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Introduction

The Langlands Program, conceived as a bridge between Number Theory and
Automorphic Representations [L], has recently expanded into such areas as
Geometry and Quantum Field Theory and exposed a myriad of unexpected
connections and dualities between seemingly unrelated disciplines. There is
something deeply mysterious in the ways the Langlands dualities manifest
themselves and this is what makes their study so captivating.

In this review we will focus on the geometric Langlands correspondence for
complex algebraic curves, which is a particular brand of the general theory.
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Its origins and the connections with the classical Langlands correspondence
are discussed in detail elsewhere (see, in particular, the reviews [F2, F6]),
and we will not try to repeat this here. The general framework is the fol-
lowing: let X be a smooth projective curve over C and G be a simple Lie
group over C. Denote by LG the Langlands dual group of G (we recall this
notion in Section 2.3). Suppose that we are given a principal LG-bundle F on
X equipped with a flat connection. This is equivalent to F being a holomor-
phic principal LG-bundle equipped with a holomorphic connection ∇ (which
is automatically flat as the complex dimension of X is equal to one). The pair
(F,∇) may also be thought of as a LG-local system on X, or as a homomor-
phism π1(X) → LG (corresponding to a base point in X and a trivialization
of the fiber of F at this point).

The global Langlands correspondence is supposed to assign to E = (F,∇)
an object AutE , called Hecke eigensheaf with eigenvalue E, on the moduli
stack BunG of holomorphic G-bundles on X:

holomorphic LG-bundles
with connection on X

−→ Hecke eigensheaves on BunG

E �→ AutE

(see, e.g., [F6], Sect. 6.1, for the definition of Hecke eigensheaves). It is ex-
pected that there is a unique irreducible Hecke eigensheaf AutE (up to iso-
morphism) if E is sufficiently generic.

The Hecke eigensheaves AutE have been constructed, and the Langlands
correspondence proved, in [FGV, Ga2] for G = GLn and an arbitrary irre-
ducible GLn-local system, and in [BD1] for an arbitrary simple Lie group G
and those LG-local systems which admit the structure of a LG-oper (which is
recalled below).

Recently, A. Kapustin and E. Witten [KW] have related the geometric
Langlands correspondence to the S-duality of supersymmetric four-dimen-
sional Yang-Mills theories, bringing into the realm of the Langlands corre-
spondence new ideas and insights from quantum physics.

So far, we have considered the unramified LG-local systems. In other
words, the corresponding flat connection has no poles. But what should hap-
pen if we allow the connection to be singular at finitely many points of X?

This ramified geometric Langlands correspondence is the subject of
this paper. Here are the most important adjustments that one needs to make
in order to formulate this correspondence:

• The moduli stack BunG of G-bundles has to be replaced by the moduli
stack of G-bundles together with the level structures at the ramification
points. We call them the enhanced moduli stacks. Recall that a level struc-
ture of order N is a trivialization of the bundle on the Nth infinitesimal
neighborhood of the point. The order of the level structure should be at
least the order of the pole of the connection at this point.
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• At the points at which the connection has regular singularity (pole of order
1) one can take instead of the level structure, a parabolic structure, i.e., a
reduction of the fiber of the bundle to a Borel subgroup of G.

• The Langlands correspondence will assign to a flat LG-bundle E = (F,∇)
with ramification at the points y1, . . . , yn a category AutE of Hecke
eigensheaves on the corresponding enhanced moduli stack with eigen-
value E|X\{y1,...,yn}, which is a subcategory of the category of (twisted)
D-modules on this moduli stack.

If E is unramified, then we may consider the category AutE on the moduli
stack BunG itself. We then expect that for generic E this category is equivalent
to the category of vector spaces: its unique (up to isomorphism) irreducible
object is AutE discussed above, and all other objects are direct sums of copies
of AutE . Because this category is expected to have such a simple structure, it
makes sense to say that the unramified geometric Langlands correspondence
assigns to an unramified LG-local system on X a single Hecke eigensheaf,
rather than a category. This is not possible for general ramified local systems.

The questions that we are facing now are

(1) How to construct the categories of Hecke eigensheaves for ramified local
systems?

(2) How to describe them in terms of the Langlands dual group LG?

In this article I will review an approach to these questions which has been
developed by D. Gaitsgory and myself in [FG2].

The idea goes back to the construction of A. Beilinson and V. Drinfeld
[BD1] of the unramified geometric Langlands correspondence, which may be
interpreted in terms of a localization functor. Functors of this type were in-
troduced by A. Beilinson and J. Bernstein [BB] in representation theory of
simple Lie algebras. In our situation this functor sends representations of the
affine Kac-Moody algebra ĝ to twisted D-modules on BunG, or its enhanced
versions. As explained in [F6], these D-modules may be viewed as sheaves
of conformal blocks (or coinvariants) naturally arising in the framework of
Conformal Field Theory.

The affine Kac-Moody algebra ĝ is the universal one-dimensional central
extension of the loop algebra g((t)). The representation categories of ĝ have a
parameter κ, called the level, which determines the scalar by which a generator
of the one-dimensional center of ĝ acts on representations. We consider a
particular value κc of this parameter, called the critical level. The completed
enveloping algebra of an affine Kac-Moody algebra acquires an unusually large
center at the critical level and this makes the structure of the corresponding
category ĝκc

-mod very rich and interesting. B. Feigin and I have shown [FF3,
F3] that this center is canonically isomorphic to the algebra of functions on
the space of LG-opers on D×. Opers are bundles on D× with flat connection
and an additional datum (as defined by Drinfeld-Sokolov [DS] and Beilinson-
Drinfeld [BD1]; we recall the definition below). Remarkably, their structure
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group turns out to be not G, but the Langlands dual group LG, in agreement
with the general Langlands philosophy.

This result means that the category ĝκc
-mod of (smooth) ĝ-modules of

critical level “lives” over the space OpLG(D×) of LG-opers on the punctured
disc D×. For each χ ∈ OpLG(D×) we have a “fiber” category ĝκc

-modχ

whose objects are ĝ-modules on which the center acts via the central character
corresponding to χ. Applying the localization functors to these categories,
and their K-equivariant subcategories ĝκc

-modK
χ for various subgroups K ⊂

G[[t]], we obtain categories of Hecke eigensheaves on the moduli spaces of
G-bundles on X with level (or parabolic) structures.

Thus, the localization functor gives us a powerful tool for converting local
categories of representations of ĝ into global categories of Hecke eigensheaves.
This is a new phenomenon which does not have any obvious analogues in the
classical Langlands correspondence.

The simplest special case of this construction gives us the Beilinson-
Drinfeld Hecke eigensheaves AutE on BunG corresponding to unramified LG-
local systems admitting the oper structure. Motivated by this, we wish to
apply the localization functors to more general categories ĝκc

-modK
χ of ĝ-

modules of critical level, corresponding to opers on X with singularities, or
ramifications.

These categories ĝκc
-modχ are assigned to LG-opers χ on the punctured

disc D×. It is important to realize that the formal loop group G((t)) naturally
acts on each of these categories via its adjoint action on ĝκc

(because the
center is invariant under the adjoint action of G((t))). Thus, we assign to each
oper χ a categorical representation of G((t)) on ĝκc

-modχ.
This is analogous to the classical local Langlands correspondence. Let

F be a local non-archimedian field, such as the field Fq((t)) or the field of p-adic
numbers. Let W ′

F be the Weil-Deligne group of F , which is a version of the
Galois group of F (we recall the definition in Section 2.1). The local Lang-
lands correspondence relates the equivalence classes of irreducible (smooth)
representations of the group G(F ) (or “L-packets” of such representations)
and the equivalence classes of (admissible) homomorphisms W ′

F → LG. In the
geometric setting we replace these homomorphisms by flat LG-bundles on D×

(or by LG-opers), the group G(F ) by the loop group G((t)) and representations
of G(F ) by categorical representations of G((t)).

This analogy is very suggestive, as it turns out that the structure of the
categories ĝκc

-modχ (and their K-equivariant subcategories ĝκc
-modK

χ ) is
similar to the structure of irreducible representations of G(F ) (and their sub-
spaces of K-invariants). We will see examples of this parallelism in Sects. 7
and 8 below. This means that what we are really doing is developing a local
Langlands correspondence for loop groups.

To summarize, our strategy [FG2] for constructing the global geometric
Langlands correspondence has two parts:
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(1) the local part: describing the structure of the categories of ĝ-modules of
critical level, and

(2) the global part: applying the localization functor to these categories to
obtain the categories of Hecke eigensheaves on enhanced moduli spaces of
G-bundles.

We expect that these localization functors are equivalences of categories
(at least, in the generic situation), and therefore we can infer a lot of informa-
tion about the global categories by studying the local categories ĝκc

-modχ of
ĝ-modules. Thus, the local categories ĝκc

-modχ take the center stage.
In this paper I review the results and conjectures of [FG1]–[FG6] with

the emphasis on unramified and tamely ramified local systems. (I also discuss
the case of irregular singularities at the end.) In particular, our study of the
categories of ĝκc

-modules leads us to the following conjecture. (For related
results, see [AB, ABG, Bez1, Bez2].)

Suppose that E = (F,∇), where F is a LG-bundle and ∇ is a connection on
F with regular singularity at a single point y ∈ X and unipotent monodromy
(this is easy to generalize to multiple points). Let M = exp(2πiu), where
u ∈ LG be a representative of the conjugacy class of the monodromy of
∇ around y. Denote by Spu the Springer fiber of u, the variety of Borel
subalgebras of Lg containing u. The category AutE of Hecke eigensheaves
with eigenvalue E may then be realized as a subcategory of the category of
D-modules on the moduli stack of G-bundles on X with parabolic structure
at the point y. We have the following conjectural description of the derived
category of AutE :

Db(AutE) � Db(QCoh(SpDG
u )),

where QCoh(SpDG
u ) is the category of quasicoherent sheaves on a suitable

“DG enhancement” of SpDG
u . This is a category of differential graded (DG)

modules over a sheaf of DG algebras whose zeroth cohomology is the structure
sheaf of SpDG

u (we discuss this in detail in Section 9).
Thus, we expect that the geometric Langlands correspondence attaches

to a LG-local system on a Riemann surface with regular singularity at a
puncture, a category which is closely related to the variety of Borel subgroups
containing the monodromy around the puncture. We hope that further study
of the categories of ĝ-modules will help us to find a similar description of the
Langlands correspondence for connections with irregular singularities.

The paper is organized as follows. In Sect. 1 we review the Beilinson-
Drinfeld construction in the unramified case, in the framework of localiza-
tion functors from representation categories of affine Kac-Moody algebras to
D-modules on on BunG. This will serve as a prototype for our construction of
more general categories of Hecke eigensheaves, and it motivates us to study
categories of ĝ-modules of critical level. We wish to interpret these categories
in the framework of the local geometric Langlands correspondence for loop
groups. In order to do that, we first recall in Sect. 2 the setup of the classi-
cal Langlands correspondence. Then in Sect. 3 we explain the passage to the
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geometric context. In Sect. 4 we describe the structure of the center at the crit-
ical level and the isomorphism with functions on opers. In Sect. 5 we discuss
the connection between the local Langlands parameters (LG-local systems on
the punctured disc) and opers. We introduce the categorical representations
of loop groups corresponding to opers and the corresponding categories of
Harish-Chandra modules in Sect. 6. We discuss these categories in detail in
the unramified case in Sect. 7, paying particular attention to the analogies be-
tween the classical and the geometric settings. In Sect. 8 we do the same in the
tamely ramified case. We then apply localization functor to these categories
in Sect. 9 to obtain various results and conjectures on the global Langlands
correspondence, both for regular and irregular singularities.

Much of the material of this paper is borrowed from my new book [F7],
where I refer the reader for more details, in particular, for background on
representation theory of affine Kac-Moody algebras of critical level.

Finally, I note that in a forthcoming paper [GW] the geometric Langlands
correspondence with tame ramification is studied from the point of view of
dimensional reduction of four-dimensional supersymmetric Yang-Mills theory.

Acknowledgments. I thank D. Gaitsgory for his collaboration on our
joint works which are reviewed in this article. I am also grateful to
R. Bezrukavnikov, V. Ginzburg, D. Kazhdan and E. Witten for useful dis-
cussions.

I thank the organizers of the CIME Summer School in Venice, especially,
A. D’Agnolo, for the invitation to give lectures on this subject at this enjoyable
conference.

1 The Unramified Global Langlands Correspondence

Our goal in this section is to construct Hecke eigensheaves AutE correspond-
ing to unramified LG-local systems E = (F,∇) on X. By definition, AutE

is a D-module on BunG. We would like to construct AutE by applying a
localization functor to representations of affine Kac-Moody algebra ĝ.

Throughout this paper, unless specified otherwise, we let g be a simple Lie
algebra and G the corresponding connected and simply-connected algebraic
group.

The key observation used in constructing the localization functor is that
for a simple Lie group G the moduli stack BunG of G-bundles on X has a
realization as a double quotient. Namely, let x be a point of X. Denote by
Kx the completion of the field of rational functions on X at x, and by Ox

its ring of integers. If we choose a coordinate t at x, then we may identify
Kx � C((t)),Ox � C[[t]]. But in general there is no preferred coordinate, and
so it is better not to use these identifications. Now let G(Kx) � G((t)) be
the formal loop group corresponding to the punctured disc D×

x around x.
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It has two subgroups: one is G(Ox) � G[[t]] and the other is Gout, the group
of algebraic maps X\x → G. Then, according to [BeLa, DrSi], the algebraic
stack BunG is isomorphic to the double quotient

(1.1) BunG � Gout\G(Kx)/G(Ox).

Intuitively, any G-bundle may be trivialized on the formal disc Dx and on
X\x. The transition function is then an element of G(Kx), which characterizes
the bundle uniquely up to the right action of G(Ox) and the left action of Gout

corresponding to changes of trivializations on Dx and X\x, respectively.
The localization functor that we need is a special case of the following

general construction. Let g be a Lie algebra and K a Lie group (g,K) whose
Lie algebra is contained in g. The pair (g,K) is called a Harish-Chandra pair.
We will assume that K is connected. A g-module M is called K-equivariant
if the action of the Lie subalgebra LieK ⊂ g on M may be exponentiated to
an action of the Lie group K. Let g -modK be the category of K-equivariant
g-modules.

Now suppose that H is another subgroup of G. Let DH\G/K -mod be
the category of D-modules on H\G/K. Then there is a localization functor
[BB, BD1] (see also [F6, FB])

∆ : g -modK → DH\G/K -mod .

Now let ĝ be a one-dimensional central extension of g which becomes trivial
when restricted to the Lie subalgebras Lie K and Lie H. Suppose that this
central extension can be exponentiated to a central extension ̂G of the corre-
sponding Lie group G. Then we obtain a C

×-bundle H\ ̂G/K over H\G/K.
Let L be the corresponding line bundle and DL the sheaf of differential oper-
ators acting on L. Then we have a functor

∆L : ĝ -modK → DL -mod .

In our case we take the formal loop group G(Kx), and the subgroups
K = G(Ox) and H = Gout of G(Kx). We also consider the so-called critical
central extension of G(Kx). Let us first discuss the corresponding central
extension of the Lie algebra g ⊗ Kx. Choose a coordinate t at x and identify
Kx � C((t)). Then g ⊗ Kx is identified with g((t)). Let κ be an invariant
bilinear form on g. The affine Kac-Moody algebra ĝκ is defined as the
central extension

0 → C1 → ĝκ → g((t)) → 0.

As a vector space, it is equal to the direct sum g((t))⊕C1, and the commutation
relations read

(1.2) [A ⊗ f(t), B ⊗ g(t)] = [A,B] ⊗ f(t)g(t) − (κ(A,B)Res fdg)1,

and 1 is a central element, which commutes with everything else. For a simple
Lie algebra g all invariant inner products are proportional to each other.
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Therefore the Lie algebras ĝκ are isomorphic to each other for non-zero inner
products κ.

Note that the restriction of the second term in (1.2) to the Lie subalgebra
g⊗tNC[[t]], where N ∈ Z+, is equal to zero, and so it remains a Lie subalgebra
of ĝκ. A ĝκ-module is called smooth if every vector in it is annihilated by
this Lie subalgebra for sufficiently large N . We define the category ĝκ -mod
whose objects are smooth ĝκ-modules on which the central element 1 acts
as the identity. The morphisms are homomorphisms of representations of ĝκ.
Throughout this paper, unless specified otherwise, by a “ĝκ-module” will al-
ways mean a module on which the central element 1 acts as the identity.1 We
will refer to κ as the level.

Now observe that formula (1.2) is independent of the choice of coordinate t
at x ∈ X and therefore defines a central extension of g⊗Kx, which we denote
by ĝκ,x. One can show that this central extension may be exponentiated to a
central extension of the group G(Kx) if κ satisfies a certain integrality condi-
tion, namely, κ = kκ0, where k ∈ Z and κ0 is the inner product normalized
by the condition that the square of the length of the maximal root is equal to
2. A particular example of the inner product which satisfies this condition is
the critical level κc defined by the formula

(1.3) κc(A,B) = −1
2

Trg ad A ad B.

Thus, κc is equal to minus one half of the Killing form on g.2 When κ = κc

representation theory of ĝκ changes dramatically because the completed
enveloping algebra of ĝκ acquires a large center (see below).

Let ̂Gx be the corresponding critical central extension of G(Kx). It is
known (see [BD1]) that in this case the corresponding line bundle L is the
square root K1/2 of the canonical line bundle on BunG.3 Now we are ready to
apply the localization functor in the situation where our group is G(Kx), with
the two subgroups K = G(Ox) and H = Gout, so that the double quotient
H\G/K is BunG.4 We choose L = K1/2. Then we have a localization functor

∆κc,x : ĝκc,x -modG(Ox) → Dκc
-mod .

We will apply this functor to a particular ĝκc,x-module.
To construct this module, let us first define the vacuum module over ĝκc,x

as the induced module
V0,x = Ind�gκ,x

g⊗Ox⊕C1C,

1 Note that we could have 1 act instead as λ times the identity for λ ∈ C
×; but

the corresponding category would just be equivalent to the category �gλκ -mod.
2 It is also equal to −h∨κ0, where h∨ is the dual Coxeter number of g.
3 Recall that by our assumption G is simply-connected. In this case there is a

unique square root.
4 Since BunG is an algebraic stack, one needs to be careful in applying the local-

ization functor. The appropriate formalism has been developed in [BD1].
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where g ⊗ Ox acts by 0 on C and 1 acts as the identity. According to the
results of [FF3, F3], we have

End
�gκc

V0,x � Fun OpLG(Dx),

where OpLG(Dx) is the space of LG-opers on the formal disc Dx = Spec Ox

around x. We discuss this in detail in Section 4.
Now, given χx ∈ OpLG(Dx), we obtain a maximal ideal I(χx) in the

algebra End
�gκc

V0,x. Let V0(χx) be the ĝκc,x-module which is the quotient of
V0,x by the image of I(χx) (it is non-zero, as explained in Section 7.3). The
module V0,x is clearly G(Ox)-equivariant, and hence so is V0(χx). Therefore
V0(χx) is an object of the category ĝκc,x -modG(Ox).

We now apply the localization functor ∆κc,x to V0(χx). The following
theorem is due to Beilinson and Drinfeld [BD1].

Theorem 1. (1) The Dκc
-module ∆κc,x(V0(χx)) is non-zero if and only if

there exists a global Lg-oper on X, χ ∈ OpLG(X) such that χx ∈ OpLG(Dx)
is the restriction of χ to Dx.

(2) If this holds, then ∆κc,x(V0(χx)) depends only on χ and is independent
of the choice of x in the sense that for any other point y ∈ X, if χy = χ|Dy

,
then ∆κc,x(V0(χx)) � ∆κc,y(V0(χy)).

(3) For any χ = (F,∇,FLB) ∈ OpLG(X) the Dκc
-module ∆κc,x(V0(χx))

is a non-zero Hecke eigensheaf with the eigenvalue Eχ = (F,∇).

Thus, for any χ ∈ OpLG(X), the Dκc
-module ∆κc,x(V0(χx)) is the sought-

after Hecke eigensheaf AutEχ
corresponding to the LG-local system Eχ under

the global geometric Langlands correspondence.5 For an outline of the proof
of this theorem from [BD1], see [F6], Sect. 9.4.

A drawback of this construction is that not all LG-local systems on X ad-
mit the structure of an oper. In fact, under our assumption that G is simply-
connected (and so LG is of adjoint type), the local systems, or flat bundles
(F,∇), on a smooth projective curve X that admit an oper structure corre-
spond to a unique LG-bundle on X described as follows (see [BD1]). Let Ω

1/2
X

be a square root of the canonical line bundle ΩX . There is a unique (up to an
isomorphism) non-trivial extension

0 → Ω
1/2
X → F0 → Ω

−1/2
X → 0.

Let FPGL2 be the PGL2-bundle corresponding to the rank two vector bundle
F0. Note that it does not depend on the choice of Ω

1/2
X . This is the oper

bundle for PGL2. We define the oper bundle FLG for a general simple Lie
group LG of adjoint type as the push-forward of FPGL2 with respect to a
principal embedding PGL2 ↪→ G (see Section 4.3).

5 More precisely, AutEχ is the D-module ∆κc,x(V0(χx)) ⊗ K−1/2, but here and

below we will ignore the twist by K1/2.
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For each flat connection ∇ on the oper bundle FLG there exists a unique
LB-reduction FLB satisfying the oper condition. Therefore OpG(D) is a subset
of LocLG(X), which is the fiber of the forgetful map LocLG(X) → BunLG over
FLG.

Theorem 1 gives us a construction of Hecke eigensheaves for LG-local sys-
tem that belong to the locus of opers. For a general LG-local system outside
this locus, the above construction may be generalized as discussed at the end
of Section 9.2 below.

Thus, Theorem 1, and its generalization to other unramified LG-local sys-
tems, give us an effective tool for constructing Hecke eigensheaves on BunG.
It is natural to ask whether it can be generalized to the ramified case if we
consider more general representations of ĝκc,x. The goal of this paper is to
explain how to do that.

We will see below that the completed universal enveloping algebra of ĝκc,x

contains a large center. It is isomorphic to the algebra FunOpLG(D×
x ) of

functions on the space OpLG(D×
x ) of LG-opers on the punctured disc D×

x .
For χx ∈ OpLG(D×

x ), let ĝκc,x -modχx
be the full subcategory of ĝκc,x -mod

whose objects are ĝκc,x-modules on which the center acts according to the
character corresponding to χx.

The construction of Hecke eigensheaves now breaks into two steps:

(1) we study the Harish-Chandra categories ĝκc,x -modK
χx

for various sub-
groups K ⊂ G(Ox);

(2) we apply the localization functors to these categories.

The simplest case of this construction is precisely the Beilinson-Drinfeld
construction explained above. In this case we take χx to be a point in the
subspace OpLG(Dx) ⊂ OpLG(D×

x ). Then the category ĝκc,x -modG(Ox)
χx

is
equivalent to the category of vector spaces: its unique up to an isomorphism
irreducible object is the above V0(χx), and all other objects are direct sums
of copies of V0(χx) (see [FG1] and Theorem 3 below). Therefore the local-
ization functor ∆κc,x is determined by ∆κc,x(V0(χx)), which is described in
Theorem 1. It turns out to be the desired Hecke eigensheaf AutEχ

. More-
over, we expect that the functor ∆κc,x sets up an equivalence between
ĝκc,x -modG(Ox)

χx
and the category of Hecke eigensheaves on BunG with eigen-

value Eχ.
For general opers χx, with ramification, the (local) categories ĝκc,x -modK

χx

are more complicated, as we will see below, and so are the corresponding
(global) categories of Hecke eigensheaves. In order to understand the structure
of the global categories, we need to study first of local categories of ĝκc,x-
modules. Using the localization functor, we can then understand the structure
of the global categories. We will consider examples of the local categories in
the following sections.

It is natural to view our study of the local categories ĝκc,x -modχx
and

ĝκc,x -modK
χx

as a geometric analogue of the local Langlands correspondence.
We will explain this point of view in the next section.
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2 Classical Local Langlands Correspondence

The local Langlands correspondence relates smooth representations of reduc-
tive algebraic groups over local fields and representations of the Galois group
of this field. In this section we define these objects and explain the main
features of this correspondence. As the material of this section serves moti-
vational purposes, we will only mention those aspects of this story that are
most relevant for us. For a more detailed treatment, we refer the reader to the
informative surveys [Vog, Ku] and references therein.

The local Langlands correspondence may be formulated for any local non-
archimedian field. There are two possibilities: either F is the field Qp of p-adic
numbers or a finite extension of Qp, or F is the field Fq((t)) of formal Laurent
power series with coefficients in Fq, the finite field with q elements (where q
is a power of a prime number). For the sake of definiteness, in what follows
we will restrict ourselves to the second case.

2.1 Langlands Parameters

Consider the group GLn(F ), where F = Fq((t)). A representation of GLn(F )
on a complex vector space V is a homomorphism π : GLn(F ) → EndV such
that π(gh) = π(g)π(h) and π(1) = Id. Define a topology on GLn(F ) by
stipulating that the base of open neighborhoods of 1 ∈ GLn(F ) is formed by
the congruence subgroups

KN = {g ∈ GLn(Fq[[t]]) | g ≡ 1 mod tN}, N ∈ Z+.

For each v ∈ V we obtain a map π(·)v : GLn(F ) → V, g �→ π(g)v. A repre-
sentation (V, π) is called smooth if the map π(·)v is continuous for each v,
where we give V the discrete topology. In other words, V is smooth if for any
vector v ∈ V there exists N ∈ Z+ such that

π(g)v = v, ∀g ∈ KN .

We are interested in describing the equivalence classes of irreducible
smooth representations of GLn(F ). Surprisingly, those turn out to be related
to objects of a different kind: n-dimensional representations of the Galois
group of F .

