaves on the stack pt /“G. The existence of monoidal
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action of the category Rep “G on D,,. -mod should be viewed as the statement
that the category D, -mod “lives” over the stack pt /LG. The statement of
Conjecture 3 may then be interpreted as saying that

9, -mody, ~ D, -mod X pt.
pt /LG

In other words, if € is the conjectural Langlands category fibering over the
stack Locrg(D>) of all LG-local systems on D>, then

D, -mod ~ C X pt /LG,
Locr, ,(DX)

whereas
9r. -mod, ~ C X pt,
Locr o (DX)
where the morphism pt — Locrg(D*) corresponds to the oper x.

Thus, in the categorical setting there are two different ways to think about
the trivial local system o¢: as a point (defined by a particular G-bundle on
D with connection, such as a regular oper x), or as a stack pt /“G. The
base change of the Langlands category in the first case gives us a category
with an action of *G, such as the categories g, -mod, or Dl,ijke -mod. The
base change in the second case gives us a category with a monoidal ac-
tion of Rep LG, such as the category D, -mod. We can go back and forth
between the two by applying the procedures of equivariantization and de-
equivariantization with respect to “G and Rep LG, respectively.

Now we return to the tamely ramified case. The semi-simple element ~ ap-
pearing in the triple (v, u, p) plays the same role as the unramified Langlands
parameter v. However, now it must satisfy the identity yuy~' = qu. Recall
that the center Z of H(G(F),I) is isomorphic to Rep “G, and so Spec Z is
the set of all semi-simple elements in “G. For a fixed nilpotent element « the
equation yuy~! = qu cuts out a locus C, in Spec Z corresponding to those
central characters which may occur on irreducible H(G(F'), I)-modules corre-
sponding to u. In the categorical setting (where we set ¢ = 1) the analogue of
C, is the centralizer Z(u) of u in G, which is precisely the group Aut(c) of
automorphisms of a tame local system o on D* with monodromy exp(2miu).
On general grounds we expect that the group Aut(c) acts on the Langlands
category C,, just as we expect the group “G of automorphisms of the trivial
local system o to act on the category C,,. It is this action that replaces the
parameter <y in the geometric setting.

In the classical setting we also have one more parameter, p. Let us recall
that p is a representation of the group C(, u) of connected components of the
centralizer Z(y,u) of v and w. But the group Z(v,u) is a subgroup of Z(u),
which becomes the group Aut(o) in the geometric setting. Therefore one can
argue that the parameter p is also absorbed into the action of Aut(c) on the
category C,.
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If we have an action of Aut(o) on the category C,, or on one of its many
incarnations g, -mod,,x € Opﬁig’, it means that these categories must be
“de-equivariantized”, just like the categories g, -mod,, x € Oprg(D), in the
unramified case. This is the reason why in the equivalence (8.16) (and in
Conjecture 6) we have the non-equivariant categories of quasicoherent sheaves
(whose Grothendieck groups correspond to the non-equivariant K-theory of
the Springer fibers).

However, there is also an equivariant version of these categories. Consider
the substack of tamely ramified local systems in Locrg (D) introduced in
Section 8.2. Since a tamely ramified local system is completely determined by
the logarithm of its (unipotent) monodromy, this substack is isomorphic to
N/LG. This substack plays the role of the substack pt /*G corresponding to
the trivial local system. Let us set

Came =C  x  N/EG.
Locr o (D>)

Then, according to our general conjecture expressed by the Cartesian diagram
(5.3), we expect to have

nilp
Lg -

(817) amc 'mOdnilp =~ Crame X Op

N/LG
Let Db((?tame)lo be the I%-equivariant derived category corresponding to
Ctame. Combining (8.17) with Conjecture 6, and noting that

MOpig = Opig x N/“G,

we obtain the following conjecture (see [FG2]):

(8.18) DP(Crame)”” =~ DP(QCoh(N/FG)).

The category on the right hand side may be interpreted as the derived cat-
egory of Lg—equivariant quasicoherent sheaves on the “thickened” Springer

resolution N.

Together, the conjectural equivalences (8.16) and (8.18) should be thought
of as the categorical versions of the realizations of modules over the affine
Hecke algebra in the K-theory of the Springer fibers.

One corollary of the equivalence (8.16) is the following: the classes of ir-
reducible objects of the category @i, —modiU in the Grothendieck group of
Ok, —modi“ give rise to a basis in the algebraic K-theory K(Sp,), where
u = Res(x). Presumably, this basis is closely related to the bases in (equivari-
ant version of) this K-theory constructed by G. Lusztig in [Lu2] (from the
perspective of unrestricted g-modules in positive characteristic).
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8.5 Evidence for the Conjecture

We now describe some evidence for Conjecture 6. It consists of the following
four groups of results:

e Interpretation of the Wakimoto modules as g, -modules corresponding to
the skyscraper sheaves on MOpIL“g;
Connection to R. Bezrukavnikov’s theory;

Proof of the equivalence of certain quotient categories of D®(g,., -modyilp

and D(QCoh(MOp; ), [FG2.

e Proof of the restriction of the equivalence (8.15) to regular opers, [FG4].

)

We start with the discussion of Wakimoto modules.

Suppose that we have proved the equivalence of categories (8.15). Then
il
Dret
derived category D(g,, -modyp)! °. The simplest quasicoherent sheaves on

each quasicoherent sheaf on MOp should correspond to an object of the

MOprLﬁgD are the skyscraper sheaves supported at the C-points of MOpEig’ .

It follows from the definition that a C-point of 1\/IOpIL]HGf’7 which is the same as a
C-point of the reduced scheme MOp%, is a pair (x, b’), where x = (F,V,Frp)
is a nilpotent “G-oper in Oplznap and b’ is a point of the Springer fiber cor-
responding to Res(), which is the variety of Borel subalgebras in Zgs, that
contain Res(x). Thus, if Conjecture 6 is true, we should have a family of ob-
jects of the category DP(§,, -modpy,)’ parameterized by these data. What
are these objects?

