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Pure Hodge Structures

The Hodge decomposition of the n-th cohomology group of a Kähler manifold is
the prototype of a Hodge structure of weight n. In this chapter we study these
from a more abstract point of view. In § 2.1 and § 2.2 the foundations are laid.
Hodge theoretic considerations for various sorts of fundamental classes associated
to a subvariety are given in § 2.4.

In § 2.3 some important concepts are developed which play a central role in
the remainder of this book, in particular the concept of a Hodge complex, which is
introduced in § 2.3. The motivating example comes from the holomorphic De Rham
complex on a compact Kähler manifold and is called the Hodge-De Rham complex.
However, to show that this indeed gives an example of a Hodge complex follows only
after a strong form of the Hodge decomposition is shown to hold. This also allows
one to put a Hodge structure on the cohomology of any compact complex manifold
which is bimeromorphic to a Kähler manifold, in particular algebraic manifolds that
are not necessarily projective.

In Chapter 3 we shall extend the notion of a Hodge complex of sheaves to that
of a mixed Hodge complex of sheaves.

We finally show in § 2.5 that the cohomology of varieties with quotient singu-
larities also admits a pure rational Hodge structure.

2.1 Hodge Structures

2.1.1 Basic Definitions

We place the definition of a weight k Hodge structure (Def. 1.12) in a wider
context. Let V be a finite dimensional real vector space and let VC = V ⊗ C
be its complexification.

Definition 2.1. A real Hodge structure on V is a direct sum decomposi-
tion

VC =
⊕
p,q∈Z

V p,q,with V p,q = V q,p (the Hodge decomposition.)
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The numbers
hp,q(V ) := dimV p,q

are Hodge numbers of the Hodge structure. The polynomial

Phn(V ) =
∑
p,q∈Z

hp,q(V )upvq (II–1)

its associated Hodge number polynomial.
If the real Hodge structure V is of the form V = VR ⊗R R where R is

a subring of R and VR is an R-module of finite type we say that VR carries
carries an R-Hodge structure.

A morphism of R-Hodge structures is a morphism f : VR → WR of
R-modules whose complexification maps V p,q to W p,q.

If V is real Hodge structure, the weight k part V (k) is the real vector
space underlying

⊕
p+q=k V

p,q. If V = V (k), we say that V is a weight k
real Hodge structure and if V = VR ⊗R R we speak of a weight k R-Hodge
structure. Usually, if R = Z we simply say that V or VZ carries a weight k
Hodge structure.

Examples 2.2. i) The De Rham group Hk
DR(X) of a compact Kähler man-

ifold has canonical real Hodge structure of weight k defined by the clas-
sical Hodge decomposition. We have seen (Corr. 1.13) that it is in fact
an integral Hodge structure.

ii) The Hodge structure Z(1) of Tate (I–3) has variants over any subring
R of R: we put R(k) :=R⊗Z Z(k).

iii) The top cohomology of a compact complex manifold X of dimension
say n, can be identified with a certain Tate structure. Indeed, the trace
map is the isomorphism given by

tr : H2n(X; R) ∼−→ R(−n), ω 7→
(

1
2πi

)n ∫
X

ω. (II–2)

Let V = V (k) be a weight k Hodge structure. The Hodge filtration
associated to this Hodge structure is given by

F p(V ) =
⊕
r≥p

V r,s.

Conversely, a decreasing filtration

VC ⊃ · · · ⊃ F p(V ) ⊃ F p+1(V ) · · ·

on the complexification VC with the property that F p ∩ F q = 0 whenever
p+ q = k + 1 defines a weight k Hodge structure by putting

V p,q = F q ∩ F q.

The condition that F p ∩ F q = 0 whenever p + q = k + 1 is equivalent to
F p ⊕ F k−p+1 = VC and we say that the filtration F • is k-opposed to its
complex conjugate filtration.
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Definition 2.3 (Multi-linear algebra constructions). Suppose that V ,
W are real vector spaces with a Hodge structure of weight k, respectively `,
the Hodge filtration on V ⊗W is given by

F p(V ⊗W )C =
∑
m

Fm(VC)⊗ F p−m(WC) ⊂ VC ⊗C WC.

This gives V ⊗ W a Hodge structure of weight k + ` with Hodge number
polynomial given by

Phn(V ⊗W ) = Phn(V )Phn(W ). (II–3)

Similarly, the multiplicative extension of the Hodge filtration to the tensor
algebra

TV =
⊕
a

TaV with TaV :=
a⊗
V

of V is defined by

F pTaV =
∑

k1+···ka=p

F k1VC ⊗ . . . F kaVC

and gives a Hodge structure of weight ak on TaV . It induces a Hodge structure
of the same weight on the degree a-piece of the symmetric algebra SV of V
and the exterior algebra ΛV of V . We can also put a Hodge structure on
duals, or, more generally spaces of homomorphisms as follows:

F p Hom(V,W )C = {f : VC →WC | fFn(VC) ⊂ Fn+p(WC) ∀n}

This defines a Hodge structure of weight ` − k on Hom(V,W ) with Hodge
number polynomial

Phn(Hom(V,W )(u, v) = Phn(V )(u−1, v−1)Phn(W )(u, v). (II–4)

In particular, taking W = R with WC = W 0,0 we get a Hodge structure of
weight −k on the dual V ∨ of V with Hodge number polynomial

Phn(V ∨)(u, v) = Phn(V )(u−1, v−1). (II–5)

Finally, we can define a Hodge structure of weight ak − b` on TaV ⊗ TbV ∨ =
V ⊗a ⊗ (V ∨)⊗b using the multiplicative extension of F to the tensor algebra
TV ⊗TV ∨. The multiplication in each of the algebras TV , SV , ΛV , TV ⊗TV ∨
is a morphism of Hodge structures.

Given any R-Hodge structure V , define its r-th Tate twist by

V (r) :=V ⊗R R(r).

If V has weight m, V (r) has weight m− 2r and
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V (r)p,q = V p+r,q+r.

Note that one has:
Phn(V (r)) = Phn(V )(uv)−r. (II–6)

If W is another R-Hodge structure, giving A morphism V (−r) → W is also
called a morphism of Hodge structures V →W of type (r, r). Morphisms
of Hodge structures preserve the Hodge filtration. The converse is also true:

Proposition 2.4. Let V,W be R-Hodge structures of weight k. Suppose that
f : V →W is an R-linear map preserving the R-structures and such that

fC(F pV ) ↪→ F pW.

Then f is a morphism of R-Hodge structures.

Proof. One has fC(F qV ) ↪→ F qW , so, if p+ q = k, we have

fC(V p,q) = fC(F pV ) ∩ F qV ↪→ F pW ∩ F qW = W p,q. ut

Clearly, the image of a morphism of Hodge structures is again a Hodge struc-
ture. By the above constructions the duality operation preserves Hodge struc-
tures, and so the kernel of a morphism of Hodge structures is a Hodge struc-
ture. Using the preceding multi-linear algebra constructions, it is not hard to
see that we in fact have:

Corollary 2.5. The category of R-Hodge structures is an abelian category
which we denote hsR. If R = Z we simply write hs.

Hodge structures can also be defined through group representations and
this is useful in the context of Mumford-Tate groups (see § 2.2). Introduce the
algebraic group

S := {the restriction of scalars from C to R à la Weil of the group Gm}.

By definition, the complex points of S correspond to pairs of points z, z′ ∈
C∗. The point z corresponds to the standard embedding C× ↪→ C while z′

corresponds to the complex conjugate embedding. Hence complex conjugation
sends (z, z′) to (z̄′, z̄) and the real points S(R) consists of C× embedded into
the group S(C) = C××C× of complex points through a 7→ (a, ā). So S is just
the group C× considered as a real algebraic group.

Note that there is a natural embedding w : Gm → S of algebraic groups
which on complex points is the diagonal embedding a 7→ (a, a) and on real
points is just the embedding of R× ↪→ C×. Note that C× = R× · S1 where S1

are the real points of the unitary group U(1). We can extend the embedding
S1 ↪→ C× to an embedding U(1) ↪→ S and then

S = U(1) · w(Gm).
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Definition 2.6. A complex Hodge structure on a complex vector
space W is a representation of S(C) on W . This amounts to a bigrading

W =
⊕
p,q

W p,q, W p,q = {w ∈W | (a, b)w = a−pb−qw, (a, b) ∈ S(C)}.

