
Chapter 2
Hierarchical Matrices

In this chapter let TI and TJ be binary cluster trees for the index sets I and J, re-
spectively. A generalization to arbitrary cluster trees is possible; see Sect. 4.5 for
nested dissection cluster trees, which are ternary. The block cluster tree TI×J is as-
sumed to be generated using a given admissibility condition as described in the
previous chapter. We will define the set of hierarchical matrices originally intro-
duced by Hackbusch [127] and Hackbusch and Khoromskij [133, 132]; see also
[128]. The elements of this set can be stored with logarithmic-linear complexity
and provide data-sparse representations of fully populated matrices. Additionally,
combining the hierarchical partition and the efficient structure of low-rank matrices,
an approximate algebra can be defined which is based on divide-and-conquer ver-
sions of the usual block operations. The efficient replacements for matrix addition
and matrix multiplication can be used to define substitutes for higher level matrix
operations such as inversion, LU factorization, and QR factorization.

After the definition of hierarchical matrices in Sect. 2.1, we consider the multi-
plication of such matrices by a vector in Sect. 2.2. It will be seen that this can be
done with logarithmic-linear complexity. In Sect. 2.3 we describe how to perform
this multiplication on a parallel computer. Matrix operations such as addition and
multiplication and relations between local and global norm estimates were investi-
gated in detail in [116]. We review the results and improve some of the estimates
in Sect. 2.4, Sect. 2.5, and Sect. 2.7, since these results will be important for higher
matrix operations. Furthermore, we adapt the proofs to our way of clustering and
present an improved addition algorithm which can be shown to preserve positiv-
ity. An accelerated matrix multiplication can be defined (see Sect. 2.7.4) if one of
the factors is semi-separable. In Sect. 2.6 we analyze a technique for reducing the
computational costs of H -matrix approximants by unifying neighboring blocks. In
Sect. 2.8, Sect. 2.9, and Sect. 2.10 the H -matrix inversion, LU , and QR factoriza-
tion are presented. In Sect. 2.11 we point out the similarities of H 2-matrices with
fast multipole methods. Finally, in Sect. 2.12 we investigate the required accuracy
of H -matrix approximants if they are to be used for preconditioning. It will be seen
that low-precision approximations will be sufficient to guarantee a bounded num-
ber of preconditioned iterations. H -matrix preconditioners can be constructed in a

M. Bebendorf, Hierarchical Matrices. Lecture Notes in Computational Science and Engineering 63, 49
c© Springer-Verlag Berlin Heidelberg 2008

50 2 Hierarchical Matrices

purely algebraic way using the hierarchical inverse or the hierarchical LU decom-
position.

Since we do not want to exploit properties of the underlying operator at this
point, the complexity is estimated in terms of the maximum rank among the blocks
in the partition. The size of this rank will be analyzed depending on the prescribed
accuracy in the second part of this book when more properties of the underlying
operator can be accessed. If the blockwise rank is assumed to scale logarithmically
with the number of degrees of freedom, all presented operations can be seen to have
logarithmic-linear complexity.

2.1 The Set of Hierarchical Matrices

Definition 2.1. The set of hierarchical matrices on the block cluster tree TI×J with
admissible partition P := L (TI×J) and blockwise rank k is defined as

H (TI×J ,k) =
{

A ∈ C
I×J : rankAb ≤ k for all admissible b ∈ P

}
.

For the sake of brevity, elements from H (TI×J ,k) will often be called H -matrices.

Remark 2.2. For an efficient treatment of admissible blocks the outer-product repre-
sentation from Sect. 1.1.1 should be used. Additionally, it is advisable not to use the
maximum rank k but the actual rank of the respective block as the number of rows
and columns. Storing non-admissible blocks entrywise will increase the efficiency.

Example 2.3. The left picture of Fig. 2.1 shows an H -matrix approximant for the
matrix ai j = (|i− j|+ 1)−1, i, j = 1, . . . ,n. The right picture represents an approx-
imant for the Hilbert matrix hi j = (i + j − 1)−1, i, j = 1, . . . ,n. Depending on the
kind of “singularity”, the admissibility conditions from the Examples 1.13 and 1.12
have to be used. For the Hilbert matrix an approximant with accuracy ε = 110−4
can be found which for n = 1000 reduces the amount of storage to 3.2% and for
n = 100000 to 0.32%.

A few easy consequences are gathered in the following two lemmas.

Lemma 2.4. Let A ∈ H (TI×J ,k). Then

(i) any submatrix Ab, b ∈ TI×J, belongs to H (Tb,k);
(ii) the transpose AT and the Hermitian transpose AH belong to H (TJ×I ,k) pro-

vided that the admissibility condition is symmetric; i.e., any block s× t is admis-
sible if t × s is admissible.

We define the set

πI := {t ∈ TI : ∃s ∈ TJ such that t × s ∈ P and ∀t ′ ⊂ t and ∀s′ ∈ TJ : t ′ × s′ �∈ P},

which is the finest partition of I made from clusters appearing in the partition P.