Recall that the algebraic closure of F is a field obtained by adjoining to
F the roots of all polynomials with coefficients in F . However, in the case
when F = Fq((t)) some of the extensions of F may be non-separable. We
wish to avoid the non-separable extensions, because they do not contribute
to the Galois group. Let F be the maximal separable extension inside a given
algebraic closure of F . It is uniquely defined up to an isomorphism.

Let Gal(F/F ) be the absolute Galois group of F . Its elements are the
automorphisms σ of the field F such that σ(y) = y for all y ∈ F .
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Now set F = Fq((t)). Observe that we have a natural map Gal(F/F ) →
Gal(Fq/Fq) obtained by applying an automorphism of F to Fq ⊂ F . The group
Gal(Fq/Fq) is isomorphic to the profinite completion ̂Z of Z (see, e.g., [F6],
Sect. 1.3). Its subgroup Z ⊂ ̂Z is generated by the geometric Frobenius
element which is inverse to the automorphism x �→ xq of Fq. Let WF be the
preimage of the subgroup Z ⊂ Gal(Fq/Fq). This is the Weil group of F .
Denote by ν be the corresponding homomorphism WF → Z.

Now let W ′
F = WF � C be the semi-direct product of WF and the one-

dimensional complex additive group C, where WF acts on C by the formula

(2.1) σxσ−1 = qν(σ)x, σ ∈ WF , x ∈ C.

This is the Weil-Deligne group of F .
An n-dimensional complex representation of W ′

F is by definition a ho-
momorphism ρ′ : W ′

F → GLn(C) which may be described as a pair (ρ,N),
where ρ is an n-dimensional representation of WF , N ∈ GLn(C), and we have
ρ(σ)Nρ(σ)−1 = qν(σ)ρ(N) for all σ ∈ WF . The group WF is topological, with
respect to the Krull topology (in which the open neighborhoods of the identity
are the normal subgroups of finite index). The representation (ρ,N) is called
admissible if ρ is continuous (equivalently, factors through a finite quotient
of WF ) and semisimple, and N is a unipotent element of GLn(C).

The group W ′
F was introduced by P. Deligne [De2]. The idea is that by

adjoining the unipotent element N to WF one obtains a group whose complex
admissible representations are the same as continuous 
-adic representations
of WF (where 
 �= p is a prime).

2.2 The Local Langlands Correspondence for GLn

Now we are ready to state the local Langlands correspondence for the group
GLn over a local non-archimedian field F . It is a bijection between two differ-
ent sorts of data. One is the set of the equivalence classes of irreducible smooth
representations of GLn(F ). The other is the set of equivalence classes of
n-dimensional admissible representations of W ′

F . We represent it schematically
as follows:

n-dimensional admissible
representations of W ′

F
⇐⇒ irreducible smooth

representations of GLn(F )

This correspondence is supposed to satisfy an overdetermined system of
constraints which we will not recall here (see, e.g., [Ku]).

The local Langlands correspondence for GLn is a theorem. In the case
when F = Fq((t)) it has been proved in [LRS], and when F = Qp or its finite
extension in [HT] and also in [He].
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2.3 Generalization to Other Reductive Groups

Let us replace the group GLn by an arbitrary connected reductive group G
over a local non-archimedian field F . The group G(F ) is also a topological
group, and there is a notion of smooth representation of G(F ) on a complex
vector space. It is natural to ask whether one can relate irreducible smooth
representations of G(F ) to representations of the Weil-Deligne group W ′

F . This
question is addressed in the general local Langlands conjectures. It would take
us too far afield to try to give here a precise formulation of these conjectures.
So we will only indicate some of the objects involved referring the reader to
the articles [Vog, Ku] where these conjectures are described in great detail.

Recall that in the case when G = GLn the irreducible smooth representa-
tions are parametrized by admissible homomorphisms W ′

F → GLn(C). In the
case of a general reductive group G, the representations are conjecturally para-
metrized by admissible homomorphisms from W ′

F to the so-called Langlands
dual group LG, which is defined over C.

In order to explain the notion of the Langlands dual group, consider first
the group G over the closure F of the field F . All maximal tori T of this
group are conjugate to each other and are necessarily split, i.e., we have an
isomorphism T (F ) � (F

×
). For example, in the case of GLn, all maximal

tori are conjugate to the subgroup of diagonal matrices. We associate to T (F )
two lattices: the weight lattice X∗(T ) of homomorphisms T (F ) → F

×
and

the coweight lattice X∗(T ) of homomorphisms F
× → T (F ). They contain

the sets of roots ∆ ⊂ X∗(T ) and coroots ∆∨ ⊂ X∗(T ), respectively. The
quadruple (X∗(T ),X∗(T ),∆,∆∨) is called the root datum for G over F . The
root datum determines G up to an isomorphism defined over F . The choice
of a Borel subgroup B(F ) containing T (F ) is equivalent to a choice of a basis
in ∆, namely, the set of simple roots ∆s, and the corresponding basis ∆∨

s in
∆∨.

Now, given γ ∈ Gal(F/F ), there is g ∈ G(F ) such that g(γ(T (F ))g−1 =
T (F ) and g(γ(B(F ))g−1 = B(F ). Then g gives rise to an automorphism of
the based root data (X∗(T ),X∗(T ),∆s,∆

∨
s ). Thus, we obtain an action of

Gal(F/F ) on the based root data.
Let us now exchange the lattices of weights and coweights and the sets of

simple roots and coroots. Then we obtain the based root data

(X∗(T ),X∗(T ),∆∨
s ,∆s)

of a reductive algebraic group over C which is denoted by LG◦. For instance,
the group GLn is self-dual, the dual of SO2n+1 is Sp2n, the dual of Sp2n is
SO2n+1, and SO2n is self-dual.

The action of Gal(F/F ) on the based root data gives rise to its action on
LG◦. The semi-direct product LG = Gal(F/F )�LG◦ is called the Langlands
dual group of G.
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According to the local Langlands conjecture, the equivalence classes of
irreducible smooth representations of G(F ) are, roughly speaking, parame-
terized by the equivalence classes of admissible homomorphisms W ′

F → LG.
In fact, the conjecture is more subtle: one needs to consider simultaneously
representations of all inner forms of G, and a homomorphism W ′

F → LG cor-
responds in general not to a single irreducible representation of G(F ), but
to a finite set of representations called an L-packet. To distinguish between
them, one needs additional data (see [Vog] and Section 8.1 below for more
details). But in the first approximation one can say that the essence of the
local Langlands correspondence is that

Irreducible smooth representations of G(F ) are parameterized in terms of ad-
missible homomorphisms W ′

F → LG.

3 Geometric Local Langlands Correspondence over C

We now wish to find a generalization of the local Langlands conjectures in
which we replace the field F = Fq((t)) by the field C((t)). We would like to
see how the ideas and patterns of the Langlands correspondence play out in
this new context, with the hope of better understanding the deep underlying
structures behind this correspondence.

So let G be a connected simply-connected algebraic group over C, and
G(F ) the loop group G((t)) = G(C((t))). Thus, we wish to study smooth
representations of the loop group G((t)) and try to relate them to some
“Langlands parameters”, which we expect, by analogy with the case of local
non-archimedian fields described above, to be related to the Galois group of
C((t)) and the Langlands dual group LG.

3.1 Geometric Langlands Parameters

Unfortunately, the Galois group of C((t)) is too small: it is isomorphic to the
pro-finite completion ̂Z of Z. This is not surprising from the point of view of
the analogy between the Galois groups and the fundamental groups (see, e.g.,
[F6], Sect. 3.1). The topological fundamental group of the punctured disc is
Z, and the algebraic fundamental group is its pro-finite completion.

However, we may introduce additional Langlands parameters by using a
more geometric perspective on homomorphisms from the fundamental group
to LG. Those may be viewed as LG-local systems. In general, LG-local systems
on a compact variety Z are the same as flat LG-bundles (F,∇) on Z. If the
variety is not compact (as in the case of D×), then we should impose the
additional condition that the connection has regular singularities (pole of
order at most 1) at infinity. In our case we obtain LG-bundles on D× with
a connection that has regular singularity at the origin. Then the monodromy
of the connection gives rise to a homomorphism from π1(D×) to LG. Now we
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generalize this by allowing connections with arbitrary, that is regular and
irregular, singularities at the origin. Thus, we want to use as the general
Langlands parameters, the equivalence classes of pairs (F,∇), where F is a
LG-bundle on D× and ∇ is an arbitrary connection on F.

Any bundle F on D× may be trivialized. Then ∇ may be represented by
the first-order differential operator

(3.1) ∇ = ∂t + A(t), A(t) ∈ Lg((t)).

where Lg is the Lie algebra of the Langlands dual group LG. Changing the
trivialization of F amounts to a gauge transformation

∇ �→ ∇′ = ∂t + gAg−1 − (∂tg)g−1

with g ∈ LG((t)). Therefore the set of equivalence classes of LG-bundles with
a connection on D× is in bijection with the set of gauge equivalence classes
of operators (3.1). We denote this set by LocLG(D×). Thus, we have

(3.2) LocLG(D×) = {∂t + A(t), A(t) ∈ Lg((t))}/LG((t)).

We declare that the local Langlands parameters in the complex setting
should be the points of LocLG(D×): the equivalence classes of flat LG-bundles
on D× or, more concretely, the gauge equivalence classes (3.2) of first-order
differential operators.

Having settled the issue of the Langlands parameters, we have to decide
what it is that we will be parameterizing. Recall that in the classical setting the
homomorphism W ′

F → LG parameterized irreducible smooth representations
of the group G(F ), F = Fq((t)). We start by translating this notion to the
representation theory of loop groups.

3.2 Representations of the Loop Group

The loop group G((t)) contains the congruence subgroups

(3.3) KN = {g ∈ G[[t]] | g ≡ 1 mod tN}, N ∈ Z+.

It is natural to call a representation of G((t)) on a complex vector space V
smooth if for any vector v ∈ V there exists N ∈ Z+ such that KN · v = v.
This condition may be interpreted as the continuity condition, if we define a
topology on G((t)) by taking as the base of open neighborhoods of the identity
the subgroups KN , N ∈ Z+, as before.

But our group G is now a complex Lie group (not a finite group), and
so G((t)) is an infinite-dimensional Lie group. More precisely, we view G((t))
as an ind-group, i.e., as a group object in the category of ind-schemes. At
first glance, it is natural to consider the algebraic representations of G((t)).
We observe that G((t)) is generated by the “parahoric” algebraic groups Pi
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corresponding to the affine simple roots. For these subgroups the notion of
algebraic representation makes perfect sense. A representation of G((t)) is then
said to be algebraic if its restriction to each of the Pi’s is algebraic.

However, this naive approach leads us to the following discouraging fact:
an irreducible smooth representation of G((t)), which is algebraic, is neces-
sarily trivial (see [BD1], 3.7.11(ii)). Thus, we find that the class of algebraic
representations of loop groups turns out to be too restrictive. We could relax
this condition and consider differentiable representations, i.e., the representa-
tions of G((t)) considered as a Lie group. But it is easy to see that the result
would be the same. Replacing G((t)) by its central extension ̂G would not help
us much either: irreducible integrable representations of ̂G are parameterized
by dominant integral weights, and there are no extensions between them [K2].
These representations are again too sparse to be parameterized by the geo-
metric data considered above. Therefore we should look for other types of
representations.

Going back to the original setup of the local Langlands correspondence,
we recall that there we considered representations of G(Fq((t))) on C-vector
spaces, so we could not possibly use the algebraic structure of G(Fq((t))) as an
ind-group over Fq. Therefore we cannot expect the class of algebraic (or dif-
ferentiable) representations of the complex loop group G((t)) to be meaningful
from the point of view of the Langlands correspondence. We should view the
loop group G((t)) as an abstract topological group, with the topology defined
by means of the congruence subgroups, in other words, consider its smooth
representations as an abstract group.

So we need to search for some geometric objects that encapsulate repre-
sentations of our groups and make sense both over a finite field and over the
complex field.

3.3 From Functions to Sheaves

We start by revisiting smooth representations of the group G(F ), where
F = Fq((t)). We realize such representations more concretely by considering
their matrix coefficients. Let (V, π) be an irreducible smooth representation of
G(F ). We define the contragredient representation V ∨ as the linear span of
all smooth vectors in the dual representation V ∗. This span is stable under the
action of G(F ) and so it admits a smooth representation (V ∨, π∨) of G(F ).
Now let φ be a KN -invariant vector in V ∨. Then we define a linear map

V → C(G(F )/KN ), v �→ fv,

where
fv(g) = 〈π∨(g)φ, v〉.

Here C(G(F )/KN ) denotes the vector space of C-valued locally constant func-
tions on G(F )/KN . The group G(F ) naturally acts on this space by the
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formula (g · f)(h) = f(g−1h), and the above map is a morphism of represen-
tations, which is non-zero, and hence injective, if (V, π) is irreducible.

Thus, we realize our representation in the space of functions on the quo-
tient G(F )/KN . More generally, we may realize representations in spaces of
functions on the quotient G((t))/K with values in a finite-dimensional vector
space, by considering a finite-dimensional subrepresentation of K inside V
rather than the trivial one.

An important observation here is that G(F )/K, where F = Fq((t))) and K
is a compact subgroup of G(F ), is not only a set, but it is a set of points of an
algebraic variety (more precisely, an ind-scheme) defined over the field Fq. For
example, for K0 = G(Fq[[t]]), which is the maximal compact subgroup, the
quotient G(F )/K0 is the set of Fq-points of the ind-scheme called the affine
Grassmannian.

Next, we recall an important idea going back to Grothendieck that func-
tions on the set of Fq-points on an algebraic variety X defined over Fq can
often be viewed as the “shadows” of the so-called 
-adic sheaves on X. We
will not give the definition of these sheaves, referring the reader to [Mi, FK].
The Grothendieck fonctions-faisceaux dictionary (see, e.g., [La]) is formu-
lated as follows. Let F be an 
-adic sheaf and x be an Fq1-point of X, where
q1 = qm. Then one has the Frobenius conjugacy class Frx acting on the stalk
Fx of F at x. Hence we can define a function fq1(F) on the set of Fq1-points of
V , whose value at x is Tr(Frx,Fx). This function takes values in the algebraic
closure Q� of Q�. But there is not much of a difference between Q�-valued
functions and C-valued functions: since they have the same cardinality, Q�

and C may be identified as abstract fields. Besides, in most interesting cases,
the values actually belong to Q, which is inside both Q� and C.

More generally, if K is a complex of 
-adic sheaves, one defines a function
fq1(K) on V (Fq1) by taking the alternating sums of the traces of Frx on the
stalk cohomologies of K at x. The map K → fq1(K) intertwines the natural
operations on sheaves with natural operations on functions (see [La], Sect.
1.2).

Let K0(ShX) be the complexified Grothendieck group of the category of

-adic sheaves on X. Then the above construction gives us a map

K0(ShX) →
∏

m≥1

X(Fqm),

and it is known that this map is injective (see [La]).
Therefore we may hope that the functions on the quotients G(F )/KN

which realize our representations come by this constructions from 
-adic
sheaves, or more generally, from complexes of 
-adic sheaves, on X.

Now, the notion of constructible sheaf (unlike the notion of a function)
has a transparent and meaningful analogue for a complex algebraic variety X,
namely, those sheaves of C-vector spaces whose restrictions to the strata of a
stratification of the variety X are locally constant. The affine Grassmannian
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and more general ind-schemes underlying the quotients G(F )/KN may be
defined both over Fq and C. Thus, it is natural to consider the categories of
such sheaves (or, more precisely, their derived categories) on these ind-schemes
over C as the replacements for the vector spaces of functions on their points
realizing smooth representations of the group G(F ).

We therefore naturally come to the idea, advanced in [FG2], that the
representations of the loop group G((t)) that we need to consider are not
realized on vector spaces, but on categories, such as the derived category
of coherent sheaves on the affine Grassmannian. Of course, such a category
has a Grothendieck group, and the group G((t)) will act on the Grothendieck
group as well, giving us a representation of G((t)) on a vector space. But we
obtain much more structure by looking at the categorical representation. The
objects of the category, as well as the action, will have a geometric meaning,
and thus we will be using the geometry as much as possible.

Let us summarize: to each local Langlands parameter χ ∈ LocLG(D×) we
wish to attach a category Cχ equipped with an action of the loop group G((t)).
But what kind of categories should these Cχ be and what properties do we
expect them to satisfy?

To get closer to answering these questions, we wish to discuss two more
steps that we can make in the above discussion to get to the types of categories
with an action of the loop group that we will consider in this paper.

3.4 A Toy Model

At this point it is instructive to detour slightly and consider a toy model of
our construction. Let G be a split reductive group over Z, and B its Borel
subgroup. A natural representation of G(Fq) is realized in the space of complex
(or Q�-) valued functions on the quotient G(Fq)/B(Fq). It is natural to ask
what is the “correct” analogue of this representation if we replace the field Fq

by the complex field and the group G(Fq) by G(C). This may be viewed as a
simplified version of our quandary, since instead of considering G(Fq((t))) we
now look at G(Fq).

The quotient G(Fq)/B(Fq) is the set of Fq-points of the algebraic variety
defined over Z called the flag variety of G and defined by Fl. Our discussion
in the previous section suggests that we first need to replace the notion of
a function on Fl(Fq) by the notion of an 
-adic sheaf on the variety FlFq

=
Fl⊗

Z

Fq.

Next, we replace the notion of an 
-adic sheaf on Fl considered as an
algebraic variety over Fq, by the notion of a constructible sheaf on FlC =
Fl⊗

Z

C which is an algebraic variety over C. The complex algebraic group GC

naturally acts on FlC and hence on this category. Now we make two more
reformulations of this category.

First of all, for a smooth complex algebraic variety X we have a Riemann-
Hilbert correspondence which is an equivalence between the derived
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category of constructible sheaves on X and the derived category of D-modules
on X that are holonomic and have regular singularities.

Here we consider the sheaf of algebraic differential operators on X and
sheaves of modules over it, which we simply refer to as D-modules. The sim-
plest example of a D-module is the sheaf of sections of a vector bundle on V
equipped with a flat connection. The flat connection enables us to multiply
any section by a function and we can use the flat connection to act on sections
by vector fields. The two actions generate an action of the sheaf of differential
operators on the sections of our bundle. The sheaf of horizontal sections of this
bundle is then a locally constant sheaf of X. We have seen above that there is a
bijection between the set of isomorphism classes of rank n bundles on X with
connection having regular singularities and the set of isomorphism classes of
locally constant sheaves on X of rank n, or equivalently, n-dimensional repre-
sentations of π1(X). This bijection may be elevated to an equivalence of the
corresponding categories, and the general Riemann-Hilbert correspondence
is a generalization of this equivalence of categories that encompasses more
general D-modules.

The Riemann-Hilbert correspondence allows us to associate to any holo-
nomic D-module on X a complex of constructible sheaves on X, and this gives
us a functor between the corresponding derived categories which turns out to
be an equivalence if we restrict ourselves to the holonomic D-modules with
regular singularities (see [B2, GM] for more details).

Thus, over C we may pass from constructible sheaves to D-modules. In
our case, we consider the category of (regular holonomic) D-modules on the
flag variety FlC. This category carries a natural action of GC.

Finally, let us observe that the Lie algebra g of GC acts on the flag va-
riety infinitesimally by vector fields. Therefore, given a D-module F on FlC,
the space of its global sections Γ (FlC,F) has the structure of g-module. We
obtain a functor Γ from the category of D-modules on FlC to the category of
g-modules. A. Beilinson and J. Bernstein have proved that this functor is an
equivalence between the category of all D-modules on FlC (not necessarily reg-
ular holonomic) and the category C0 of g-modules on which the center of the
universal enveloping algebra U(g) acts through the augmentation character.

Thus, we can now answer our question as to what is a meaningful geomet-
ric analogue of the representation of the finite group G(Fq) on the space of
functions on the quotient G(Fq)/B(Fq). The answer is the following: it is an
abelian category equipped with an action of the algebraic group GC. This
category has two incarnations: one is the category of D-modules on the flag
variety FlC, and the other is the category C0 of modules over the Lie algebra g

with the trivial central character. Both categories are equipped with natural
actions of the group GC.

Let us pause for a moment and spell out what exactly we mean when
we say that the group GC acts on the category C0. For simplicity, we will
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describe the action of the corresponding group G(C) of C-points of GC.6 This
means the following: each element g ∈ G gives rise to a functor Fg on C0

such that F1 is the identity functor, and the functor Fg−1 is quasi-inverse to
Fg. Moreover, for any pair g, h ∈ G we have a fixed isomorphism of functors
ig,h : Fgh → Fg ◦ Fh so that for any triple g, h, k ∈ G we have the equality
ih,kig,hk = ig,high,k of isomorphisms Fghk → Fg ◦ Fh ◦ Fk.

The functors Fg are defined as follows. Given a representation (V, π) of g

and an element g ∈ G(C), we define a new representation Fg((V, π)) = (V, πg),
where by definition πg(x) = π(Adg(x)). Suppose that (V, π) is irreducible.
Then it is easy to see that (V, πg) � (V, π) if and only if (V, π) is integrable,
i.e., is obtained from an algebraic representation of G.7 This is equivalent
to this representation being finite-dimensional. But a general representation
(V, π) is infinite-dimensional, and so it will not be isomorphic to (V, πg), at
least for some g ∈ G.

Now we consider morphisms in C0, which are just g-homomorphisms. Given
a g-homomorphism between representations (V, π) and (V ′, π′), i.e., a linear
map T : V → V ′ such that Tπ(x) = π′(x)T for all x ∈ g, we set Fg(T ) = T .
The isomorphisms ig,h are all identical in this case.

3.5 Back to Loop Groups

In our quest for a complex analogue of the local Langlands correspondence we
need to decide what will replace the notion of a smooth representation of the
group G(F ), where F = Fq((t)). As the previous discussion demonstrates, we
should consider representations of the complex loop group G((t)) on various
categories of D-modules on the ind-schemes G((t))/K, where K is a “com-
pact” subgroup of G((t)), such as G[[t]] or the Iwahori subgroup (the preimage
of a Borel subgroup B ⊂ G under the homomorphism G[[t]] → G), or the
categories of representations of the Lie algebra g((t)). Both scenarios are vi-
able, and they lead to interesting results and conjectures which we will discuss
in detail in Section 9, following [FG2]. In this paper we will concentrate on
the second scenario and consider categories of modules over the loop algebra
g((t)).

The group G((t)) acts on the category of representations of g((t)) in the way
that we described in the previous section. An analogue of a smooth represen-
tation of G(F ) is a category of smooth representations of g((t)). Let us observe
however that we could choose instead the category of smooth representations
of the central extension of g((t)), namely, ĝκ.

6 More generally, for any C-algebra R, we have an action of G(R) on the corre-
sponding base-changed category over R. Thus, we are naturally led to the notion
of an algebraic group (or, more generally, a group scheme) acting on an abelian
category, which is spelled out in [FG2], Sect. 20.

7 In general, we could obtain a representation of a central extension of G, but if G
is reductive, it does not have non-trivial central extensions.
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The group G((t)) acts on the Lie algebra ĝκ for any κ, because the adjoint
action of the central extension of G((t)) factors through the action of G((t)). We
use the action of G((t)) on ĝκ to construct an action of G((t)) on the category
ĝκ -mod, in the same way as in Section 3.4.

Now recall the space LocLG(D×) of the Langlands parameters that we
defined in Section 3.1. Elements of LocLG(D×) have a concrete description
as gauge equivalence classes of first order operators ∂t + A(t), A(t) ∈ Lg((t)),
modulo the action of LG((t)) (see formula (3.2)).

We can now formulate the local Langlands correspondence over C as the
following problem:

To each local Langlands parameter χ ∈ LocLG(D×) associate a subcategory
ĝκ -modχ of ĝκ -mod which is stable under the action of the loop group G((t)).

We wish to think of the category ĝκ -mod as “fibering” over the space of
local Langlands parameters LocLG(D×), with the categories ĝκ -modχ being
the “fibers” and the group G((t)) acting along these fibers. From this point
of view the categories ĝκ -modχ should give us a “spectral decomposition” of
the category ĝκ -mod over LocLG(D×).

In the next sections we will present a concrete proposal made in [FG2]
describing these categories in the special case when κ = κc, the critical level.

4 Center and Opers

In Section 1 we have introduced the category ĝκ -mod whose objects are
smooth ĝκ-modules on which the central element 1 acts as the identity. As
explained at the end of the previous section, we wish to show that this cat-
egory “fibers” over the space of the Langlands parameters, which are gauge
equivalence classes of LG-connections on the punctured disc D× (or perhaps,
something similar). Moreover, the loop group G((t)) should act on this cate-
gory “along the fibers”.

Any abelian category may be thought of as “fibering” over the spectrum of
its center. Hence the first idea that comes to mind is to describe the center of
the category ĝκ -mod in the hope that its spectrum is related to the Langlands
parameters. As we will see, this is indeed the case for a particular value of κ.

4.1 Center of an Abelian Category

Let us first recall what is the center of an abelian category. Let C be an abelian
category over C. The center Z(C) is by definition the set of endomorphisms
of the identity functor on C. Let us recall such such an endomorphism is a
system of endomorphisms eM ∈ HomC(M,M), for each object M of C, which
is compatible with the morphisms in C: for any morphism f : M → N in C

we have f ◦ eM = eN ◦ f . It is clear that Z(C) has a natural structure of a
commutative algebra over C.
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Let S = SpecZ(C). This is an affine algebraic variety such that Z(C) is the
algebra of functions on S. Each point s ∈ S defines an algebra homomorphism
(equivalently, a character) ρs : Z(C) → C (evaluation of a function at the point
s). We define the full subcategory Cs of C whose objects are the objects of C

on which Z(C) acts according to the character ρs. It is instructive to think of
the category C as “fibering” over S, with the fibers being the categories Cs.