Now suppose that W = VC, where V is a real vector space. Then the
above representation is a real representation if and only if the action of S(C)
on the complex conjugate of any of the above summands is the summand
on which the action is the conjugate action. This means precisely that the
complex conjugate of W p,q is W q,p. Looking at the action of the subgroup
Gm(R) = R× we obtain the decomposition of V into weight spaces

V (k) = {v ∈ V | av = a−kv, a ∈ R×},

i.e. V (k) is a real Hodge structure of weight k. If the representation is defined
over a subring R of R, these are weight k R-Hodge structures and conversely.

Suppose that we only have an U(1)-action on V . Then W splits into
eigenspaces W ` on which u acts via the character u`. Again W ` is the con-
jugate of W−` and we would have a weight k Hodge structure if we declare
its weight to be k: just put W p,q = W k−2q = W−k+2p. Conversely, a real
Hodge structure of weight k is an U(1)-action on W defined over R plus the
specification of the number k. In fact, the argument shows:

Lemma 2.7. let VR be an R-module of finite rank. Then VR admits the struc-
ture of an R-Hodge structure if and only if there is a homomorphism

h : S→ GL(V ⊗R R)

defined over R, such that h◦w : Gm → GL(V ⊗R R) is defined over R.
Equivalently, an R-Hodge structure consists of an R-space VR equipped

with an action of U(1) defined over R.

As an example, consider the one-dimensional Hodge structures. These are
exactly the Hodge structures of Tate. The group U(1) acts trivially on these.
So the action of U(1) defined by a Hodge structure F on V is the same
as the one given by F (`) on V (`). This illustrates the fact that S = Gm ·
U(1) where the action of the subgroup Gm registers the weight and this gives
another interpretation of the preceding weight shift as the multiplication with
a character of Gm. In this setting we have the Weil operator

C|W p,q = ip−q, (II–7)

the image of i ∈ S(R) under the representation (recall that i is identified with
(i,−i) ∈ S(C)).

Recall the construction of the Grothendieck group (Def. A.4) 3). It is de-
fined for any abelian category such as the category hsR of R-Hodge structures:
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it is the free group on the isomorphism classes [V ] of Hodge structures V mod-
ulo the subgroup generated by [V ]−[V ′]−[V ′′] where 0→ V ′ → V → V ′′ → 0
is an exact sequence of R-Hodge structures. It carries a ring structure com-
ing from the tensor product. Because the Hodge number polynomial (II–1) is
clearly additive and by (II–3) behaves well on products, we have:

Lemma 2.8. The Hodge number polynomial defines a ring homomorphism

Phn : K0(hsR)→ Z[u, v, u−1, v−1].

Inside K0(hsR) Tate twisting r-times can be expressed as [H] 7→ [H] · L−r
where

L = H2(P1) ∈ K0(hsR). (II–8)

2.1.2 Polarized Hodge Structures

The classical example of polarized Hodge structures is given by the primitive
cohomology groups on a compact Kähler manifold (X,ω). If the Kähler class
[ω] belongs to H2(X;R) for some subring R of R, the Hodge-Riemann form
Q restricts to an R-valued form on

HR = Hk
prim(X;R) := Im

[
Hk(X;R)→ Hk(X; C)

]
∩Hk

prim(X)

where the homomorphism is the coefficient homomorphism. Recall the Hodge-
Riemann bilinear relations with respect to the Hodge-Riemann form Q (see
Definition 1.33). The first of these relations states that the primitive (p, q)-
classes are Q-orthogonal to (r, s)-classes as long as (p, q) 6= (s, r). This can be
conveniently reformulated in terms of the Hodge filtration Fm =

⊕
p≥mH

p,q
prim

as follows. Note that Fm is Q-orthogonal to F k−m+1 since in the latter only
(r, s)-forms occur with r ≥ k−m+ 1 while in the first (p, q)-forms occur with
q ≤ k −m. The dimension of Fm being complementary to dimF k−m+1, we
therefore have that the Q-orthogonal complement of Fm equals F k−m+1.

The second Hodge-Riemann relation can be reformulated using the Weil
operator C, which – as we saw before (II–7)– acts as multiplication by ip−q

on (p, q)-forms. We find that in writing ip−qQ(u, ū) = Q(Cu, ū), u a primitive
(p, q)-form, the right hand side makes sense for any k-form. In this way we
arrive at the following

Definition 2.9. A polarization of an R-Hodge structure V of weight k is
an R-valued bilinear form

Q : V ⊗ V −→ R

which is (−1)k-symmetric and such that

1) The orthogonal complement of Fm is F k−m+1;
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2) The hermitian form on V ⊗ C given by

Q(Cu, v̄)

is positive-definite.

Any R-Hodge structure that admits a polarization is said to be polarizable.

Example 2.10. The m-th cohomology of a compact Kähler manifold is an in-
tegral Hodge structure of weight m. If R is a field, this Hodge structure is
R-polarizable if there exists a Kähler class in H2(X;R). In fact, since R is
a field, the Lefschetz decomposition (I–12) yields a direct splitting of Hodge
structures

Hm(X;R) '
⊕

r≥(k−n)+

Hm−2r
prim (X;R)(−r)

and each of the summands carries a polarization. The Tate twist arises nat-
urally: instead of the Kähler class we take 1/(2πi) times this class, which is
represented by the curvature form (Def. B.39) of the Kähler metric. It belongs
to H2(X;R)(−1) and cup product with it defines the modified Lefschetz-
operator, say L̃ : Hk(X;R)→ Hk+2(X;R)(−1). To have a polarization on all
of Hm(X;R) we demand that the direct sum splitting be orthogonal and we
change signs on the summands (see [Weil, p. 77]):

Q(
∑
r L

rar,
∑
s L

sbs) := ε(k)
∑
r(−1)r

∫
X
L̃n−m+2r(ar ∧ br),

ar, br ∈ Hm−2r(X;R).

Now there is a particularly concise reformulation of Definition 2.9 if we
consider S = (2πi)−kQ as a morphism of Hodge structures V ⊗ V → R(−k).
Since Fm(V ⊗ V ) =

∑
r+s=m F

rV ⊗ F sV , this demand is equivalent to the
first relation. For the second, note that it follows as soon as we know that the
real-valued symmetric form Q(Cu, v) is positive definite on the real primitive
cohomology. This then leads to the following

Definition 2.9 (bis). A polarization of an R-Hodge structure V of weight
k is a homomorphism of Hodge structures

S : V ⊗ V −→ R(−k)

which is (−1)k-symmetric and such that the real-valued symmetric bilinear
form

Q(u, v) :=(2πi)kS(Cu, v) (II–9)

is positive-definite on V ⊗R R.

Corollary 2.11. Let V be an R-polarizable weight k Hodge structure. Any
choice of a polarization on V induces an isomorphism R-Hodge structures
V
∼−→ V ∨(−k) of weight k.
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We finish this section with an important principle:

Corollary 2.12 (Semi-simplicity). Let (V,Q) be an R-polarized Hodge struc-
ture and let W be a Hodge substructure. Then the form Q restricts to an
R-polarization on W . Its orthogonal complement W⊥ likewise inherits the
structure of an R-polarized Hodge structure and V decomposes into an or-
thogonal direct sum V = W ⊕W⊥. Hence, the category of R-polarized Hodge
structures is semi-simple.

Proof. Since W is stable under the action of the Weil operator, the form S
given by (II–9) restricts to a positive definite form on W ⊗RR and so we have
an orthogonal sum decomposition as stated.

2.2 Mumford-Tate Groups of Hodge Structures

In this section (V, F ) denotes a finite dimensional Q-Hodge structure of weight
k. We have seen in § 2.1 that this means that we have a homomorphism

hF : S→ GL(V )

of algebraic groups such that t ∈ w(Gm(R)) acts as v 7→ t−kv. Recall also
that S = U(1) ·w(Gm). Restricting hF to the subgroup U(1) gives the homo-
morphism of algebraic groups

hF |U(1) : U(1)→ GL(V ).

The group S has two characters z and z̄ which on complex points S(C) =
C∗×C∗ correspond to the two projections and hence on S(R) give the identity,
respectively the complex conjugation, which explains the notation.

Definition 2.13. 1) The Mumford-Tate group MT(V, F ) of the Hodge
structure (V, F ) is the Zariski-closure of the image of hF in GL(V ) over Q,
i.e. the smallest algebraic subgroup G of GL(V ) defined over Q such that
G(C) contains hF (S(C)).