2.1 The Set of Hierarchical Matrices 51

17

17

17 7

7 20

17 8

7 20

20

20
19

20

4 3

17 4

4 3

7 4

4 3

7 4

5 3

20 5

4 17

3 4

4 7

3 4

4 7

3 4

5 20

3 5

17

17

19 7

8 20

19 7

8 20

20

20
20

20

6 4
17 7

7 20 6

4 4
4 3

7 4 4

5 4
4 7

3 4 5

7 4
19 7

7 20 7

6
17 7

7 20

4 6

5
4 3

7 4

4 5

4
4 7

3 4

4 5

7
19 7

7 20

4 7

19

19

17 7

7 20

17 8

7 20

20

20
19

19

5 3

19 5

4 3

7 4

4 3

7 5

5 4

20 5

5 19

3 5

4 7

3 4

4 7

3 4

5 20

4 5

19

19

19 7

7 20

19 7

7 20

20

20
19

20

4 3
4 3

17 4

4 3

7 4

4 3

7 4

5 3

20 5 4

4 3
5 4

4 3

7 4 5 4

4 3
5

4 3

7 4

4 5 4

5 3
5 3

19 5

4 3

7 5

4 3

7 5

5 4

20 5 5

4
4 17

3 4

4 7

3 4

4 7

3 4

5 20

3 5

3 4

4
5 4

4 7

3 4 5

3 4

4
5

4 7

3 4

4 5

3 4

5
5 19

3 5

4 7

3 4

4 7

3 5

5 20

4 5

3 5

17

17

19 8

7 20

19 8

8 20

20

20
19

20

4 3

17 4

4 3

8 4

4 3

7 4

5 3
12 7

7 12 5

4 17

3 4

4 7

3 4

4 8

3 4

5
12 7

7 12

3 5

17

17

20 8

7 18

20 7

8 18

19

19

12 7

7 12

12 7

7 12

18

18

7 4
19 7

7 20 7

5 4
4 3

7 4 5

4 4
4 7

3 4 5

6 4
20 7

7 18 6

7
19 7

7 20

4 7

4
4 3

7 4

4 5

5
4 7

3 4

4 5

6
20 7

7 18

4 6

19

19

19 7

7 20

19 7

7 20

20

20
19

19

5 3

19 5

5 3

7 4

4 3

7 4

5 4
12 7

7 12 5

5 19

3 5

4 7

3 4

4 7

3 4

5
12 7

7 12

4 5

19

19

20 8

8 18

20 8

8 18

19

19

12 7

7 12

12 7

7 12

18

18

6 4
5 4

17 7

7 20 6

4 3
4 3

7 4 5

4 4
4 7

3 4 5

6 5
19 7

7 20 6 6

4 4
4 3

5 4
4 3

7 4 5 4 4

4 4
4

5 4
4 7

4 4 5

3 4 4

6 4
6 5

19 7

7 20 7

5 4
4 3

7 4 5

5 4
4 7

3 4 5

5 4
20 8

8 18 6 6

6
5

17 7

7 20

4 6

4
4 3

7 4

4 5

4
4 7

3 4

3 5

6
19 7

7 20

5 7

4 6

4
4 3

5
4 4

7 4

4 5 4

4 4

4
4

5
4 7

3 4

4 5

3 4

4 4

6
6

19 7

7 20

5 7

5
4 3

7 4

4 5

5
4 7

3 4

4 5

5
20 8

8 18

4 6

4 6

19

19

17 8

7 20

17 8

7 20

20

20
19

19

5 3

19 5

4 3

7 4

4 3

7 4

5 3

20 5

5 19

3 5

4 7

3 4

4 7

3 5

5 20

3 5

19

19

19 7

7 20

19 7

7 20

20

20
20

20

5 4
17 7

7
6 4

19 6 5

5 4
4 3

7 5 5

4 4
4 7

3 4 4

6 4
19 7

7
6 5

20 6 6

5
17 7

7
6 19

4 6

4 6

4
4 3

7 4

3 4

5
4 7

3 4

4 5

6
19 7

7
6 20

5 6

4 6

20

20
20

20

17 8

7
7 5

20 7

17 7

8
7 20

5 7

18

18
20

20

5 3

20 5

4 3

7 4

4 3

7 4

4 3

18 4

5 20

3 5

4 7

3 4

4 7

3 4

4 18

3 4

20

20
20

20

19 8

8
6 5

20 7

19 8

8
7 20

5 7

18

18
19

20

5 3
5 3

19 5

4 3

7 4

4 3

7 4

5 3

20 5 5

4 3
5 4

4 3

7 4 5 4

4 3
5

4 3

7 5

4 5 4

4 3
5 3

20 5

4 3

8 4

4 3

8 4

4 3

18 4 4

5
5 19

3 5

4 7

3 4

4 7

3 4

5 20

3 5

3 5

4
5 4

4 7

3 5 5

3 4

4
5

4 7

3 4

4 5

3 4

4
5 20

3 5

4 8

3 4

4 8

3 4

4 18

3 4

3 4

19

19

19 7

7 20

19 7

7 20

20

20
19

20

5 3

19 5

4 3

7 4

5 3

7 4

5 3
12 7

7 12 5

5 19

3 5

4 7

3 4

4 7

3 4

5
12 7

7 12

3 5

19

19

20 8

8 18

20 8

8 18

19

19

12 7

7 12

12 7

7 12

18

18

6 4
19 7

7
6 5

20 6 7

5 4
4 4

5 4

7 4 4 4

5 4
4

5 4

7 5

3 4 5

6 4
6 5

20 6

5 4

7 5

5 4

7 5

6 4

18 6
6

6
19 7

7
6 20

5 6

4 7

5
4 3

5 7

4 5 4

4 5

5
4

5 7

4 4

4 4

4 4

6
6 20

5 6

5 7

4 5

5 7

4 5

6 18

4 6

4 6

20

20
20

20

19 8

8
7 5

20 7

19 8

7
6 20

5 7

18

18
20

20

5 3
12 7

7 12 5

4 3
5 4

7 5 4

4 3
5 7

4 5 4

4 3
11 7

7 11 4

5
12 7

7 12

3 5

4
5 4

7 5

3 4

4
5 7

4 5

3 4

4
11 7

7 11

3 4

19

20

12 7

7 12

12 7

7 12

18

18

7 5

20 7

4 4

7 4

5 4

7 5

6 4

18 6

7 20

5 7

5 7

4 5

4 7

4 4

6 18

4 6

20

20

12 7

7 10

12 7

7 10

18

18

3

3 2 3

3 2 3

3 2 3

3 2 3

3 2 3

3 2 3

3 2 3

3 2 3

3 2
Fig. 2.1 H -matrices with their blockwise ranks.