Now suppose that C = A -mod is the category of left modules over an
associative C-algebra A. Then A itself, considered as a left A-module, is an
object of C, and so we obtain a homomorphism

Z(C) → Z(EndA A) = Z(Aopp) = Z(A),

where Z(A) is the center of A. On the other hand, each element of Z(A)
defines an endomorphism of each object of A -mod, and so we obtain a ho-
momorphism Z(A) → Z(C). It is easy to see that these maps set mutually
inverse isomorphisms between Z(C) and Z(A).

If g is a Lie algebra, then the category g -mod of g-modules coincides
with the category U(g) -mod of U(g)-modules, where U(g) is the universal
enveloping algebra of g. Therefore the center of the category g -mod is equal
to the center of U(g), which by abuse of notation we denote by Z(g).

Now consider the category ĝκ -mod. Let us recall from Section 1 that ob-
jects of ĝκ -mod are ĝκ-modules M on which the central element 1 acts as the
identity and which are smooth, that is for any vector v ∈ M we have

(4.1) (g ⊗ tNC[[t]]) · v = 0

for sufficiently large N .
Thus, we see that there are two properties that its objects satisfy. There-

fore it does not coincide with the category of all modules over the universal
enveloping algebra U(ĝκ) (which is the category of all ĝκ-modules). We need
to modify this algebra.

First of all, since 1 acts as the identity, the action of U(ĝκ) factors through
the quotient

Uκ(ĝ) def= Uκ(ĝ)/(1 − 1).

Second, the smoothness condition (4.1) implies that the action of Uκ(ĝ) ex-
tends to an action of its completion defined as follows.

Define a linear topology on Uκ(ĝ) by using as the basis of neighborhoods
for 0 the following left ideals:

IN = Uκ(ĝ)(g ⊗ tNC[[t]]), N � 0.

Let ˜Uκ(ĝ) be the completion of Uκ(ĝ) with respect to this topology. Note that,
equivalently, we can write

˜Uκ(ĝ) = lim
←−

Uκ(ĝ)/IN .
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Even though the IN ’s are only left ideals (and not two-sided ideals), one checks
that the associative product structure on Uκ(ĝ) extends by continuity to an
associative product structure on ˜Uκ(ĝ) (this follows from the fact that the
Lie bracket on Uκ(ĝ) is continuous in the above topology). Thus, ˜Uκ(ĝ) is a
complete topological algebra. It follows from the definition that the category
ĝκ -mod coincides with the category of discrete modules over ˜Uκ(ĝ) on which
the action of ˜Uκ(ĝ) is pointwise continuous (this is precisely equivalent to the
condition (4.1)).

It is now easy to see that the center of our category ĝκ -mod is equal to
the center of the algebra ˜Uκ(ĝ), which we will denote by Zκ(ĝ). The argument
is similar to the one we used above: though ˜Uκ(ĝ) itself is not an object of
ĝκ -mod, we have a collection of objects ˜Uκ(ĝ)/IN . Using this collection, we
obtain an isomorphism between the center of category ĝκ -mod and the inverse
limit of the algebras Z(End

�gκ
˜Uκ(ĝ)/IN ), which, by definition, coincides with

Zκ(ĝ).
Now we can formulate our first question:

describe the center Zκ(ĝ) for all levels κ.

In order to answer this question we need to introduce the concept of G-
opers.

4.2 Opers

Let G be a simple algebraic group of adjoint type, B its Borel subgroup
and N = [B,B] its unipotent radical, with the corresponding Lie algebras
n ⊂ b ⊂ g.

Thus, g is a simple Lie algebra, and as such it has the Cartan decomposition

g = n− ⊕ h ⊕ n+.

We will choose generators e1, . . . , e� (resp., f1, . . . , f�) of n+ (resp., n−). We
have nαi

= Cei, n−αi
= Cfi. We take b = h ⊕ n+ as the Lie algebra of B.

Then n is the Lie algebra of N . In what follows we will use the notation n for
n+.

Let [n, n]⊥ ⊂ g be the orthogonal complement of [n, n] with respect to a
non-degenerate invariant bilinear form κ0. We have

[n, n]⊥/b �
�

⊕

i=1

n−αi
.

Clearly, the group B acts on n⊥/b. Our first observation is that there is an
open B-orbit O ⊂ n⊥/b ⊂ g/b, consisting of vectors whose projection on each
subspace n−αi

is non-zero. This orbit may also be described as the B-orbit of
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the sum of the projections of the generators fi, i = 1, . . . , 
, of any possible
subalgebra n−, onto g/b. The action of B on O factors through an action of
H = B/N . The latter is simply transitive and makes O into an H-torsor.

Let X be a smooth curve and x a point of X. As before, we denote by
Ox the completed local ring and by Kx its field of fractions. The ring Ox

is isomorphic, but not canonically, to C[[t]]. Then Dx = Spec Ox is the disc
without a coordinate and D×

x = Spec Kx is the corresponding punctured disc.
Suppose now that we are given a principal G-bundle F on a smooth curve

X, or Dx, or D×
x , together with a connection ∇ (automatically flat) and

a reduction FB to the Borel subgroup B of G. Then we define the relative
position of ∇ and FB (i.e., the failure of ∇ to preserve FB) as follows. Locally,
choose any flat connection ∇′ on F preserving FB , and take the difference
∇−∇′, which is a section of gFB

⊗ΩX . We project it onto (g/b)FB
⊗ΩX . It

is clear that the resulting local section of (g/b)FB
⊗ ΩX are independent of

the choice ∇′. These sections patch together to define a global (g/b)FB
-valued

one-form on X, denoted by ∇/FB .
Let X be a smooth curve, or Dx, or D×

x . Suppose we are given a principal
G-bundle F on X, a connection ∇ on F and a B-reduction FB . We will say that
FB is transversal to ∇ if the one-form ∇/FB takes values in OFB

⊂ (g/b)FB
.

Note that O is C
×-invariant, so that O ⊗ ΩX is a well-defined subset of

(g/b)FB
⊗ ΩX .

Now, a G-oper on X is by definition a triple (F,∇,FB), where F is a
principal G-bundle F on X, ∇ is a connection on F and FB is a B-reduction
of F, such that FB is transversal to ∇.

This definition is due to A. Beilinson and V. Drinfeld [BD1] (in the case
when X is the punctured disc opers were introduced earlier by V. Drinfeld
and V. Sokolov in [DS]).

Equivalently, the transversality condition may be reformulated as saying
that if we choose a local trivialization of FB and a local coordinate t then the
connection will be of the form

(4.2) ∇ = ∂t +
�

∑

i=1

ψi(t)fi + v(t),

where each ψi(t) is a nowhere vanishing function, and v(t) is a b-valued func-
tion.

If we change the trivialization of FB , then this operator will get trans-
formed by the corresponding B-valued gauge transformation. This observa-
tion allows us to describe opers on the disc Dx = Spec Ox and the punctured
disc D×

x = Spec Kx in a more explicit way. The same reasoning will work on
any sufficiently small analytic subset U of any curve, equipped with a local
coordinate t, or on a Zariski open subset equipped with an étale coordinate.
For the sake of definiteness, we will consider now the case of the base D×

x .
Let us choose a coordinate t on Dx, i.e., an isomorphism Ox � C[[t]].

Then we identify Dx with D = Spec C[[t]] and D×
x with D× = Spec C((t)).
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The space OpG(D×) of G-opers on D× is then the quotient of the space of all
operators of the form (4.2), where ψi(t) ∈ C((t)), ψi(0) �= 0, i = 1, . . . , 
, and
v(t) ∈ b((t)), by the action of the group B((t)) of gauge transformations:

g · (∂t + A(t)) = ∂t + gA(t)g−1 − g−1∂tg.

Let us choose a splitting ı : H → B of the homomorphism B → H. Then
B becomes the semi-direct product B = H�N . The B-orbit O is an H-torsor,
and so we can use H-valued gauge transformations to make all functions ψi(t)
equal to 1. In other words, there is a unique element of H((t)), namely, the
element

∏�
i=1 ω̌i(ψi(t)), where ω̌i : C

× → H is the ith fundamental coweight
of G, such that the corresponding gauge transformation brings our connection
operator to the form

(4.3) ∇ = ∂t +
�

∑

i=1

fi + v(t), v(t) ∈ b((t)).

What remains is the group of N -valued gauge transformations. Thus, we ob-
tain that OpG(D×) is equal to the quotient of the space ˜OpG(D×) of operators
of the form (4.3) by the action of the group N((t)) by gauge transformations:

OpG(D×) = ˜OpG(D×)/N((t)).

Lemma 1 ([DS]). The action of N((t)) on ˜OpG(D×) is free.

4.3 Canonical Representatives

Now we construct canonical representatives in the N((t))-gauge classes of con-
nections of the form (4.3), following [BD1]. Observe that the operator ad ρ̌
defines a gradation on g, called the principal gradation, with respect to
which we have a direct sum decomposition g =

⊕

i gi. In particular, we have
b =

⊕

i≥0 bi, where b0 = h.
Let now

p−1 =
�

∑

i=1

fi.

The operator ad p−1 acts from bi+1 to bi injectively for all i ≥ 0. Hence we
can find for each i ≥ 0 a subspace Vi ⊂ bi, such that bi = [p−1, bi+1]⊕Vi. It is
well-known that Vi �= 0 if and only if i is an exponent of g, and in that case
dim Vi is equal to the multiplicity of the exponent i. In particular, V0 = 0.

Let V =
⊕

i∈E Vi ⊂ n, where E = {d1, . . . , d�} is the set of exponents of
g counted with multiplicity. They are equal to the orders of the generators of
the center of U(g) minus one. We note that the multiplicity of each exponent
is equal to one in all cases except the case g = D2n, dn = 2n, when it is equal
to two.
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There is a special choice of the transversal subspace V =
⊕

i∈E Vi. Namely,
there exists a unique element p1 in n, such that {p−1, 2ρ̌, p1} is an sl2-triple.
This means that they have the same relations as the generators {e, h, f} of
sl2. We have p1 =

∑�
i=1 miei, where ei’s are generators of n+ and mi are

certain coefficients uniquely determined by the condition that {p−1, 2ρ̌, p1} is
an sl2-triple.

Let V can =
⊕

i∈E V can
i be the space of ad p1-invariants in n. Then p1 spans

V can
1 . Let pj be a linear generator of V can

dj
. If the multiplicity of dj is greater

than one, then we choose linearly independent vectors in V can
dj

.
Each N((t))-equivalence class contains a unique operator of the form ∇ =

∂t + p−1 + v(t), where v(t) ∈ V can[[t]], so that we can write

v(t) =
�

∑

j=1

vj(t) · pj , vj(t) ∈ C[[t]].

It is easy to find (see, e.g., [F6], Sect. 8.3) that under changes of coordinate
t, v1 transforms as a projective connection, and vj , j > 1, transforms as a
(dj + 1)-differential on Dx. Thus, we obtain an isomorphism

(4.4) OpG(D×) � Proj(D×) ×
�

⊕

j=2

Ω
⊗(dj+1)
K ,

where Ω⊗n
K is the space of n-differentials on D× and Proj(D×) is the Ω⊗2

K -
torsor of projective connections on D×.

We have an analogous isomorphism with D× replaced by formal disc D or
any smooth algebraic curve X.

4.4 Description of the Center

Now we are ready to describe the center of the completed universal enveloping
algebra ˜Uκc

(ĝ). The following assertion is proved in [F7], using results of [K1]:

Proposition 1. The center of ˜Uκ(ĝ) consists of the scalars for κ �= κc.

Let us denote the center of ˜Uκc
(ĝ) by Z(ĝ). The following theorem was

proved in [FF3, F3] (it was conjectured by V. Drinfeld).

Theorem 2. The center Z(ĝ) is isomorphic to the algebra FunOpLG(D×) in
a way compatible with the action of the group of coordinate changes.

This implies the following result. Let x be a point of a smooth curve
X. Then we have the affine algebra ĝκc,x as defined in Section 1 and the
corresponding completed universal enveloping algebra of critical level. We
denote its center by Z(ĝx).

Corollary 1. The center Z(ĝx) is isomorphic to the algebra Fun OpLG(D×
x )

of functions on the space of LG-opers on D×
x .
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5 Opers vs. Local Systems

We now go back to the question posed at the end of Section 3: let

(5.1) LocLG(D×) =
{

∂t + A(t), A(t) ∈ Lg((t))
}

/ LG((t))

be the set of gauge equivalence classes of LG-connections on the punctured
disc D× = Spec C((t)). We had argued in Section 3 that LocLG(D×) should
be taken as the space of Langlands parameters for the loop group G((t)).
Recall that the loop group G((t)) acts on the category ĝκ -mod of (smooth)
ĝ-modules of level κ (see Section 1 for the definition of this category). We
asked the following question:

Associate to each local Langlands parameter σ ∈ LocLG(D×) a subcategory
ĝκ -modσ of ĝκ -mod which is stable under the action of the loop group G((t)).

Even more ambitiously, we wish to represent the category ĝκ -mod as
“fibering” over the space of local Langlands parameters LocLG(D×), with
the categories ĝκ -modσ being the “fibers” and the group G((t)) acting along
these fibers. If we could do that, then we would think of this fibration as a
“spectral decomposition” of the category ĝκ -mod over LocLG(D×).

At the beginning of Section 4 we proposed a possible scenario for solving
this problem. Namely, we observed that any abelian category may be thought
of as “fibering” over the spectrum of its center. Hence our idea was to describe
the center of the category ĝκ -mod (for each value of κ) and see if its spectrum
is related to the space LocLG(D×) of Langlands parameters.

We have identified the center of the category ĝκ -mod with the center Zκ(ĝ)
of the associative algebra ˜Uκ(ĝ), the completed enveloping algebra of ĝ of level
κ, defined in Section 4. Next, we described the algebra Zκ(ĝ). According to
Proposition 1, if κ �= κc, the critical level, then Zκ(ĝ) = C. Therefore our
approach cannot work for κ �= κc. However, we found that the center Zκc

(ĝ)
at the critical level is highly non-trivial and indeed related to LG-connections
on the punctured disc.

Now, following the works [FG1]–[FG6] of D. Gaitsgory and myself, I will
use these results to formulate more precise conjectures on the local Langlands
correspondence for loop groups and to provide some evidence for these con-
jectures. I will then discuss the implications of these conjectures for the global
geometric Langlands correspondence.8

According to Theorem 2, Zκc
(ĝ) is isomorphic to Fun OpLG(D×), the al-

gebra of functions on the space of LG-opers on the punctured disc D×. This
isomorphism is compatible with various symmetries and structures on both
8 Note that A. Beilinson has another proposal [Bei] for local geometric Langlands

correspondence, using representations of affine Kac-Moody algebras of levels less
than critical. It would be interesting to understand the connection between his
proposal and ours.
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algebras, such as the action of the group of coordinate changes. There is a one-
to-one correspondence between points χ ∈ OpLG(D×) and homomorphisms
(equivalently, characters)

Fun OpLG(D×) → C,

corresponding to evaluating a function at χ. Hence points of OpLG(D×) para-
metrize central characters Zκc

(ĝ) → C.
Given a LG-oper χ ∈ OpLG(D×), define the category

ĝκc
-modχ

as a full subcategory of ĝκc
-mod whose objects are ĝ-modules of critical level

(hence ˜Uκc
(ĝ)-modules) on which the center Zκc

(ĝ) ⊂ ˜Uκc
(ĝ) acts according

to the central character corresponding to χ. More generally, for any closed
algebraic subvariety Y ⊂ OpLG(D×) (not necessarily a point), we have an
ideal

IY ⊂ Fun OpLG(D×) � Zκc
(ĝ)

of those functions that vanish on Y . We then have a full subcategory
ĝκc

-modY of ĝκc
-mod whose objects are ĝ-modules of critical level on which

IY acts by 0. This category is an example of a “base change” of the category
ĝκc

-mod with respect to the morphism Y → OpLG(D×). It is easy to general-
ize this definition to an arbitrary affine scheme Y equipped with a morphism
Y → OpLG(D×).9

Since the algebra OpLG(D×) acts on the category ĝκc
-mod, one can say

that the category ĝκ -mod “fibers” over the space OpLG(D×), in such a way
that the fiber-category corresponding to χ ∈ OpLG(D×) is the category
ĝκc

-modχ.10

Recall that the group G((t)) acts on ˜Uκc
(ĝ) and on the category ĝκc

-mod.
One can show (see [BD1], Remark 3.7.11(iii)) that the action of G((t)) on
Zκc

(ĝ) ⊂ ˜Uκc
(ĝ) is trivial. Therefore the subcategories ĝκc

-modχ (and, more
generally, ĝκc

-modY ) are stable under the action of G((t)). Thus, the group
G((t)) acts “along the fibers” of the “fibration” ĝκc

-mod → OpLG(D×) (see
[FG2], Sect. 20, for more details).

The fibration ĝκc
-mod → OpLG(D×) almost gives us the desired local

Langlands correspondence for loop groups. But there is one important differ-
ence: we asked that the category ĝκc

-mod fiber over the space LocLG(D×) of
local systems on D×. We have shown, however, that ĝκc

-mod fibers over the
space OpLG(D×) of LG-opers.

9 The corresponding base changed categories �gκc -modY may then be “glued” to-
gether, which allows us to define the base changed category �gκc -modY for any
scheme Y mapping to OpLG(D×).

10 The precise notion of an abelian category fibering over a scheme is spelled out in
[Ga3].
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What is the difference between the two spaces? While a LG-local system is
a pair (F,∇), where F is an LG-bundle and ∇ is a connection on F, an LG-oper
is a triple (F,∇,FLB), where F and ∇ are as before, and FLB is an additional
piece of structure, namely, a reduction of F to a (fixed) Borel subgroup LB ⊂
LG satisfying the transversality condition explained in Section 4.2. Thus, for
any curve X we clearly have a forgetful map

OpLG(X) → LocLG(X).

The fiber of this map over (F,∇) ∈ LocLG(X) consists of all LB-reductions
of F satisfying the transversality condition with respect to ∇.

For a general X it may well be that this map is not surjective, i.e., that the
fiber of this map over a particular local system (F,∇) is empty. For example,
if X is a projective curve and LG is a group of adjoint type, then there is a
unique LG-bundle FLG such that the fiber over (FLG,∇) is non-empty, as we
saw in Section 1.

The situation is quite different when X = D×. In this case any LG-bundle
F may be trivialized. A connection ∇ therefore may be represented as a first
order operator ∂t +A(t), A(t) ∈ Lg((t)). However, the trivialization of F is not
unique; two trivializations differ by an element of LG((t)). Therefore the set
of equivalence classes of pairs (F,∇) is identified with the quotient (5.1).

Suppose now that (F,∇) carries an oper reduction FLB . Then we consider
only those trivializations of F which come from trivializations of FLB . There
are fewer of those, since two trivializations now differ by an element of LB((t))
rather than LG((t)). Due to the oper transversality condition, the connection ∇
must have a special form with respect to any of those trivializations, namely,

∇ = ∂t +
�

∑

i=1

ψi(t)fi + v(t),

where each ψi(t) �= 0 and v(t) ∈ Lb((t)) (see Section 4.2). Thus, we obtain
a concrete realization of the space of opers as a space of gauge equivalence
classes
(5.2)

OpLG(D×) =

{

∂t +
�

∑

i=1

ψi(t)fi + v(t), ψi �= 0,v(t) ∈ Lb((t))

}/

LB((t)).

Now the map
α : OpLG(D×) → LocLG(D×)

simply takes a LB((t))-equivalence class of operators of the form (5.2) to its
LG((t))-equivalence class.

Unlike the case of projective curves X discussed above, we expect that the
map α is surjective for any simple Lie group LG. In the case of G = SLn

this follows from the results of P. Deligne [De1], and we conjecture it to be
true in general.
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Conjecture 1. The map α is surjective for any simple Lie group LG.

Now we find ourselves in the following situation: we expect that there exists
a category C fibering over the space LocLG(D×) of “true” local Langlands
parameters, equipped with a fiberwise action of the loop group G((t)). The
fiber categories Cσ corresponding to various σ ∈ LocLG(D×) should satisfy
various, not yet specified, properties. This should be the ultimate form of the
local Langlands correspondence. On the other hand, we have constructed a
category ĝκc

-mod which fibers over a close cousin of the space LocLG(D×),
namely, the space OpLG(D×) of LG-opers, and is equipped with a fiberwise
action of the loop group G((t)).

What should be the relationship between the two?
The idea of [FG2] is that the second fibration is a “base change” of the

first one, that is we have a Cartesian diagram

(5.3)

ĝκc
-mod −−−−→ C
⏐

⏐

�

⏐

⏐

�

OpLG(D×) α−−−−→ LocLG(D×)

that commutes with the action of G((t)) along the fibers of the two vertical
maps. In other words,

ĝκc
-mod � C ×

LocLG(D×)
OpLG(D×).

At present, we do not have a definition of C, and therefore we cannot make
this isomorphism precise. But we will use it as our guiding principle. We will
now discuss various corollaries of this conjecture and various pieces of evidence
that make us believe that it is true.

In particular, let us fix a Langlands parameter σ ∈ LocLG(D×) that is in
the image of the map α (according to Conjecture 1, all Langlands parameters
are). Let χ be a LG-oper in the preimage of σ, α−1(σ). Then, according to
the above conjecture, the category ĝκc

-modχ is equivalent to the “would be”
Langlands category Cσ attached to σ. Hence we may take ĝκc

-modχ as the
definition of Cσ.

The caveat is, of course, that we need to ensure that this definition is inde-
pendent of the choice of χ in α−1(σ). This means that for any two LG-opers,
χ and χ′, in the preimage of σ, the corresponding categories, ĝκc

-modχ and
ĝκc

-modχ′ , should be equivalent to each other, and this equivalence should
commute with the action of the loop group G((t)). Moreover, we should ex-
pect that these equivalences are compatible with each other as we move along
the fiber α−1(σ). We will not try to make this condition more precise here
(however, we will explain below in Conjecture 4 what this means for regular
opers).

Even putting the questions of compatibility aside, we arrive at the follow-
ing rather non-trivial conjecture (see [FG2]).
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Conjecture 2. Suppose that χ, χ′ ∈ OpLG(D×) are such that α(χ) = α(χ′),
i.e., that the flat LG-bundles on D× underlying the LG-opers χ and χ′ are
isomorphic to each other. Then there is an equivalence between the categories
ĝκc

-modχ and ĝκc
-modχ′ which commutes with the actions of the group G((t))

on the two categories.

Thus, motivated by our quest for the local Langlands correspondence, we
have found an unexpected symmetry in the structure of the category ĝκc

-mod
of ĝ-modules of critical level.

6 Harish–Chandra Categories

As explained in Section 3, the local Langlands correspondence for the loop
group G((t)) should be viewed as a categorification of the local Langlands cor-
respondence for the group G(F ), where F is a local non-archimedian field.
This means that the categories Cσ, equipped with an action of G((t)), that
we are trying to attach to the Langlands parameters σ ∈ LocLG(D×) should
be viewed as categorifications of the smooth representations of G(F ) on com-
plex vector spaces attached to the corresponding local Langlands parameters
discussed in Section 2.3. Here we use the term “categorification” to indicate
that we expect the Grothendieck groups of the categories Cσ to “look like”
irreducible smooth representations of G(F ). We begin by taking a closer look
at the structure of these representations.

6.1 Spaces of K-Invariant Vectors

It is known that an irreducible smooth representation (R, π) of G(F ) is auto-
matically admissible, in the sense that for any open compact subgroup K,
such as the Nth congruence subgroup KN defined in Section 2.1, the space
Rπ(K) of K-invariant vectors in R is finite-dimensional. Thus, while most of
the irreducible smooth representations (R, π) of G(F ) are infinite-dimensional,
they are filtered by the finite-dimensional subspaces Rπ(K) of K-invariant vec-
tors, where K are smaller and smaller open compact subgroups. The space
Rπ(K) does not carry an action of G(F ), but it carries an action of the Hecke
algebra H(G(F ),K).

By definition, H(G(F ),K) is the space of compactly supported K bi-
invariant functions on G(F ). It is given an algebra structure with respect to
the convolution product

(6.1) (f1 � f2)(g) =
∫

G(F )

f1(gh−1)f2(h) dh,

where dh is the Haar measure on G(F ) normalized in such a way that the
volume of the subgroup K0 = G(O) is equal to 1 (here O is the ring of integers
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of F ; e.g., for F = Fq((t)) we have O = Fq[[t]]). The algebra H(G(F ),K) acts
on the space Rπ(K) by the formula

(6.2) f � v =
∫

G(F )

f1(gh−1)(π(h) · v) dh, v ∈ Rπ(K).

Studying the spaces of K-invariant vectors and their H(G(F ),K)-module
structure gives us an effective tool for analyzing representations of the group
G(F ), where F = Fq((t)).

Can we find a similar structure in the categorical local Langlands corre-
spondence for loop groups?

6.2 Equivariant Modules

In the categorical setting a representation (R, π) of the group G(F ) is re-
placed by a category equipped with an action of G((t)), such as ĝκc

-modχ.
The open compact subgroups of G(F ) have obvious analogues for the loop
group G((t)) (although they are, of course, not compact with respect to the
usual topology on G((t))). For instance, we have the “maximal compact sub-
group” K0 = G[[t]], or, more generally, the Nth congruence subgroup KN ,
whose elements are congruent to 1 modulo tNC[[t]]. Another important exam-
ple is the analogue of the Iwahori subgroup. This is the subgroup of G[[t]],
which we denote by I, whose elements g(t) have the property that their value
at 0, that is g(0), belong to a fixed Borel subgroup B ⊂ G.

Now, for a subgroup K ⊂ G((t)) of this type, an analogue of a K-invariant
vector in the categorical setting is an object of our category, i.e., a smooth
ĝκc

-module (M,ρ), where ρ : ĝκc
→ EndM , which is stable under the action

of K. Recall from Section 3.5 that for any g ∈ G((t)) we have a new ĝκc
-

module (M,ρg), where ρg(x) = ρ(Adg(x)). We say that (M,ρ) is stable under
K, or that (M,ρ) is weakly K-equivariant, if there is a compatible system
of isomorphisms between (M,ρ) and (M,ρk) for all k ∈ K. More precisely,
this means that for each k ∈ K there exists a linear map TM

k : M → M such
that

TM
k ρ(x)(TM

k )−1 = ρ(Adk(x))

for all x ∈ ĝκc
, and we have

TM
1 = IdM , TM

k1
TM

k2
= TM

k1k2
.