2) The extended Mumford-Tate group M̃T(V, F ) is the Zariski-closure
of the image of [hF × z] in GL(V ) × Gm, i.e. the smallest subgroup G̃ of
GL(V )×Gm defined over Q and such that G̃(C) contains (hF × z)S(C) .

3) The Hodge group or special Mumford-Tate group HG(V, F ) is the
Zariski-closure of the image of hF |U(1).

Remark 2.14. Projection onto the first factor identifies M̃T (V, F ) up to isogeny
with MT(V, F ), unless V has weight 0 and then it equals MT(V, F ) × Gm.
As an illustration, consider V = Q(p). Then for (u, v) ∈ C∗ × C∗ = S(C),
hF (u, v)t = (uv)−pt and the extended Mumford-Tate group equals Gm em-
bedded in Gm × Gm via u 7→ (u−2p, u) where the situation with respect to
projection onto the first factor differs for the cases p = 0 and p 6= 0.
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To have a more practical way of determining the Mumford-Tate group,
we use as a motivation that all representations of GL(V ) can be found from
looking at the induced action on tensors

Tm,nV = V ⊗m ⊗ (V ∨)⊗n.

Indeed, this is a property of reductive algebraic groups as we shall see below.
Together with the action of Gm on the Hodge structure of Tate Q(p) this de-
fines a natural action of GL(V )×Gm on Tm,nV (p) and hence an action of the
Mumford-Tate group M̃T(V, F ) on Tm,nV (p). The induced Hodge structure
on Tm,nV (p) has weight (m− n)k − 2p. Assume it is even, say w = 2q. Then
HG(V, F ) acts trivially on Hodge vectors (i.e. rational type (q, q)-vectors) in-
side Tm,nV (p), while any t ∈ w(Gm(R)) multiplies an element in Tm,nV (p) of
pure type (q, q) by |t|2q. Hence, if the weight of Tm,nV (p) is zero, the Hodge
vectors inside Tm,nV (p) are fixed by the entire Mumford-Tate group. The
content of the following theorem is the main result of this section.

Theorem 2.15. The Mumford-Tate group M̃T (V, F ) is exactly the (largest)
algebraic subgroup of GL(V ) × Gm which fixes all Hodge vectors inside
Tm,nV (p) for all (m,n, p) such that (m − n)k − 2p = 0. The Hodge group
is the subgroup of GL(V ) which fixes all Hodge vectors in all tensor represen-
tations Tm,nV .

Before embarking on the proof let us recall that an algebraic group is
reductive if it is the product of an algebraic torus and a (Zariski-connected)
semi-simple group, both of which are normal subgroups. A group is semi-
simple if it has no closed connected commutative normal subgroups except
the identity. The groups SL(n),SO(n),SU(n),Sp(n) are examples of semi-
simple groups. The group GL(n) itself is reductive. In the sequel we use at
several points (see [Sata80, I.3]:

Theorem 2.16. An algebraic group over a field of characteristic zero is re-
ductive if and only if all its finite-dimensional representations decompose into
a direct product of irreducible ones.

We need now a general result about the behaviour of tensor representations
for reductive groups G with respect to algebraic subgroups H. For simplicity,
assume that G ⊂ GL(V ). and consider Tm,nV as a G-representation. For any
subgroup H of G, the set of vectors inside Tm,nV fixed by H is as usual
denoted by (Tm,nV )H . We then put

H̃ :={g ∈ G | there is some (m,n) such that g|(Tm,nV )H = id}.

If g fixes (Tm,n)H and g′ fixes (Tm
′,n′V )H , then gg′−1 fixes (Tm−m

′,n−n′V )H

so that H̃ is a subgroup of G. This group obviously contains H and we want
to know when the two groups coincide. This is the criterion:
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Lemma 2.17. In the above notation H = H̃ if H is reductive or if every
character of H lifts to a character of G.

Proof. The crucial remark is that any representation of G is contained in a
direct sum of representations of type Tm,nV (see [DMOS, I, Prop 3.1]). Also,
by Chevalley’s theorem (loc. cit.) the subgroup H is the stabilizer of a line
L in some finite dimensional representation V , which we may assume to be
such a direct sum. If H is reductive, V = V ′ ⊕ L for some H-stable V ′ and
V ∨ = (V ′)∨⊕L∨ so that H is exactly the group fixing a generator of L⊗L∨ in
V ⊗V ∨ and so H = H̃. If all characters of H extend to G, the one-dimensional
representation of H given by L comes from a representation of G. Then H is
the group fixing a generator of L⊗L∨ inside V ⊗ V ∨, a tensor representation
of the desired type. ut

Proof (of the Theorem): We apply the preceding with G = GL(V ) × Gm

and H the extended Mumford-Tate group. By definition, the largest algebraic
subgroup of GL(V ) × Gm which fixes all Hodge vectors inside Tm,nV (p),
(m − n)k − 2p = 0 is the group H̃. We must show that H̃ = H. To do this,
we use the criterion that any rationally defined character χ : MT(V ) → Gm

should extend to all of GL(V )×Gm. Look at the restriction of this character
to the diagonal matrices Gm ⊂ MT(V, F ). By Example 2.2 2), it defines a
Hodge structure of Tate Q(k) and so, after twisting W by Q(−k) the character
becomes trivial and so extends to GL(V )×Gm as the trivial character. Then
also the original character extends to GL(V )×Gm. ut

The importance of the previous theorem stems from the following

Observation 2.18. The rational Hodge substructures of Tm,nV are exactly
the rational sub-representations of the Mumford-Tate group acting on Tm,nV .

Proof. Suppose that W ⊂ Tm,nV is a rational sub-representation of the
Mumford-Tate group. Then the composition h : S ↪→ MT(V, F ) → GL(W )
defines a rational Hodge structure on W . The converse can be seen in a similar
fashion. ut

Next, suppose that we have a polarized Hodge structure. Almost by defini-
tion of a polarization (Def. 2.9-bis) the Hodge group preserves the polarization:
for all t ∈ U(1) and u, v ∈ V one has S(t · u, t · v) = S(u, v). Using this one
shows:

Theorem 2.19. The Mumford-Tate group of a Hodge structure which admits
a polarization is a reductive algebraic group.

Proof. It suffices to prove this for the Hodge group. The Weil element C =
hF (i) is a real point of this group. The square acts as (−1)k on V and hence lies
in the centre of MT(V, F ). The inner automorphism σ := ad(C) of HG(V, F )
defined by C is therefore an involution. Such an involution defines a real-form
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Gσ of the special Mumford-Tate group. By definition this is the real algebraic
group Gσ whose real points are

Gσ(R) = {g ∈ HG(V, F )(C) | σ(g) = g}.

There is an isomorphism

Gσ(C)
∼=−→ HG(V, F )(C)

such that complex conjugation onGσ(C) followed by σ corresponds to complex
conjugation on HG(V, F )(C). This means that

σ(ḡ) = ad(C)(ḡ) = g. (II–10)

If the Hodge structure (V, F ) admits a polarization Q, the following com-
putation shows that Gσ admits a positive definite form and hence is compact.
For u, v ∈ VC and g ∈ HG(V, F )(C) we have, applying (II–10)

Q(Cu, v̄) = (ḡCu, ḡv̄) = Q(CC−1ḡCu) = Q(C ad(C)(ḡ)u, gv) = Q(Cgu, gv).

It follows that the positive definite form on VR given by Q(C−,−) is invariant
under Gσ.

The compactness of Gσ implies that any finite dimensional representation
of it completely decomposes into a direct product of irreducible ones and so,
by the characterization of reductive groups, Gσ and also the special Mumford-
Tate group is reductive. ut

Since MT(V, F ) is the product of the Hodge group and the diagonal ma-
trices and since a group is semi-simple if and only if the identity is the only
normal closed connected abelian subgroup, the previous theorem implies:

Corollary 2.20. The Hodge group is semi-simple precisely when the centre
of the Mumford Tate group consists of the scalar matrices.

2.3 Hodge Filtration and Hodge Complexes

2.3.1 Hodge to De Rham Spectral Sequence

Recall (Theorem 1.8) that for a Kähler manifold X, we have a Hodge decom-
position and an associated Hodge filtration

Hk(X,C) =
⊕
p+q=k

Hr,s(X), F pHk(X,C) =
⊕
r≥p

Hr,k−r(X).

Let us first explain how to define a putative Hodge filtration on De Rham
cohomology of any compact complex manifold X in terms of a spectral se-
quence relating the holomorphic and differentiable aspects. First embed the
holomorphic De Rham complex into the complexified De Rham complex
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Ω•X
j
−→ E•X(C).