The answer is that these are the Wakimoto modules. These modules
were originally introduced by M. Wakimoto [Wak] for g = sl and by B.
Feigin and myself in general in [FF1, FF2] (see also [F3]). We recall from
[F3] that Wakimoto modules of critical level are parameterized by the space
Conn(£27°)px of connections on the L H-bundle 277 over D*. This is the
push-forward of the C*-bundle corresponding to the canonical line bundle
2 with respect to the homomorphism p : C* — FH. Let us denote the
Wakimoto module corresponding to V € Conn(2=°)px by W=. According
to [F3], Theorem 12.6, the center Z(g) acts on Wy via the central character
w(V), where

w: Conn(27°)px — Oprg(D™)

is the Miura transformation. '

It is not difficult to show that if x € Opﬁlg), then W is an object of the cat-
egory g, —modi for any V € = (x). Now, according to the results presented
in [FG2], the points of the fiber u~!(x) of the Miura transformation over x
are in bijection with the points of the Springer fiber Spgg(,) corresponding

to the nilpotent element Res(x). Therefore to each point of Spgeg(,) we may

assign a Wakimoto module, which is an object of the category gy, —modf((J (and
hence of the corresponding derived category). In other words, Wakimoto mod-

ules are objects of the category g, —modfﬁlp parameterized by the C-points



116 E. Frenkel

of MOprL‘ig) . It is natural to assume that they correspond to the skyscraper

sheaves on MOpEﬂG? under the equivalence (8.15). This was in fact one of our
motivations for this conjecture.

Incidentally, this gives us a glimpse into how the group of automorphisms
of the L'G-local system underlying the oper x acts on the category g, -mod,,.
This group is Z(Res(x)), the centralizer of the residue Res(x), and it acts
on the Springer fiber Spg,(,). Therefore g € Z(Res(x)) sends the skyscraper
sheaf supported at a point p € Spreg(y) to the skyscraper sheaf supported at
g - p. Thus, we expect that g sends the Wakimoto module corresponding to p
to the Wakimoto module corresponding to g - p.

If the Wakimoto modules indeed correspond to the skyscraper sheaves,
then the equivalence (8.15) may be thought of as a kind of “spectral decom-
position” of the category D(g,, —modnﬂp)lo, with the basic objects being the
Wakimoto modules W, where V runs over the locus in Conn(£27") px which
is isomorphic, pointwise, to MOpEi(l;p (see [FG5H] for more details).

Now we discuss the second piece of evidence, connection with Bezrukanikov’s
theory.

To motivate it, let us recall that in Section 7.4 we discussed the action of
the categorical spherical algebra H(G((t)), G[[t]) on the category @, -mod,,
where y is a regular oper. The affine Hecke algebra H(G(F'),I) also has a
categorical analogue. Consider the affine flag variety Fl = G((t))/I. The
categorical Hecke algebra is the category H(G((t)), I) which is the full subcat-
egory of the derived category of D-modules on F1 = G((t))/I whose objects
are complexes with I-equivariant cohomologies. This category naturally acts
on the derived category D®(g.., —modX)I . What does this action correspond to
on the other side of the equivalence (8.15)7

The answer is given by a theorem of R. Bezrukavnikov [Bez2], which may
be viewed as a categorification of the isomorphism (8.8):

(8.19) DY(DE! -mod)’” ~ D¥(QCoh(St)),

where 1)51 -mod is the category of twisted D-modules on F1 and St is the
“thickened” Steinberg variety

St=NxN=N x L.
N Lyg
Morally, we expect that the two categories in (8.19) act on the two cate-
gories in (8.15) in a compatible way. However, strictly speaking, the left hand
side of (8.19) acts like this:
Db(/g\ﬁc ‘mOdnilp)I - Db(ﬁnc ‘mOdnilp)IO

)

and the right hand side of (8.19) acts like this:

D"(QCoh(MOp} ) — D'(QCoh(MOPEY)).
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So one needs a more precise statement, which may be found in [Bez2], Sect.
4.2. Alternatively, one can consider the corresponding actions of the affine
braid group of “G, as in [Bez2].

A special case of this compatibility concerns some special objects of the
category D°(DE! -mod)’, the central sheaves introduced in [Gal]. They corre-
spond to the central elements of the affine Hecke algebra H(G(F'),I). These
central elements act as scalars on irreducible H(G(F'), I)-modules, as well as
on the standard modules KA(Spu)(%q,p) discussed above. We have argued

that the categories g, —modio7 X € OprLlig? , are categorical versions of these
representations. Therefore it is natural to expect that its objects are “eigen-
modules” with respect to the action of the central sheaves from Db(Dgl -mod)!
(in the sense of Section 7.4). This has indeed been proved in [FG3].

This discussion indicates an intimate connection between the category
D(g,., -modyip) and the category of twisted D-modules on the affine flag
variety, which is similar to the connection between @, -mod,e; and the
category of twisted D-modules on the affine Grassmannian which we dis-
cussed in Section 7.5. A more precise conjecture relating D(g,., -modpilp)
and D°(DE! -mod) was formulated in [FG2] (see the Introduction and Sect.
6), where we refer the reader for more details. This conjecture may be viewed
as an analogue of Conjecture 3 for nilpotent opers. As explained in [FG2], this
conjecture is supported by the results of [AB, ABG] (see also [Bezl, Bez2]).
Together, these results and conjectures provide additional evidence for the
equivalence (8.15).

9 Ramified Global Langlands Correspondence

We now discuss the implications of the local Langlands correspondence for
the global geometric Langlands correspondence.

We begin by briefly discussing the setting of the classical global Langlands
correspondence.

9.1 The Classical Setting

Let X be a smooth projective curve over F,. Denote by F the field F,(X)
of rational functions on X. For any closed point x of X we denote by F,
the completion of F' at x and by O, its ring of integers. If we choose a local
coordinate t, at z (i.e., a rational function on X which vanishes at = to order
one), then we obtain isomorphisms F, ~ F, ((¢;)) and O, ~ F,_[[t;]], where
IFy, is the residue field of x; in general, it is a finite extension of IF; containing
¢z = ¢°"9* elements.