Lemma 2.5. Let D1, D2 be block diagonal matrices on the tensor partitions πI ×πI
and πJ ×πJ, respectively. Then D1AD2 ∈H (TI×J ,k) provided that A ∈H (TI×J ,k).

Proof. Due to the assumption, each block t × s ∈ P of D1AD2 arises from multiply-
ing Ats by (D1)tt and (D2)ss. Hence, from Theorem 1.1 we have that rank(D1AD2)ts
= rank(D1)ttAts(D2)ss ≤ rankAts. �	

We have already seen in Sect. 1.1.1 that the storage requirements for an admissi-
ble block b = t × s ∈ L (TI×J) of A ∈ H (TI×J ,k) are

Nst(Ab) ≤ k(|t|+ |s|).

A non-admissible block Ab, b ∈ P, is stored entrywise and thus requires |t||s| units
of storage. Since min{|t|, |s|} ≤ nmin (see Remark 1.17) we have

|t||s| = min{|t|, |s|}max{|t|, |s|} ≤ nmin(|t|+ |s|). (2.1)

Hence, for storing Ab, b ∈ P, at most max{k,nmin}(|t|+ |s|) units of storage are
required. Using (1.36), we obtain the following theorem.

Theorem 2.6. Let csp be the sparsity constant for the tree TI×J; cf. Definition 1.35.
The storage requirements Nst for A ∈ H (TI×J ,k) are bounded by

Nst(A) ≤ csp max{k,nmin}[L(TI)|I|+L(TJ)|J|].

If TI and TJ are balanced cluster trees (cf. Definition 1.19), we have

Nst(A) ∼ max{k,nmin}[|I| log |I|+ |J| log |J|].

Remark 2.7. Although H -matrices are primarily aiming at dense matrices, sparse
matrices A which vanish on admissible blocks are also in H (TI×J ,nmin). Since the
size of one of the clusters corresponding to non-admissible blocks is less than or
equal to nmin, the rank of each block Ab does not exceed nmin. A deeper analysis

52 2 Hierarchical Matrices

10

10

5

1 5

5 1

5

10

10

10

1 10

10 1

10

10

10

5

1 5

5 1

5

10

10

5

1 5

1 5

1 5

5 1

5 1

5 1

5

11

11

5

1 5

5 1

5

10

10

10 1

10

10

1 10

10

10

5

1 5

5 1

5

11

11

10

1 10

1 10

1 11

10 1

10 1

10 1

11

10

10

5

1 5

5 1

5

10

10

10

1 10

10 1

10

10

10

6

1 5

6 1

5

10

10

5

1 5

1 6

1 5

5 1

5 1

6 1

5

10

10

5

1 5

5 1

5

11

11

10

1 11

10 1

11

10

10

6

1 5

6 1

5

11

11

5

1 5

1 5

1 5

1 5

1 5

1 6

1 5

5 1

5 1

5 1

5 1

5 1

5 1

6 1

5

10

10

5

1 5

5 1

5

10

10

10

1 10

10 1

10

10

10

5

1 5

5 1

5

10

10

5

1 5

1 5

1 5

5 1

5 1

5 1

5

11

11

5

1 5

5 1

5

10

10

11

1 10

11 1

10

11

11

5

1 5

5 1

5

10

10

10

1 10

1 11

1 10

10 1

10 1

11 1

10

10

10

5

1 5

5 1

5

10

10

10

1 10

10 1

10

10

10

6

1 5

6 1

5

10

10

5

1 5

1 6

1 5

5 1

5 1

6 1

5

11

11

5

1 5

5 1

5

10

10

11

1 10

11 1

10

11

11

6

1 5

6 1

5

10

10

10

1 10

1 10

1 11

1 10

1 10

1 11

1 10

10 1

10 1

10 1

11 1

10 1

10 1

11 1

10

10

10

5

1 5

5 1

5

10

10

10

1 10

10 1

10

10

10

5

1 5

5 1

5

10

10

5

1 5

1 5

1 5

5 1

5 1

5 1

5

10

10

5

1 5

5 1

5

11

11

10

1 11

10 1

11

10

10

5

1 5

5 1

5

11

11

10

1 10

1 10

1 11

10 1

10 1

10 1

11

10

10

5

1 6

5 1

6

10

10

10

1 10

10 1

10

10

10

5

1 5

5 1

5

10

10

5

1 6

1 5

1 5

5 1

6 1

5 1

5

10

10

5

1 6

5 1

6

11

11

10

1 11

10 1

11

10

10

5

1 5

5 1

5

11

11

5

1 5

1 5

1 5

1 5

1 6

1 5

1 5

5 1

5 1

5 1

5 1

5 1

6 1

5 1

5

10

10

5

1 5

5 1

5

10

10

10

1 10

10 1

10

10

10

5

1 5

5 1

5

10

10

5

1 5

1 5

1 5

5 1

5 1

5 1

5

11

11

5

1 5

5 1

5

10

10

11

1 10

11 1

10

11

11

5

1 5

5 1

5

10

10

10

1 10

1 11

1 10

10 1

10 1

11 1

10

10

10

5

1 6

5 1

6

10

10

10

1 10

10 1

10

10

10

5

1 5

5 1

5

10

10

5

1 6

1 5

1 5

5 1

6 1

5 1

5

11

11

5

1 6

5 1

6

10

10

11

1 10

11 1

10

11

11

5

1 5

5 1

5

10

10

Fig. 2.2 A sparse H -matrix (nonzero blocks are shown).

(see Lemma 4.2) shows that finite element discretizations can actually be stored
with linear complexity.