Thus, M becomes a representation of the group K.11 Consider the corre-
sponding representation of the Lie algebra k = Lie K on M . Let us assume
that the embedding k ↪→ g((t)) lifts to k ↪→ ĝκc

(i.e., that the central extension
cocycle is trivial on k). This is true, for instance, for any subgroup contained
11 In general, it is reasonable to modify the last condition to allow for a non-trivial

two-cocycle and hence a non-trivial central extension of K; however, in the case
of interest K does not have any non-trivial central extensions.
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in K0 = G[[t]], or its conjugate. Then we also have a representation of k on
M obtained by restriction of ρ. In general, the two representations do not
have to coincide. If they do coincide, then the module M is called strongly
K-equivariant, or simply K-equivariant.

The pair (ĝκc
,K) is an example of Harish-Chandra pair, that is a pair

(g,H) consisting of a Lie algebra g and a Lie group H whose Lie algebra is
contained in g. The K-equivariant ĝκc

-modules are therefore called (ĝκc
,K)

Harish-Chandra modules. These are (smooth) ĝκc
-modules on which the

action of the Lie algebra Lie K ⊂ ĝκc
may be exponentiated to an action of K

(we will assume that K is connected). We denote by ĝκc
-modK and ĝκc

-modK
χ

the full subcategories of ĝκc
-mod and ĝκc

-modχ, respectively, whose objects
are (ĝκc

,K) Harish-Chandra modules.
We will stipulate that the analogues of K-invariant vectors in the category

ĝκc
-modχ are (ĝκc

,K) Harish-Chandra modules. Thus, while the categories
ĝκc

-modχ should be viewed as analogues of smooth irreducible representations
(R, π) of the group G(F ), the categories ĝκc

-modK
χ are analogues of the spaces

of K-invariant vectors Rπ(K).
Next, we discuss the categorical analogue of the Hecke algebra H(G(F ),K).

6.3 Categorical Hecke Algebras

We recall that H(G(F ),K) is the algebra of compactly supported K bi-
invariant functions on G(F ). We realize it as the algebra of left K-invariant
compactly supported functions on G(F )/K. In Section 3.4 we have already
discussed the question of categorification of the algebra of functions on a
homogeneous space like G(F )/K. Our conclusion was that the categorical
analogue of this algebra, when G(F ) is replaced by the complex loop group
G((t)), is the category of D-modules on G((t))/K. More precisely, this quotient
has the structure of an ind-scheme which is a direct limit of finite-dimensional
algebraic varieties with respect to closed embeddings. The appropriate notion
of (right) D-modules on such ind-schemes is formulated in [BD1] (see also
[FG1, FG2]). As the categorical analogue of the algebra of left K-invariant
functions on G(F )/K, we take the category H(G((t)),K) of K-equivariant
D-modules on the ind-scheme G((t))/K (with respect to the left action of K
on G((t))/K). We call it the categorical Hecke algebra associated to K.

It is easy to define the convolution of two objects of H(G((t)),K) by im-
itating formula (6.1). Namely, we interpret this formula as a composition of
the operations of pulling back and integrating functions. Then we apply the
same operations to D-modules, thinking of the integral as push-forward. How-
ever, here one encounters two problems. The first problem is that for a general
group K the morphisms involved will not be proper, and so we have to choose
between the ∗- and !-push-forward. This problem does not arise, however,
if K is such that I ⊂ K ⊂ G[[t]], which will be our main case of interest.
The second, and more serious, issue is that in general the push-forward is
not an exact functor, and so the convolution of two D-modules will not be
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a D-module, but a complex, more precisely, an object of the corresponding
K-equivariant (bounded) derived category Db(G((t))/K)K of D-modules on
G((t))/K. We will not spell out the exact definition of this category here, re-
ferring the interested reader to [BD1] and [FG2]. The exception is the case of
the subgroup K0 = G[[t]], when the convolution functor is exact and so we
may restrict ourselves to the abelian category of K0-equivariant D-modules
on G((t))/K0.

Now the category Db(G((t))/K)K has a monoidal structure, and as such
it acts on the derived category of (ĝκc

,K) Harish-Chandra modules (again,
we refer the reader to [BD1, FG2] for the precise definition). In the special
case when K = K0, we may restrict ourselves to the corresponding abelian
categories. This action should be viewed as the categorical analogue of the
action of H(G(F ),K) on the space Rπ(K) of K-invariant vectors discussed
above.

Our ultimate goal is understanding the “local Langlands categories” Cσ

associated to the “local Langlands parameters σ ∈ LocLG(D×). We now
have a candidate for the category Cσ, namely, the category ĝκc

-modχ, where
σ = α(χ). Therefore ĝκc

-modχ should be viewed as a categorification of a
smooth representation (R, π) of G(F ). The corresponding category ĝκc

-modK
χ

of (ĝκc
,K) Harish-Chandra modules should therefore be viewed as a categori-

fication of Rπ(K). This category (or, more precisely, its derived category) is
acted upon by the categorical Hecke algebra H(G((t)),K). We summarize this
analogy in the following table.

Classical Theory Geometric Theory

Representation of G(F ) Representation of G((t))
on a vector space R on a category ĝκc

-modχ

A vector in R An object of ĝκc
-modχ

The subspace Rπ(K) of The subcategory ĝκc
-modK

χ of
K-invariant vectors of R (ĝκc

,K) Harish-Chandra modules

Hecke algebra H(G(F ),K) Categorical Hecke algebra H(G((t)),K)
acts on Rπ(K) acts on ĝκc

-modK
χ

Now we may test our proposal for the local Langlands correspondence by
studying the categories ĝκc

-modK
χ of Harish-Chandra modules and comparing
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their structure to the structure of the spaces Rπ(K) of K-invariant vectors of
smooth representations of G(F ) in the known cases. Another possibility is to
test Conjecture 2 when applied to the categories of Harish-Chandra modules.

In the next section we consider the case of the “maximal compact sub-
group” K0 = G[[t]] and find perfect agreement with the classical results about
unramified representations of G(F ). We then take up the more complicated
case of the Iwahori subgroup I. There we also find the conjectures and re-
sults of [FG2] to be consistent with the known results about representations
of G(F ) with Iwahori fixed vectors.

7 Local Langlands Correspondence: Unramified Case

We first take up the case of the “maximal compact subgroup” K0 = G[[t]]
of G((t)) and consider the categories ĝκc

-modχ which contain non-trivial K0-
equivariant objects.

7.1 Unramified Representations of G(F )

These categories are analogues of smooth representations of the group G(F ),
where F is a local non-archimedian field (such as Fq((t))) that contain non-
zero K0-invariant vectors. Such representations are called unramified. The
classification of the irreducible unramified representations of G(F ) is the sim-
plest case of the local Langlands correspondence discussed in Sections 2.2 and
2.3. Namely, we have a bijection between the sets of equivalence classes of the
following objects:

(7.1)
unramified admissible

homomorphisms W ′
F → LG

⇐⇒ irreducible unramified
representations of G(F )

where W ′
F is the Weil-Deligne group introduced in Section 2.1.

By definition, unramified homomorphisms W ′
F −→ LG are those which

factor through the quotient

W ′
F → WF → Z

(see Section 2.1 for the definitions of these groups and homomorphisms). It
is admissible if its image in LG consists of semi-simple elements. Therefore
the set on the left hand side of (7.1) is just the set of conjugacy classes of
semi-simple elements of LG. Thus, the above bijection may be reinterpreted
as follows:

(7.2)
semi-simple conjugacy

classes in LG
⇐⇒ irreducible unramified

representations of G(F )
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To construct this bijection, we look at the Hecke algebra H(G(F ),K0).
According to the Satake isomorphism [Sat], in the interpretation of Langlands
[L], this algebra is commutative and isomorphic to the representation ring of
the Langlands dual group LG:

(7.3) H(G(F ),K0) � Rep LG.

We recall that Rep LG consists of finite linear combinations
∑

i ai[Vi], where
the Vi are finite-dimensional representations of LG (without loss of generality
we may assume that they are irreducible) and ai ∈ C, with respect to the
multiplication

[V ] · [W ] = [V ⊗ W ].

Since Rep LG is commutative, its irreducible modules are all one-dimensional.
They correspond to characters Rep LG → C. We have a bijection

(7.4)
semi-simple conjugacy

classes in LG
⇐⇒ characters

of Rep LG

where the character φγ corresponding to the conjugacy class γ is given by the
formula12

φγ : [V ] �→ Tr(γ, V ).

Now, if (R, π) is a representation of G(F ), then the space Rπ(K0) of K0-
invariant vectors in V is a module over H(G(F ),K0). It is easy to show
that this sets up a one-to-one correspondence between equivalence classes of
irreducible unramified representations of G(F ) and irreducible H(G(F ),K0)-
modules. Combining this with the bijection (7.4) and the isomorphism (7.3),
we obtain the sought-after bijections (7.1) and (7.2).

In particular, we find that, because the Hecke algebra H(G(F ),K0) is com-
mutative, the space Rπ(K0) of K0-invariants of an irreducible representation,
which is an irreducible H(G(F ),K0)-module, is either zero or one-dimensional.
If it is one-dimensional, then H(G(F ),K0) acts on it by the character φγ for
some γ:

(7.5) HV � v = Tr(γ, V )v, v ∈ Rπ(K0), [V ] ∈ Rep LG,

where HV is the element of H(G(F ),K0) corresponding to [V ] under the iso-
morphism (7.3) (see formula (6.2) for the definition of the convolution action).

We now discuss the categorical analogues of these statements.
12 It is customary to multiply the right hand side of this formula, for irreducible

representation V , by a scalar depending on q and the highest weight of V , but
this is not essential for our discussion.
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7.2 Unramified Categories ĝκc
-Modules

In the categorical setting, the role of an irreducible representation (R, π) of
G(F ) is played by the category ĝκc

-modχ for some χ ∈ OpLG(D×). The ana-
logue of an unramified representation is a category ĝκc

-modχ which contains
non-zero (ĝκc

, G[[t]]) Harish-Chandra modules. This leads us to the follow-
ing question: for what χ ∈ OpLG(D×) does the category ĝκc

-modχ contain
non-zero (ĝκc

, G[[t]]) Harish-Chandra modules?
We saw in the previous section that (R, π) is unramified if and only if it

corresponds to an unramified Langlands parameter, which is a homomorphism
W ′

F → LG that factors through W ′
F → Z. Recall that in the geometric setting

the Langlands parameters are LG-local systems on D×. The analogues of
unramified homomorphisms W ′

F → LG are those local systems on D× which
extend to the disc D, in other words, have no singularity at the origin 0 ∈ D.
Note that there is a unique, up to isomorphism local system on D. Indeed,
suppose that we are given a regular connection on a LG-bundle F on D. Let
us trivialize the fiber F0 of F at 0 ∈ D. Then, because D is contractible, the
connection identifies F with the trivial bundle on D. Under this identification
the connection itself becomes trivial, i.e., represented by the operator ∇ = ∂t.

Therefore all regular LG-local systems (i.e., those which extend to D)
correspond to a single point of the set LocLG(D×), namely, the equivalence
class of the trivial local system σ0.13 From the point of view of the realization
of LocLG(D×) as the quotient (3.2) this simply means that there is a unique
LG((t)) gauge equivalence class containing all regular connections of the form
∂t + A(t), where A(t) ∈ Lg[[t]].

The gauge equivalence class of regular connections is the unique local
Langlands parameter that we may view as unramified in the geometric set-
ting. Therefore, by analogy with the unramified Langlands correspondence for
G(F ), we expect that the category ĝκc

-modχ contains non-zero (ĝκc
, G[[t]])

Harish-Chandra modules if and only if the LG-oper χ ∈ OpLG(D×) is LG((t))
gauge equivalent to the trivial connection, or, in other words, χ belongs to
the fiber α−1(σ0) over σ0.

What does this fiber look like? Let P+ be the set of dominant integral
weights of G (equivalently, dominant integral coweights of LG). In [FG2] we
defined, for each λ ∈ P+, the space Opλ

LG of LB[[t]]-equivalence classes of
operators of the form

(7.6) ∇ = ∂t +
�

∑

i=1

t〈α̌i,λ〉ψi(t)fi + v(t),

13 Note however that the trivial LG-local system on D has a non-trivial group of
automorphisms, namely, the group LG itself (it may be realized as the group of
automorphisms of the fiber at 0 ∈ D). Therefore if we think of LocLG(D×) as a
stack rather than as a set, then the trivial local system corresponds to a substack
pt /LG.
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where ψi(t) ∈ C[[t]], ψi(0) �= 0, v(t) ∈ Lb[[t]].

Lemma 2. Suppose that the local system underlying an oper χ ∈ OpLG(D×)
is trivial. Then χ belongs to the disjoint union of the subsets Opλ

LG ⊂
OpLG(D×), λ ∈ P+.

Proof. It is clear from the definition that any oper in Opλ
LG is regular on

the disc D and is therefore LG((t)) gauge equivalent to the trivial connection.
Now suppose that we have an oper χ = (F,∇,FLB) such that the underly-

ing LG-local system is trivial. Then ∇ is LG((t)) gauge equivalent to a regular
connection, that is one of the form ∂t + A(t), where A(t) ∈ Lg[[t]]. We have
the decomposition LG((t)) = LG[[t]]LB((t)). The gauge action of LG[[t]] clearly
preserves the space of regular connections. Therefore if an oper connection ∇
is LG((t)) gauge equivalent to a regular connection, then its LB((t)) gauge class
already must contain a regular connection. The oper condition then implies
that this gauge class contains a connection operator of the form (7.6) for some
dominant integral weight λ of LG. Therefore χ ∈ Opλ

LG. �
Thus, we see that the set of opers corresponding to the (unique) unramified

Langlands parameter is the disjoint union
⊔

λ∈P+ Opλ
LG. We call such opers

“unramified”. The following result then confirms our expectation that the cat-
egory ĝκc

-modχ is “unramified”, that is contains non-zero G[[t]]-equivariant
objects, if and only if χ is unramified (see [FG3] for a proof).

Lemma 3. The category ĝκc
-modχ contains a non-zero (ĝκc

, G[[t]]) Harish-
Chandra module if and only if

(7.7) χ ∈
⊔

λ∈P+

Opλ
LG .

The next question is to describe the category ĝκc
-modG[[t]]

χ of (ĝκc
, G[[t]])

modules for χ ∈ Opλ
LG.

7.3 Categories of G[[t]]-Equivariant Modules

Let us recall from Section 7.1 that the space of K0-invariant vectors in an
unramified irreducible representation of G(F ) is always one-dimensional. We
have proposed that the category ĝκc

-modG[[t]]
χ should be viewed as a categor-

ical analogue of this space. Therefore we expect it to be the simplest possible
abelian category: the category of C-vector spaces. Here we assume that χ
belongs to the union of the spaces Opλ

LG, where λ ∈ P+, for otherwise the
category ĝκc

-modG[[t]]
χ would be trivial (zero object is the only object).

In this subsection we will prove, following [FG1] (see also [BD1]), that our
expectation is in fact correct provided that λ = 0, in which case Op0

LG =
OpLG(D), and so

χ ∈ OpLG(D) ⊂ OpLG(D×).
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We will also conjecture that this is true for χ ∈ Opλ
LG for all λ ∈ P+.

Recall the vacuum module V0 = Vκc
(g). According to [FF3, F3], we have

(7.8) End
�gκc

V0 � Fun OpLG(D).

Let χ ∈ OpLG(D) ⊂ OpLG(D×). Then χ defines a character of the algebra
End

�gκc
V0. Let V0(χ) be the quotient of V0 by the kernel of this character.

Then we have the following result.

Theorem 3. Let χ ∈ OpLG(D) ⊂ OpLG(D×). The category ĝκc
-modG[[t]]

χ

is equivalent to the category of vector spaces: its unique, up to isomorphism,
irreducible object is V0(χ) and any other object is isomorphic to the direct
sum of copies of V0(χ).

This theorem provides the first piece of evidence for Conjecture 2: we
see that the categories ĝκc

-modG[[t]]
χ are equivalent to each other for all χ ∈

OpLG(D).
It is more convenient to consider, instead of an individual regular LG-oper

χ, the entire family Op0
LG = OpLG(D) of regular opers on the disc D. Let

ĝκc
-modreg be the full subcategory of the category ĝκc

-mod whose objects
are ĝκc

-modules on which the action of the center Z(ĝ) factors through the
homomorphism

Z(ĝ) � FunOpLG(D×) → Fun OpLG(D).

Note that the category ĝκc
-modreg is an example of a category ĝκc

-modV

introduced in Section 5, in the case when V = OpLG(D).
Let ĝκc

-modG[[t]]
reg be the corresponding G[[t]]-equivariant category. It is

instructive to think of ĝκc
-modreg and ĝκc

-modG[[t]]
reg as categories fibered

over OpLG(D), with the fibers over χ ∈ OpLG(D) being ĝκc
-modχ and

ĝκc
-modG[[t]]

χ , respectively.
We will now describe the category ĝκc

-modG[[t]]
reg . This description will in

particular imply Theorem 3.
In order to simplify our formulas, in what follows we will use the following

notation for Fun OpLG(D):

z = z(ĝ) = Fun OpLG(D).

Let z -mod be the category of modules over the commutative algebra z.
Equivalently, this is the category of quasicoherent sheaves on the space
OpLG(D).

By definition, any object of ĝκc
-modG[[t]]

reg is a z-module. Introduce the
functors

F :ĝκc
-modG[[t]]

reg → z -mod, M �→ Hom
�gκc

(V0,M),

G :z -mod → ĝκc
-modG[[t]]

reg , F �→ V0 ⊗
z

F.
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The following theorem has been proved in [FG1], Theorem 6.3 (important
results in this direction were obtained earlier in [BD1]).

Theorem 4. The functors F and G are mutually inverse equivalences of cat-
egories

(7.9) ĝκc
-modG[[t]]

reg � z -mod .

This immediately implies Theorem 3. Indeed, for each χ ∈ OpLG(D) the
category ĝκc

-modG[[t]]
χ is the full subcategory of ĝκc

-modG[[t]]
reg which are an-

nihilated, as z-modules, by the maximal ideal Iχ of χ. By Theorem 4, this
category is equivalent to the category of z-modules annihilated by Iχ. But this
is the category of z-modules supported (scheme-theoretically) at the point χ,
which is equivalent to the category of vector spaces.

7.4 The Action of the Spherical Hecke Algebra

In Section 7.1 we discussed irreducible unramified representations of the group
G(F ), where F is a local non-archimedian field. We have seen that such repre-
sentations are parameterized by conjugacy classes of the Langlands dual group
LG. Given such a conjugacy class γ, we have an irreducible unramified rep-
resentation (Rγ , πγ), which contains a one-dimensional subspace (Rγ)πγ(K0)

of K0-invariant vectors. The spherical Hecke algebra H(G(F ),K0), which is
isomorphic to Rep LG via the Satake isomorphism, acts on this space by a
character φγ , see formula (7.5).

In the geometric setting, we have argued that for any χ ∈ OpLG(D)
the category ĝκc

-modχ, equipped with an action of the loop group G((t)),
should be viewed as a categorification of (Rγ , πγ). Furthermore, its subcate-
gory ĝκc

-modG[[t]]
χ of (ĝκc

, G[[t]]) Harish-Chandra modules should be viewed
as a categorification of the one-dimensional space (Rγ)πγ(K0). According to
Theorem 3, the latter category is equivalent to the category of vector spaces,
which is consistent with our expectations.

We now discuss the categorical analogue of the action of the spherical
Hecke algebra.

As explained in Section 6.3, the categorical analogue of the spherical Hecke
algebra is the category of G[[t]]-equivariant D-modules on the affine Grass-
mannian Gr = G((t))/G[[t]]. We refer the reader to [BD1, FG2] for the precise
definition of Gr and this category. There is an important property that is sat-
isfied in the unramified case: the convolution functors with these D-modules
are exact, which means that we do not need to consider the derived category;
the abelian category of such D-modules will do. Let us denote this abelian
category by H(G((t)), G[[t]]).

According to the results of [MV], this category carries a natural structure
of tensor category, which is equivalent to the tensor category Rep LG of rep-
resentations of LG. This should be viewed as a categorical analogue of the
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Satake isomorphism. Thus, for each object V of Rep LG we have an object of
H(G((t)), G[[t]]) which we denote by HV . What should be the analogue of the
Hecke eigenvector property (7.5)?

As we explained in Section 6.3, the category H(G((t)), G[[t]]) naturally
acts on the category ĝκc

-modG[[t]]
χ , and this action should be viewed as a

categorical analogue of the action of H(G(F ),K0) on (Rγ)πγ(K0).
Now, by Theorem 3, any object of ĝκc

-modG[[t]]
χ is a direct sum of copies

of V0(χ). Therefore it is sufficient to describe the action of H(G((t)), G[[t]])
on V0(χ). This action is described by the following statement, which follows
from [BD1]: there exists a family of isomorphisms

(7.10) αV : HV � V0(χ) ∼−→ V ⊗ V0(χ), V ∈ Rep LG,

where V is the vector space underlying the representation V . Moreover, these
isomorphisms are compatible with the tensor product structure on HV (given
by the convolution) and on V (given by tensor product of vector spaces).

In view of Theorem 3, this is not surprising. Indeed, it follows from the
definition that HV � V0(χ) is again an object of the category ĝκc

-modG[[t]]
χ .

Therefore it must be isomorphic to UV ⊗C V0(χ), where UV is a vector space.
But then we obtain a functor H(G((t)), G[[t]]) → Vect,HV �→ UV . It follows
from the construction that this is a tensor functor. Therefore the standard
Tannakian formalism implies that UV is isomorphic to V .

The isomorphisms (7.10) should be viewed as the categorical analogues of
the Hecke eigenvector conditions (7.5). The difference is that while in (7.5) the
action of elements of the Hecke algebra on a K0-invariant vector in Rγ amounts
to multiplication by a scalar, the action of an object of the Hecke category
H(G((t)), G[[t]]) on the G[[t]]-equivariant object V0(χ) of ĝκc

-modχ amounts
to multiplication by a vector space, namely, the vector space underlying the
corresponding representation of LG. It is natural to call a module satisfying
this property a Hecke eigenmodule. Thus, we obtain that V0(χ) is a Hecke
eigenmodule. This is in agreement with our expectation that the category
ĝκc

-modG[[t]]
χ is a categorical version of the space of K0-invariant vectors in

Rγ .
One ingredient that is missing in the geometric case is the conjugacy class

γ of LG. We recall that in the classical Langlands correspondence this was the
image of the Frobenius element of the Galois group Gal(Fq/Fq), which does
not have an analogue in the geometric setting where our ground field is C,
which is algebraically closed. So while unramified local systems in the classical
case are parameterized by the conjugacy classes γ, there is only one, up to
an isomorphism, unramified local system in the geometric case. However, this
local system has a large group of automorphisms, namely, LG itself. One can
argue that what replaces γ in the geometric setting is the action of this group
LG by automorphisms of the category ĝκc

-modχ, which we will discuss in the
next two sections.
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7.5 Categories of Representations and D-Modules

When we discussed the procedure of categorification of representations in
Section 3.5, we saw that there are two possible scenarios for constructing
categories equipped with an action of the loop group G((t)). In the first one
we consider categories of D-modules on the ind-schemes G((t))/K, where K
is a “compact” subgroup of G((t)), such as G[[t]] or the Iwahori subgroup. In
the second one we consider categories of representations ĝκc

-modχ. So far we
have focused exclusively on the second scenario, but it is instructive to also
discuss categories of the first type.

In the toy model considered in Section 3.4 we discussed the category of g-
modules with fixed central character and the category of D-modules on the flag
variety G/B. We have argued that both could be viewed as categorifications of
the representation of the group G(Fq) on the space of functions on (G/B)(Fq).
These categories are equivalent, according to the Beilinson-Bernstein theory,
with the functor of global sections connecting the two. Could something like
this be true in the case of affine Kac-Moody algebras as well?

The affine Grassmannian Gr = G((t))/G[[t]] may be viewed as the simplest
possible analogue of the flag variety G/B for the loop group G((t)). Consider
the category of D-modules on G((t))/G[[t]] (see [BD1, FG2] for the precise
definition). We have a functor of global sections from this category to the
category of g((t))-modules. In order to obtain ĝκc

-modules, we need to take
instead the category Dκc

-mod of D-modules twisted by a line bundle Lκc
.

This is the unique line bundle Lκc
on Gr which carries an action of ĝκc

(such
that the central element 1 is mapped to the identity) lifting the natural ac-
tion of g((t)) on Gr. Then for any object M of Dκc

-mod, the space of global
sections Γ (Gr,M) is a ĝκc

-module. Moreover, it is known (see [BD1, FG1])
that Γ (Gr,M) is in fact an object of ĝκc

-modreg. Therefore we have a functor
of global sections

Γ : Dκc
-mod → ĝκc

-modreg .

We note that the categories D -mod and Dκc
-mod are equivalent under the

functor M �→ M ⊗ Lκc
. But the corresponding global sections functors are

very different.
However, unlike in the Beilinson-Bernstein scenario, the functor Γ can-

not possibly be an equivalence of categories. There are two reasons for this.
First of all, the category ĝκc

-modreg has a large center, namely, the algebra
z = Fun OpLG(D), while the center of the category Dκc

-mod is trivial.14 The
second, and more serious, reason is that the category Dκc

-mod carries an

14 Recall that we are under the assumption that G is a connected simply-connected
algebraic group, and in this case Gr has one connected component. In general,
the center of the category Dκc -mod has a basis enumerated by the connected
components of Gr and is isomorphic to the group algebra of the finite group
π1(G).
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additional symmetry, namely, an action of the tensor category RepLG of rep-
resentations of the Langlands dual group LG, and this action trivializes under
the functor Γ as we explain presently.