Thus, we now have a local field attached to each point of X. The ring
A = A of adeéles of F is by definition the restricted product of the fields F},,

where x runs over the set | X| of all closed points of X. The word “restricted”
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means that we consider only the collections (f;)ze|x| of elements of F, in
which f, € O, for all but finitely many x. The ring A contains the field F',
which is embedded into A diagonally, by taking the expansions of rational
functions on X at all points.

While in the local Langlands correspondence we considered irreducible
smooth representations of the group GL, over a local field, in the global
Langlands correspondence we consider irreducible automorphic represen-
tations of the group GL, (A). The word “automorphic” means, roughly, that
the representation may be realized in a reasonable space of functions on the
quotient GL, (F)\GL(A) (on which the group GL,,(A) acts from the right).

On the other side of the correspondence we consider n-dimensional repre-
sentations of the Galois group Gal(F/F), or, more precisely, the Weil group
W, which is a subgroup of Gal(F/F) defined in the same way as in the local
case.

Roughly speaking, the global Langlands correspondence is a bijection be-
tween the set of equivalence classes of n-dimensional representations of Wg
and the set of equivalence classes of irreducible automorphic representations
of GL,(A):

n-dimensional representations irreducible automorphic
of Wr representations of GL,(A)

The precise statement is more subtle. For example, we should consider the
so-called f-adic representations of the Weil group (while in the local case we
considered the admissible complex representations of the Weil-Deligne group;
the reason is that in the local case those are equivalent to the /-adic represen-
tations). Moreover, under this correspondence important invariants attached
to the objects appearing on both sides (Frobenius eigenvalues on the Galois
side and the Hecke eigenvalues on the other side) are supposed to match. We
refer the reader to Part I of the review [F6] for more details.

The global Langlands correspondence has been proved for GLg in the 80’s
by V. Drinfeld [Drl]-[Dr4] and more recently by L. Lafforgue [Laf] for GL,
with an arbitrary n.

Like in the local story, we may also wish to replace the group GL, by
an arbitrary reductive algebraic group defined over F. Then on one side of
the global Langlands correspondence we have homomorphisms o : Wr — LG
satisfying some properties (or perhaps, some more refined data, as in [A]).
We expect to be able to attach to each o an automorphic representa-
tion 7 of GL, (Ar).!” The word “automorphic” again means, roughly, that
the representation may be realized in a reasonable space of functions on the

17 In this section, by abuse of notation, we will use the same symbol to denote a
representation of the group and the vector space underlying this representation.
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quotient GL,(F)\GL,(A) (on which the group GL, (A) acts from the right).
We will not try to make this precise. In general, we expect not one but sev-
eral automorphic representations assigned to o which are the global analogues
of the L-packets discussed above (see [A]). Another complication is that the
multiplicity of a given irreducible automorphic representation in the space of
functions on GL, (F)\GL, (A) may be greater than one. We will mostly ignore
all of these issues here, as our main interest is in the geometric theory (note
also that these issues do not arise if G = GL,,).

An irreducible automorphic representation may always be decomposed as
the restricted tensor product ®/z cx Tz, Where each 7, is an irreducible repre-
sentation of G(F;). Moreover, for all by finitely many x € X the factor 7, is
an unramified representation of G(F;): it contains a non-zero vector invari-
ant under the maximal compact subgroup Ky, = G(O,) (see Section 7.1).
Let us choose such a vector v; € 7, (it is unique up to a scalar). The word
“restricted” means that we consider the span of vectors of the form ®g¢c xus,
where u, € m, and u, = v, for all but finitely many =z € X.

An important property of the global Langlands correspondence is its com-
patibility with the local one. We can embed the Weil group Wg, of each of
the local fields F, into the global Weil group Wg. Such an embedding is not
unique, but it is well-defined up to conjugation in Wg. Therefore an equiva-
lence class of 0 : Wr — LG gives rise to a well-defined equivalence class of
0. : Wp, — LG. We will impose the condition on ¢ that for all but finitely
many z € X the homomorphism o, is unramified (see Section 7.1).

By the local Langlands correspondence, to o, one can attach an equiva-
lence class of irreducible smooth representations 7, of G(F;).'® Moreover, an
unramified o, will correspond to an unramified irreducible representation .
The compatibility between local and global correspondences is the statement
that the automorphic representation of G(A) corresponding to o should be
isomorphic to the restricted tensor product ®;:e x Tz. Schematically, this is
represented as follows:

global ’
R,
reX

local
Op ¢ Tg.

In this section we discuss an analogue of this local-to-global principle in
the geometric setting and the implications of our local results and conjectures
for the global geometric Langlands correspondence. We focus in particular on
the unramified and tamely ramified Langlands parameters. At the end of the
section we also discuss connections with irregular singularities.

18 Here we are considering f-adic homomorphisms from the Weil group W, to ©'G,
and therefore we do not need to pass from the Weil group to the Weil-Deligne

group.
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9.2 The Unramified Case, Revisited

An important special case is when o : Wr — LG is everywhere unramified.
Then for each z € X the corresponding homomorphism o, : Wr, — LG is
unramified, and hence corresponds, as explained in Section 7.1, to a semi-
simple conjugacy class v, in “G, which is the image of the Frobenius element
under o,. This conjugacy class in turn gives rise to an unramified irreducible
representation 7, of G(F,) with a unique, up to a scalar, vector v, such that
G(0,)v,; = v,. The spherical Hecke algebra H(G(F,),G(0,)) ~ Rep LG acts
on this vector according to formula (7.5):

(9.1) Hy ;% vy = Tr(7y,, V)vg, [V] € Rep“G.

The tensor product v = Qg exv, of this vectors is a G(O)-invariant vec-
tor in m = ®;€ x Tz, Which, according to the global Langlands conjecture
is automorphic. This means that 7 is realized in the space of functions
on G(F)\G(Ap). In this realization vector v corresponds to a right G(0O)-
invariant function on G(F)\G(AF), or equivalently, a function on the double
quotient

(9-2) G(FN\G(Ar)/G(0).

Thus, an unramified global Langlands parameter o gives rise to a function

n (9.2). This function is the automorphic function corresponding to o.
We denote it by fr. Since it corresponds to a vector in an irreducible repre-
sentation 7 of G(Ar), the entire representation m may be reconstructed from
this function. Thus, we do not lose any information by passing from 7 to f.