2.2 Matrix-Vector Multiplication

The cost of multiplying an H -matrix A ∈ H (TI×J ,k) or its Hermitian transpose
AH by a vector x is inherited from the blockwise matrix-vector multiplication:

Ax = ∑
t×s∈P

Atsxs and AHx = ∑
t×s∈P

(Ats)Hxt . (2.2)

Since each admissible block t × s has the outer product representation Ats = UV H ,
U ∈ C

t×k, V ∈ C
s×k, at most 2k(|t|+ |s|) operations are required to compute the

matrix-vector products Atsxs = UV Hxs and (Ats)Hxt = VUHxt . If t × s is non-
admissible, then Ats is stored entrywise and min{|t|, |s|} ≤ nmin. As in (2.1) we
see that in this case

2|t||s| ≤ 2nmin(|t|+ |s|)
arithmetic operations are required. The same arguments that were used for
Theorem 2.6 give the following theorem.

Theorem 2.8. For the number of operations NMV required for one matrix-vector
multiplication Ax of A ∈ H (TI×J ,k) by a vector x ∈ C

J it holds that

NMV(A) ≤ 2csp max{k,nmin}[L(TI)|I|+L(TJ)|J|].

If TI and TJ are balanced cluster trees, we have

NMV(A) ∼ max{k,nmin}[|I| log |I|+ |J| log |J|].

2.3 Parallel Matrix-Vector Multiplication 53

Hence, H -matrices are well suited for iterative schemes such as Krylov subspace
methods (see [221]), which the matrix enters only through the matrix-vector product.

Obviously, the matrix-vector multiplication can also be done by a recursion
through the block cluster tree TI×J . Since arithmetic operations are performed only
on the leaves of TI×J , summing over the leaves of TI×J as it is done in (2.2) is slightly
more efficient. The latter representation is also more convenient for the following
parallelization of the matrix-vector multiplication.

2.3 Parallel Matrix-Vector Multiplication

Although the product Ax of a matrix A∈H (TI×J ,k) and a vector x∈C
J can be done

with almost linear complexity, it can still be helpful to further reduce the execution
time especially if many matrix-vector products are to be computed as part of an
iterative solver, for instance. The parallelization of algorithms is always a promising
way to achieve this reduction provided that significant parts of the algorithm admit
independent execution. The following ideas were presented in [29].

Instead of a pure matrix-vector multiplication, in this section we examine the
more general update of a vector y ∈ C

I by the operation

y := αAx+βy

with scalars α,β ∈ C. For this purpose we present two algorithms, one for distrib-
uted and the other for shared memory systems. For their description we use a unified
model of a general parallel computer, a so-called bulk synchronous parallel (BSP)
computer; see [253]. This model of a parallel system is based on three parameters:
the number of processors p, the number of time steps for a global synchronization
�, and the ratio g of the total number of operations performed on all processors and
the total number of words delivered by the communication network per second. All
parameters are normalized with respect to the number of time steps per second.

A BSP computation consists of single supersteps. Each superstep has an input
phase, a local computation phase and an output phase; see Fig. 2.3. During the in-
put phase, each processor receives data sent during the output phase of the previous
superstep. While all processors are synchronized after each superstep, all computa-
tions within each superstep are asynchronous.

The complexity of a BSP computation can be described by the parameters �,g,
the number of operations done on each processor, and the amount of data sent be-
tween the processors. The amount of work for a single superstep can be expressed by
w+(hin +hout) ·g+�, where w is the maximum number of operations performed and
hin, hout are the maximum numbers of data units received and sent by each proces-
sor, respectively. The total work of the BSP computation is the sum of the costs

54 2 Hierarchical Matrices

Superstep

incompcomp

SuperstepSuperstep

out in out comp

Fig. 2.3 BSP computation.

in each superstep, yielding an expression of the form W +H ·g+S ·�, where S is the
number of supersteps.

The complexity analysis of the presented methods will be done in terms of par-
allel speedup and parallel efficiency.

Definition 2.9. Let t(p) denote the time needed by a parallel algorithm with p
processors. Then

S(p) :=
t(1)
t(p)

denotes the parallel speedup and

E(p) :=
S(p)

p
=

t(1)
p · t(p)

its parallel efficiency.

We assume that both vectors x and y are distributed uniformly among p proces-
sors, each holding |J|/p and |I|/p entries of x and y, respectively. By xq and yq we
denote the part of x and y on processor 0 ≤ q < p. This distribution ensures optimal
complexity of all vector operations.

2.3.1 Parallelization for Usual Matrices

As a first step towards the hierarchical matrix-vector multiplication on a parallel
machine we review the ideas of the BSP algorithm for dense matrices described in
[181].

Consider the case of a dense matrix A ∈C
I×J . Let each of the p processors hold a

block Aq of size (|I|/√p)×(|J|/√p) from a uniform partition of I×J. The BSP al-
gorithm is split into three steps. In the first step, each processor has to receive |J|/√p
entries of x needed for the local matrix-vector multiplication, which is done in the
second superstep. The resulting entries of y are afterwards sent to the corresponding

2.3 Parallel Matrix-Vector Multiplication 55

processors such that in the third step all local coefficients of y can be summed up
for the final result.

procedure dense mult(α, Aq, x, β , y, q)
{ first step }
yq := β · yq;
send xq to all processors sharing it;
sync();
{ second step }
y′q := αAqxq;
send respective parts of y′q to all processors sharing it;
sync();
{ third step }
Yq := {received vectors of local results};
yq := yq +∑y′j∈Yq y′j;

sync();
end;
Algorithm 2.1: Dense matrix-vector multiplication.

The costs of Algorithm 2.1 are |I|/p + g · |J|/√p + � for scaling y and sending
x in the first step, |I||J|/p+g · |I|/√p+ � for the local matrix-vector product in the
second step, and |I|/√p+ � for the summation in the last superstep. Therefore, the
total costs required to multiply a dense matrix by a vector can be estimated as

O

(
|I||J|

p
+

|I|+ |J|
√

p

)
+g ·O

(
|I|+ |J|
√

p

)
+3 · �, (2.3)

which can be shown to be optimal with respect to computation and communication
costs; cf. [181].