Over OpLG(D) there exists a canonical principal LG-bundle, which we
will denote by P. By definition, the fiber of P at χ = (F,∇,FLB) ∈ OpLG(D)
is F0, the fiber at 0 ∈ D of the LG-bundle F underlying χ. For an object
V ∈ Rep LG let us denote by V the associated vector bundle over OpLG(D),
i.e.,

V = P ×
LG

V.

Next, consider the category Dκc
-modG[[t]] of G[[t]]-equivariant Dκc

-modu-
les on Gr. It is equivalent to the category

D -modG[[t]] = H(G((t)), G[[t]])

considered above. This is a tensor category, with respect to the convolution
functor, which is equivalent to the category Rep LG. We will use the same
notation HV for the object of Dκc

-modG[[t]] corresponding to V ∈ Rep LG.
The category Dκc

-modG[[t]] acts on Dκc
-mod by convolution functors

M �→ HV � M

which are exact. This amounts to a tensor action of the category RepLG on
Dκc

-mod.
Now, A. Beilinson and V. Drinfeld have proved in [BD1] that there are

functorial isomorphisms

Γ (Gr,HV � M) � Γ (Gr,M) ⊗
z

V, V ∈ Rep LG,

compatible with the tensor structure. Thus, we see that there are non-
isomorphic objects of Dκc

-mod, which the functor Γ sends to isomorphic
objects of ĝκc

-modreg. Therefore the category Dκc
-mod and the functor Γ

need to be modified in order to have a chance to obtain a category equivalent
to ĝκc

-modreg.
In [FG2] it was shown how to modify the category Dκc

-mod, by simulta-
neously “adding” to it z as a center, and “dividing” it by the above Rep LG-
action. As the result, we obtain a candidate for a category that can be equiv-
alent to ĝκc

-modreg. This is the category of Hecke eigenmodules on Gr,
denoted by DHecke

κc
-modreg.

By definition, an object of DHecke
κc

-modreg is an object of Dκc
-mod,

equipped with an action of the algebra z by endomorphisms and a system
of isomorphisms

αV : HV � M
∼−→ V ⊗

z
M, V ∈ Rep LG,

compatible with the tensor structure.
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The above functor Γ naturally gives rise to a functor

(7.11) ΓHecke : DHecke
κc

-modreg → ĝκc
-modreg .

This is in fact a general property. Suppose for simplicity that we have an
abelian category C which is acted upon by the tensor category RepH, where
H is an algebraic group; we denote this functor by M �→ M � V, V ∈ Rep H.
Let CHecke be the category whose objects are collections (M, {αV }V ∈Rep H),
where M ∈ C and {αV } is a compatible system of isomorphisms

αV : M � V
∼−→ V ⊗

C

M, V ∈ Rep H,

where V is the vector space underlying V . One may think of CHecke as the
“de-equivariantized” category C with respect to the action of H. It carries a
natural action of the group H: for h ∈ H, we have

h · (M, {αV }V ∈Rep H) = (M, {(h ⊗ idM) ◦ αV }V ∈Rep H).

In other words, M remains unchanged, but the isomorphisms αV get composed
with h.

The category C may in turn be reconstructed as the category of H-
equivariant objects of CHecke with respect to this action, see [Ga3].

Suppose that we have a functor G : C → C′, such that we have functorial
isomorphisms

(7.12) G(M � V ) � G(M) ⊗
C

V , V ∈ Rep H,

compatible with the tensor structure. Then, according to [AG], there exists a
functor GHecke : CHecke → C′ such that G � GHecke◦Ind, where the functor Ind :
C → CHecke sends M to M �OH , where OH is the regular representation of H.
The functor GHecke may be explicitly described as follows: the isomorphisms
αV and (7.12) give rise to an action of the algebra OH on G(M), and GHecke(M)
is obtained by taking the fiber of G(M) at 1 ∈ H.

We take C = Dκc
-mod, C′ = ĝκc

-modreg, and G = Γ . The only difference
is that now we are working over the base OpLG(D), which we have to take into
account. Thus, we obtain a functor (7.11) (see [FG2, FG4] for more details).
Moreover, the left action of the group G((t)) on Gr gives rise to its action on
the category DHecke

κc
-modreg, and the functor ΓHecke intertwines this action

with the action of G((t)) on ĝκc
-modreg.

The following was conjectured in [FG2]:

Conjecture 3. The functor ΓHecke in formula (7.11) defines an equivalence
of the categories DHecke

κc
-modreg and ĝκc

-modreg.

It was proved in [FG2] that the functor ΓHecke, when extended to the
derived categories, is fully faithful. Furthermore, it was proved in [FG4] that
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it sets up an equivalence of the corresponding I0-equivariant categories, where
I0 = [I, I] is the radical of the Iwahori subgroup.

Let us specialize Conjecture 3 to a point χ = (F,∇,FLB) ∈ OpLG(D).
Then on the right hand side we consider the category ĝκc

-modχ, and on the
left hand side we consider the category DHecke

κc
-modχ. Its objects consist of a

Dκc
-module M and a collection of isomorphisms

(7.13) αV : HV � M
∼−→ VF0 ⊗ M, V ∈ Rep LG.

Here VF0 is the twist of the representation V by the LG-torsor F0. These
isomorphisms have to be compatible with the tensor structure on the category
H(G((t)), G[[t]]).

Conjecture 3 implies that there is a canonical equivalence of categories

(7.14) DHecke
κc

-modχ � ĝκc
-modχ .

It is this conjectural equivalence that should be viewed as an analogue of the
Beilinson-Bernstein equivalence.

From this point of view, one can think of each of the categories DHecke
κc

-modχ

as the second incarnation of the sought-after Langlands category Cσ0 corre-
sponding to the trivial LG-local system.

Now we give another explanation why it is natural to view the cate-
gory DHecke

κc
-modχ as a categorification of an unramified representation of

the group G(F ). First of all, observe that these categories are all equivalent
to each other and to the category DHecke

κc
-mod, whose objects are Dκc

-modules
M together with a collection of isomorphisms

(7.15) αV : HV � M
∼−→ V ⊗ M, V ∈ Rep LG.

Comparing formulas (7.13) and (7.15), we see that there is an equivalence

DHecke
κc

-modχ � DHecke
κc

-mod,

for each choice of trivialization of the LG-torsor F0 (the fiber at 0 ∈ D of the
principal LG-bundle F on D underlying the oper χ).

Now recall from Section 7.1 that to each semi-simple conjugacy class γ in
LG corresponds an irreducible unramified representation (Rγ , πγ) of G(F ) via
the Satake correspondence (7.2). It is known that there is a non-degenerate
pairing

〈, 〉 : Rγ × Rγ−1 → C,

in other words, Rγ−1 is the representation of G(F ) which is contragredient to
Rγ (it may be realized in the space of smooth vectors in the dual space to
Rγ).

Let v ∈ Rγ−1 be a non-zero vector such that K0v = v (this vector is unique
up to a scalar). It then satisfies the Hecke eigenvector property (7.5) (in which
we need to replace γ by γ−1). This allows us to embed Rγ into the space of
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locally constant right K0-invariant functions on G(F ) (equivalently, functions
on G(F )/K0), by using matrix coefficients, as follows:

u ∈ Rγ �→ fu, fu(g) = 〈u, gv〉.

The Hecke eigenvector property (7.5) implies that the functions fu are right
K0-invariant and satisfy the condition

(7.16) f � HV = Tr(γ−1, V )f,

where � denotes the convolution product (6.1). Let C(G(F )/K0)γ be the
space of locally constant functions on G(F )/K0 satisfying (7.16). It carries
a representation of G(F ) induced by its left action on G(F )/K0. We have
constructed an injective map Rγ → C(G(R)/G(R))γ , and one can show that
for generic γ it is an isomorphism.

Thus, we obtain a realization of an irreducible unramified representation
of G(F ) in the space of functions on the quotient G(F )/K0 satisfying the
Hecke eigenfunction condition (7.16). The Hecke eigenmodule condition (7.15)
may be viewed as a categorical analogue of (7.16). Therefore the category
DHecke

κc
-mod of twisted D-modules on Gr = G((t))/K0 satisfying the Hecke

eigenmodule condition (7.15), equipped with a G((t))-action appears to be a
natural categorification of the irreducible unramified representations of G(F ).

7.6 Equivalences Between Categories of Modules

All opers in OpLG(D) correspond to one and the same LG-local system,
namely, the trivial local system. Therefore, according to Conjecture 2, we ex-
pect that the categories ĝκc

-modχ are equivalent to each other. More precisely,
for each isomorphism between the underlying local systems of any two opers
in OpLG(D) we wish to have an equivalence of the corresponding categories,
and these equivalences should be compatible with respect to the operation of
composition of these isomorphisms.

Let us spell this out in detail. Let χ = (F,∇,FLB) and χ′ = (F′,∇′,F′
LB)

be two opers in OpLG(D). Then an isomorphism between the underlying local
systems (F,∇) ∼−→ (F′,∇′) is the same as an isomorphism F0

∼−→ F′
0 between

the LG-torsors F0 and F′
0, which are the fibers of the LG-bundles F and F′,

respectively, at 0 ∈ D. Let us denote this set of isomorphisms by Isomχ,χ′ .
Then we have

Isomχ,χ′ = F0 ×
LG

LG ×
LG

F′
0,

where we twist LG by F0 with respect to the left action and by F′
0 with respect

to the right action. In particular,

Isomχ,χ = LGF0 = F0 ×
LG

Ad LG

is just the group of automorphisms of F0.
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It is instructive to combine the sets Isomχ,χ′ into a groupoid Isom over
OpLG(D). Thus, by definition Isom consists of triples (χ, χ′, φ), where χ, χ′ ∈
OpLG(D) and φ ∈ Isomχ,χ is an isomorphism of the underlying local systems.
The two morphisms Isom → OpLG(D) correspond to sending such a triple to
χ and χ′. The identity morphism OpLG(D) → Isom sends χ to (χ, χ, Id), and
the composition morphism

Isom ×
OpLG(D)

Isom → Isom

corresponds to composing two isomorphisms.
Conjecture 2 has the following more precise formulation for regular opers:

Conjecture 4. For each φ ∈ Isomχ,χ′ there exists an equivalence

Eφ : ĝκc
-modχ → ĝκc

-modχ′ ,

which intertwines the actions of G((t)) on the two categories, such that EId =
Id and there exist isomorphisms βφ,φ′ : Eφ◦φ′ � Eφ ◦ Eφ′ satisfying

βφ◦φ′,φ′′βφ,φ′ = βφ,φ′◦φ′′βφ′,φ′′

for all isomorphisms φ, φ′, φ′′, whenever they may be composed in the appro-
priate order.

In other words, the groupoid Isom over OpLG(D) acts on the category
ĝκc

-modreg fibered over OpLG(D), preserving the action of G((t)) along the
fibers.

In particular, this conjecture implies that the group LGF0 acts on the
category ĝκc

-modχ for any χ ∈ OpLG(D).
Now we observe that Conjecture 3 implies Conjecture 4. Indeed, by Con-

jecture 3, there is a canonical equivalence of categories (7.14),

DHecke
κc

-modχ � ĝκc
-modχ .

It follows immediately from the definition of the category DHecke
κc

-modχ

(namely, formula (7.13)) that for each isomorphism φ ∈ Isomχ,χ′ , i.e., an
isomorphism of the LG-torsors F0 and F′

0 underlying the opers χ and χ′,
there is a canonical equivalence

DHecke
κc

-modχ � DHecke
κc

-modχ′ .

Therefore we obtain the sought-after equivalence Eφ :̂gκc
-modχ → ĝκc

-modχ′ .
Furthermore, it is clear that these equivalences satisfy the conditions of Con-
jecture 4. In particular, they intertwine the actions of G((t)), which affects the
D-module M underlying an object of DHecke

κc
-modχ, but does not affect the

isomorphisms αV .
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Equivalently, we can express this by saying that the groupoid Isom natu-
rally acts on the category DHecke

κc
-modreg. By Conjecture 3, this gives rise to

an action of Isom on ĝκc
-modreg.

In particular, we construct an action of the group (LG)F0 , the twist of
LG by the LG-torsor F0 underlying a particular oper χ, on the category
DHecke

κc
-modχ. Indeed, each element g ∈ (LG)F0 acts on the F0-twist VF0 of

any finite-dimensional representation V of LG. Given an object (M, (αV ))
of DHecke

κc
-modχ′ , we construct a new object, namely, (M, ((g ⊗ IdM) ◦ αV )).

Thus, we do not change the D-module M, but we change the isomorphisms αV

appearing in the Hecke eigenmodule condition (7.13) by composing them with
the action of g on VF0 . According to Conjecture 3, the category DHecke

κc
-modχ

is equivalent to ĝκc
-modχ. Therefore this gives rise to an action of the group

(LG)F0 on ĝκc
-modχ. But this action is much more difficult to describe in

terms of ĝκc
-modules.

7.7 Generalization to other Dominant Integral Weights

We have extensively studied above the categories ĝκc
-modχ and ĝκc

-modG[[t]]
χ

associated to regular opers χ ∈ OpLG(D). However, according to Lemma 2,
the (set-theoretic) fiber of the map α : OpLG(D×) → LocLG(D×) over the
trivial local system σ0 is the disjoint union of the subsets Opλ

LG, λ ∈ P+. Here
we discuss briefly the categories ĝκc

-modχ and ĝκc
-modG[[t]]

χ for χ ∈ Opλ
LG,

where λ �= 0.
Consider the Weyl module Vλ with highest weight λ,

Vλ = U(ĝκc
) ⊗

U(g[[t]]⊕C1)
Vλ.

According to [FG6], we have

(7.17) End
�gκc

Vλ � Fun Opλ
LG .

Let χ ∈ Opλ
LG ⊂ OpLG(D×). Then χ defines a character of the algebra

End
�gκc

Vλ. Let Vλ(χ) be the quotient of Vλ by the kernel of this character.
The following conjecture of [FG6] is an analogue of Theorem 3:

Conjecture 5. Let χ ∈ Opλ
LG ⊂ OpLG(D×). Then the category ĝκc

-modG[[t]]
χ

is equivalent to the category of vector spaces: its unique, up to isomorphism,
irreducible object is Vλ(χ) and any other object is isomorphic to the direct
sum of copies of Vλ(χ).

Note that this is consistent with Conjecture 2, which tells us that the
categories ĝκc

-modG[[t]]
χ should be equivalent to each other for all opers which

are gauge equivalent to the trivial local system on D.
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8 Local Langlands Correspondence: Tamely Ramified
Case

In the previous section we have considered categorical analogues of the ir-
reducible unramified representations of a reductive group G(F ) over a local
non-archimedian field F . We recall that these are the representations contain-
ing non-zero vectors fixed by the maximal compact subgroup K0 ⊂ G(F ).
The corresponding Langlands parameters are unramified admissible homo-
morphisms from the Weil-Deligne group W ′

F to LG, i.e., those which factor
through the quotient

W ′
F → WF → Z,

and whose image in LG is semi-simple. Such homomorphisms are parameter-
ized by semi-simple conjugacy classes in LG.

We have seen that the categorical analogues of unramified representations
of G(F ) are the categories ĝκc

-modχ (equipped with an action of the loop
group G((t))), where χ is a LG-oper on D× whose underlying LG-local system
is trivial. These categories can be called unramified in the sense that they
contain non-zero G[[t]]-equivariant objects. The corresponding Langlands pa-
rameter is the trivial LG-local system σ0 on D×, which should be viewed as
an analogue of an unramified homomorphism W ′

F → LG. However, the local
system σ0 is realized by many different opers, and this introduces an addi-
tional complication into our picture: at the end of the day we need to show
that the categories ĝκc

-modχ, where χ is of the above type, are equivalent
to each other. In particular, Conjecture 4, which describes what we expect to
happen when χ ∈ OpLG(D).

The next natural step is to consider categorical analogues of represen-
tations of G(F ) that contain vectors invariant under the Iwahori subgroup
I ⊂ G[[t]], the preimage of a fixed Borel subgroup B ⊂ G under the evalu-
ation homomorphism G[[t]] → G. We begin this section by recalling a clas-
sification of these representations, due to D. Kazhdan and G. Lusztig [KL]
and V. Ginzburg [CG]. We then discuss the categorical analogues of these
representations following [FG2]–[FG5] and the intricate interplay between the
classical and the geometric pictures.

8.1 Tamely Ramified Representations

The Langlands parameters corresponding to irreducible representations of
G(F ) with I-invariant vectors are tamely ramified homomorphisms W ′

F →
LG. Recall from Section 2.1 that W ′

F = WF �C. A homomorphism W ′
F → LG

is called tamely ramified if it factors through the quotient

W ′
F → Z � C.

According to the relation (2.1), the group Z � C is generated by two elements
F = 1 ∈ Z (Frobenius) and M = 1 ∈ C (monodromy) satisfying the relation
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(8.1) FMF−1 = qM.

Under an admissible tamely ramified homomorphism the generator F goes
to a semi-simple element γ ∈ LG and the generator M goes to a unipotent
element N ∈ LG. According to formula (8.1), they have to satisfy the relation

(8.2) γNγ−1 = Nq.

Alternatively, we may write N = exp(u), where u is a nilpotent element of
Lg. Then this relation becomes

γuγ−1 = qu.

Thus, we have the following bijection between the sets of equivalence
classes
(8.3)

tamely ramified admissible
homomorphisms W ′

F → LG
⇐⇒ pairs γ ∈ LG, semi-simple,

u ∈ Lg, nilpotent, γuγ−1 = qu

In both cases equivalence relation amounts to conjugation by an element of
LG.

Now to each Langlands parameter of this type we wish to attach an irre-
ducible representation of G(F ) which contains non-zero I-invariant vectors. It
turns out that if G = GLn there is indeed a bijection, proved in [BZ], between
the sets of equivalence classes of the following objects:
(8.4)

tamely ramified admissible
homomorphisms W ′

F → GLn
⇐⇒ irreducible representations

(R, π) of GLn(F ), Rπ(I) �= 0

However, such a bijection is no longer true for other reductive groups: two
new phenomena appear, which we discuss presently.

The first one is the appearance of L-packets. One no longer expects to be
able to assign to a particular admissible homomorphism W ′

F → LG a single
irreducible smooth representations of G(F ). Instead, a finite collection of such
representations (more precisely, a collection of equivalence classes of represen-
tations) is assigned, called an L-packet. In order to distinguish representations
in a given L-packet, one needs to introduce an additional parameter. We will
see how this is done in the case at hand shortly. However, and this is the second
subtlety alluded to above, it turns out that not all irreducible representations
of G(F ) within the L-packet associated to a given tamely ramified homomor-
phism W ′

F → LG contain non-zero I-invariant vectors. Fortunately, there is
a certain property of the extra parameter used to distinguish representations
inside the L-packet that tells us whether the corresponding representation of
G(F ) has I-invariant vectors.

In the case of tamely ramified homomorphisms W ′
F → LG this extra pa-

rameter is an irreducible representation ρ of the finite group C(γ, u) of com-
ponents of the simultaneous centralizer of γ and u in LG, on which the center
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of LG acts trivially (see [Lu1]). In the case of G = GLn these centralizers
are always connected, and so this parameter never appears. But for other re-
ductive groups G this group of components is often non-trivial. The simplest
example is when LG = G2 and u is a subprincipal nilpotent element of the
Lie algebra Lg.15 In this case for some γ satisfying γuγ−1 = qu the group of
components C(γ, u) is the symmetric group S3, which has three irreducible
representations (up to equivalence). Each of them corresponds to a particular
member of the L-packet associated with the tamely ramified homomorphism
W ′

F → LG defined by (γ, u). Thus, the L-packet consists of three (equivalence
classes of) irreducible smooth representations of G(F ). However, not all of
them contain non-zero I-invariant vectors.

The representations ρ of the finite group C(γ, u) which correspond to repre-
sentations of G(F ) with I-invariant vectors are distinguished by the following
property. Consider the Springer fiber Spu. We recall that

(8.5) Spu = {b′ ∈ LG/LB |u ∈ b′}.

The group C(γ, u) acts on the homology of the variety Spγ
u of γ-fixed points

of Spu. A representation ρ of C(γ, u) corresponds to a representation of G(F )
with non-zero I-invariant vectors if and only if ρ occurs in the homology of
Spγ

u, H•(Spγ
u).

In the case of G2 the Springer fiber Spu of the subprincipal element u is
a union of four projective lines connected with each other as in the Dynkin
diagram of D4. For some γ the set Spγ

u is the union of a projective line (cor-
responding to the central vertex in the Dynkin diagram of D4) and three
points (each in one of the remaining three projective lines). The correspond-
ing group C(γ, u) = S3 on Spγ

u acts trivially on the projective line and by
permutation of the three points. Therefore the trivial and the two-dimensional
representations of S3 occur in H•(Spγ

u), but the sign representation does not.
The irreducible representations of G(F ) corresponding to the first two con-
tain non-zero I-invariant vectors, whereas the one corresponding to the sign
representation of S3 does not.

The ultimate form of the local Langlands correspondence for representa-
tions of G(F ) with I-invariant vectors is then as follows (here we assume, as
in [KL, CG]), that the group G is split and has connected center):
(8.6)

triples (γ, u, ρ), γuγ−1 = qu,
ρ ∈ Rep C(γ, u) occurs in H•(Spγ

u, C) ⇐⇒ irreducible representations
(R, π) of G(F ), Rπ(I) �= 0

Again, this should be understood as a bijection between two sets of equivalence
classes of the objects listed. This bijection is due to [KL] (see also [CG]). It
was conjectured by Deligne and Langlands, with a subsequent modification
(addition of ρ) made by Lusztig.
15 The term “subprincipal” means that the adjoint orbit of this element has codi-

mension 2 in the nilpotent cone.
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How to set up this bijection? The idea is to replace irreducible representa-
tions of G(F ) appearing on the right hand side of (8.6) with irreducible mod-
ules over the corresponding Hecke algebra H(G(F ), I). Recall from Section 6.1
that this is the algebra of compactly supported I bi-invariant functions on
G(F ), with respect to convolution. It naturally acts on the space of I-invariant
vectors of any smooth representation of G(F ) (see formula (6.2)). Thus, we
obtain a functor from the category of smooth representations of G(F ) to the
category of H(G(F ), I). According to a theorem of A. Borel [B1], it induces a
bijection between the set of equivalence classes of irreducible representations
of G(F ) with non-zero I-invariant vectors and the set of equivalence classes
of irreducible H(G(F ), I)-modules.

The algebra H(G(F ), I) is known as the affine Hecke algebra and has
the standard description in terms of generators and relations. However, for
our purposes we need another description, due to [KL, CG], which identifies
it with the equivariant K-theory of the Steinberg variety

St = ˜N ×
N

˜N,

where N ⊂ Lg is the nilpotent cone and ˜N is the Springer resolution

˜N = {x ∈ N, b′ ∈ LG/LB | x ∈ b′}.

Thus, a point of St is a triple consisting of a nilpotent element of Lg and two
Borel subalgebras containing it. The group LG × C

× naturally acts on St,
with LG conjugating members of the triple and C

× acting by multiplication
on the nilpotent elements,

(8.7) a · (x, b′, b′′) = (a−1x, b′, b′′).

According to a theorem of [KL, CG], there is an isomorphism

(8.8) H(G(F ), I) � K
LG×C

×
(St).

The right hand side is the LG×C
×-equivariant K-theory of St. It is an algebra

with respect to a natural operation of convolution (see [CG] for details). It is
also a free module over its center, isomorphic to

K
LG×C

×
(pt) = Rep LG ⊗ C[q,q−1].

Under the isomorphism (8.8) the element q goes to the standard parameter
q of the affine Hecke algebra H(G(F ), I) (here we consider H(G(F ), I) as a
C[q,q−1]-module).

Now, the algebra K
LG×C

×
(St), and hence the algebra H(G(F ), I), has a

natural family of modules which are parameterized precisely by the conjugacy
classes of pairs (γ, u) as above. On these modules H(G(F ), I) acts via a central
character corresponding to a point in Spec Rep LG ⊗

C

C[q,q−1], which is just



Ramifications of the Geometric Langlands Program 103

a pair (γ, q), where γ is a semi-simple conjugacy class in LG and q ∈ C
×. In

our situation q is the cardinality of the residue field of F (hence a power of a
prime), but in what follows we will allow a larger range of possible values of q:
all non-zero complex numbers except for the roots of unity. Consider the quo-
tient of H(G(F ), I) by the central character defined by (γ, u). This is just the
algebra K

LG×C
×
(St), specialized at (γ, q). We denote it by K

LG×C
×
(St)(γ,q).

Now for a nilpotent element u ∈ N consider the Springer fiber Spu. The
condition that γuγ−1 = qu means that u, and hence Spu, is stabilized by the
action of (γ, q) ∈ LG×C

× (see formula (8.7)). Let A be the smallest algebraic
subgroup of LG×C

× containing (γ, q). The algebra K
LG×C

×
(St)(γ,q) naturally

acts on the equivariant K-theory KA(Spu) specialized at (γ, q),

KA(Spu)(γ,q) = KA(Spu) ⊗
Rep A

C(γ,q).

It is known that KA(Spu)(γ,q) is isomorphic to the homology H•(Spγ
u) of the

γ-fixed subset of Spu (see [KL, CG]). Thus, we obtain that KA(Spu)(γ,q) is a
module over H(G(F ), I).