Since v € 7 is an eigenvector of the Hecke operators, according to formula
(9.1), we obtain that the function f, is a Hecke eigenfunction on the double
quotient (9.2). In fact, the local Hecke algebras H(G(Fy), G(O,)) act naturally
(from the right) on the space of functions on (9.2), and f; is an eigenfunction
of this action. It satisfies the same property (9.1).

To summarize, the unramified global Langlands correspondence in the clas-
sical setting may be viewed as a correspondence between unramified homomor-
phisms o : Wr — LG and Hecke eigenfunctions on (9.2) (some irreducibility
condition on ¢ needs to be added to make this more precise, but we will ignore
this).

What should be the geometric analogue of this correspondence, when X
is a complex algebraic curve?

As explained in Section 3.1, the geometric analogue of an unramified ho-
momorphism Wr — LG is a homomorphism 71(X) — LG, or equivalently,
since X is assumed to be compact, a holomorphic “*G-bundle on X with a
holomorphic connection (it automatically gives rise to a flat connection). The
global geometric Langlands correspondence should therefore associate to a
flat holomorphic “G-bundle on X a geometric object on a geometric version
of the double quotient (9.2). As we argued in Section 3.3, this should be a
D-module on an algebraic variety whose set of points is (9.2).
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Now, it is known that (9.2) is in bijection with the set of isomorphism
classes of G-bundles on X. This key result is due to A. Weil (see, e.g., [F6],
Sect. 3.2). This suggests that (9.2) is the set of points of the moduli space
of G-bundles on X. Unfortunately, in general this is not an algebraic variety,
but an algebraic stack, which locally looks like the quotient of an algebraic
variety by an action of an algebraic group. We denote it by Bung. The theory
of D-modules has been developed in the setting of algebraic stacks like Bung
in [BD1], and so we can use it for our purposes. Thus, we would like to attach
to a flat holomorphic “G-bundle F on X a D-module Autgy on Bung. This
D-module should satisfy an analogue of the Hecke eigenfunction condition,
which makes it into a Hecke eigensheaf with eigenvalue E. This notion is
spelled out in [F6], Sect. 6.1 (following [BD1]), where we refer the reader for
details.

This brings us to the following question:

How to relate this global correspondence to the local geometric Langlands cor-
respondence discussed above?

As we have already seen in Section 1, the key element in answering this
question is a localization functor A,_, from (g., ., G(O.))-modules to
(twisted) D-modules on Bung. In Section 1 we have applied this functor
to the object Vo(x,) of the Harish-Chandra category g, —modgz(o“”), where
Xz € Oprg (D). For an oper x, which extends from D, to the entire curve X
we have obtained this way the Hecke eigensheaf associated to the underlying
L@G-local system (see Theorem 1).

For a L'G-local system E = (F, V) on X which does not admit the structure
of a regular oper on X, the above construction may be modified as follows (see
the discussion in [F6], Sect. 9.6, based on an unpublished work of Beilinson
and Drinfeld). In this case one can choose an * B-reduction . 5 satisfying the
oper condition away from a finite set of points y,...,y, and such that the
restriction x,, of the corresponding oper x on X\{y1,...,y,} to D, belongs

to Opi‘G(Dy) C Oprg(Dy) for some A\; € P*. Then one can construct a
Hecke eigensheaf corresponding to E by applying a multi-point version of the
localization functor to the tensor product of the quotients Vy,(x,,) of the
Weyl modules Vy, ,, (see [F6], Sect. 9.6).

The main lesson of this construction is that in the geometric setting the
localization functor gives us a powerful tool for converting local Langlands cat-
egories, such as gy, » —modffo’”), into global categories of Hecke eigensheaves.

The category @, —modgﬂfof’) turns out to be very simple: it has a unique
irreducible object, Vo(x,). That is why it is sufficient to consider its image
under the localization functor, which turns out to be the desired Hecke eigen-
sheaf Autg, . For general opers, with ramification, the corresponding local
categories are more complicated, as we have seen above, and so are the corre-
sponding categories of Hecke eigensheaves. We will consider examples of these

categories in the next section.
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9.3 Classical Langlands Correspondence with Ramification

Let us first consider ramified global Langlands correspondence in the clas-
sical setting. Suppose that we are given a homomorphism o : Wr — LG
that is ramified at finitely many points y,...,y, of X. Then we expect
that to such o corresponds an automorphic representation ®I€ Tz (more
precisely, an L-packet of representations). Here 7, is still unrarmﬁed for all
z € X\{y1,...,yn}, but is ramified at y1,...,yn, i.e., the space of G(O,,)-
invariant vectors in my, is zero. In particular, consider the special case when
each oy, : Wp, — "G is tamely ramified (see Section 8.1 for the definition).
Then, accordlng to the results presented in Section 8.1, the corresponding
L-packet of representations of G(F,,) contains an irreducible representation
Ty, With non-zero invariant vectors with respect to the Iwahori subgroup I,,.
Let us choose such a representation for each point y;.
Consider the subspace

(9.3) (X)wy ® () ve € Q) 'ma

TFY; zeX

where v, is a G(0O)-vector in 7,, x # y;,i = 1,...,n. Then, because ®16X
is realized in the space of functions on G(F )\G(AF), we obtain that the
subspace (9.3) is realized in the space of functions on the double quotient

(9.4) GIENG(AR)/ ] 1 x T] GO,
=1 Ay

The spherical Hecke algebras H(G(F,),G(0.)),z # y;, act on the sub-
space (9.3), and all elements of (9.3) are eigenfunctions of these algebras
(they satisfy formula (9.1)). At the points y; we have, instead of the action
of the commutative spherical Hecke algebra H(G(Fy,), G(Oy,), the action of
the non-commutative affine Hecke algebra H(G(F),),I,,). Thus, we obtain a
subspace of the space of functions on (9.4), which consists of Hecke eigenfunc-
tions with respect to the spherical Hecke algebras H(G(F,),G(0y)),x # y;,
and which realize a module over @', H(G(Fy,),1,,) (which is irreducible,
since each my, is irreducible).