2.3.2 Non-Uniform Block Distributions

The uniform block distribution which was used in the previous section is not suit-
able for H -matrices since the costs of a matrix-vector multiplication vary among
the blocks of an H -matrix due to their different sizes and their different representa-
tions. Unfortunately, changing the distribution pattern is likely to result in commu-
nication costs which are no longer optimal. For instance, the random distribution in
Fig. 2.4 (left) results from applying list scheduling, i.e., assigning the next not yet
executed job to the first idle processor. Although list scheduling guarantees an effi-
cient local multiplication phase in the second step of Algorithm 2.1, the vector x has
to be sent to all processors with communication costs of O(|J|) due to the scattering
of the matrix blocks across the whole H -matrix. Furthermore, p vectors have to
be summed up in the third step with computational costs O(|I|). Such a situation
should therefore be avoided.

In order to be able to measure the communication and computation costs with
respect to the vectors x and y, we introduce the sharing constant of of block

56 2 Hierarchical Matrices

Fig. 2.4 List scheduling (left) versus sequence partitioning (right).

distribution, i.e., the maximum number of processors sharing one row or one column
of A.

Definition 2.10. Let P be a partition of I × J and let Pq denote the blocks in P as-
signed to processor q. We define the sharing constant csh of P as

csh = max
i∈I, j∈J

{cr
sh(i),c

c
sh(j)}, (2.4)

where cr
sh(i) := |{q |∃t×s∈Pq : i∈ t}| for i∈ I and cc

sh(j) := |{q |∃t×s∈Pq : j ∈ s}|
for j ∈ J.

The constant csh can be used to express the costs for sending x in the first step and
for summing up all local vectors yq in the last step of Algorithm 2.1. The following
definition allows to describe the costs for receiving the vector x and sending the
local result yq.

Definition 2.11. Let P be a partition of I × J and let Pq denote the blocks in P as-
signed to processor q. We define

I(q) =
⋃

t×s∈Pq

t and J(q) =
⋃

t×s∈Pq

s

as the rows and the columns associated with processor q. Furthermore, let

ρ = max
0≤q<p

{|I(q)|, |J(q)|}.

For the above uniform block distribution csh equals
√

p, whereas the random
distribution induced by list scheduling results in a constant csh which is of order p.
Similarly, we find ρ = max{|I|, |J|}/√p in the case of a uniform partition and ρ =
O(max{|I|, |J|}) for the random distribution resulting from list scheduling. Using
csh and ρ , (2.3) can be rewritten to obtain the following complexity of the matrix-
vector multiplication for general block distributions

O

(
NMV(A)

p
+ csh

|I|+ |J|
p

)
+g ·O

(
csh

|I|+ |J|
p

+ρ
)

+3 · �. (2.5)

2.3 Parallel Matrix-Vector Multiplication 57

Due to the definition of H -matrices, i.e., due to the admissibility condition, large
blocks tend to be of the order I × J. Although exactly this leads to efficient algo-
rithms, it also restricts the possibility of reducing ρ . Hence, without splitting large
matrix blocks, one always ends up with ρ = O(max{|I|, |J|}).

Fortunately, this negative result does not apply to csh, which can be reduced using
space-filling curves and sequence partitioning. These methods produce a distribu-
tion of P with a much higher locality of the blocks associated to a specific processor
q; see Fig. 2.4 (right). Due to the “compactness” of the sets Pq, the frequency of
sharing an index with another processor is reduced.

2.3.2.1 Load Balancing with Sequence Partitioning

In this section it will be described how to distribute the blocks among the processors
such that on one hand the numerical work for the processors are almost equal and
on the other hand csh and ρ are small. In order to be able to balance the work, we
first have to know the costs associated with a processor. Depending on the represen-
tations of dense and low-rank matrix blocks, the costs of each block are

cMV,k(t,s) =
{
|t| · |s|, if t × s ∈ P is non-admissible,
k(|t|+ |s|), if t × s ∈ P is admissible. (2.6)

Assume that the set of blocks P has been rearranged as a sequence. A block distri-
bution will be generated by subdividing this sequence into p pieces of comparable
costs.

Definition 2.12. Let C = {c1,c2, . . . ,cn} be a sequence of costs ci > 0. Furthermore,
let R = {r0, . . . ,rp} with 1 = r0 ≤ r1 ≤ . . .≤ rp = n+1, ri ∈ N, 0 < i < p. Then R is
called a sequence partition of (C, p). R is optimal with respect to (C, p) if for all
partitions R′ = {r′0, . . . ,r

′
p} of C it holds that

max
0≤i<p

r′i+1−1

∑
j=r′i

c j ≥ max
0≤i<p

ri+1−1

∑
j=ri

c j =: cmax(C).

For the computation of an optimal partition of a sequence C, the knowledge of
cmax(C), the costs of the most expensive interval in an optimal partition, is suffi-
cient. In [195] an algorithm is presented which computes cmax(C) with complexity
O(n · p). An optimal partition can then be obtained by summing up the costs of
each element of the list and starting a new subsequence whenever the costs exceed
cmax(C).

The required sequence of the blocks in P can be generated using space filling
curves. These curves describe a surjective mapping from the unit interval [0,1] to
the unit square [0,1]2. Two examples of such curves, the Z- and the Hilbert-curve,
are presented in Fig. 2.5. Since partitions of I × J can be mapped to the unit
square, the order in which a leaf is reached by the curve defines a sequence usable
for sequence partitioning. The neighborhood relationship of adjacent subintervals

58 2 Hierarchical Matrices

Z curve Hilbert curve

Fig. 2.5 Space-filling curves.

of space-filling curves guarantees the “compactness” of the corresponding sets Pq.
The application of the Z- and the Hilbert-curve to a block partition is depicted in
Fig. 2.6.