The decomposition into types of the sheaf complex E•(C) gives the filtered
complex

F p(E•(C)) =
⊕
r≥p

Er,•−rX

and the homomorphism j becomes a filtered homomorphism provided we put
the trivial filtration

σ≥pΩ•X = {0→ · · · → 0→ ΩpX → Ωp+1
X · · · → ΩnX} (n = dimX).

on the De Rham complex. Then Grp(j) gives the Dolbeault complex

0→ ΩpX → E
p,0
X

∂−→ → Ep,1X
∂−→ · · ·

By Dolbeault’s lemma this is exact and so j induces a quasi-isomorphism
on the level of graded complexes. So the E1-terms of the first spectral se-
quence, which computes the hypercohomology of the graded complex (see
equation (A–29)) is just the De Rham-cohomology of the preceding com-
plex, i.e. ′Ep,q1 = Hq(X,ΩpX). The first spectral sequence of hypercohomology
(viewed as coming from the trivial filtration) reads therefore

′Ep,q1 = Hq(X,ΩpX) =⇒ Hp+q(X,Ω•X) = Hp+q
DR (X; C)

(Hodge to De Rham spectral sequence).

Consider now the filtration on the abutment:

Definition 2.21. The putative Hodge filtration on Hk
DR(X; C) is given

by
F pHk

DR(X; C) = Im
(
Hk(X,σ≥pΩ•)

αp−−→ Hk(X,Ω•)
)
.

The Hodge subspaces are given by

Hp,q(X) = F pHp+q
DR (X; C) ∩ F qHp+q

DR (X; C).

The terminology is justified by considering a Kähler manifold.

Proposition 2.22. Let X be a compact Kähler manifold. Then the Hodge to
De Rham spectral sequence degenerates at E1; the putative Hodge filtration
coincides with the actual Hodge filtration, and the Hodge subspaces Hp,q(X)
coincide with the subspace of the De Rham classes having a harmonic repre-
sentative of type (p, q).

Proof. As seen before (see the discussion following Theorem B.18), we have a
canonical isomorphism Hr,s(X) ∼= Hs(X,ΩrX) (Dolbeault’s theorem) and so∑

p+q=k

dim ′Ep,q1 =
∑
p+q=k

dimHp,q = dimHk(X; C) =
∑
p+q=k

dimEp,q∞
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which implies that the spectral sequence degenerates at E1 (since Er+1

is a subquotient of Er). Hence the map αp is injective and hp,k−p(X) =
dim Hk(X,σ≥pΩ•))− dim Hk(X,σ≥p+1Ω•)) and so

dim Hk(X,σ≥pΩ•)) =
∑
r≥p

dimHr,k−r(X) = dimF pHk(X; C)

which means that the image of j∗p is F pHk(X; C). Also Grp(j) induces an
isomorphism Hq(ΩpX)→ Hp,q(X) and so

F pHk(X; C) =
⊕
r≥p

Hr,k−r(X).ut

Remark 2.23. The proof of the degeneration of the Hodge to De Rham spectral
sequence hints at an algebraic approach to the Hodge decomposition. In fact
Faltings [Falt] and Deligne-Illusie [Del-Ill] found a purely algebraic proof for
the degeneracy of the Hodge to De Rham which works in any characteristic.
The De Rham cohomology in this setting by definition is the hypercohomology
of the algebraic De Rham complex, the algebraic variant of the holomorphic De
Rham complex. The Hodge filtration is again induced by the trivial filtration
on the De Rham complex. The proof then proceeds by first showing it first
in characteristic p for smooth varieties of dimension > p which can be lifted
to the ring of Witt vectors of length 2. Since this can be arranged for if the
variety is obtained from a variety in characteristic zero by reduction modulo
p the result then follows in characteristic zero. In passing we note that there
are many examples of surfaces in characteristic p for which the Hodge to De
Rham spectral sequence does not degenerate. See [Del-Ill, 2.6 and 2.10] for a
bibliography.

2.3.2 Strong Hodge Decompositions

Since by Corollary 1.10 the space Hp,q(X) can be characterized as the sub-
space of Hp+q

DR (X; C) of classes representable by closed (p, q)-forms, the pre-
vious proposition motivates the following definition.

Definition 2.24. LetX be a compact complex manifold. We say thatHk(X; C)
admits a Hodge decomposition in the strong sense if

1) For all p and q with p + q = k the Hodge (p, q)-subspace Hp,q(X) as
defined above can be identified with the subspace of Hk(X; C) consisting
of classes representable by closed forms of type (p, q). The resulting map

Hp,q(X)→ Hp,q

∂
(X) ∼= Hq(ΩpX)

is required to be an isomorphism.



46 2 Pure Hodge Structures

2) There is direct decomposition

Hk
DR(X; C) =

⊕
p+q=k

Hp,q(X).

3) The natural morphism from Bott-Chern cohomology to De Rham coho-
mology

Hp,q
BC(X) =

d-closed forms of type (p, q)
∂∂ΓEp−1,q−1

X

→ Hp+q
DR (X)⊗ C

which sends the class of a d-closed (p, q)-form to its De Rham class is
injective with image Hp,q(X).

Example 2.25. For any compact Kähler manifold X the Hodge decomposition
on Hk(X; C) is a Hodge decomposition in the strong sense.

By definition, the graded pieces of the putative Hodge filtration sequence
give the ′E∞-terms of the spectral sequence. If the Hodge to De Rham spectral
sequence degenerates at E1 it follows therefore that these graded pieces are
canonically isomorphic to the Dolbeault groups. It does not imply that the
putative Hodge filtration defines a Hodge structure on the De Rham groups.
It is for instance not true in general that the graded pieces are isomorphic to
the Hodge subspaces, even when the spectral sequence degenerates at E1.

Example 2.26. As is well known (see e.g. [B-H-P-V, Chapter IV]), for surfaces
the Hodge to De Rham spectral sequence, also called the Fröhlicher spectral
sequence, degenerates at E1 whereas there is no Hodge decomposition on
H1(X) for a non-Kähler surface X since b1(X) is odd for those. This is for
example the case of a Hopf surface which is the quotient of C2 − {0} by
the cyclic group of dilatations z → 2kz, k ∈ Z. Such a surface is indeed
diffeomorphic to S1 × S3 and its first Betti number is 1 and so H1 can never
admit a Hodge decomposition. In fact the two Hodge subspaces are equal and
hence equal to F 1 = F 0, the Dolbeault group H1(OX) maps isomorphically
onto these, whereas the other Dolbeault group H0(ΩX) is zero and maps to
F 0/F 1 = 0.

The following proposition summarizes what one can say in general. We
first introduce some terminology. We say that a filtration F on a the com-
plexification of a real vector space V is k-transverse if F p ∩ F q+1 = {0}
whenever p+ q = k. Note that this is automatic when F defines a real Hodge
structure of weight k on V and a k-transverse filtration is a Hodge filtration
if dimF p + dimF q+1 = dimV whenever p+ q = k.

Proposition 2.27. Suppose that the Hodge to De Rham spectral sequence de-
generates. Then the Dolbeault group Hq(X,ΩpX) is canonically isomorphic to
GrpF H

p+q
DR (X; C) and one has the equality
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bk := dimHk(X; C) =
∑
p+q=k

dimHq(ΩpX).

Suppose that the putative Hodge filtration on Hk(X; C) is k-transverse, and
that it is (2n−k)-transverse on H2n−k(X; C). Then the putative Hodge filtra-
tions on Hk(X; C) and H2n−k(X; C) are both Hodge filtrations. For p+q = k
and p+ q = 2n− k the spaces Hq(X,ΩpX) ∼= GrpF H

p+q
DR (X; C) get canonically

identified with Hp,q(X).

Proof. We only need to prove the statements about the putative Hodge fil-
tration. For this, we provisionally set hp,q = dimHq(ΩpX) so that bk =∑
p+q=k h

p,q. Now for any t we have dimF t = dimF t =
∑
r≥t h

r,k−r. The
assumption on the putative Hodge filtration then implies∑

r≥p

hr,k−r +
∑

r≥k−p+1

hr,k−r ≤ bk =
∑
r

hr,k−r

and hence ∑
r≥p

hr,k−r ≤
∑
r≤k−p

hr,k−r.