This subspace encapsulates the automorphic representation ®;€ x Tz the
way the automorphic function f, encapsulates an unramified automorphic
representation. The difference is that in the unramified case the function f
spans the one-dimensional space of invariants of the maximal compact sub-
group G(0) in ®;E « Tz, whereas in the tamely ramified case the subspace
(9.3) is in general a multi-dimensional vector space.

9.4 Geometric Langlands Correspondence in the Tamely Ramified
Case

Now let us see how this plays out in the geometric setting. As we discussed
before, the analogue of a homomorphism o : Wr — LG tamely ramified at the
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points y1,...,y, € X is now a local system E = (F, V), where F a “G-bundle
F on X with a connection V that has regular singularities at y1,...,y, and
unipotent monodromies around these points. We will call such a local system
tamely ramified at y1,...,y,. What should the global geometric Langlands
correspondence attach to such a local system? It is clear that we need to find
a geometric object replacing the finite-dimensional vector space (9.3) realized
in the space of functions on (9.4).

Just as (9.2) is the set of points of the moduli stack Bung of G-bundles,
the double quotient (9.4) is the set of points of the moduli stack Bung,,,) of
G-bundles on X with the parabolic structures at y;,i = 1,...,n. By defini-
tion, a parabolic structure of a G-bundle P at y € X is a reduction of the fiber
P, of P at y to a Borel subgroup B C G. Therefore, as before, we obtain that
a proper replacement for (9.3) is a category of D-modules on Bung,(y,). As in
the unramified case, we have the notion of a Hecke eigensheaf on Bung (y,).
But because the Hecke functors are now defined using the Hecke correspon-
dences over X\{y1,...,yn} (and not over X as before), an “eigenvalue” of the
Hecke operators is now an £G-local system on X\{yi,...,y,} (rather than
on X). Thus, we obtain that the global geometric Langlands correspondence
now should assign to a “’G-local system E on X, tamely ramified at the points
Y1, -, Yn, a category Autp of D-modules on Bung (,,) with the eigenvalue

Elx\{y1,...n}> s
— Autg.

We now construct these categories using a generalization of the localization
functor we used in the unramified case (see [FG2]). For the sake of notational
simplicity, let us assume that our “G-local system E = (F,V) is tamely
ramified at a single point y € X. Suppose that this local system on X\y
admits the structure of a “G-oper x = (F,V,Jr) whose restriction Xy to
the punctured disc DyX belongs to the subspace Oplzig’ (Dy) of nilpotent La-
opers.

For a simple Lie group G, the moduli stack Bung , has a realization anal-
ogous to (1.1):

Bung,y =~ Gout\G(Xy) /1.

Let Dy,,1, be the sheaf of twisted differential operators on Bung , acting on
the line bundle corresponding to the critical level (it is the pull-back of the
square root of the canonical line bundle K/2 on Bung under the natural
projection Bung,, — Bung). Applying the formalism of the previous section,
we obtain a localization functor

-~ 1,
Af'imlu o T -mod™” — ‘D”‘C’Iy -mod.

However, in order to make contact with the results obtained above we also
~ 0 . .
consider the larger category g,y -mod?v of Ig—equlvamant modules, where
0 _
Iy = Iy, I).
Set
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Bun’ay = Gout\G(JCy)/Ig
and let D, 10 be the sheaf of twisted differential operators on Bun’G’y act-

ing on the pull-back of the line bundle K'/? on Bung. Let DHC’[L) -mod be
the category of D,, Ig—modules. Applying the general formalism, we obtain a
localization functor

~ 70
(9.5) Ay19 t By -mod’v — Dy jo-mod.

We note that a version of the categorical affine Hecke algebra H(G(X,), 1)
discussed in Section 8.5 naturally acts on the derived categories of the above
categories, and the functors A, and A, | 1o intertwine these actions. Equiv-
alently, one can say that this functor intertwines the corresponding actions of
the affine braid group associated to LG on the two categories (as in [Bez2]).

We now restrict the functors A, ;, and A, o to the subcategories
10 :
Grey —mod v and Gg. .y mod ', respectively. By using the same argument as

in [BD1], Wye obtain the followmg analogue of Theorem 1.

Y

Theorem 5. Fiz x, € Opmlp( D,) and let M be an object of the category

Orey —modxz (resp. B,y —modx‘y), Then

(1) Ap.,1, (M) =0 (resp., Ay, 1o(M) = 0) unless xy is the restriction of
a regular oper x = (F,V,Frpg) on X\y to Dy

(2) In that case A, (M) (resp., A,%Jg (M)) is a Hecke eigensheaf with
the eigenvalue E, = (F,V).

Thus, we obtain that if x, = X|D><, then the image of any object of

Groery - mod v under the functor A, r, belongs to the category Auth g, of Hecke
elgensheaves on Bung,,. Now consider the restriction of the functor A, 19 to

Groey —modxy. As discussed in Section 8.3, the category g, 4 —modxy coincides

with the corresponding category gy, —modf&’m of Iy-monodromic modules.
. . ~ I
Therefore the image of any object of g,_,-mod,’, under the functor A, 190

belongs to the subcategory D" ,-mod of Qm,zg -mod whose objects admit
@ty g
an increasing filtration such that the consecutive quotients are pull-backs of
Dy, 1,-modules from Bung ;. Such ‘D,gmlg—modulcs are called monodromic.
Let Aut%’m be the subcategory of DT ;, -mod whose objects are Hecke
X ety

eigensheaves with eigenvalue F, .
Thus, we obtain the functors

(9.6) A1, : Brery -modil; — Autil“’x, Ay 10 B, y—mod — Aut g y’m

It is tempting to conjecture (see [FG2]) that these functors are equivalences
of categories, at least for generic y. Suppose that this is true. Then we may
identify the global categories .Aut{EyX and .Autii’x’m of Hecke eigensheaves on
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0

. L , ~ I
Bung s, and Bun’G,IS with the local categories g, 4 —modiyy and gy, -mod,’,,

respectively. Therefore we can use our results and conjectures on the local
0

Langlands categories, such as g, —modfg’y, to describe the global categories
of Hecke eigensheaves on the moduli stacks of G-bundles on X with parabolic
structures.