Z curve Hilbert curve

Fig. 2.6 Space-filling curves applied to H -matrices.

The restriction to quadtrees in the definition of block cluster trees allows a simple
computation of the ordering induced by space-filling curves. The basic algorithm is
a depth first search (DFS) (see [249]) in TI×J . In contrast to the usual DFS algorithm,
the order in which the sons S(b) of a node b∈ TI×J are accessed is defined by a mark
associated with each node. The marks and the corresponding order of the sons for
the Z- and the Hilbert-curve is presented in Fig. 2.7. Here, the root of the block
cluster tree always has the mark “A”.

The motivation of load balancing with sequence partitioning was the reduction
of the sharing constant csh compared with a random distribution generated by list
scheduling. The value of csh obtained using the Z- and the Hilbert-curve for different
numbers of processors is shown in Fig. 2.8 (left). For both space-filling curves one
can observe a behavior of the kind csh ∼

√
p, which is equal to the uniform distrib-

ution in the case of dense matrices. This shows the reduction of csh in comparison
to a random distribution.

We compare the proposed distribution of blocks with another standard scheduling
method which is not based on space-filling curves. Instead of assigning the blocks

2.3 Parallel Matrix-Vector Multiplication 59

A A

A A

A
BD

A BC

AA

B

A B

C

C D

A D

B C

D

C D

Fig. 2.7 Construction of space-filling curves: Z (left) and Hilbert (right).

no. of processors

10 20 30 40 50 60 70 80 90 100 110 120

m
ax

. n
o.

 o
f p

ro
c.

 p
er

 in
de

x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
Z Curve
Hilbert Curve

no. of processors

10 20 30 40 50 60 70 80 90 100 110 120

m
ax

. n
o.

 o
f p

ro
c.

 p
er

 in
de

x

10

20

30

40

50

60

70

80
LPT
Hilbert Curve

Fig. 2.8 Value of csh for space-filling curves and LPT scheduling.

randomly to the processors, longest process time (LPT) scheduling (cf. [113])
orders the blocks according to their costs, which usually results in a better load
balancing than list scheduling. However, it does not reduce csh; see Fig. 2.8 (right).
An O(p) dependence of csh is visible especially for small p. The number of blocks
per processor becomes smaller if p > 50. Therefore, less processors share the same
index.

2.3.2.2 Shared Memory Systems

Although communication costs can be neglected on shared memory systems, i.e., it
can safely be assumed that � = g = 0, we can use the same algorithm as in the case
of a distributed memory machine. This can be justified by examining the (hidden)
constants in the part of (2.5) which describes the computational work. Assuming
csh ∼

√
p, we can rewrite this equation as

O

(
NMV(A)

p
+ c

|I|+ |J|
√

p

)

with a small constant c > 0. On shared memory systems usual values for p range
from 1 to 128. Since the influence of the second term can be seen only for large p,
the first term dominates the computational work. Hence, a high parallel efficiency
can also be expected on shared memory systems.

60 2 Hierarchical Matrices

Algorithm 2.1 can be simplified using a threadpool (cf. [165]) based on POSIX
threads. For this, the first two steps of the BSP algorithm, i.e., scaling y and the
matrix-vector multiplication, are combined because the vector x can be accessed by
all processors. The summation of the final result is done in a second step after all
threads have computed the corresponding local results y′i. Another advantage of this
algorithm is that for the implementation only minor modifications of an existing
sequential version are necessary, e.g., the computation of the matrix-vector product
in the first step differs only by the involved set of matrix blocks.

procedure step 1(q,β ,yq,Aq,x)
yq := β · yq;
y′q := αAqx;

end;

procedure step 2(q,yq)
Yq := {y′j | I(j)∩ I(q) �= ∅};
yq := yq +∑y′j∈Yq y′j|I(q);

end;

procedure tp mv mul(α,A,x,β ,y)
for 0 ≤ q < p do run(step 1(q,β ,yq,Aq,x));
sync all();
for 0 ≤ q < p do run(step 2(q,yq));
sync all();

end;
Algorithm 2.2: Matrix-vector multiplication using threads.

2.3.3 Numerical Experiments

In this section we examine the performance of the presented parallel matrix-vector
multiplication. For simplicity the factors α and β in the product y := αAx+βy are
chosen 1. In all examples the time for 100 matrix-vector multiplications was mea-
sured. We apply the proposed methods to H -matrices stemming from the Galerkin
discretization of the integral operator from Example 3.43.

Remark 2.13. Parallelizing the matrix-vector product cannot be regarded indepen-
dently of other operations such as generating the matrix approximant. Computing
H -matrix approximations is usually much more time-consuming than multiplying
the approximant by a vector. Therefore, an algorithm for the approximation of dis-
crete integral operators together with its parallelization is presented in Sect. 3.4.
Since we should not reassign the blocks to the processors after they have been
generated, we will use the block distribution of the matrix-vector multiplication
when approximating the matrix. Note that the blocks can be approximated inde-
pendently while for the matrix-vector multiplication the “compactness” is a critical
issue. Here, the problem arises that the rank k in (2.6) is not known before the matrix

2.3 Parallel Matrix-Vector Multiplication 61

has been generated if a required accuracy has to be satisfied. In this case, we replace
k in (2.6) by a constant kavg = 10.