This inequality for 2n − k-cohomology with p replaced by n − k − p, to-
gether with Serre duality (hp,q = hn−p,n−q) yields the reverse inequality.
So we have equality and hence the dimensions of F p and F q+1 add up to
dimHp+q(X; C) when p+q = k or p+q = 2n−k. So we get Hodge structures
and F pHk(X; C) =

⊕
r≥pH

r,s(X). Since Hq(ΩpX) is canonically isomorphic
to GrpF H

p+q(X; C) ∼= Hp,q(X), the last assertion follows as well. ut

In fact, we can even show that the assumptions of the preceding Propo-
sition guarantee a Hodge decomposition in the strong sense on Hk(X) and
H2m−k(X). Indeed, we have the following statement which is an algebraic
version of the ∂∂-Lemma (1.9). For a proof see [B-H-P-V, I, Lemma 13.6].

Corollary 2.28. 1) Under the assumptions of Proposition 2.27, any coho-
mology class in degree k or in degree (2n− k) can be represented by a form
which is ∂- as well as ∂-closed.

2) For a d-closed (p, q)-form α, p + q = k or p + q = 2n − k the following
statements are equivalent:
a) α = dβ for some p+ q − 1-form β;
b) α = ∂β′′ for some (p, q − 1)-form β′′;
c) α = ∂∂γ for some (p− 1, q − 1)-form γ;

4) The natural morphism

Hp,q
BC(X) =

d-closed forms of type (p, q)
∂∂ΓEp−1,q−1

X

→ Hp+q
DR (X)⊗ C

which sends the class of a d-closed (p, q)-form to its De Rham class is in-
jective with image Hp,q(X). In particular, the latter space consists precisely
of the De Rham classes representable by a closed form of type (p, q).
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5) For p+ q = k or p+ q = 2n− k the natural map

Hp,q(X)→ Hp,q

∂
(X) ∼= Hq(ΩpX)

resulting from the identification of Hp,q(X) as the space consisting of the
De Rham classes representable by a closed form of type (p, q) is an isomor-
phism.

Despite the fact that holomorphic images of Kähler manifolds of the same
dimension are not always Kähler [Hart70, p. 443] we can show:

Theorem 2.29. Let X,Y be compact complex manifolds. Suppose that X
is Kähler and that f : X → Y is a surjective holomorphic map. Then
Hk(Y ) admits a Hodge decomposition in the strong sense. In fact f∗ :
Hk(Y ; R)→ Hk(X; R) is injective and f∗Hk(Y ; R) is a real Hodge substruc-
ture of Hk(X; R).

Proof. We first show that f∗ is injective. In fact, this holds for any surjective
differentiable map f : X → Y between compact differentiable manifolds. To
see this, first reduce to the equi-dimensional case by choosing a submanifold
Z ⊂ X to which f restricts as a generically finite map, say of degree d. With
f! Poincaré dual to f∗, the composition f!◦f

∗ is multiplication with d and so
f∗ is injective.

Next, we observe that for m = dimY , a generator of H2m(Y ; C) =
Hm,m(Y ) = Hm(ΩmY ) is represented by the volume form volh with respect to
some hermitian metric h on Y . If ω is the Kähler form on X, the form ωc,
c = dimX − dimY restricts to a volume form on the generic fibre F of f and
hence ∫

X

f∗(volh) ∧ ωc =
∫
Y

volh
∫
F

ωc 6= 0.

So f∗ : Hm(ΩmY ) → Hm(ΩmX ) is non-zero. Now one uses Serre duality to
prove injectivity on Hq(ΩpY ) for all p and q. Indeed, given any non-zero class
α ∈ Hq(ΩpY ) choose β ∈ Hm−q(Ωm−pY ) such that α∧β 6= 0. Then f∗α∧f∗β =
f∗(α ∧ β) 6= 0 and hence f∗α 6= 0.

Now compare the Hodge to De Rham spectral sequence for Y with that
for X. What we just said shows that the E1-term of the first injects into
the E1-term of the latter. For X the Hodge to De Rham spectral sequence
degenerates and so dr = 0, r ≥ 1 and E1 = E2 = · · · . It follows recursively
that the same holds for the Hodge to De Rham spectral sequence for Y .
In particular, it degenerates. But more is true. The map f∗ on the level of
spectral sequences induces an injection F pHk(Y ) ↪→ F pHk(X) and since
f∗ commutes with complex conjugation, we conclude that F pHk(Y ) meets
F k−p+1Hk(Y ; C) only in {0} and so the hypothesis of Prop. 2.27 is satisfied
and the result follows upon applying Corollary 2.28. ut

By Hironaka’s theorem [Hir64] the indeterminacy locus of a meromorphic
map X 99K Y can be eliminated by blowing up. Since the blow up of a Kähler
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manifold is again Kähler (see [Kod54, Sect. 2, Lemma 1]) we can apply the
previous theorem to a manifold bimeromorphic to a Kähler manifold.

Corollary 2.30. Let X be a compact complex manifold bimeromorphic to a
Kähler manifold. Then Hk(X; C) admits a strong Hodge decomposition. This
is in particular true for a (not necessarily projective) compact algebraic mani-
fold. In particular, the previous theorem remains true when X is only bimero-
morphic to a Kähler manifold.

2.3.3 Hodge Complexes and Hodge Complexes of Sheaves

Comparison between complexes should take place in suitable derived cate-
gories. We prefer however to give explicit morphisms realizing these compar-
ison morphisms. To fix ideas we introduce the following definitions.

Definition 2.31. Let K•, L• two bounded below complexes in an abelian
category. A pseudo-morphism between K• and L• is a chain of morphisms
of complexes

K•
f
−→ K•1

qis∼←−−K•2
qis∼−−→ · · ·

qis∼−−→K•n+1 = L•.

It induces a morphism in the derived category. We shall denote such a pseudo-
morphism by

f : K•9999KL•.

If also f is a quasi-isomorphism we speak of a pseudo-isomorphism. It
becomes invertible in the derived category. We denote these by

f : K•
qis∼
9999K L•.

A morphism between two pseudo-morphisms K•
f
−→ K•1

qis∼←−− · · ·
qis∼−−→K•m and

L•
g
−→ L•1

qis∼←−− · · ·
qis∼−−→L•m consists of a sequence of morphism Kj → Lj , j =

1, . . . ,m such that the obvious diagrams commute. Note that such morphisms
are only possible between sequences of equal length.

Definition 2.32. 1) Let R a noetherian subring of C such that R ⊗Q is a
field (mostly R will be Z or Q). An R-Hodge complex K• of weight m
consist of
– A bounded below complex of R-modules K•R such that the cohomology

groups Hk(K•R) are R-modules of finite type,
– A bounded below filtered complex (K•C, F ) of complex vector spaces

with differential strictly compatible with F and a
– comparison morphism α : K•R9999KK

•
C, which is a pseudo-morphism

in the category of bounded below complexes of R-modules and becomes
a pseudo-isomorphism after tensoring with C.

α⊗ id : K•R ⊗ C
qis∼
9999K K•C,
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and such that the induced filtration on Hk(K•C) determines an R-Hodge
structure of weight m+ k on Hk(K•R).

Its associated Hodge-Grothendieck characteristic is

χHdg(K•) :=
∑
k∈Z

(−1)k
[
Hk(K•)

]
∈ K0(hsR).

2) Let X be a topological space. An R-Hodge complex of sheaves of
weight m on X consists of the following data
– A bounded below complex of sheaves of R-modules K•R such that the hy-

percohomology groups Hk(X,K•) are finitely generated as R-modules,
– A filtered complex of sheaves of complex vector spaces {K•C, F} and

a pseudo-morphism α : K•R9999KK•C in the category of sheaves of R-
modules on X inducing a pseudo-isomorphism (of sheaves of C-vector
spaces)

α⊗ id : K•R ⊗ C
qis∼
9999K K•C,

and such that the R-structure on Hk(K•C) induced by α and the filtration
induced by F determine an R-Hodge structure of weight k + m for all
k. Moreover, one requires that the spectral sequence for the derived
complex RΓ (X,K•C) (see (B–12) with the induced filtration

Hp+q(X,GrpF K
•
C) =⇒ Hp+q(X,K•C)

degenerates at E1 (by Lemma A.42 this is equivalent to saying that the
differentials of the derived complex are strict).

3) A morphism of Hodge complexes (of sheaves) of weight m, consists of
a triple(hR, hC, κ) where hR is a morphism of (of sheaves of) R-modules,
hC a homomorphism of (sheaves of) C-vector spaces and κ : α → β is a
morphism of pseudo-morphisms.