We have the following conjectural description of the derived category of
I)-equivariant modules, D°(gy, —modxy)lg (see formula (8.16)):

~ 0 —~DG
(97) Db(gnc,y _mOde)Iy = Db(QCOh(SpRes(Xy)))'
The corresponding I-equivariant version is
(9-8) Db(/g\m,y ‘mdey)Iy = Db(QCoh(SpgSS(Xy))),

where we replace the non-reduced DG Springer fiber by the reduced one: it is
defined as the DG fiber of the morphism N — g over .

If the functors (9.6) are equivalences, then by combining them with (9.7)
and (9.8), we obtain the following conjectural equivalences of categories:
(9.9

m —~DG
DP(Auty ) ~ D*(QCoh(SpR(y,)): DP(Auty™) ~ D*(QCOh(Spres(y,))):

In other words, the derived category of a global Langlands category (mon-
odromic or not) corresponding to a local system tamely ramified at y € X
is equivalent to the derived category of quasicoherent sheaves on the DG
Springer fiber of its residue at y (non-reduced or reduced).

Again, these equivalences are supposed to intertwine the natural actions
on the above categories of the categorical affine Hecke algebra H(G(X,), I,)
(or, equivalently, the affine braid group associated to *G).

The categories appearing in (9.9) actually make sense for an arbitrary
LG-local system E on X tamely ramified at y. It is therefore tempting to
conjecture that these equivalences still hold in general:

(9.10)

m ~DG
Db (Aut}) ~ D*(QCoh(SpRS ))),  DY(Auty™) = D¥(QCOL(Sppey(s)))-

The corresponding localization functors are constructed as follows: we repre-
sent a general local system E on X with tame ramification at y by an oper y
on the complement of finitely many points 1, ..., ¥, whose restriction to Dyxi
belongs to OpéiG(Dyi) C Oprg(Dy) for some A; € P*. Then, in the same way
as in the unramified case, we construct localization functors from g, —modfg[

0
to .Autgy and from g, —modi‘; to Autfé”m (here, as before, x, = X|D; ), and
this leads us to the conjectural equivalences (9.10).
The equivalences (9.10) also have family versions in which we allow E to
vary. It is analogous to the family version (8.15) of the local equivalences. As
in the local case, in a family version we can avoid using DG schemes.
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The above construction may be generalized to allow local systems tamely
ramified at finitely many points y,...,y,. The corresponding Hecke eigen-
sheaves are then D-modules on the moduli stack of G-bundles on X with
parabolic structures at yi,...,y,. Non-trivial examples of these Hecke eigen-
sheaves arise already in genus zero. These sheaves were constructed explicitly
in [F1] (see also [F4, F5]), and they are closely related to the Gaudin integrable
system.

9.5 Connections with Regular Singularities

So far we have only considered the categories of g,_-modules corresponding
to ZG-opers on X which are regular everywhere except at a point y € X (or
perhaps, at several points) and whose restriction to D; is a nilpotent oper x,

in Op™P(D, ). In other words, Y, is an oper with regular singularity at y with
Prg Xy P g g y aty

residue w( p) (where w : b* — h*/W). However, we can easily generalize
the localization functor to the categories of g, -modules corresponding to L'G-
opers which have regular singularity at y with arbitrary residue.

So suppose we are given an oper x € Op{%(D)w(_,\_p) with regular sin-
gularity and residue w(—A — p), where A € h*. In this case the monodromy of
this oper around y is conjugate to

M = exp(2mi(A + p)) = exp(2mi)).

We then have the category g, —modi0 of I%-equivariant g, -modules with cen-
tral character y. The case of A = 0 is an “extremal” case when the category
P —modi0 is most complicated. On the other “extreme” is the case of generic
opers Y, corresponding to a generic \. In this case one can show that the cat-
egory gy, —modf((J is quite simple: it contains irreducible objects Mlyy(x+)—p(X)

labeled by the Weyl group of g, and each object of g,, —modi0 is a direct sum
of these irreducible modules. Here My, (x4,)—,(x) is the quotient of the Verma
module R
Brc
Muop—p = Indg" o) Cotrtpy—p,  wWEW,

by the central character corresponding to .

For other values of A the structure of g,, —modi0 is somewhere in-between
these two extreme cases.

Recall that we have a localization functor (9.5)

. 0
AN 10 By -mod’ — D,QC,IS -mod.

Ke,

0

from gy, - mod Xy

to a category of D-modules on Bun’G I, twisted by the
pull-back of the line bundle K 1/2 on Bung. We now restrict this functor

to the subcategory g, modx where y, is a LG-oper on D, with regular
singularity at y and residue w(—\ — p).
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Consider first the case when A € h* is generic. Suppose that x, extends to a
regular oper y on X\y. One then shows in the same way as in Theorem 5 that

for any object M of g, , —mod v " the corresponding D, 19 -module ARC,I;’ (M)
is a Hecke eigensheaf with elgenvalue E,, which is the L G local system on X
with regular singularity at y underlying x (if x, cannot be extended to X\y,
then Aﬁmly (M) = 0, as before). Therefore we obtain a functor

0 0

~ I I
. Yy Y
AHC,I;} : Ok, ,y-mody?, — .AutEX,

I . . -
where Aut E“X is the category of Hecke eigensheaves on Bun'G’ I, with eigenvalue
E,.
Since we have assumed that the residue of the oper x, is generic, the

monodromy of E, around y belongs to a regular semi-simple conjugacy class of
0

.. . . ~ I, . .
L@ containing exp(27i)). In this case the category Pr.,y -mody’, is particularly
simple, as we have discussed above. We expect that the functor A, 1o sets
. ~ I I
up an equivalence between g, ,-mody’, and Aut ny
We can formulate this more neatly as follows. For M € G let B, be the
variety of Borel subgroups containing M. Observe that if M is regular semi-

simple, then Bjs is a set of points which is in bijection with W. Therefore
0

our conjecture is that Auté”x is equivalent to the category QCoh(Bys) of
quasicoherent sheaves on B);, where M is a representative of the conjugacy
class of the monodromy of E, .