Unfortunately, these H(G(F ), I)-modules are not irreducible in general,
and one needs to work harder to describe the irreducible modules over
H(G(F ), I). For G = GLn one can show that each of these modules has
a unique irreducible quotient, and this way one recovers the bijection (8.4).
But for a general groups G the finite groups C(γ, u) come into play. Namely,
the group C(γ, u) acts on KA(Spu)(γ,q), and this action commutes with the
action of K

LG×C
×
(St)(γ,q). Therefore we have a decomposition

KA(Spu)(γ,q) =
⊕

ρ∈Irrep C(γ,u)

ρ ⊗ KA(Spu)(γ,q,ρ),

of KA(Spu)(γ,q) as a representation of C(γ, u) × H(G(F ), I). One shows (see
[KL, CG] for details) that each H(G(F ), I)-module KA(Spu)(γ,q,ρ) has a
unique irreducible quotient, and this way one obtains a parameterization of
irreducible modules by the triples appearing in the left hand side of (8.6).
Therefore we obtain that the same set is in bijection with the right hand
side of (8.6). This is how the tame local Langlands correspondence (8.6), also
known as the Deligne–Langlands conjecture, is proved.

8.2 Categories Admitting (ĝκc
, I) Harish-Chandra Modules

We now wish to find categorical analogues of the above results in the frame-
work of the categorical Langlands correspondence for loop groups.

As we explained in Section 6.2, in the categorical setting a representation
of G(F ) is replaced by a category ĝκc

-modχ equipped with an action of G((t)),
and the space of I-invariant vectors is replaced by the subcategory of (ĝκc

, I)
Harish-Chandra modules in ĝκc

-modχ. Hence the analogue of the question
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which representations of G(F ) admit non-zero I-invariant vectors becomes
the following question: for what χ does the category ĝκc

-modχ contain non-
zero (ĝκc

, I) Harish-Chandra modules?
To answer this question, we introduce the space OpRS

LG(D) of opers with
regular singularity. By definition (see [BD1], Sect. 3.8.8), an element of this
space is an LN [[t]]-conjugacy class of operators of the form

(8.9) ∇ = ∂t + t−1 (p−1 + v(t)) ,

where v(t) ∈ Lb[[t]]. One can show that a natural map OpRS
LG(D) →

OpLG(D×) is an embedding.
Following [BD1], we associate to an oper with regular singularity its

residue. For an operator (8.9) the residue is by definition equal to p−1+v(0).
Clearly, under gauge transformations by an element x(t) of LN [[t]] the residue
gets conjugated by x(0) ∈ N . Therefore its projection onto

Lg/LG = Spec(Fun Lg)
LG = Spec(Fun Lh)W = h∗/W

is well-defined.
Given µ ∈ h∗, we write �(µ) for the projection of µ onto h∗/W . Finally,

let P be the set of integral (not necessarily dominant) weights of g, viewed as
a subset of h∗. The next result follows from [F3, FG2].

Lemma 4. The category ĝκc
-modχ contains a non-zero (ĝκc

, I) Harish-Chan-
dra module if and only if

(8.10) χ ∈
⊔

ν∈P/W

OpRS
LG(D)
(ν).

Thus, the opers χ for which the corresponding category ĝκc
-modχ contain

non-trivial I-equivariant objects are precisely the points of the subscheme
(8.10) of OpLG(D×). The next question is what are the corresponding LG-
local systems.

Let LocRS,uni
LG

⊂ LocLG(D×) be the locus of LG-local systems on D×

with regular singularity and unipotent monodromy. Such a local system is
determined, up to an isomorphism, by the conjugacy class of its monodromy
(see, e.g., [BV], Sect. 8). Therefore LocRS,uni

LG
is an algebraic stack isomorphic

to N/LG. The following result is proved in a way similar to the proof of
Lemma 2.

Lemma 5. If the local system underlying an oper χ ∈ OpLG(D×) belongs to
LocRS,uni

LG
, then χ belongs to the subset (8.10) of OpLG(D×).

Indeed, the subscheme (8.10) is precisely the (set-theoretic) preimage of
LocRS,uni

LG
⊂ LocLG(D×) under the map α : OpLG(D×) → LocLG(D×).
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This hardly comes as a surprise. Indeed, by analogy with the classical
Langlands correspondence we expect that the categories ĝκc

-modχ contain-
ing non-trivial I-equivariant objects correspond to the Langlands parame-
ters which are the geometric counterparts of tamely ramified homomorphisms
W ′

F → LG. The most obvious candidates for those are precisely the LG-local
systems on D× with regular singularity and unipotent monodromy. For this
reason we will call such local systems tamely ramified.

Let us summarize: suppose that σ is a tamely ramified LG-local system
on D×, and let χ be a LG-oper that is in the gauge equivalence class of
σ. Then χ belongs to the subscheme (8.10), and the corresponding cate-
gory ĝκc

-modχ contains non-zero I-equivariant objects, by Lemma 4. Let
ĝκc

-modI
χ be the corresponding category of I-equivariant (or, equivalently,

(ĝκc
, I) Harish-Chandra) modules. Note that according to Conjecture 2, the

categories ĝκc
-modχ (resp., ĝκc

-modI
χ) should be equivalent to each other for

all χ which are gauge equivalent to each other as LG-local systems.
In the next section, following [FG2], we will give a conjectural description

of the categories ĝκc
-modI

χ for χ ∈ OpRS
LG(D)
(−ρ) in terms of the category

of coherent sheaves on the Springer fiber corresponding to the residue of χ.
This description in particular implies that at least the derived categories of
these categories are equivalent to each other for the opers corresponding to
the same local system. We have a similar conjecture for χ ∈ OpRS

LG(D)
(ν) for
other ν ∈ P , which the reader may easily reconstruct from our discussion of
the case ν = −ρ.

8.3 Conjectural Description of the Categories of (ĝκc
, I)

Harish-Chandra Modules

Let us consider one of the connected components of the subscheme (8.10),
namely, OpRS

LG(D)
(−ρ). Here it will be convenient to use a different realization
of this space, as the space Opnilp

LG
of nilpotent opers introduced in [FG2].

By definition, an element of this space is an LN [[t]]-gauge equivalence class
of operators of the form

(8.11) ∇ = ∂t + p−1 + v(t) +
v

t
,

where v(t) ∈ Lb[[t]] and v ∈ Ln. It is shown in [FG2] that Opnilp
LG

�
OpRS

LG(D)
(−ρ). In particular, Opnilp
LG

is a subspace of OpLG(D×).
We have the (secondary) residue map

Res : Opnilp
LG

→ LnFLB,0
= FLB,0 ×

LB

Ln,

sending a gauge equivalence class of operators (8.11) to v. By abuse of nota-
tion, we will denote the corresponding map

Opnilp
LG

→ Ln/LB = ˜N/LG
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also by Res.
For any χ ∈ Opnilp

LG
the LG-gauge equivalence class of the corresponding

connection is a tamely ramified LG-local system on D×. Moreover, its mon-
odromy conjugacy class is equal to exp(2πiRes(χ)).

We wish to describe the category ĝκc
-modI

χ of (ĝκc
, I) Harish-Chandra

modules with the central character χ ∈ Opnilp
LG

. However, here we face the first
major complication as compared to the unramified case. While in the ramified
case we worked with the abelian category ĝκc

-modG[[t]]
χ , this does not seem to

be possible in the tamely ramified case. So from now on we will work with the
appropriate derived category Db(ĝκc

-modχ)I . By definition, this is the full
subcategory of the bounded derived category Db(ĝκc

-modχ) whose objects
are complexes with cohomologies in ĝκc

-modI
χ.

Roughly speaking, the conjecture of [FG2] is that Db(ĝκc
-modχ)I is equiv-

alent to Db(QCoh(SpRes(χ))), where QCoh(SpRes(χ)) is the category of quasi-
coherent sheaves on the Springer fiber of Res(χ). However, we need to make
some adjustments to this statement. These adjustments are needed to ar-
rive at a “nice” statement, Conjecture 6 below. We now explain what these
adjustments are the reasons behind them.

The first adjustment is that we need to consider a slightly larger category
of representations than Db(ĝκc

-modχ)I . Namely, we wish to include exten-
sions of I-equivariant ĝκc

-modules which are not necessarily I-equivariant, but
only I0-equivariant, where I0 = [I, I]. To explain this more precisely, let us
choose a Cartan subgroup H ⊂ B ⊂ I and the corresponding Lie subalgebra
h ⊂ b ⊂ Lie I. We then have an isomorphism I = H � I0. An I-equivariant
ĝκc

-module is the same as a module on which h acts diagonally with eigenval-
ues given by integral weights and the Lie algebra Lie I0 acts locally nilpotently.
However, there may exist extensions between such modules on which the ac-
tion of h is no longer semi-simple. Such modules are called I-monodromic.
More precisely, an I-monodromic ĝκc

-module is a module that admits an in-
creasing filtration whose consecutive quotients are I-equivariant. It is natural
to include such modules in our category. However, it is easy to show that an
I-monodromic object of ĝκc

-modχ is the same as an I0-equivariant object of
ĝκc

-modχ for any χ ∈ Opnilp
LG

(see [FG2]). Therefore instead of I-monodromic
modules we will use I0-equivariant modules. Denote by Db(ĝκc

-modχ)I0
the

the full subcategory of Db(ĝκc
-modχ) whose objects are complexes with the

cohomologies in ĝκc
-modI0

χ .
The second adjustment has to do with the non-flatness of the Springer

resolution ˜N → N. By definition, the Springer fiber Spu is the fiber product
˜N ×

N
pt, where pt is the point u ∈ N. This means that the structure sheaf of

Spu is given by

(8.12) OSpu
= O

�N
⊗
ON

C.
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However, because the morphism ˜N → N is not flat, this tensor product func-
tor is not left exact, and there are non-trivial higher derived tensor products
(the Tor’s). Our (conjectural) equivalence is not going to be an exact functor:
it sends a general object of the category ĝκc

-modI0

χ not to an object of the
category of quasicoherent sheaves, but to a complex of sheaves, or, more pre-
cisely, an object of the corresponding derived category. Hence we are forced to
work with derived categories, and so the higher derived tensor products need
to be taken into account.

To understand better the consequences of this non-exactness, let us con-
sider the following model example. Suppose that we have established an
equivalence between the derived category Db(QCoh(˜N)) and another derived
category Db(C). In particular, this means that both categories carry an action
of the algebra FunN (recall that N is an affine algebraic variety). Let us sup-
pose that the action of FunN on Db(C) comes from its action on the abelian
category C. Thus, C fibers over N, and let Cu the fiber category corresponding
to u ∈ N. This is the full subcategory of C whose objects are objects of C

on which the ideal of u in FunN acts by 0.16 What is the category Db(Cu)
equivalent to?

It is tempting to say that it is equivalent to Db(QCoh(Spu). However,
this does not follow from the equivalence of Db(QCoh(N)) and Db(C) because
of the tensor product (8.12) having non-trivial higher derived functors. The
correct answer is that Db(Cu) is equivalent to the category Db(QCoh(SpDG

u ),
where SpDG

u is the “DG fiber” of ˜N → N at u. By definition, a quasicoherent
sheaf on SpDG

u is a DG module over the DG algebra

(8.13) OSpDG
u

= O
�N

L
⊗
ON

Cu,

where we now take the full derived functor of tensor product. Thus, the cat-
egory Db(QCoh(SpDG

u )) may be thought of as the derived category of quasi-
coherent sheaves on the “DG scheme” SpDG

u (see [CK] for a precise definition
of DG scheme).

Finally, the last adjustment is that we should consider the non-reduced
Springer fibers. This means that instead of the Springer resolution ˜N we should
consider the “thickened” Springer resolution

˜

˜N = Lg̃ ×
Lg

N,

where Lg̃ is the so-called Grothendieck alteration,
Lg̃ = {x ∈ Lg, b′ ∈ LG/LB | x ∈ b′}.

The variety ˜

˜N is non-reduced, and the underlying reduced variety is the
Springer resolution ˜N. For instance, the fiber of ˜N over a regular element
16 The relationship between C and Cu is similar to the relationship between �gκc -mod

and and �gκc -modχ, where χ ∈ OpLG(D×).
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in N consists of a single point, but the corresponding fiber of ˜

˜N is the spec-
trum of the Artinian ring h0 = Fun Lh/(Fun Lh)W

+ . Here (Fun Lh)W
+ is the

ideal in Fun Lh generated by the augmentation ideal of the subalgebra of W -
invariants. Thus, Spech0 is the scheme-theoretic fiber of � : Lh → Lh/W at
0. It turns out that in order to describe the category Db(ĝκc

-modχ)I0
we need

to use the “thickened” Springer resolution.
Let us summarize: in order to construct the sought-after equivalence of

categories we take, instead of individual Springer fibers, the whole Springer

resolution, and we further replace it by the “thickened” Springer resolution ˜

˜N

defined above. In this version we will be able to formulate our equivalence in
such a way that we avoid DG schemes.

This means that instead of considering the categories ĝκc
-modχ for in-

dividual nilpotent opers χ, we should consider the “universal” category
ĝκc

-modnilp which is the “family version” of all of these categories. By de-
finition, the category ĝκc

-modnilp is the full subcategory of ĝκc
-mod whose

objects have the property that the action of Z(ĝ) = Fun OpLG(D) on them
factors through the quotient FunOpLG(D) → Fun Opnilp

LG
. Thus, the category

ĝκc
-modnilp is similar to the category ĝκc

-modreg that we have considered
above. While the former fibers over Opnilp

LG
, the latter fibers over OpLG(D).

The individual categories ĝκc
-modχ are now realized as fibers of these cate-

gories over particular opers χ.
Our naive idea was that for each χ ∈ Opnilp

LG
the category Db(ĝκc

-modχ)I0

is equivalent to QCoh(SpRes(χ)). We would like to formulate now a “family
version” of such an equivalence. To this end we form the fiber product

L˜ñ = Lg̃ ×
Lg

Ln.

It turns out that this fiber product does not suffer from the problem of the
individual Springer fibers, as the following lemma shows:

Lemma 6 ([FG2],Lemma 6.4). The derived tensor product

Fun Lg̃
L
⊗

Fun Lg

Fun Ln

is concentrated in cohomological dimension 0.

The variety L˜ñ may be thought of as the family of (non-reduced) Springer
fibers parameterized by Ln ⊂ Lg. It is important to note that it is singular,
reducible and non-reduced. For example, if g = sl2, it has two components,
one of which is P

1 (the Springer fiber at 0) and the other is the doubled affine
line (i.e., Spec C[x, y]/(y2)).

We note that the corresponding reduced scheme is

(8.14) Lñ = ˜N ×
N

Ln.
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However, the derived tensor product corresponding to (8.14) is not concen-
trated in cohomological dimension 0, and this is the reason why we prefer to
use L˜ñ rather than Lñ.

Now we set
MOpnilp

LG
= Opnilp

LG
×

Ln/LB

L˜ñ/LB,

where we use the residue morphism Res : Opnilp
LG

→ Ln/LB. Thus, informally
MOpnilp

LG
may be thought as the family over Opnilp

LG
whose fiber over χ ∈ Opnilp

LG
is the (non-reduced) Springer fiber of Res(χ).

The space MOpnilp
LG

is the space of Miura opers whose underlying opers
are nilpotent, introduced in [FG2].

We also introduce the category ĝκc
-modI0

nilp which is a full subcategory of
ĝκc

-modnilp whose objects are I0-equivariant. Let Db(ĝκc
-modnilp)I0

be the
corresponding derived category.

Now we can formulate the Main Conjecture of [FG2]:

Conjecture 6. There is an equivalence of categories

(8.15) Db(ĝκc
-modnilp)I0 � Db(QCoh(MOpnilp

LG
))

which is compatible with the action of the algebra FunOpnilp
LG

on both cate-
gories.

Note that the action of Fun Opnilp
LG

on the first category comes from the
action of the center Z(ĝ), and on the second category it comes from the fact
that MOpnilp

LG
is a scheme over Opnilp

LG
.

Another important remark is that the equivalence (8.15) does not preserve
the t-structures on the two categories. In other words, (8.15) is expected in
general to map objects of the abelian category ĝκc

-modI0

nilp to complexes in
Db(QCoh(MOpnilp

LG
)), and vice versa.

There are similar conjectures for the categories corresponding to the spaces
Opnilp,λ

LG
of nilpotent opers with dominant integral weights λ ∈ P+.

In the next section we will discuss the connection between Conjecture 6
and the classical tamely ramified Langlands correspondence. We then present
some evidence for this conjecture.

8.4 Connection between the Classical and the Geometric Settings

Let us discuss the connection between the equivalence (8.15) and the real-
ization of representations of affine Hecke algebras in terms of K-theory of
the Springer fibers. As we have explained, we would like to view the cate-
gory Db(ĝκc

-modχ)I0
for χ ∈ Opnilp

LG
as, roughly, a categorification of the

space Rπ(I) of I-invariant vectors in an irreducible representation (R, π) of
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G(F ). Therefore, we expect that the Grothendieck group of the category
Db(ĝκc

-modχ)I0
is somehow related to the space Rπ(I).

Let us try to specialize the statement of Conjecture 6 to a particular oper

χ = (F,∇,FLB) ∈ Opnilp
LG

.

Let ˜Sp
DG

Res(χ) be the DG fiber of MOpnilp
LG

over χ. By definition (see Section 8.3),
the residue Res(χ) of χ is a vector in the twist of Ln by the LB-torsor FLB,0.

It follows that ˜Sp
DG

Res(χ) is the DG fiber over Res(χ) of the FLB,0-twist of the
Grothendieck alteration.

If we trivialize FLB,0, then u = Res(χ) becomes an element of Ln. By

definition, the (non-reduced) DG Springer fiber ˜Sp
DG

u is the DG fiber of the
Grothendieck alteration Lg̃ → Lg at u. In other words, the corresponding
structure sheaf is the DG algebra

O
�Sp

DG
u

= OL
�g

L
⊗

OLg

Cu

(compare with formula (8.13)).
To see what these DG fibers look like, let u = 0. Then the naive Springer

fiber is just the flag variety LG/LB (it is reduced in this case), and O
�Sp0

is
the structure sheaf of LG/LB. But the sheaf O

�Sp
DG
0

is a sheaf of DG algebras,

which is quasi-isomorphic to the complex of differential forms on LG/LB, with

the zero differential. In other words, ˜Sp
DG

0 may be viewed as a “Z-graded man-
ifold” such that the corresponding supermanifold, obtained by replacing the
Z-grading by the corresponding Z/2Z-grading, is ΠT (LG/LB), the tangent
bundle to LG/LB with the parity of the fibers changed from even to odd.

We expect that the category ĝκc
-modI0

nilp is flat over Opnilp
LG

. Therefore,
specializing Conjecture 6 to a particular oper χ ∈ Opnilp

LG
, we obtain as a

corollary an equivalence of categories

(8.16) Db(ĝκc
-modχ)I0 � Db(QCoh(˜Sp

DG

Res(χ))).

This bodes well with Conjecture 2 saying that the categories ĝκc
-modχ1 and

ĝκc
-modχ2 (and hence Db(ĝκc

-modχ1)
I0

and Db(ĝκc
-modχ2)

I0
) should be

equivalent if the underlying local systems of the opers χ1 and χ2 are isomor-
phic. For nilpotent opers χ1 and χ2 this is so if and only if their monodromies
are conjugate to each other. Since their monodromies are obtained by expo-
nentiating their residues, this is equivalent to saying that the residues, Res(χ1)
and Res(χ2), are conjugate with respect to the FLB,0-twist of LG. But in this
case the DG Springer fibers corresponding to χ1 and χ2 are also isomorphic,
and so Db(ĝκc

-modχ1)
I0

and Db(ĝκc
-modχ2)

I0
are equivalent to each other,

by (8.16).
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The Grothendieck group of the category Db(QCoh(˜Sp
DG

u )), where u is
any nilpotent element, is the same as the Grothendieck group of QCoh(Spu).
In other words, the Grothendieck group does not “know” about the DG or

the non-reduced structure of ˜Sp
DG

u . Hence it is nothing but the algebraic
K-theory K(Spu). As we explained at the end of Section 8.1, equivariant
variants of this algebraic K-theory realize the “standard modules” over the
affine Hecke algebra H(G(F ), I). Moreover, the spaces of I-invariant vectors
Rπ(I) as above, which are naturally modules over the affine Hecke algebra, may
be realized as subquotients of K(Spu). This indicates that the equivalences
(8.16) and (8.15) are compatible with the classical results.

However, at first glance there are some important differences between the
classical and the categorical pictures, which we now discuss in more detail.

In the construction of H(G(F ), I)-modules outlined in Section 8.1 we had
to pick a semi-simple element γ of LG such that γuγ−1 = qu, where q is the
number of elements in the residue field of F . Then we consider the specialized
A-equivariant K-theory KA(Spu)(γ,q) where A is the the smallest algebraic
subgroup of LG × C

× containing (γ, q). This gives K(Spu) the structure of
an H(G(F ), I)-module. But this module carries a residual symmetry with
respect to the group C(γ, u) of components of the centralizer of γ and u in
LG, which commutes with the action of H(G(F ), I). Hence we consider the
H(G(F ), I)-module

KA(Spu)(γ,q,ρ) = HomC(γ,u)(ρ,K(Spu)),

corresponding to an irreducible representation ρ of C(γ, u). Finally, each of
these components has a unique irreducible quotient, and this is an irreducible
representation of H(G(F ), I) which is realized on the space Rπ(I), where (R, π)
is an irreducible representation of G(F ) corresponding to (γ, u, ρ) under the
bijection (8.6). How is this intricate structure reflected in the categorical set-
ting?

Our category Db(QCoh(˜Sp
DG

u )), where u = Res(χ), is a particular cate-
gorification of the (non-equivariant) K-theory K(Spu). Note that in the clas-
sical local Langlands correspondence (8.6) the element u of the triple (γ, u, ρ)
is interpreted as the logarithm of the monodromy of the corresponding rep-
resentation of the Weil-Deligne group W ′

F . This is in agreement with the
interpretation of Res(χ) as the logarithm of the monodromy of the LG-local
system on D× corresponding to χ, which plays the role of the local Langlands
parameter for the category ĝκc

-modχ (up to the inessential factor 2πi).
But what about the other parameters, γ and ρ? And why does our category

correspond to the non-equivariant K-theory of the Springer fiber, and not the
equivariant K-theory, as in the classical setting?

The element γ corresponding to the Frobenius in W ′
F does not seem to

have an analogue in the geometric setting. We have already seen this above in
the unramified case: while in the classical setting unramified local Langlands
parameters are the semi-simple conjugacy classes γ in LG, in the geometric
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setting we have only one unramified local Langlands parameter, namely, the
trivial local system.

To understand better what’s going on here, we revisit the unramified case.
Recall that the spherical Hecke algebra H(G(F ),K0) is isomorphic to the rep-
resentation ring Rep LG. The one-dimensional space of K0-invariants in an ir-
reducible unramified representation (R, π) of G(F ) realizes a one-dimensional
representation of H(G(F ),K0), i.e., a homomorphism Rep LG → C. The un-
ramified Langlands parameter γ of (R, π), which is a semi-simple conjugacy
class in LG, is the point in Spec(Rep LG) corresponding to this homomor-
phism. What is a categorical analogue of this homomorphism? The categori-
fication of Rep LG is the category Rep LG. The product structure on Rep LG
is reflected in the structure of tensor category on Rep LG. On the other hand,
the categorification of the algebra C is the category Vect of vector spaces.
Therefore a categorical analogue of a homomorphism Rep LG → C is a func-
tor Rep LG → Vect respecting the tensor structures on both categories. Such
functors are called the fiber functors. The fiber functors form a category of
their own, which is equivalent to the category of LG-torsors. Thus, any two
fiber functors are isomorphic, but not canonically. In particular, the group of
automorphisms of each fiber functor is isomorphic to LG. (Incidentally, this
is how LG is reconstructed from a fiber functor in the Tannakian formalism.)
Thus, we see that while in the categorical world we do not have analogues of
semi-simple conjugacy classes γ (the points of Spec(Rep LG)), their role is in
some sense played by the group of automorphisms of a fiber functor.

This is reflected in the fact that while in the categorical setting we have a
unique unramified Langlands parameter, namely, the trivial LG-local system
σ0 on D×, this local system has a non-trivial group of automorphisms, namely,
LG. We therefore expect that the group LG should act by automorphisms
of the Langlands category Cσ0 corresponding to σ0, and this action should
commute with the action of the loop group G((t)) on Cσ0 . It is this action
of LG that is meant to compensate for the lack of unramified Langlands
parameters, as compared to the classical setting.

We have argued in Section 7 that the category ĝκc
-modχ, where χ =

(F,∇,FLB) ∈ OpLG(D), is a candidate for the Langlands category Cσ0 . There-
fore we expect that the group LG (more precisely, its twist LGF) acts on the
category ĝκc

-modχ. In Section 7.6 we showed how to obtain this action using
the conjectural equivalence between ĝκc

-modχ and the category DHecke
κc

-modχ

of Hecke eigenmodules on the affine Grassmannian Gr (see Conjecture 3). The
category DHecke

κc
-modχ was defined in Section 7.5 as a “de-equivariantization”

of the category Dκc
-mod of twisted D-modules on Gr with respect to the

monoidal action of the category Rep LG.
Now comes a crucial observation which will be useful for understanding

the way things work in the tamely ramified case: the category Rep LG may
be interpreted as the category of LG-equivariant quasicoherent sheaves on the
variety pt = Spec C. In other words, Rep LG may be interpreted as the cate-
gory of quasicoherent sheaves on the stack pt /LG. The existence of monoidal
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action of the category Rep LG on Dκc
-mod should be viewed as the statement

that the category Dκc
-mod “lives” over the stack pt /LG. The statement of

Conjecture 3 may then be interpreted as saying that

ĝκc
-modχ � Dκc

-mod ×
pt /LG

pt .