The notions of a Hodge complex and that of a Hodge complex of sheaves are
related in the following way.

Proposition 2.33. Given an R-Hodge complex of sheaves on X of weight m,
say

K• = (K•R, (K•C, F ), α) ,

any choice of representatives for the triple

RΓK• = (RΓ (K•R), (RΓ (K•C, F ), RΓ (α))

yields an R-Hodge complex. With aX : X → pt the constant map, we have

χHdg(RΓ (K•)) = [R(aX)∗K•] ∈ K0(hsR).

Here we view R(aX)∗K•, a complex of sheaves over the point pt, as a complex
of R-modules whose (finite rank) cohomology groups Hk(X,K•) are R-Hodge
structures so that the right hand side makes sense in K0(hsR).
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Example 2.34. The existence of a strong Hodge decomposition for Kähler man-
ifolds (Example 2.25) in fact tells us that for X a compact Kähler manifold,
the constant sheaf ZX , the holomorphic De Rham complex Ω•X with the trivial
filtration σ together with the inclusion ZX ↪→ Ω•X (which gives the pseudo-
isomorphism CX → Ω•X) is an integral Hodge complex of sheaves of weight
0. The same is true for any complex manifold bimeromorphic to a Kähler
manifold. This complex will be called the Hodge-De Rham complex of
sheaves on X and be denoted by

Hdg•(X) = (ZX , (Ω•X , σ),ZX ↪→ Ω•X).

Taking global sections on the Godement resolution gives RΓHdg•(X), the
canonically associated De Rham complex of X with Hodge-Grothendieck
characteristic

χHdg(X) =
∑
k∈Z

(−1)k
[
Hk(X)

]
= [R(aX)∗ZHdg

X ] ∈ K0(hs). (II–11)

Lemma-Definition 2.35. 1) For an R-Hodge complex of sheaves K• =
(K•R, (K•C, F ), α) of weight m, and k ∈ Z we define the k-th Tate-twist by

K•(k) :=(K•R ⊗ Z(2πi)k, (K•C, F [k]), α · (2πi)k).

It is an R-Hodge sheaf of weight m− 2k. This operation induces the Tate-
twist in hypercohomology

H`(X,K•C(k)) = H`(X,K•C)(k).

A similar definition holds for K•(k) where K• is an R-Hodge complex.
2) We define the shifted complex by

K•[r] :=(K•R[r], (K•C[r], F [r]), α[r]).

It is a Hodge complex of sheaves of weight m+ r A similar definition holds
for K•[r] where K• is an R-Hodge complex.

2.4 Refined Fundamental Classes

We recall (Proposition 1.14) that for any irreducible subvariety Y of codi-
mension d in a compact algebraic manifold X the integral fundamental class
cl(Y ) ∈ H2d(X) has pure type (d, d). This means that the fundamental class
belongs to the d-th Hodge filtration level. So we can also define a fundamen-
tal Hodge cohomology class

clHdg(Y ) ∈ F dH2d(X; C) = H2d(X,F dΩ•X)



52 2 Pure Hodge Structures

and the integral class maps to it under the inclusion Z ↪→ C. To keep track
of various powers of 2πi introduced when integrating forms, it is better to
replace this inclusion by

εd : Z(d) ↪→ C (II–12)

and we consider the fundamental class as a class cl(Y ) ∈ H2d(X,Z(d)) which,
under εd, maps to the image of the Hodge class in H2d(X; C). This is sum-
marized in the following diagram

clHdg(Y ) clC(Y )
∩ ∩

H2d(X,F dΩ•X) ↪→ H2d(X,Ω•X) = H2d(X; C)x(εd)∗

H2d(X; Z(d)) 3 cl(Y )

6

-`

-

Remark. There is a much more intrinsic reason to consider cl(Y ) as a class
inside H2d(X,Z(d)) rather than as an integral class. The reason is that the
only algebraically defined resolution of C is the holomorphic De Rham com-
plex Ω•X and the only algebraically defined fundamental class is coming from
Grothendieck’s theory of Chern classes. To algebraically relate the first Chern
class which is naturally living in H1(O∗X) = H2(X, 0→ O∗X → 0) to a class in
H2(X,C) = H2(X,Ω•X) one uses d log : O∗X → Ω1

X and zero else. This misses
out the factor 2πi which is inserted in the C∞ De Rham theory. It follows that
cl(Y ) as defined in this way is no longer integral, but has values in Z(d). See
[DMOS, I.1] where this is carefully explained. This remark becomes relevant
when one wants to compare fundamental classes for algebraic varieties defined
over fields k ⊂ C when one changes the embedding of k in C.

Remark 2.36. Contininuing the preceding Remark, suppose that X is a non-
singular algebraic variety defined over a field k of finite transcendence degree
over Q. Any embedding σ : k ↪→ C defines a complex manifoldX(σ) and a codi-
mension d cycle Z on X defines a fundamental class cl(σ)(Z) ∈ H2d(X(σ); C)
which is rational in the sense that it belongs to H2d(X(σ); 2πiQ). On the
other hand, we have the algebraic De Rham groups Hm

DR(X/k) which are
k-spaces, they are the hypercohomology groups of the algebraic De Rham
complex Ω•X/k. These compare to complex cohomology through a canonical
comparison isomorphism

ισ : Hm
DR(X/k)⊗σ,k C ∼−→ Hm(X(σ); C)

and under this isomorphism for m = 2d the class cl(Z) on the right corre-
sponds to a class

clB(Z) ∈ H2d
DR(X/k)⊗ (2πi)d :=H2d(X)(d).

Then the class ισ clB(Z) is rational in the above sense. This motivates the
definition of an absolute Hodge class:
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Definition 2.37. Let X be a non-singular algebraic variety defined over a
field k of finite transcendence degree over Q. A class β ∈ H2d(X)(d) is abso-
lute Hodge if for all embeddings σ : k ↪→ C the image ισ(β) ∈ H2d(X(σ); C)
is rational.

If such a class β has the property that ισ(β) is rational for just one embedding
we speak of a Hodge class. These come up in the Hodge conjecture 1.16 for
a complex projective variety. To explain this, note that such a variety is of
course defined over a given subfield k of C of finite transcendence degree over
Q and there is a preferred embedding k ↪→ C.

Deligne’s “hope” is that like the algebraic cycle classes, all such Hodge
classes are absolute Hodge. This has been verified only for abelian varieties
[DMOS].

We now continue our study of refined cycle classes in the setting of local
cohomology, the main result being as follows.

Theorem 2.38. Let X be a compact algebraic manifold and let Y ⊂ X be an
irreducible d-dimensional subvariety. Then the following variants of interre-
lated fundamental classes exist:

1) There is a refined Thom class

τHdg(Y ) ∈ H2d
Y (X,F dΩ•X)

whose image under the map H2d
Y (X,F dΩ•X) → H2d

Y (X,Ω•X) = H2d
Y (X; C)

coincides with the image under the map (II–12) of the Thom class τ(Y ) ∈
H2d
Y (X,Z(d)).

2) There is a class τd,d ∈ Hd
Y (X,ΩdX) which is the projection of the refined

Thom class.
3) Forgetting supports, the class τHdg(Y ) maps to clHdg(Y ).
4) The various classes in this construction are related as follows

τd,d(Y )) ←a τHdg(Y ) 7−→ τ(Y )y y y
cld,d(Y ) ←a clHdg(Y ) 7−→ clC(Y )

and where the elements come from the commutative diagram

Hd
Y (ΩdY )←−− H2d

Y (X,F dΩ•X) −−→ H2d
Y (X; C)y y y

Hd(ΩdX) ←−− H2d(X,F dΩ•X) = F dH2d(X; C) −−→ H2d(X; C)

We start with a localizing tool. Let F be any sheaf on X. The assignment
U 7→ Hk

Y (U,F) defines a presheaf on X whose associated sheaf is denoted by
Hk
Y (F). These sheaves are related to the local cohomology groups through a

spectral sequence
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Er,s2 = Hr(X,Hs
Y (F)) =⇒ Hr+s

Y (X,F) (II–13)

which is the second spectral sequence associated to the functor of taking
sections with support in Y .

Lemma 2.39. Let X be a complex manifold, Y ⊂ X a codimension c subva-
riety and E a locally free sheaf on X. Then

1) the cohomology sheaf satisfies

Hq
Y (E) = 0, q < c;

2) there is an isomorphism

Hc
Y (X, E) ∼−→ H0(X,Hc

Y (E)).