Consider now an arbitrary “G-local system E on X with regular singu-
larity at y € X whose monodromy around y is regular semi-simple. It is then
tempting to conjecture that, at least if F is generic, this category has the
same structure as in the case when E has the structure of an oper, i.e., it
is equivalent to the category QCoh(B ), where M is a representative of the
conjugacy class of the monodromy of E around y.

On the other hand, if the monodromy around y is unipotent, then B, is
nothing but the Sprlnger fiber Sp,,, where M = exp(2miu). The corresponding

category Aut o was discussed in Section 9.4 (we expect that it coincides with
Aut g Ly, ™). Thus, we see that in both “extreme” cases: unipotent monodromy
and regular seml-sunple monodromy, our conjectures identify the derived cat-
egory of Autt & with the derived category of the category QCoh(Bys) (where

DG
By should be viewed as a DG scheme Spu in the unipotent case). One is
then led to conjecture, most ambitiously, that for any ©G-local system F on X
0

with regular singularity at y € X the derived category of .Autii’ is equivalent
to the derived category of quasicoherent sheaves on a suitable DG version of
the scheme Bj;, where M is a representative of the conjugacy class of the
monodromy of E around y:

Db(Aut;S ) =~ D*(QCoh(BYF)).
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This has an obvious generalization to the case of multiple ramification points,
where on the right hand side we take the Cartesian product of the varieties
BII\D/I? corresponding to the monodromies. Thus, we obtain a conjectural re-
alization of the categories of Hecke eigensheaves, whose eigenvalues are lo-
cal systems with regular singularities, in terms of categories of quasicoherent
sheaves.

It is useful to note that the Hecke eigensheaves on Bung 1, obtained above
via the localization functors may be viewed as pull-backs of twisted D-modules
on Bung,z, (or, more generally, extensions of such pull-backs).

More precisely, for each A € h* we have the sheaf of twisted differential
operators on Bung , acting on a “line bundle” L. If A were an integral weight,
this would be an actual line bundle, which is constructed as follows: note that
the map p : Bung,, — Bung, corresponding to forgetting the parabolic
structure, is a fibration with the fibers isomorphic to the flag manifold G/B.
For each integral weight A we have the G-equivariant line bundle £, = G J>§ Cy

on G/B. The line bundle £ on Bung, 1, 18 defined in such a way that its
restriction to each fiber of the projection p is isomorphic to £5. We then set
Ly=L,® p*(Kl/z), where K1/2 is the square root of the canonical line
bundle on Bung corresponding to the critical level. Now, it is well-known
(see, e.g., [BB]) that even though the line bundle £ does not exist if A is not
an integral weight, the corresponding sheaf Diu I, of L a-twisted differential
operators on Bungz, is still well-defined.

Observe that we have an equivalence between the category @207 I, -mod
and the category of weakly H-equivariant D,; ]g—module on Bun'G’y on which
h acts via the character A : h — C. If F is an object of Dimly -mod, then
the corresponding weakly H-equivariant D, Ig—module on Bun’ay is (),
where 7 : Bun’ay — Bung g, -

Now, it is easy to see that the D, 10" -modules on Bun y obtained by

applying the localization functor A, .19 1O objects of Gy, 4 mod x, are always
weakly H-equivariant. Consider, for example the case when x, is a generic
oper with regular singularity at y. Then its residue is equal to @w(—X — p),
where A is a regular element of h*, and so its monodromy is M = exp(2mil).
0

The corresponding category g, y —modff; has objects My, (x+p)—p(Xy) that we
introduced above. The Cartan subalgebra b of gy, , acts on Myt p)—p(Xy)
semi-simply with the eigenvalues given by the weights of the form w(\ + p) —
p + 1, where p is an integral weight. In other words,

My 40)—p(Xy) @ Cow(rtp)1p

is I,~equivariant. Therefore we find that A, ro(My(x+p)-p(Xy)) is weakly H-
equivariant, and the corresponding action of § is given by w(A 4+ p) — p :
h — C. Thus, Ana,l‘; (My(a4p)—p(Xy)) is the pull-back of a DY (AJFP) ?_module
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on Bung,,. This Dw(/\jp )=?_module is a Hecke eigensheaf with eigenvalue E,
provided that x, = x| Dy where x is a regular oper on X\y.
Thus, for a given generic oper x, we have |W| different Hecke eigensheaves

Aﬁc,lg(Mw(A+p)—p(Xy))> we W,

on Bun’G!y. However, each of them is the pull-back of a twisted D-module
on Bung, corresponding to a particular twist: namely, by a “line bundle”
Zw( Ap)—p- (Since we have assumed that A is generic, all of these twists are
different; note also that if © = w(A+p) — p, then exp(2mip) is in the conjugacy
class of the monodromy exp(2miA).) It is therefore natural to conjecture that
there is a unique Hecke eigensheaf on Bung,, with eigenvalue F, , which is a
twisted D-module with the twisting given by Ew( Ap)—p-

More generally, suppose that E is a local system on X with regular sin-
gularity at y and generic regular semi-simple monodromy. Let us choose a
representative M of the monodromy which belongs to the Cartan subgroup
LH c LG. Choose i € h* ~ L to be such that M = exp(2miu). Note that
there are exactly |W| such choices up to a shift by an integral weight v. Let

Aut%’” be the category of Hecke eigensheaves with eigenvalue F in the cate-
gory of twisted D-modules on Bung,;, with the twisting given by £,. Then

we expect that for generic E the category .Aut v'* has a unique 1rredu01ble

object. Its pull-back to BunG is one of the |W| irreducible objects of .AutE
(Note that tensoring with the line bundle L,,, where v is an integral weight,

we identify the categories .AutEy’” and AutE“’# ifp =p+wv.)
Similarly, one can describe the Hecke eigensheaves on Bung, .y Obtained by

applying A,;, 10 to the categories gy, 4 mod ' for other opers x, in terms of
twisted D-modules on Bung . In the opposfce extreme case, when the residue
of x, is 0 (and so xy is a nilpotent oper), this is explained in Section 9.4. (In
this case one may choose to consider monodromic D-modules; this is not nec-
essary if A is generic, because in this case there are no non-trivial extensions.)