In other words, if C is the conjectural Langlands category fibering over the
stack LocLG(D×) of all LG-local systems on D×, then

Dκc
-mod � C ×

LocLG(D×)
pt /LG,

whereas
ĝκc

-modχ � C ×
LocLG(D×)

pt,

where the morphism pt → LocLG(D×) corresponds to the oper χ.
Thus, in the categorical setting there are two different ways to think about

the trivial local system σ0: as a point (defined by a particular LG-bundle on
D with connection, such as a regular oper χ), or as a stack pt /LG. The
base change of the Langlands category in the first case gives us a category
with an action of LG, such as the categories ĝκc

-modχ or DHecke
κc

-mod. The
base change in the second case gives us a category with a monoidal ac-
tion of Rep LG, such as the category Dκc

-mod. We can go back and forth
between the two by applying the procedures of equivariantization and de-
equivariantization with respect to LG and Rep LG, respectively.

Now we return to the tamely ramified case. The semi-simple element γ ap-
pearing in the triple (γ, u, ρ) plays the same role as the unramified Langlands
parameter γ. However, now it must satisfy the identity γuγ−1 = qu. Recall
that the center Z of H(G(F ), I) is isomorphic to Rep LG, and so SpecZ is
the set of all semi-simple elements in LG. For a fixed nilpotent element u the
equation γuγ−1 = qu cuts out a locus Cu in Spec Z corresponding to those
central characters which may occur on irreducible H(G(F ), I)-modules corre-
sponding to u. In the categorical setting (where we set q = 1) the analogue of
Cu is the centralizer Z(u) of u in LG, which is precisely the group Aut(σ) of
automorphisms of a tame local system σ on D× with monodromy exp(2πiu).
On general grounds we expect that the group Aut(σ) acts on the Langlands
category Cσ, just as we expect the group LG of automorphisms of the trivial
local system σ0 to act on the category Cσ0 . It is this action that replaces the
parameter γ in the geometric setting.

In the classical setting we also have one more parameter, ρ. Let us recall
that ρ is a representation of the group C(γ, u) of connected components of the
centralizer Z(γ, u) of γ and u. But the group Z(γ, u) is a subgroup of Z(u),
which becomes the group Aut(σ) in the geometric setting. Therefore one can
argue that the parameter ρ is also absorbed into the action of Aut(σ) on the
category Cσ.
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If we have an action of Aut(σ) on the category Cσ, or on one of its many
incarnations ĝκc

-modχ, χ ∈ Opnilp
LG

, it means that these categories must be
“de-equivariantized”, just like the categories ĝκc

-modχ, χ ∈ OpLG(D), in the
unramified case. This is the reason why in the equivalence (8.16) (and in
Conjecture 6) we have the non-equivariant categories of quasicoherent sheaves
(whose Grothendieck groups correspond to the non-equivariant K-theory of
the Springer fibers).

However, there is also an equivariant version of these categories. Consider
the substack of tamely ramified local systems in LocLG(D×) introduced in
Section 8.2. Since a tamely ramified local system is completely determined by
the logarithm of its (unipotent) monodromy, this substack is isomorphic to
N/LG. This substack plays the role of the substack pt /LG corresponding to
the trivial local system. Let us set

Ctame = C ×
LocLG(D×)

N/LG.

Then, according to our general conjecture expressed by the Cartesian diagram
(5.3), we expect to have

(8.17) ĝκc
-modnilp � Ctame ×

N/LG
Opnilp

LG
.

Let Db(Ctame)I0
be the I0-equivariant derived category corresponding to

Ctame. Combining (8.17) with Conjecture 6, and noting that

MOpnilp
LG

� Opnilp
LG

×
N/LG

˜

˜N/LG,

we obtain the following conjecture (see [FG2]):

(8.18) Db(Ctame)I0 � Db(QCoh(˜

˜N/LG)).

The category on the right hand side may be interpreted as the derived cat-
egory of LG-equivariant quasicoherent sheaves on the “thickened” Springer

resolution ˜

˜N.
Together, the conjectural equivalences (8.16) and (8.18) should be thought

of as the categorical versions of the realizations of modules over the affine
Hecke algebra in the K-theory of the Springer fibers.

One corollary of the equivalence (8.16) is the following: the classes of ir-
reducible objects of the category ĝκc

-modI0
χ in the Grothendieck group of

ĝκc
-modI0

χ give rise to a basis in the algebraic K-theory K(Spu), where
u = Res(χ). Presumably, this basis is closely related to the bases in (equivari-
ant version of) this K-theory constructed by G. Lusztig in [Lu2] (from the
perspective of unrestricted g-modules in positive characteristic).
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8.5 Evidence for the Conjecture

We now describe some evidence for Conjecture 6. It consists of the following
four groups of results:

• Interpretation of the Wakimoto modules as ĝκc
-modules corresponding to

the skyscraper sheaves on MOpnilp
LG

;
• Connection to R. Bezrukavnikov’s theory;
• Proof of the equivalence of certain quotient categories of Db(ĝκc

-modnilp)I0

and Db(QCoh(MOpnilp
LG

)), [FG2].
• Proof of the restriction of the equivalence (8.15) to regular opers, [FG4].

We start with the discussion of Wakimoto modules.
Suppose that we have proved the equivalence of categories (8.15). Then

each quasicoherent sheaf on MOpnilp
LG

should correspond to an object of the
derived category Db(ĝκc

-modnilp)I0
. The simplest quasicoherent sheaves on

MOpnilp
LG

are the skyscraper sheaves supported at the C-points of MOpnilp
LG

.
It follows from the definition that a C-point of MOpnilp

LG
, which is the same as a

C-point of the reduced scheme MOp0
G, is a pair (χ, b′), where χ = (F,∇,FLB)

is a nilpotent LG-oper in Opnilp
LG

and b′ is a point of the Springer fiber cor-
responding to Res(χ), which is the variety of Borel subalgebras in LgF0 that
contain Res(χ). Thus, if Conjecture 6 is true, we should have a family of ob-
jects of the category Db(ĝκc

-modnilp)I0
parameterized by these data. What

are these objects?
The answer is that these are the Wakimoto modules. These modules

were originally introduced by M. Wakimoto [Wak] for g = sl2 and by B.
Feigin and myself in general in [FF1, FF2] (see also [F3]). We recall from
[F3] that Wakimoto modules of critical level are parameterized by the space
Conn(Ω−ρ)D× of connections on the LH-bundle Ω−ρ over D×. This is the
push-forward of the C

×-bundle corresponding to the canonical line bundle
Ω with respect to the homomorphism ρ : C

× → LH. Let us denote the
Wakimoto module corresponding to ∇ ∈ Conn(Ω−ρ)D× by W∇. According
to [F3], Theorem 12.6, the center Z(ĝ) acts on W∇ via the central character
µ(∇), where

µ : Conn(Ω−ρ)D× → OpLG(D×)

is the Miura transformation.
It is not difficult to show that if χ ∈ Opnilp

LG
, then W∇ is an object of the cat-

egory ĝκc
-modI

χ for any ∇ ∈ µ−1(χ). Now, according to the results presented
in [FG2], the points of the fiber µ−1(χ) of the Miura transformation over χ
are in bijection with the points of the Springer fiber SpRes(χ) corresponding
to the nilpotent element Res(χ). Therefore to each point of SpRes(χ) we may

assign a Wakimoto module, which is an object of the category ĝκc
-modI0

χ (and
hence of the corresponding derived category). In other words, Wakimoto mod-
ules are objects of the category ĝκc

-modI
nilp parameterized by the C-points
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of MOpnilp
LG

. It is natural to assume that they correspond to the skyscraper
sheaves on MOpnilp

LG
under the equivalence (8.15). This was in fact one of our

motivations for this conjecture.
Incidentally, this gives us a glimpse into how the group of automorphisms

of the LG-local system underlying the oper χ acts on the category ĝκc
-modχ.

This group is Z(Res(χ)), the centralizer of the residue Res(χ), and it acts
on the Springer fiber SpRes(χ). Therefore g ∈ Z(Res(χ)) sends the skyscraper
sheaf supported at a point p ∈ SpRes(χ) to the skyscraper sheaf supported at
g · p. Thus, we expect that g sends the Wakimoto module corresponding to p
to the Wakimoto module corresponding to g · p.

If the Wakimoto modules indeed correspond to the skyscraper sheaves,
then the equivalence (8.15) may be thought of as a kind of “spectral decom-
position” of the category Db(ĝκc

-modnilp)I0
, with the basic objects being the

Wakimoto modules W∇, where ∇ runs over the locus in Conn(Ω−ρ)D× which
is isomorphic, pointwise, to MOpnilp

LG
(see [FG5] for more details).

Nowwediscuss the secondpiece of evidence, connectionwithBezrukanikov’s
theory.

To motivate it, let us recall that in Section 7.4 we discussed the action of
the categorical spherical algebra H(G((t)), G[[t]]) on the category ĝκc

-modχ,
where χ is a regular oper. The affine Hecke algebra H(G(F ), I) also has a
categorical analogue. Consider the affine flag variety Fl = G((t))/I. The
categorical Hecke algebra is the category H(G((t)), I) which is the full subcat-
egory of the derived category of D-modules on Fl = G((t))/I whose objects
are complexes with I-equivariant cohomologies. This category naturally acts
on the derived category Db(ĝκc

-modχ)I . What does this action correspond to
on the other side of the equivalence (8.15)?

The answer is given by a theorem of R. Bezrukavnikov [Bez2], which may
be viewed as a categorification of the isomorphism (8.8):

(8.19) Db(DFl
κc

-mod)I0 � Db(QCoh( ˜St)),

where DFl
κc

-mod is the category of twisted D-modules on Fl and ˜St is the
“thickened” Steinberg variety

˜St = ˜N ×
N

˜

˜N = ˜N ×
Lg

Lg̃.

Morally, we expect that the two categories in (8.19) act on the two cate-
gories in (8.15) in a compatible way. However, strictly speaking, the left hand
side of (8.19) acts like this:

Db(ĝκc
-modnilp)I → Db(ĝκc

-modnilp)I0
,

and the right hand side of (8.19) acts like this:

Db(QCoh(MOp0
LG)) → Db(QCoh(MOpnilp

LG
)).
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So one needs a more precise statement, which may be found in [Bez2], Sect.
4.2. Alternatively, one can consider the corresponding actions of the affine
braid group of LG, as in [Bez2].

A special case of this compatibility concerns some special objects of the
category Db(DFl

κc
-mod)I , the central sheaves introduced in [Ga1]. They corre-

spond to the central elements of the affine Hecke algebra H(G(F ), I). These
central elements act as scalars on irreducible H(G(F ), I)-modules, as well as
on the standard modules KA(Spu)(γ,q,ρ) discussed above. We have argued

that the categories ĝκc
-modI0

χ , χ ∈ Opnilp
LG

, are categorical versions of these
representations. Therefore it is natural to expect that its objects are “eigen-
modules” with respect to the action of the central sheaves from Db(DFl

κc
-mod)I

(in the sense of Section 7.4). This has indeed been proved in [FG3].
This discussion indicates an intimate connection between the category

Db(ĝκc
-modnilp) and the category of twisted D-modules on the affine flag

variety, which is similar to the connection between ĝκc
-modreg and the

category of twisted D-modules on the affine Grassmannian which we dis-
cussed in Section 7.5. A more precise conjecture relating Db(ĝκc

-modnilp)
and Db(DFl

κc
-mod) was formulated in [FG2] (see the Introduction and Sect.

6), where we refer the reader for more details. This conjecture may be viewed
as an analogue of Conjecture 3 for nilpotent opers. As explained in [FG2], this
conjecture is supported by the results of [AB, ABG] (see also [Bez1, Bez2]).
Together, these results and conjectures provide additional evidence for the
equivalence (8.15).

9 Ramified Global Langlands Correspondence

We now discuss the implications of the local Langlands correspondence for
the global geometric Langlands correspondence.

We begin by briefly discussing the setting of the classical global Langlands
correspondence.

9.1 The Classical Setting

Let X be a smooth projective curve over Fq. Denote by F the field Fq(X)
of rational functions on X. For any closed point x of X we denote by Fx

the completion of F at x and by Ox its ring of integers. If we choose a local
coordinate tx at x (i.e., a rational function on X which vanishes at x to order
one), then we obtain isomorphisms Fx � Fqx

((tx)) and Ox � Fqx
[[tx]], where

Fqx
is the residue field of x; in general, it is a finite extension of Fq containing

qx = qordx elements.
Thus, we now have a local field attached to each point of X. The ring

A = AF of adèles of F is by definition the restricted product of the fields Fx,
where x runs over the set |X| of all closed points of X. The word “restricted”
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means that we consider only the collections (fx)x∈|X| of elements of Fx in
which fx ∈ Ox for all but finitely many x. The ring A contains the field F ,
which is embedded into A diagonally, by taking the expansions of rational
functions on X at all points.

While in the local Langlands correspondence we considered irreducible
smooth representations of the group GLn over a local field, in the global
Langlands correspondence we consider irreducible automorphic represen-
tations of the group GLn(A). The word “automorphic” means, roughly, that
the representation may be realized in a reasonable space of functions on the
quotient GLn(F )\GLn(A) (on which the group GLn(A) acts from the right).

On the other side of the correspondence we consider n-dimensional repre-
sentations of the Galois group Gal(F/F ), or, more precisely, the Weil group
WF , which is a subgroup of Gal(F/F ) defined in the same way as in the local
case.

Roughly speaking, the global Langlands correspondence is a bijection be-
tween the set of equivalence classes of n-dimensional representations of WF

and the set of equivalence classes of irreducible automorphic representations
of GLn(A):

n-dimensional representations
of WF

⇐⇒ irreducible automorphic
representations of GLn(A)

The precise statement is more subtle. For example, we should consider the
so-called 
-adic representations of the Weil group (while in the local case we
considered the admissible complex representations of the Weil-Deligne group;
the reason is that in the local case those are equivalent to the 
-adic represen-
tations). Moreover, under this correspondence important invariants attached
to the objects appearing on both sides (Frobenius eigenvalues on the Galois
side and the Hecke eigenvalues on the other side) are supposed to match. We
refer the reader to Part I of the review [F6] for more details.

The global Langlands correspondence has been proved for GL2 in the 80’s
by V. Drinfeld [Dr1]–[Dr4] and more recently by L. Lafforgue [Laf] for GLn

with an arbitrary n.
Like in the local story, we may also wish to replace the group GLn by

an arbitrary reductive algebraic group defined over F . Then on one side of
the global Langlands correspondence we have homomorphisms σ : WF → LG
satisfying some properties (or perhaps, some more refined data, as in [A]).
We expect to be able to attach to each σ an automorphic representa-
tion π of GLn(AF ).17 The word “automorphic” again means, roughly, that
the representation may be realized in a reasonable space of functions on the
17 In this section, by abuse of notation, we will use the same symbol to denote a

representation of the group and the vector space underlying this representation.
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quotient GLn(F )\GLn(A) (on which the group GLn(A) acts from the right).
We will not try to make this precise. In general, we expect not one but sev-
eral automorphic representations assigned to σ which are the global analogues
of the L-packets discussed above (see [A]). Another complication is that the
multiplicity of a given irreducible automorphic representation in the space of
functions on GLn(F )\GLn(A) may be greater than one. We will mostly ignore
all of these issues here, as our main interest is in the geometric theory (note
also that these issues do not arise if G = GLn).

An irreducible automorphic representation may always be decomposed as
the restricted tensor product

⊗′
x∈X πx, where each πx is an irreducible repre-

sentation of G(Fx). Moreover, for all by finitely many x ∈ X the factor πx is
an unramified representation of G(Fx): it contains a non-zero vector invari-
ant under the maximal compact subgroup K0,x = G(Ox) (see Section 7.1).
Let us choose such a vector vx ∈ πx (it is unique up to a scalar). The word
“restricted” means that we consider the span of vectors of the form ⊗x∈Xux,
where ux ∈ πx and ux = vx for all but finitely many x ∈ X.

An important property of the global Langlands correspondence is its com-
patibility with the local one. We can embed the Weil group WFx

of each of
the local fields Fx into the global Weil group WF . Such an embedding is not
unique, but it is well-defined up to conjugation in WF . Therefore an equiva-
lence class of σ : WF → LG gives rise to a well-defined equivalence class of
σx : WFx

→ LG. We will impose the condition on σ that for all but finitely
many x ∈ X the homomorphism σx is unramified (see Section 7.1).

By the local Langlands correspondence, to σx one can attach an equiva-
lence class of irreducible smooth representations πx of G(Fx).18 Moreover, an
unramified σx will correspond to an unramified irreducible representation πx.
The compatibility between local and global correspondences is the statement
that the automorphic representation of G(A) corresponding to σ should be
isomorphic to the restricted tensor product

⊗′
x∈X πx. Schematically, this is

represented as follows:

σ
global←→ π =

⊗

x∈X

′πx

σx
local←→ πx.

In this section we discuss an analogue of this local-to-global principle in
the geometric setting and the implications of our local results and conjectures
for the global geometric Langlands correspondence. We focus in particular on
the unramified and tamely ramified Langlands parameters. At the end of the
section we also discuss connections with irregular singularities.
18 Here we are considering �-adic homomorphisms from the Weil group WFx to LG,

and therefore we do not need to pass from the Weil group to the Weil-Deligne
group.
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9.2 The Unramified Case, Revisited

An important special case is when σ : WF → LG is everywhere unramified.
Then for each x ∈ X the corresponding homomorphism σx : WFx

→ LG is
unramified, and hence corresponds, as explained in Section 7.1, to a semi-
simple conjugacy class γx in LG, which is the image of the Frobenius element
under σx. This conjugacy class in turn gives rise to an unramified irreducible
representation πx of G(Fx) with a unique, up to a scalar, vector vx such that
G(Ox)vx = vx. The spherical Hecke algebra H(G(Fx), G(Ox)) � Rep LG acts
on this vector according to formula (7.5):

(9.1) HV,x � vx = Tr(γx, V )vx, [V ] ∈ Rep LG.

The tensor product v = ⊗x∈Xvx of this vectors is a G(O)-invariant vec-
tor in π =

⊗′
x∈X πx, which, according to the global Langlands conjecture

is automorphic. This means that π is realized in the space of functions
on G(F )\G(AF ). In this realization vector v corresponds to a right G(O)-
invariant function on G(F )\G(AF ), or equivalently, a function on the double
quotient

(9.2) G(F )\G(AF )/G(O).

Thus, an unramified global Langlands parameter σ gives rise to a function
on (9.2). This function is the automorphic function corresponding to σ.
We denote it by fπ. Since it corresponds to a vector in an irreducible repre-
sentation π of G(AF ), the entire representation π may be reconstructed from
this function. Thus, we do not lose any information by passing from π to fπ.

Since v ∈ π is an eigenvector of the Hecke operators, according to formula
(9.1), we obtain that the function fπ is a Hecke eigenfunction on the double
quotient (9.2). In fact, the local Hecke algebras H(G(Fx), G(Ox)) act naturally
(from the right) on the space of functions on (9.2), and fπ is an eigenfunction
of this action. It satisfies the same property (9.1).

To summarize, the unramified global Langlands correspondence in the clas-
sical setting may be viewed as a correspondence between unramified homomor-
phisms σ : WF → LG and Hecke eigenfunctions on (9.2) (some irreducibility
condition on σ needs to be added to make this more precise, but we will ignore
this).

What should be the geometric analogue of this correspondence, when X
is a complex algebraic curve?

As explained in Section 3.1, the geometric analogue of an unramified ho-
momorphism WF → LG is a homomorphism π1(X) → LG, or equivalently,
since X is assumed to be compact, a holomorphic LG-bundle on X with a
holomorphic connection (it automatically gives rise to a flat connection). The
global geometric Langlands correspondence should therefore associate to a
flat holomorphic LG-bundle on X a geometric object on a geometric version
of the double quotient (9.2). As we argued in Section 3.3, this should be a
D-module on an algebraic variety whose set of points is (9.2).
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Now, it is known that (9.2) is in bijection with the set of isomorphism
classes of G-bundles on X. This key result is due to A. Weil (see, e.g., [F6],
Sect. 3.2). This suggests that (9.2) is the set of points of the moduli space
of G-bundles on X. Unfortunately, in general this is not an algebraic variety,
but an algebraic stack, which locally looks like the quotient of an algebraic
variety by an action of an algebraic group. We denote it by BunG. The theory
of D-modules has been developed in the setting of algebraic stacks like BunG

in [BD1], and so we can use it for our purposes. Thus, we would like to attach
to a flat holomorphic LG-bundle E on X a D-module AutE on BunG. This
D-module should satisfy an analogue of the Hecke eigenfunction condition,
which makes it into a Hecke eigensheaf with eigenvalue E. This notion is
spelled out in [F6], Sect. 6.1 (following [BD1]), where we refer the reader for
details.

This brings us to the following question:

How to relate this global correspondence to the local geometric Langlands cor-
respondence discussed above?

As we have already seen in Section 1, the key element in answering this
question is a localization functor ∆κc,x from (ĝκc,x, G(Ox))-modules to
(twisted) D-modules on BunG. In Section 1 we have applied this functor
to the object V0(χx) of the Harish-Chandra category ĝκc,x -modG(Ox)

χx
, where

χx ∈ OpLG(Dx). For an oper χx which extends from Dx to the entire curve X
we have obtained this way the Hecke eigensheaf associated to the underlying
LG-local system (see Theorem 1).

For a LG-local system E = (F,∇) on X which does not admit the structure
of a regular oper on X, the above construction may be modified as follows (see
the discussion in [F6], Sect. 9.6, based on an unpublished work of Beilinson
and Drinfeld). In this case one can choose an LB-reduction FLB satisfying the
oper condition away from a finite set of points y1, . . . , yn and such that the
restriction χyi

of the corresponding oper χ on X\{y1, . . . , yn} to D×
yi

belongs
to Opλi

LG
(Dyi

) ⊂ OpLG(D×
yi

) for some λi ∈ P+. Then one can construct a
Hecke eigensheaf corresponding to E by applying a multi-point version of the
localization functor to the tensor product of the quotients Vλi

(χyi
) of the

Weyl modules Vλi,yi
(see [F6], Sect. 9.6).

The main lesson of this construction is that in the geometric setting the
localization functor gives us a powerful tool for converting local Langlands cat-
egories, such as ĝκc,x -modG(Ox)

χx
, into global categories of Hecke eigensheaves.

The category ĝκc,x -modG(Ox)
χx

turns out to be very simple: it has a unique
irreducible object, V0(χx). That is why it is sufficient to consider its image
under the localization functor, which turns out to be the desired Hecke eigen-
sheaf AutEχ

. For general opers, with ramification, the corresponding local
categories are more complicated, as we have seen above, and so are the corre-
sponding categories of Hecke eigensheaves. We will consider examples of these
categories in the next section.
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9.3 Classical Langlands Correspondence with Ramification

Let us first consider ramified global Langlands correspondence in the clas-
sical setting. Suppose that we are given a homomorphism σ : WF → LG
that is ramified at finitely many points y1, . . . , yn of X. Then we expect
that to such σ corresponds an automorphic representation

⊗′
x∈X πx (more

precisely, an L-packet of representations). Here πx is still unramified for all
x ∈ X\{y1, . . . , yn}, but is ramified at y1, . . . , yn, i.e., the space of G(Oyi

)-
invariant vectors in πyi

is zero. In particular, consider the special case when
each σyi

: WFyi
→ LG is tamely ramified (see Section 8.1 for the definition).

Then, according to the results presented in Section 8.1, the corresponding
L-packet of representations of G(Fyi

) contains an irreducible representation
πyi

with non-zero invariant vectors with respect to the Iwahori subgroup Iyi
.

Let us choose such a representation for each point yi.
Consider the subspace

(9.3)
n

⊗

i=1

π
Iyi
yi ⊗

⊗

x�=yi

vx ⊂
⊗

x∈X

′πx,

where vx is a G(Ox)-vector in πx, x �= yi, i = 1, . . . , n. Then, because
⊗′

x∈X πx

is realized in the space of functions on G(F )\G(AF ), we obtain that the
subspace (9.3) is realized in the space of functions on the double quotient

(9.4) G(F )\G(AF )/
n

∏

i=1

Iyi
×

∏

x�=yi

G(Ox).

The spherical Hecke algebras H(G(Fx), G(Ox)), x �= yi, act on the sub-
space (9.3), and all elements of (9.3) are eigenfunctions of these algebras
(they satisfy formula (9.1)). At the points yi we have, instead of the action
of the commutative spherical Hecke algebra H(G(Fyi

), G(Oyi
), the action of

the non-commutative affine Hecke algebra H(G(Fyi
), Iyi

). Thus, we obtain a
subspace of the space of functions on (9.4), which consists of Hecke eigenfunc-
tions with respect to the spherical Hecke algebras H(G(Fx), G(Ox)), x �= yi,
and which realize a module over

⊗n
i=1 H(G(Fyi

), Iyi
) (which is irreducible,

since each πyi
is irreducible).

This subspace encapsulates the automorphic representation
⊗′

x∈X πx the
way the automorphic function fπ encapsulates an unramified automorphic
representation. The difference is that in the unramified case the function fπ

spans the one-dimensional space of invariants of the maximal compact sub-
group G(O) in

⊗′
x∈X πx, whereas in the tamely ramified case the subspace

(9.3) is in general a multi-dimensional vector space.

9.4 Geometric Langlands Correspondence in the Tamely Ramified
Case

Now let us see how this plays out in the geometric setting. As we discussed
before, the analogue of a homomorphism σ : WF → LG tamely ramified at the
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points y1, . . . , yn ∈ X is now a local system E = (F,∇), where F a LG-bundle
F on X with a connection ∇ that has regular singularities at y1, . . . , yn and
unipotent monodromies around these points. We will call such a local system
tamely ramified at y1, . . . , yn. What should the global geometric Langlands
correspondence attach to such a local system? It is clear that we need to find
a geometric object replacing the finite-dimensional vector space (9.3) realized
in the space of functions on (9.4).