Proof. For a proof of the first assertion see [S-T, Prop. 1.12]. The second
assertion then follows from the spectral sequence (II–13). ut

We state a consequence for hypercohomology. We assume that we have a
complex K• of locally free sheaves on X and we consider the first spectral
sequence with respect to the trivial filtration σ≥p = F p for the functor of
hypercohomology with supports in Y whose E1-terms are

Eq,r1 = Hq
Y (X,F sKr) =⇒ Hq+r

Y (F sK•X), F sKr =
{
Kr if r ≥ s

0 if r < s.

We find:

Corollary 2.40. For a codimension c subvariety Y ⊂ X, we have

Hm
Y (X,F sK•) = 0, m < s+ c

and
Hs+c
Y (X,F sK•) ∼= H0(X,Hc

Y (X,Ks)).

Proof of Theorem 2.38. Step 1: Reduction to the case where Y is a smooth
subvariety.

We let Yreg, Ysing be the regular locus, respectively the singular locus of Y
and we put

X0 :=X − Ysing

Let us combine the usual exact sequences for cohomology with support to-
gether with the excision exact sequences (B–36) to a commutative diagram

H2d
Ysing

(X,F dΩ•X)→H2d
Y (X,F dΩ•X) → H2d

Yreg
(X0, F dΩ•X)→ H2d+1

Ysing
(X,F dΩ•X)∥∥∥∥ yr yrreg ∥∥∥∥

H2d
Ysing

(X,F dΩ•X)→ H2d(X,F dΩ•X)→ H2d(X0, F dΩ•X) → H2d+1
Ysing

(X,F dΩ•X).
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In this diagram the first terms on the left vanish by Prop. 2.40. So one can
define a unique Hodge class clHdg(Yreg) ∈ H2d(X0, F dΩ•X) which comes from
the Hodge class of the pair (X,Y ). A diagram chase then shows that one can
reduce the construction of a Thom class to the smooth case (X0, Yreg).

In what follows we are going to construct a refined Thom class for
(X0, Yreg) which maps to the usual Thom class for this pair. This suffices
to complete the proof, in view of the commutative diagram

H2d
Yreg

(X0, F dΩ•X) −−→ H2d
Yreg

(X0, Ω•X0) = H2d
Yreg

(X0; C)y y
H2d(X0, F dΩ•X0) −−→ H2d(X0, Ω•X0) = H2d(X0; C)

Step 2: Construction of τd,d(Y ) ∈ Hd
Y (X,ΩdX) for Y a complete intersection

in a smooth (not necessarily compact) algebraic manifold X.
Let us cover X by Stein open sets {Uα}, α ∈ I. Suppose that Uα∩Y is given

by f (k)
α = 0, k = 1, . . . , d. The open sets Ukα :=Uα − {f (k)

α = 0}, k = 1, . . . , d
form an acyclic covering of Uα − Y ∩ Uα. Consider the Čech (d− 1)-cocycle(

U1
α ∩ · · · ∩ Udα

)
7−→ ηα :=

[
d log f (1)

α ∧ · · · ∧ d log f (d)
α

]
.

If we take other equations it is easy to write down a (d − 2) co-chain whose
coboundary gives the difference. Under the isomorphism

Hd−1(Uα − (Y ∩ Uα), ΩdX) ∼−→ Hd
Y (Uα, ΩdX)

its class maps to a class cα ∈ Hd
Y (Uα, ΩdX) which is therefore independent of

the choice of equations for Y . Hence the cα patch together to a section of the
sheaf Hd

Y (ΩdY ). We then apply Lemma 2.39.

Step 3: Lifting of the class τd,d(Y ) to a class τHodge(Y ) ∈ H2d
Y (X,F dΩ•X).

To do this, we consider the long exact sequence in hypercohomology with
supports in Y associated to the exact sequence of complexes

0→ F d+1Ω•X → F dΩ•X → ΩdX [−d]→ 0.

It reads

H2d
Y (X,F d+1Ω•X)→ H2d

Y (X,F dΩ•X)→ Hd
Y (X,ΩdX) ∂−→ H2d+1

Y (X,F d+1Ω•X)∥∥ ∥∥ o
0 H0(X,Hd

Y (X,Ωd+1
X )).

Here we use Cor. 2.40. It follows that to calculate ∂(τd,d(Y )), it suffices to do
this locally. We use the same notation as in the previous step. So ∂τd,d(Y )|Uα
is represented by the co-cycle(

U1
α ∩ · · · ∩ Udα

)
7→ dηα = d

[
d log f (1)

α ∧ · · · ∧ d log f (d)
α

]
= 0.
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So ∂(τd,d(Y )) = 0 and there is a unique lift of this class to τHodge(Y ) ∈
H2d
Y (X,F dΩ•X).

Step 4: Proof that the class τHodge(Y ) ∈ H2d
Y (X,F dΩ•X) maps to the Thom

class τC(Y ) ∈ H2d
Y (X; C).

Recall (B.2.9) that Poincaré-duality implies that τC(Y ) generates local
cohomology. Suppose that τHodge(Y ) maps to mτC(Y ). To show that m = 1
a local computation suffices. Hence, by functoriality, we can reduce to the
case of the origin in Cd. Again, by functoriality we can further restrict down
to a complex line passing through the origin. Next, we look at the closed
1-form dz/z on C − {0}. It defines a De Rham class in H1(C − {0}) which
generates the first integral cohomology of H1(C− {0}) under the embedding
ε : Z(1) → C. This is simply the residue formula. The corresponding image
∂(dz/z) ∈ H2

0 (C) generates integral cohomology with support in 0. It follows
that m = 1. ut

Remark 2.41. This construction also provides us with refined Thom classes
for cycles Y =

∑
niYi of codimension d with support in |Y | =

⋃
i Yi. Indeed,

one merely uses the isomorphism

H2d
|Y |(X;F dΩ•X) ∼=

⊕
i

H2d
Yi (X;F dΩ•X)

coming from restriction and puts

τHdg(Y ) =
∑
i

niτHdg(Yi).

To verify that restriction induces an isomorphism, one first remarks that this
is obvious if the Yi are disjoint, while the general case can be reduced to this
case by comparing cohomology with support in |Y | with cohomology with
support in

⋃
i Yi − (Yi

⋂⋃
j 6=i Yj) using the excision exact sequence and the

previous vanishing results.

2.5 Almost Kähler V -Manifolds

In this section we shall see that the Hodge decomposition is valid for the
cohomology groups of a class of varieties that are possibly singular.

A V -manifold of dimension n is a complex space which can be covered
by charts of the form Ui/Gi, i ∈ I, with Ui ⊂ Cn open and Gi a finite group
of holomorphic automorphisms of Ui.

An almost Kähler V -manifold is a V -manifold X for which there exists
a manifold Y bimeromorphic to a Kähler manifold and a proper modification
f : Y → X onto X. Here we recall that a proper modification is a proper
holomorphic map which induces a biholomorphic map over the complement
of a nowhere dense analytic subset.
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Examples 2.42. 1) A global quotient of a complex manifold by a finite group
of holomorphic automorphisms. An important example is the case of a
weighted projective space P(q0, . . . , qn), where the qj are non-negative
integers, the weights. It is defined as the quotient of Pn by the coordinate-
wise action of the product µq0 × · · · × µqn of the qj-th roots of unity µj ,
j = 0, . . . , n. It can also be described as the quotient of Cn+1 − {0} by
the action of C× given by t · (z0, . . . , zn) = (tq0z0, . . . , t

qnzn). The natural
quotient map is denoted

p : Cn+1 − {0} → P(q0, . . . , qn).

The subgroup µ(qj) ⊂ C× stabilizes Vj = {zj = 1} and p identifies p(Vj)
with the quotient Vj = Uj/µ(qj). These together form the standard open
affine covering of P(q0, . . . , qn). Without loss of generality one may assume
that the qj have no factor in common and we may even assume that this is
true for any (n− 2)-tuple of weights.
A subvariety X of P(q0, . . . , qn) is called quasi-smooth if the cone p−1X ⊂
Cn+1 − {0} is smooth. In other words, the only singularity of the corre-
sponding affine cone is the vertex. It is not hard to see that a quasi-smooth
subvariety of weighted projective space is a V -manifold.

2) The quotient of any torus by the cyclic group of order two generated by
the involution x 7→ −x, a Kummer variety.