Finally, it is natural to ask whether these equivalences for individual local
systems may be combined into a family version encompassing all of them.
The global geometric Langlands correspondence in the unramified case may be
viewed as a kind of non-abelian Fourier-Mukai transform relating the (derived)
category of D-modules on Bung and the (derived) category of quasicoherent
sheaves on Locr(X), the stack of “G-local systems on the curve X. Under
this correspondence, the skyscraper sheaf supported at a “G-local system E
is supposed to go to the Hecke eigensheaf Autgy on Bung. Thus, one may
think of Locrg(X) as a parameter space of a “spectral decomposition” of the
derived category of D-modules on Bung (see, e.g., [F6], Sect. 6.2, for more
details).

The above results and conjectures suggest that one may also view the
geometric Langlands correspondence in the tamely ramified case in a similar
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way. Now the role of Locr(X) should be played by the stack Loczg ,(X)
of parabolic “G-local systems with regular singularity at y € X (or, more
generally, multiple points) and unipotent monodromy. This stack classifies
triples (F,V,J.p,), where J is a LG-bundle on X, V is a connection on F
with regular singularity at y and unipotent monodromy, and Fr , is a Lp-
reduction of the fiber F, of J at y, which is preserved by V. This stack is
now a candidate for a parameter space of a “spectral decomposition” of the
derived category of D-modules on the moduli stack Bung 4 of G-bundles with
parabolic structure at y.!?

9.6 Irregular Connections

We now generalize the above results to the case of connections with irregular
singularities. Let F be a “G-bundle on X with connection V that is regular
everywhere except for a point y € X, where it has a pole of order greater than
1. As before, we assume first that (F,V) admits the structure of a “G-oper
on X\y, which we denote by x. Let x, be the the restriction of x to Dy. A
typical example of such an oper is a “G-oper with pole of order < n on the
disc Dy, which is, by definition (see [BD1], Sect. 3.8.8), an = N/[[t]]-conjugacy
class of operators of the form

(9.11) V=04~

o ot v(®),  v(t) € Tolf].

We denote the space of such opers by Opgg(Dy).

One can show that for y, € Opfg(Dy) the category §i, y —modfy is non-
trivial if K is the congruence subgroup K,, , C G(0,) with m > n. (We recall
that for m > 0 we have K, , = exp(g®(m,)™), where m, is the maximal ideal
of 0,.) Let us take the category gx. —modi{;“y. Then our general formalism
gives us a localization functor

- Kn,y
AWC;Kn,y ° gﬁc;y -mOde - DWC;Kn,y _m0d7

where D i,  -mod is the category of critically twisted?? D-modules on

BunG,y,n =~ Gout\G(:Ky)/Kn:y'

This is the moduli stack of G-bundles on X with a level n structure at ye X
(which is a trivialization of the restriction of the G-bundle to the nth infini-
tesimal neighborhood of y).

19 One may also try to extend this “spectral decomposition” to the case of all con-
nections with regular singularities, but here the situation is more subtle, as can
already be seen in the abelian case.

20 this refers to the twisting by the line bundle on Bung,y,» obtained by pull-back
of the line bundle K'/? on Bung, as before
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In the same way as above, one shows that the D-modules obtained by
applying A, K, , to objects of Gs, —modfy”*” are Hecke eigensheaves with
the eigenvalue Ey|x\,, where E, is the L@G-local system underlying the oper

x- Let Autg:’y be the category of these eigensheaves. Thus, we really obtain
a functor
Brow —modXKy"'y — Autg:’y.

By analogy with the case of regular connections, we expect that this functor
is an equivalence of categories.
As before, this functor may be generalized to an arbitrary flat bundle

E = (3,V), where V has singularity at y, by representing it as an oper
with mild ramification at additional points y1,...,%m on X. Let x, be the
restriction of this oper to D . Then it belongs to Opfg (D,) for some n, and
we obtain a functor

-~ Ky K,y

Ore,y —mode — Auty™",

which we expect to be an equivalence of categories for generic E. This also
has an obvious multi-point generalization.

This way we obtain a conjectural description of the categories of Hecke
eigensheaves corresponding to (generic) connections on X with arbitrary sin-
gularities at finitely many points in terms of categories of Harish-Chandra
modules of critical level over g. However, in the case of regular singularities,
we also have an alternative description of these categories: in terms of (de-
rived) categories of quasicoherent sheaves on the varieties BPC. It would be
desirable to obtain such a description for irregular connections as well.

Finally, we remark that the above construction has a kind of limiting
version where we take the infinite level structure at y, i.e., a trivialization of
the restriction of a G-bundle to the disc D,. Let Bung y - be the moduli
stack of G-bundles on X with an infinite level structure at y. Then

Bung oo =~ Gout \G(Ky).
We now have a localization functor
Grey -mod,, — Autg,

where E and x, are as above, and Auty is the category of Hecke eigen-
sheaves on Bung,,.. with eigenvalue E|x\,. Thus, instead of the cate-
gOry G,y —modfy"’y of Harish-Chandra modules we now have the category
Orx.,y -mod,, of all (smooth) gy, ,-modules with fixed central character (cor-
responding to x).

According to our general local conjecture, this is precisely the local Lang-
lands category associated to the restriction of the local system E to DyX
(equipped with an action of the loop group G(X,)). It is natural to assume
that for generic F this functor establishes an equivalence between this category
and the category Auty of Hecke eigensheaves on Bung , o (also equipped
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with an action of the loop group G(X,)). This may be thought of as the ul-
timate form of the local-to—global compatibility in the geometric Langlands
Program:

E —  Auty

| I

Bl p; —— G, -mody, .

Let us summarize: by using representation theory of affine Kac-Moody
algebras at the critical level we have constructed the local Langlands cate-
gories corresponding to the local Langlands parameters: “G-local systems on
the punctured disc. We then applied the technique of localization functors
to produce from these local categories, the global categories of Hecke eigen-
sheaves on the moduli stacks of G-bundles on a curve X with parabolic (or
level) structures. These global categories correspond to the global Langlands
parameters: “G-local systems on X with ramification. We have used our re-
sults and conjectures on the structure of the local categories to investigate
these global categories. We hope that in this way representation theory of
affine Kac-Moody algebras may one day fulfill the dream of uncovering the
mysteries of the geometric Langlands correspondence.
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