2.3.3.1 Shared Memory Systems

For the experiments on a shared memory system an HP9000, PA-RISC with 875 MHz
was used. The first comparisons were done employing a square H -matrix approx-
imant having a fixed rank of k = 10 on each admissible block. The CPU times
resulting from using Algorithm 2.2 and the corresponding parallel efficiency are
presented in Table 2.1. The weak parallel performance for small problem sizes |I|

Table 2.1 100 parallel matrix-vector multiplications for fixed k = 10.

p = 1 p = 4 p = 8 p = 12 p = 16
|I| time time E time E time E time E
3 968 11.7s 3.3s 88% 1.8s 80% 1.3s 73% 1.3s 57%
7 920 30.9s 8.5s 91% 4.6s 84% 3.5s 74% 2.9s 66%

19 320 94.9s 25.9s 92% 13.5s 88% 9.5s 83% 7.5s 79%
43 680 251.7s 70.9s 89% 36.0s 87% 23.9s 88% 18.9s 84%
89 400 556.4s 152.2s 91% 80.0s 87% 53.4s 87% 41.1s 85%

184 040 1277.5s 347.7s 92% 186.0s 86% 120.1s 89% 97.5s 82%

is probably due to the sequential parts in the algorithm, i.e., management overhead.
Since this part remains constant independently of the problem size, the parallel effi-
ciency grows with |I| and stabilizes at about 80–90%.

Table 2.2 shows the results for the same operation but with an H -matrix obtained
from approximation with fixed accuracy ε = 110−4 but variable rank k. The same

Table 2.2 100 parallel matrix-vector multiplications for variable k.

p = 1 p = 4 p = 8 p = 12 p = 16
|I| time time E time E time E time E
3 968 9.6s 2.6s 93% 1.6s 73% 1.3s 61% 1.3s 48%
7 920 23.8s 6.3s 95% 3.7s 80% 3.1s 65% 2.4s 63%

19 320 66.7s 17.2s 97% 9.6s 87% 7.0s 80% 5.6s 74%
43 680 169.6s 44.6s 95% 22.8s 93% 15.7s 90% 13.0s 82%
89 400 346.2s 91.1s 95% 47.1s 92% 32.8s 88% 25.7s 84%

184 040 780.5s 202.6s 96% 107.1s 91% 69.8s 93% 55.0s 89%

behavior as in the previous table is visible: the parallel efficiency grows with |I| and
reaches an almost optimal value of about 90%.

62 2 Hierarchical Matrices

2.3.3.2 Distributed Memory Systems

The following tests were carried out on an AMD Athlon 900 MHz cluster. Due
to memory restrictions, problems for large |I| could not be computed with a small
number of processors p. The corresponding parallel efficiency for these problem
sizes is therefore computed with respect to the smallest available p, i.e.,

E(p) :=
p′ · t(p′)
p · t(p)

,

where p′ denotes the smallest number of processors which was able to compute the
problem. The presented storage size in these cases is approximated by p′Nst, where
Nst denotes the memory consumption per processor on a system with p′ CPUs. The
results from Table 2.3 were obtained for fixed rank k = 10. One observes the same

Table 2.3 100 parallel matrix-vector multiplications for fixed k = 10.

p = 1 p = 4 p = 8 p = 12 p = 16
|I| time time E time E time E time E
3 968 16.2s 4.8s 85% 2.8s 72% 2.1s 65% 1.6s 65%
7 920 43.8s 12.1s 91% 6.7s 81% 4.8s 76% 4.0s 69%

19 320 141.1s 39.5s 89% 20.2s 87% 14.7s 80% 11.1s 80%
43 680 107.9s 57.0s 95% 42.0s 86% 32.1s 84%
89 400 129.9s 90.8s 95% 69.7s 93%

184 040 209.4s 157.4s 100%

behavior for the parallel performance as in the case of a shared memory system: a
better efficiency is obtained for larger |I|. This effect is also visible for fixed accuracy
ε = 110−4 as the results in Table 2.4 indicate. Due to the approximation of the actual

Table 2.4 100 parallel matrix-vector multiplications for variable k.

p = 1 p = 4 p = 8 p = 12 p = 16
|I| time time E time E time E time E
3 968 12.0s 3.6s 83% 2.1s 71% 2.0s 50% 1.3s 57%
7 920 30.0s 8.6s 87% 5.0s 76% 3.6s 69% 3.0s 64%

19 320 84.6s 27.0s 79% 13.2s 80% 9.5s 74% 7.5s 70%
43 680 221.0s 64.0s 86% 34.5s 80% 23.2s 80% 25.5s 54%
89 400 74.1s 53.6s 92% 42.4s 87%

184 040 119.6s 90.8s 99%

costs (see Remark 2.13), the parallel efficiency is not as high as for an H -matrix
with fixed rank.

As a conclusion of these test, we observe that starting from an existing sequential
implementation of H -matrices, only a minimal programming effort is necessary to

2.4 Blockwise and Global Norms 63

make use of multiple processors on a shared memory machine. The resulting al-
gorithms show a high parallel efficiency and are therefore recommended for the
acceleration of the H -matrix arithmetic on workstations and compute-servers. If
a larger number of processors is needed, distributed memory machines are usually
preferred due to their lower costs. Using the BSP model, the design and implemen-
tation of parallel algorithms on such computer systems is similar to shared memory
systems. The corresponding parallel matrix-vector multiplication also shows a high
parallel efficiency if the problem size is sufficiently large.

While the matrix-vector multiplication is exact up to machine precision, the fol-
lowing replacements of the usual matrix operations are approximate. Since most of
the algorithms guarantee a prescribed accuracy on each block, it is important to be
able to relate blockwise accuracy estimates to global ones.

2.4 Blockwise and Global Norms

From the analysis we will usually obtain estimates on each of the blocks b of a
partition P. However, such estimates are finally required for the whole matrix. If we
are interested in the Frobenius norm, blockwise estimates directly translate to global
estimates:

‖Ab‖F ≤ ε for all b ∈ P =⇒ ‖A‖F ≤
√

|P|ε
and

‖Ab‖F ≤ ‖Bb‖F for all b ∈ P =⇒ ‖A‖F ≤ ‖B‖F .