3) A complete complex algebraic V -manifold admits a resolution of singular-
ities Y and by Chow’s lemma, Y is bimeromorphic to a smooth projective
variety. It follows that a complete complex algebraic V -manifold is an al-
most Kähler V -manifold

4) Let us refer to [Oda] for the subject of toric varieties. We only say that
to each convex polytope Π with integral vertices spanning Rn as a vector
space there corresponds an n-dimensional toric variety XΠ and vice-versa.
Each vertex v determines the cone

⋃
n≥1 nΠv, where Πv is the polytope Π

translated over −v. If this cone has exactly n 1-dimensional faces it is called
simplicial and Π is simplicial if all Πv are simplicial. The singularities are
in general rather bad, but if Π is simplicial, XΠ is a V -manifold.

The main result is

Theorem 2.43. Let X be an almost Kähler V -manifold. Then Hk(X; Q) ad-
mits a Hodge structure of weight k.

Before we can prove this theorem, we need some preparations. First we
note that locally a V -manifold is obtained as the quotient of a ball B by a finite
group G of linear unitary automorphisms (see [Cart57, proof of Theorem 4]).
The quotient B/G is smooth if and only if G is generated by generalized reflec-
tions (elements whose fixed locus is a hyperplane). In general, if we let Gbig the
subgroup of G generated by the generalized reflections and Gsmall = G/Gbig,
the smooth quotient B′ = B/Gbig is acted upon by Gsmall with quotient B/G.
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This description also shows that X is a rational homology manifold and hence
Poincaré-duality holds with respect to rational coefficients.

Next, we need to digress on singularities. Recall that a module M over
a local noetherian local ring (R,m) of Krull dimension n is called Cohen-
Macaulay if it has a regular sequence of maximal length n (an ordered se-
quence (t1, . . . , tm) of elements tj ∈ m is called an M -regular sequence if
each of the tj is not a zero-divisor in M/(t1, . . . , tj−1)M). A local ring is called
Cohen-Macaulay if it is Cohen-Macaulay as a module over itself.

A (germ of a) singularity (X,x) is called Cohen-Macaulay if OX,x is a
Cohen-Macaulay ring.

Examples 2.44. 1) Smooth points are of course Cohen-Macaulay.
2) Reduced curve singularities are Cohen-Macaulay.
3) Quotient singularities are quotients of a germ of smooth manifold (Y, y)
by the action of a finite group G of holomorphic automorphisms. These are
Cohen-Macaulay, since the local ring at the point x ∈ X = Y/G corre-
sponding to y is the ring of G-invariants OGY,y of OY,y and hence a direct
factor of the Cohen-Macaulay ring OY,y which itself is Cohen-Macaulay
over OGY,y.

By [R-R-V], every equi-dimensional complex analytic spaceX of dimension
n has a dualizing complex ω•X which actually is an object in the derived
category of bounded below complexes of OX -modules. It can be defined locally
as follows. Suppose U ⊂ X is an open subset embeddable into an open set
V ⊂ CN , say i : U ↪→ V . Then the complex

ω•U :=RHomOV (OU , ΩNV [N ])[−n]

is supported on U and is actually independent of the choice of V .
The dualizing complex intervenes in a duality statement of which we only

need some special cases:

Theorem 2.45. 1) Serre-Grothendieck duality: Let X be a compact
complex space. For any OX-coherent sheaf F we have

Hq(X,F)∨ = Extn−q(F , ω•X).

2) Let f : Z → X be a finite morphism between complex spaces. For any
OZ-coherent sheaf F we have

f∗ExtiOZ (F , ω•Z) = ExtiOX (f∗F , ω•X).

It can be shown that for a normal Cohen-Macaulay space X with singular
locus Xsing and inclusion i : Xreg = X −Xsing ↪→ X of the smooth locus, the
dualizing complex is actually a sheaf

ωX := i∗Ω
n
Xreg

viewed as a complex placed in degree 0. In the special case of a V -manifold X,
this sheaf, or more precisely, the complex i∗Ω

•
Xreg

can be described in terms
of the local geometry of X:
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Lemma 2.46. Let B ⊂ Cn be an open ball and let G be a finite unitary
subgroup acting on B. Let p : B → X = B/G be the quotient map. Then we
have an equality of complexes

Ω̃•X := i∗Ω
•
Xreg

= (p∗Ω•B)G.

In particular, Ω̃•X is a resolution of the constant sheaf CX .

Proof. If G = Gsmall the subvariety p−1Xsing has codimension ≥ 2 in B and
p induces the finite unramified cover q : B′ = B − p−1Xsing → Xreg. Then
Ω•Xreg

= (q∗Ω•B)G. Let j : B′ ↪→ B be the inclusion. The assertion follows
from

i∗Ω
•
Xreg

= (i∗q∗Ω•B)G = (p∗j∗Ω•B′)
G = (p∗Ω•B)G,

where the last equality follows since q−1Xsing has codimension ≥ 2 in B.
If G = Gbig the map p is ramified along hypersurfaces and locally on

B, the map is given by (z1, z2, . . . , zn) 7→ (ze1, z2, . . . , zn). Remembering that
X = Xreg, as before we have Ω•X = (p∗Ω•B)G and the result follows in this
case as well.

In the general case, we factor the map p into B
p′

−−→ B/Gbig
p′′

−−→ B/G and
we use that

(p∗Ω•B)G =
(
p′′∗(p

′
∗Ω
•
B)Gbig

)Gsmall
.

The last assertion follows from the corresponding assertion on B upon taking
G-invariants. ut

If we apply the relative duality statement above to the quotient map p,
we find

Corollary 2.47. Let X be an n-dimensional V -manifold. Then

1) HomOX (Ω̃pX , ωX) = Ω̃n−pX for all p;
2) ExtiOX (Ω̃pX , ωX) = 0 for all p and all i > 0.

Using the local to global spectral sequence for Ext we conclude from this
that

ExtpOX (Ω̃qX , ωX) = Hp(X, Ω̃n−pX ).

Combining this with Serre-Grothendieck duality this shows

Corollary 2.48. Hq(X, Ω̃pX) is dual to Hn−q(X, Ω̃n−pX ).

Proof of Theorem 2.43:. Since Ω̃•X is a resolution of the constant sheaf CX ,
the spectral sequence in hypercohomology now reads

Epq1 = Hq(X, Ω̃qX) =⇒ Hp+q(X; C).

Let f : Y → X be a proper modification with Y bimeromorphic to a Kähler
manifold. There is a natural morphism of sheaf complexes
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Ω̃•X → f∗Ω
•
Y

which can be seen to be an isomorphism. The local calculation showing this
can be found in [Ste77a, Lemma 1.11]. It follows that there is a morphism
f∗ between the above spectral sequence and the Hodge-to De Rham spectral
sequence for Y . We claim that f∗ is already injective on the level of the E1-
terms. To see this, we use the previous Corollary: for every non-zero α ∈ Ep,q1 ,
there exists a β ∈ En−p,n−q1 with α∧β 6= 0. Then f∗α∧ f∗β = f∗(α∧β) 6= 0,
since f∗ is an isomorphism in the top cohomology. It follows that α is non-
zero and so f∗ is injective. But then the spectral sequence we started with
degenerates at E1 as well and f∗ induces an isomorphism

Hq(X, Ω̃pX) ∼−→ Hp,q(Y ) ∩ f∗Hp+q(X; C).

We thus obtain a Hodge decomposition on Hk(X; C) making f∗ a morphism
of Hodge structures.

Historical Remarks. The group theoretic point of view of the notion of Hodge
structure is due to Mumford and has been exploited by Deligne in his study of
absolute Hodge cycles (see the monograph [DMOS]). It has been used as a tool in
approaching the Hodge conjecture on abelian varieties. See also the Appendix by
Brent Gordon in [Lewis].

The Hodge complexes of sheaves are one of the basic building blocks for later con-
structions of mixed Hodge structures in geometric situations. This notion is inspired
by Deligne [Del71], [Del74] but is different from his in that we prefer working with
(filtered) complexes of sheaves instead of classes of these up to quasi-isomorphism.
The algebraic version of the ∂∂-Lemma is a variation of an argument due to Deligne
[Del71, Prop. 4.3.1]. The Hodge theoretic study of V -manifolds has been carried out
in [Ste77b]. The notion of V -manifold is due to Satake [Sata56].

The Hodge theoretic aspects of the fundamental class have been extensively
studied by El Zein in [ElZ].
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