Just as (9.2) is the set of points of the moduli stack BunG of G-bundles,
the double quotient (9.4) is the set of points of the moduli stack BunG,(yi) of
G-bundles on X with the parabolic structures at yi, i = 1, . . . , n. By defini-
tion, a parabolic structure of a G-bundle P at y ∈ X is a reduction of the fiber
Py of P at y to a Borel subgroup B ⊂ G. Therefore, as before, we obtain that
a proper replacement for (9.3) is a category of D-modules on BunG,(yi). As in
the unramified case, we have the notion of a Hecke eigensheaf on BunG,(yi).
But because the Hecke functors are now defined using the Hecke correspon-
dences over X\{y1, . . . , yn} (and not over X as before), an “eigenvalue” of the
Hecke operators is now an LG-local system on X\{y1, . . . , yn} (rather than
on X). Thus, we obtain that the global geometric Langlands correspondence
now should assign to a LG-local system E on X, tamely ramified at the points
y1, . . . , yn, a category AutE of D-modules on BunG,(yi) with the eigenvalue
E|X\{y1,...,yn},

E �→ AutE .

We now construct these categories using a generalization of the localization
functor we used in the unramified case (see [FG2]). For the sake of notational
simplicity, let us assume that our LG-local system E = (F,∇) is tamely
ramified at a single point y ∈ X. Suppose that this local system on X\y
admits the structure of a LG-oper χ = (F,∇,FLB) whose restriction χy to
the punctured disc D×

y belongs to the subspace Opnilp
LG

(Dy) of nilpotent LG-
opers.

For a simple Lie group G, the moduli stack BunG,y has a realization anal-
ogous to (1.1):

BunG,y � Gout\G(Ky)/Iy.

Let Dκc,Iy
be the sheaf of twisted differential operators on BunG,y acting on

the line bundle corresponding to the critical level (it is the pull-back of the
square root of the canonical line bundle K1/2 on BunG under the natural
projection BunG,y → BunG). Applying the formalism of the previous section,
we obtain a localization functor

∆κc,Iy
: ĝκc,y -modIy → Dκc,Iy

-mod .

However, in order to make contact with the results obtained above we also
consider the larger category ĝκc,y -modI0

y of I0
y -equivariant modules, where

I0
y = [Iy, Iy].

Set
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Bun′
G,y = Gout\G(Ky)/I0

y ,

and let Dκc,I0
y

be the sheaf of twisted differential operators on Bun′
G,y act-

ing on the pull-back of the line bundle K1/2 on BunG. Let Dκc,I0
y
-mod be

the category of Dκc,I0
y
-modules. Applying the general formalism, we obtain a

localization functor

(9.5) ∆κc,I0
y

: ĝκc,y -modI0
y → Dκc,I0

y
-mod .

We note that a version of the categorical affine Hecke algebra H(G(Ky), Iy)
discussed in Section 8.5 naturally acts on the derived categories of the above
categories, and the functors ∆κc,Iy

and ∆κc,I0
y

intertwine these actions. Equiv-
alently, one can say that this functor intertwines the corresponding actions of
the affine braid group associated to LG on the two categories (as in [Bez2]).

We now restrict the functors ∆κc,Iy
and ∆κc,I0

y
to the subcategories

ĝκc,y -modIy
χy

and ĝκc,y -mod
I0

y
χy , respectively. By using the same argument as

in [BD1], we obtain the following analogue of Theorem 1.

Theorem 5. Fix χy ∈ Opnilp
LG

(Dy) and let M be an object of the category

ĝκc,y -modIy
χy

(resp. ĝκc,y -mod
I0

y
χy). Then

(1) ∆κc,Iy
(M) = 0 (resp., ∆κc,I0

y
(M) = 0) unless χy is the restriction of

a regular oper χ = (F,∇,FLB) on X\y to D×
y .

(2) In that case ∆κc,y(M) (resp., ∆κc,I0
y
(M)) is a Hecke eigensheaf with

the eigenvalue Eχ = (F,∇).

Thus, we obtain that if χy = χ|D×
y
, then the image of any object of

ĝκc,y -modIy
χy

under the functor ∆κc,Iy
belongs to the category Aut

Iy

Eχ
of Hecke

eigensheaves on BunG,y. Now consider the restriction of the functor ∆κc,I0
y

to

ĝκc,y -mod
I0

y
χy . As discussed in Section 8.3, the category ĝκc,y -mod

I0
y

χy coincides
with the corresponding category ĝκc,y -modIy,m

χy
of Iy-monodromic modules.

Therefore the image of any object of ĝκc,y -mod
I0

y
χy under the functor ∆κc,I0

y

belongs to the subcategory Dm
κc,I0

y
-mod of Dκc,I0

y
-mod whose objects admit

an increasing filtration such that the consecutive quotients are pull-backs of
Dκc,Iy

-modules from BunG,y. Such Dκc,I0
y
–modules are called monodromic.

Let Aut
Iy,m
Eχ

be the subcategory of Dm
κc,I0

y
-mod whose objects are Hecke

eigensheaves with eigenvalue Eχ.
Thus, we obtain the functors

(9.6) ∆κc,Iy
: ĝκc,y -modIy

χy
→ Aut

Iy

Eχ
, ∆κc,I0

y
: ĝκc,y -mod

I0
y

χy → Aut
Iy,m
Eχ

It is tempting to conjecture (see [FG2]) that these functors are equivalences
of categories, at least for generic χ. Suppose that this is true. Then we may
identify the global categories Aut

Iy

Eχ
and Aut

Iy,m
Eχ

of Hecke eigensheaves on
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BunG,Iy
and Bun′

G,I0
y

with the local categories ĝκc,y -modIy
χy

and ĝκc,y -mod
I0

y
χy ,

respectively. Therefore we can use our results and conjectures on the local

Langlands categories, such as ĝκc,y -mod
I0

y
χy , to describe the global categories

of Hecke eigensheaves on the moduli stacks of G-bundles on X with parabolic
structures.

We have the following conjectural description of the derived category of
I0
y -equivariant modules, Db(ĝκc,y -modχy

)I0
y (see formula (8.16)):

(9.7) Db(ĝκc,y -modχy
)I0

y � Db(QCoh(˜Sp
DG

Res(χy))).

The corresponding Iy-equivariant version is

(9.8) Db(ĝκc,y -modχy
)Iy � Db(QCoh(SpDG

Res(χy))),

where we replace the non-reduced DG Springer fiber by the reduced one: it is
defined as the DG fiber of the morphism ˜N → g over u.

If the functors (9.6) are equivalences, then by combining them with (9.7)
and (9.8), we obtain the following conjectural equivalences of categories:
(9.9)

Db(Aut
Iy

Eχ
) � Db(QCoh(SpDG

Res(χy))), Db(Aut
Iy,m
Eχ

) � Db(QCoh(˜Sp
DG

Res(χy))).

In other words, the derived category of a global Langlands category (mon-
odromic or not) corresponding to a local system tamely ramified at y ∈ X
is equivalent to the derived category of quasicoherent sheaves on the DG
Springer fiber of its residue at y (non-reduced or reduced).

Again, these equivalences are supposed to intertwine the natural actions
on the above categories of the categorical affine Hecke algebra H(G(Ky), Iy)
(or, equivalently, the affine braid group associated to LG).

The categories appearing in (9.9) actually make sense for an arbitrary
LG-local system E on X tamely ramified at y. It is therefore tempting to
conjecture that these equivalences still hold in general:
(9.10)

Db(Aut
Iy

E ) � Db(QCoh(SpDG
Res(E))), Db(Aut

Iy,m
E ) � Db(QCoh(˜Sp

DG

Res(E))).

The corresponding localization functors are constructed as follows: we repre-
sent a general local system E on X with tame ramification at y by an oper χ
on the complement of finitely many points y1, . . . , yn, whose restriction to D×

yi

belongs to Opλi
LG

(Dyi
) ⊂ OpLG(D×

yi
) for some λi ∈ P+. Then, in the same way

as in the unramified case, we construct localization functors from ĝκc,y -modIy
χy

to Aut
Iy

E and from ĝκc,y -mod
I0

y
χy to Aut

Iy,m
E (here, as before, χy = χ|D×

y
), and

this leads us to the conjectural equivalences (9.10).
The equivalences (9.10) also have family versions in which we allow E to

vary. It is analogous to the family version (8.15) of the local equivalences. As
in the local case, in a family version we can avoid using DG schemes.
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The above construction may be generalized to allow local systems tamely
ramified at finitely many points y1, . . . , yn. The corresponding Hecke eigen-
sheaves are then D-modules on the moduli stack of G-bundles on X with
parabolic structures at y1, . . . , yn. Non-trivial examples of these Hecke eigen-
sheaves arise already in genus zero. These sheaves were constructed explicitly
in [F1] (see also [F4, F5]), and they are closely related to the Gaudin integrable
system.

9.5 Connections with Regular Singularities

So far we have only considered the categories of ĝκc
-modules corresponding

to LG-opers on X which are regular everywhere except at a point y ∈ X (or
perhaps, at several points) and whose restriction to D×

y is a nilpotent oper χy

in Opnilp
LG

(Dy). In other words, χy is an oper with regular singularity at y with
residue �(−ρ) (where � : h∗ → h∗/W ). However, we can easily generalize
the localization functor to the categories of ĝκc

-modules corresponding to LG-
opers which have regular singularity at y with arbitrary residue.

So suppose we are given an oper χ ∈ OpRS
LG(D)
(−λ−ρ) with regular sin-

gularity and residue �(−λ− ρ), where λ ∈ h∗. In this case the monodromy of
this oper around y is conjugate to

M = exp(2πi(λ + ρ)) = exp(2πiλ).

We then have the category ĝκc
-modI0

χ of I0-equivariant ĝκc
-modules with cen-

tral character χ. The case of λ = 0 is an “extremal” case when the category
ĝκc

-modI0

χ is most complicated. On the other “extreme” is the case of generic
opers χ, corresponding to a generic λ. In this case one can show that the cat-
egory ĝκc

-modI0

χ is quite simple: it contains irreducible objects Mw(λ+ρ)−ρ(χ)

labeled by the Weyl group of g, and each object of ĝκc
-modI0

χ is a direct sum
of these irreducible modules. Here Mw(λ+ρ)−ρ(χ) is the quotient of the Verma
module

Mw(λ+ρ)−ρ = Ind�gκc

�b+⊕C1
Cw(λ+ρ)−ρ, w ∈ W,

by the central character corresponding to χ.
For other values of λ the structure of ĝκc

-modI0

χ is somewhere in-between
these two extreme cases.

Recall that we have a localization functor (9.5)

∆λ
κc,I0

y
: ĝκc,y -modI0

y → Dκc,I0
y
-mod .

from ĝκc,y -mod
I0

y
χy to a category of D-modules on Bun′

G,Iy
twisted by the

pull-back of the line bundle K1/2 on BunG. We now restrict this functor

to the subcategory ĝκc,y -mod
I0

y
χy where χy is a LG-oper on Dy with regular

singularity at y and residue �(−λ − ρ).
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Consider first the case when λ ∈ h∗ is generic. Suppose that χy extends to a
regular oper χ on X\y. One then shows in the same way as in Theorem 5 that

for any object M of ĝκc,y -mod
I0

y
χy the corresponding Dκc,I0

y
-module ∆κc,I0

y
(M)

is a Hecke eigensheaf with eigenvalue Eχ, which is the LG-local system on X
with regular singularity at y underlying χ (if χy cannot be extended to X\y,
then ∆λ

κc,Iy
(M) = 0, as before). Therefore we obtain a functor

∆κc,I0
y

: ĝκc,y -mod
I0

y
χy → Aut

I0
y

Eχ
,

where Aut
I0

y

Eχ
is the category of Hecke eigensheaves on Bun′

G,Iy
with eigenvalue

Eχ.
Since we have assumed that the residue of the oper χy is generic, the

monodromy of Eχ around y belongs to a regular semi-simple conjugacy class of
LG containing exp(2πiλ). In this case the category ĝκc,y -mod

I0
y

χy is particularly
simple, as we have discussed above. We expect that the functor ∆κc,I0

y
sets

up an equivalence between ĝκc,y -mod
I0

y
χy and Aut

I0
y

Eχ
.

We can formulate this more neatly as follows. For M ∈ LG let BM be the
variety of Borel subgroups containing M . Observe that if M is regular semi-
simple, then BM is a set of points which is in bijection with W . Therefore

our conjecture is that Aut
I0

y

Eχ
is equivalent to the category QCoh(BM ) of

quasicoherent sheaves on BM , where M is a representative of the conjugacy
class of the monodromy of Eχ.

Consider now an arbitrary LG-local system E on X with regular singu-
larity at y ∈ X whose monodromy around y is regular semi-simple. It is then
tempting to conjecture that, at least if E is generic, this category has the
same structure as in the case when E has the structure of an oper, i.e., it
is equivalent to the category QCoh(BM ), where M is a representative of the
conjugacy class of the monodromy of E around y.

On the other hand, if the monodromy around y is unipotent, then BM is
nothing but the Springer fiber Spu, where M = exp(2πiu). The corresponding

category Aut
I0

y

E was discussed in Section 9.4 (we expect that it coincides with
Aut

Iy,m
E ). Thus, we see that in both “extreme” cases: unipotent monodromy

and regular semi-simple monodromy, our conjectures identify the derived cat-

egory of Aut
I0

y

E with the derived category of the category QCoh(BM ) (where

BM should be viewed as a DG scheme ˜Sp
DG

u in the unipotent case). One is
then led to conjecture, most ambitiously, that for any LG-local system E on X

with regular singularity at y ∈ X the derived category of Aut
I0

y

E is equivalent
to the derived category of quasicoherent sheaves on a suitable DG version of
the scheme BM , where M is a representative of the conjugacy class of the
monodromy of E around y:

Db(Aut
I0

y

E ) � Db(QCoh(BDG
M )).
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This has an obvious generalization to the case of multiple ramification points,
where on the right hand side we take the Cartesian product of the varieties
BDG

Mi
corresponding to the monodromies. Thus, we obtain a conjectural re-

alization of the categories of Hecke eigensheaves, whose eigenvalues are lo-
cal systems with regular singularities, in terms of categories of quasicoherent
sheaves.

It is useful to note that the Hecke eigensheaves on Bun′
G,Iy

obtained above
via the localization functors may be viewed as pull-backs of twisted D-modules
on BunG,Iy

(or, more generally, extensions of such pull-backs).
More precisely, for each λ ∈ h∗ we have the sheaf of twisted differential

operators on BunG,y acting on a “line bundle” ˜Lλ. If λ were an integral weight,
this would be an actual line bundle, which is constructed as follows: note that
the map p : BunG,Iy

→ BunG, corresponding to forgetting the parabolic
structure, is a fibration with the fibers isomorphic to the flag manifold G/B.
For each integral weight λ we have the G-equivariant line bundle 
λ = G×

B
Cλ

on G/B. The line bundle Lλ on BunG,Iy
is defined in such a way that its

restriction to each fiber of the projection p is isomorphic to 
λ. We then set
˜Lλ = Lλ ⊗ p∗(K1/2), where K1/2 is the square root of the canonical line
bundle on BunG corresponding to the critical level. Now, it is well-known
(see, e.g., [BB]) that even though the line bundle ˜Lλ does not exist if λ is not
an integral weight, the corresponding sheaf Dλ

κc,Iy
of ˜Lλ-twisted differential

operators on BunG,Iy
is still well-defined.

Observe that we have an equivalence between the category Dλ
κc,Iy

-mod
and the category of weakly H-equivariant Dκc,I0

y
-module on Bun′

G,y on which
h acts via the character λ : h → C. If F is an object of Dλ

κc,Iy
-mod, then

the corresponding weakly H-equivariant Dκc,I0
y
-module on Bun′

G,y is π∗(F),
where π : Bun′

G,y → BunG,Iy
.

Now, it is easy to see that the Dκc,I0
y
-modules on Bun′

G,y obtained by

applying the localization functor ∆κc,I0
y

to objects of ĝκc,y -mod
I0

y
χy are always

weakly H-equivariant. Consider, for example, the case when χy is a generic
oper with regular singularity at y. Then its residue is equal to �(−λ − ρ),
where λ is a regular element of h∗, and so its monodromy is M = exp(2πiλ).

The corresponding category ĝκc,y -mod
I0

y
χy has objects Mw(λ+ρ)−ρ(χy) that we

introduced above. The Cartan subalgebra h of ĝκc,y acts on Mw(λ+ρ)−ρ(χy)
semi-simply with the eigenvalues given by the weights of the form w(λ + ρ)−
ρ + µ, where µ is an integral weight. In other words,

Mw(λ+ρ)−ρ(χy) ⊗ C−w(λ+ρ)+ρ

is Iy-equivariant. Therefore we find that ∆κc,I0
y
(Mw(λ+ρ)−ρ(χy)) is weakly H-

equivariant, and the corresponding action of h is given by w(λ + ρ) − ρ :
h → C. Thus, ∆κc,I0

y
(Mw(λ+ρ)−ρ(χy)) is the pull-back of a D

w(λ+ρ)−ρ
κc,Iy

-module
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on BunG,y. This D
w(λ+ρ)−ρ
κc,Iy

-module is a Hecke eigensheaf with eigenvalue Eχ

provided that χy = χ|D×
y
, where χ is a regular oper on X\y.

Thus, for a given generic oper χy we have |W | different Hecke eigensheaves

∆κc,I0
y
(Mw(λ+ρ)−ρ(χy)), w ∈ W,

on Bun′
G,y. However, each of them is the pull-back of a twisted D-module

on BunG,y corresponding to a particular twist: namely, by a “line bundle”
˜Lw(λ+ρ)−ρ. (Since we have assumed that λ is generic, all of these twists are
different; note also that if µ = w(λ+ρ)−ρ, then exp(2πiµ) is in the conjugacy
class of the monodromy exp(2πiλ).) It is therefore natural to conjecture that
there is a unique Hecke eigensheaf on BunG,y with eigenvalue Eχ, which is a
twisted D-module with the twisting given by ˜Lw(λ+ρ)−ρ.

More generally, suppose that E is a local system on X with regular sin-
gularity at y and generic regular semi-simple monodromy. Let us choose a
representative M of the monodromy which belongs to the Cartan subgroup
LH ⊂ LG. Choose µ ∈ h∗ � Lh to be such that M = exp(2πiµ). Note that
there are exactly |W | such choices up to a shift by an integral weight ν. Let
Aut

Iy,µ
E be the category of Hecke eigensheaves with eigenvalue E in the cate-

gory of twisted D-modules on BunG,Iy
with the twisting given by ˜Lµ. Then

we expect that for generic E the category Aut
Iy,µ
E has a unique irreducible

object. Its pull-back to Bun′
G,y is one of the |W | irreducible objects of Aut

I0
y

E .
(Note that tensoring with the line bundle Lν , where ν is an integral weight,
we identify the categories Aut

Iy,µ
E and Aut

Iy,µ′

E if µ′ = µ + ν.)
Similarly, one can describe the Hecke eigensheaves on Bun′

G,y obtained by

applying ∆κc,I0
y

to the categories ĝκc,y -mod
I0

y
χy for other opers χy in terms of

twisted D-modules on BunG,y. In the opposite extreme case, when the residue
of χy is 0 (and so χy is a nilpotent oper), this is explained in Section 9.4. (In
this case one may choose to consider monodromic D-modules; this is not nec-
essary if λ is generic, because in this case there are no non-trivial extensions.)

Finally, it is natural to ask whether these equivalences for individual local
systems may be combined into a family version encompassing all of them.
The global geometric Langlands correspondence in the unramified case may be
viewed as a kind of non-abelian Fourier-Mukai transform relating the (derived)
category of D-modules on BunG and the (derived) category of quasicoherent
sheaves on LocLG(X), the stack of LG-local systems on the curve X. Under
this correspondence, the skyscraper sheaf supported at a LG-local system E
is supposed to go to the Hecke eigensheaf AutE on BunG. Thus, one may
think of LocLG(X) as a parameter space of a “spectral decomposition” of the
derived category of D-modules on BunG (see, e.g., [F6], Sect. 6.2, for more
details).

The above results and conjectures suggest that one may also view the
geometric Langlands correspondence in the tamely ramified case in a similar
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way. Now the role of LocLG(X) should be played by the stack LocLG,y(X)
of parabolic LG-local systems with regular singularity at y ∈ X (or, more
generally, multiple points) and unipotent monodromy. This stack classifies
triples (F,∇,FLB,y), where F is a LG-bundle on X, ∇ is a connection on F

with regular singularity at y and unipotent monodromy, and FLB,y is a LB-
reduction of the fiber Fy of F at y, which is preserved by ∇. This stack is
now a candidate for a parameter space of a “spectral decomposition” of the
derived category of D-modules on the moduli stack BunG,y of G-bundles with
parabolic structure at y.19

9.6 Irregular Connections

We now generalize the above results to the case of connections with irregular
singularities. Let F be a LG-bundle on X with connection ∇ that is regular
everywhere except for a point y ∈ X, where it has a pole of order greater than
1. As before, we assume first that (F,∇) admits the structure of a LG-oper
on X\y, which we denote by χ. Let χy be the the restriction of χ to D×

y . A
typical example of such an oper is a LG-oper with pole of order ≤ n on the
disc Dy, which is, by definition (see [BD1], Sect. 3.8.8), an LN [[t]]-conjugacy
class of operators of the form

(9.11) ∇ = ∂t +
1
tn

(p−1 + v(t)) , v(t) ∈ Lb[[t]].

We denote the space of such opers by Op≤n
LG

(Dy).
One can show that for χy ∈ Op≤n

LG
(Dy) the category ĝκc,y -modK

χy
is non-

trivial if K is the congruence subgroup Km,y ⊂ G(Oy) with m ≥ n. (We recall
that for m > 0 we have Km,y = exp(g⊗(my)m), where my is the maximal ideal
of Oy.) Let us take the category ĝκc,y -modKn,y

χy
. Then our general formalism

gives us a localization functor

∆κc,Kn,y
: ĝκc,y -modKn,y

χy
→ Dκc,Kn,y

-mod,

where Dκc,Kn,y
-mod is the category of critically twisted20 D-modules on

BunG,y,n � Gout\G(Ky)/Kn,y.

This is the moduli stack of G-bundles on X with a level n structure at y∈X
(which is a trivialization of the restriction of the G-bundle to the nth infini-
tesimal neighborhood of y).

19 One may also try to extend this “spectral decomposition” to the case of all con-
nections with regular singularities, but here the situation is more subtle, as can
already be seen in the abelian case.

20 this refers to the twisting by the line bundle on BunG,y,n obtained by pull-back
of the line bundle K1/2 on BunG, as before
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In the same way as above, one shows that the D-modules obtained by
applying ∆κc,Kn,y

to objects of ĝκc,y -modKn,y
χy

are Hecke eigensheaves with
the eigenvalue Eχ|X\y, where Eχ is the LG-local system underlying the oper
χ. Let Aut

Kn,y

Eχ
be the category of these eigensheaves. Thus, we really obtain

a functor
ĝκc,y -modKn,y

χy
→ Aut

Kn,y

Eχ
.

By analogy with the case of regular connections, we expect that this functor
is an equivalence of categories.

As before, this functor may be generalized to an arbitrary flat bundle
E = (F,∇), where ∇ has singularity at y, by representing it as an oper
with mild ramification at additional points y1, . . . , ym on X. Let χy be the
restriction of this oper to D×

y . Then it belongs to Op≤n
LG

(Dy) for some n, and
we obtain a functor

ĝκc,y -modKn,y
χy

→ Aut
Kn,y

E ,

which we expect to be an equivalence of categories for generic E. This also
has an obvious multi-point generalization.

This way we obtain a conjectural description of the categories of Hecke
eigensheaves corresponding to (generic) connections on X with arbitrary sin-
gularities at finitely many points in terms of categories of Harish-Chandra
modules of critical level over ĝ. However, in the case of regular singularities,
we also have an alternative description of these categories: in terms of (de-
rived) categories of quasicoherent sheaves on the varieties BDG

M . It would be
desirable to obtain such a description for irregular connections as well.

Finally, we remark that the above construction has a kind of limiting
version where we take the infinite level structure at y, i.e., a trivialization of
the restriction of a G-bundle to the disc Dy. Let BunG,y,∞ be the moduli
stack of G-bundles on X with an infinite level structure at y. Then

BunG,y,∞ � Gout\G(Ky).

We now have a localization functor

ĝκc,y -modχy
→ Aut∞E ,

where E and χy are as above, and Aut∞E is the category of Hecke eigen-
sheaves on BunG,y,∞ with eigenvalue E|X\y. Thus, instead of the cate-
gory ĝκc,y -modKn,y

χy
of Harish-Chandra modules we now have the category

ĝκc,y -modχy
of all (smooth) ĝκc,y-modules with fixed central character (cor-

responding to χ).
According to our general local conjecture, this is precisely the local Lang-

lands category associated to the restriction of the local system E to D×
y

(equipped with an action of the loop group G(Ky)). It is natural to assume
that for generic E this functor establishes an equivalence between this category
and the category Aut∞E of Hecke eigensheaves on BunG,y,∞ (also equipped
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with an action of the loop group G(Ky)). This may be thought of as the ul-
timate form of the local–to–global compatibility in the geometric Langlands
Program:

E −−−−→ Aut∞E
⏐

⏐

�

�

⏐

⏐

E|D×
y

−−−−→ ĝκc
-modχy

.

Let us summarize: by using representation theory of affine Kac-Moody
algebras at the critical level we have constructed the local Langlands cate-
gories corresponding to the local Langlands parameters: LG-local systems on
the punctured disc. We then applied the technique of localization functors
to produce from these local categories, the global categories of Hecke eigen-
sheaves on the moduli stacks of G-bundles on a curve X with parabolic (or
level) structures. These global categories correspond to the global Langlands
parameters: LG-local systems on X with ramification. We have used our re-
sults and conjectures on the structure of the local categories to investigate
these global categories. We hope that in this way representation theory of
affine Kac-Moody algebras may one day fulfill the dream of uncovering the
mysteries of the geometric Langlands correspondence.
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[De1] P. Deligne, Equations différentielles á points singuliers réguliers, Lect. Notes

in Math. 163, Springer, 1970.
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