Both implications follow from

‖A‖2
F = ∑

b∈P
‖Ab‖2

F . (2.7)

For the spectral norm the situation is a bit more difficult. We can, however, exploit
the structure of the partition P together with the following lemma.

Lemma 2.14. Consider the following r× r block matrix

A =

⎡

⎢
⎣

A11 . . . A1r
...

...
Ar1 . . . Arr

⎤

⎥
⎦ (2.8)

with Ai j ∈ C
mi×n j , i, j = 1, . . . ,r. Then it holds that

max
i, j=1,...,r

‖Ai j‖2 ≤ ‖A‖2 ≤
(

max
i=1,...,r

r

∑
j=1

‖Ai j‖2

)1/2 (

max
j=1,...,r

r

∑
i=1

‖Ai j‖2

)1/2

. (2.9)

Proof. Let x = [x1, . . . ,xr]T ∈ C
n, where x j ∈ C

n j , j = 1, . . . ,r, and n := ∑r
j=1 n j.

Observe that

64 2 Hierarchical Matrices

‖Ax‖2
2 =

r

∑
i=1

‖
r

∑
j=1

Ai jx j‖2
2 ≤

r

∑
i=1

(
r

∑
j=1

‖Ai j‖2‖x j‖2

)2

= ‖Âx̂‖2
2,

where Â∈R
r×r has the entries âi j = ‖Ai j‖2 and x̂∈R

r is the vector with components
x̂ j = ‖x j‖2, j = 1, . . . ,r. It is well known that ‖Â‖2

2 ≤ ‖Â‖1‖Â‖∞. Hence,

‖Âx̂‖2
2 ≤ ‖Â‖1‖Â‖∞‖x̂‖2

2 = ‖Â‖1‖Â‖∞‖x‖2
2

gives the first part of the assertion. The lower bound follows from the fact that the
spectral norm of any sub-block of a matrix A is bounded by the spectral norm of A.

�	

For block matrices generated from recursive subdivision we obtain

Theorem 2.15. Assume that the partition P is generated from I × J by recursively
subdividing each block into a 2× 2 block structure at most L times. Furthermore,
let A,B ∈ C

I×J such that ‖Ab‖2 ≤ ‖Bb‖2 for all blocks b ∈ P. Then it holds that

‖A‖2 ≤ 2L‖B‖2.

Proof. The assertion is proved by induction over the depth L of the cluster tree. The
estimate is trivial if L = 0. Assume that the assertion holds for an L ∈ N. Let

A =
[

A11 A12
A21 A22

]
and B =

[
B11 B12
B21 B22

]

have depth L + 1. Since Ai j, i, j = 1,2, have depth L, we know from the induction
that

‖Ai j‖2 ≤ 2L‖Bi j‖2, i, j = 1,2.

The previous lemma shows

‖A‖2 = ‖
[

A11 A12
A21 A22

]
‖2 ≤ 2 max

i, j=1,2
‖Ai j‖2 ≤ 2L+1 max

i, j=1,2
‖Bi j‖2 ≤ 2L+1‖B‖2,

which proves the assertion. �	

For the usual choice L ∼ min{log2 |I|, log2 |J|}, the coefficient 2L in the previous
theorem will be of the order min{|I|, |J|}. If more structure of P than just a recursive
subdivision is known, then this estimate can be significantly improved. Note that
block cluster trees have |TI×J | ∼ min{|I|, |J|} elements while recursive subdivision
in general leads to |I| · |J| blocks.

An important consequence of (2.9) is that for matrices (2.8) vanishing in all but
ν blocks in each row and each column it follows that

max
i, j=1,...,r

‖Ai j‖2 ≤ ‖A‖2 ≤ ν max
i, j=1,...,r

‖Ai j‖2.

2.5 Adding H -Matrices 65

The previous estimate was also proved in [114] with a different technique. This
equivalence of the global and the blockwise spectral norm is useful in translating
blockwise errors to a global one. When relative error estimates are to be derived, we
will additionally need to estimate how a local norm relation is carried over to the
whole matrix.

Theorem 2.16. Let P be the leaves of a block cluster tree TI×J. Then for A,B ∈
H (TI×J ,k) it holds that

(i) maxb∈P ‖Ab‖2 ≤ ‖A‖2 ≤ cspL(TI×J)maxb∈P ‖Ab‖2;
(ii) ‖A‖2 ≤ cspL(TI×J)‖B‖2 provided maxb∈P ‖Ab‖2 ≤ maxb∈P ‖Bb‖2.

Proof. Let A� denote the part of A which corresponds to the blocks of P from the
�th level of TI×J ; i.e.,

(A�)b =

{
Ab, b ∈ T (�)

I×J ∩P,
0, else.

Then A = ∑L(TI×J)
�=1 A�−1. Since A� has tensor structure with at most csp blocks per

block row or block column, Lemma 2.14 gives ‖A�‖2 ≤ csp max
b∈T (�)

I×J∩P
‖Ab‖2, such

that

‖A‖2 ≤
L(TI×J)

∑
�=1

‖A�−1‖2 ≤ csp

L(TI×J)

∑
�=1

max
b∈T (�−1)

I×J ∩P
‖Ab‖ ≤ cspL(TI×J)max

b∈P
‖Ab‖2.

The estimate
max
b∈P

‖Ab‖2 ≤ max
b∈P

‖Bb‖2 ≤ ‖B‖2

gives the second part of the assertion. �	
The computation of the Frobenius norm of A ∈ H (TI×J ,k) can be done using

(2.7) and (1.4) with at most csp max{k2,nmin}[|I| log |I|+ |J| log |J|] arithmetic oper-
ations. The spectral norm of A can also be computed with logarithmic-linear com-
plexity, for instance, by the power method applied to AHA, which A enters only
through the matrix-vector product.

2.5 Adding H -Matrices

The sum of two matrices A,B ∈ H (TI×J ,k) will usually be in H (TI×J ,2k) but not
in H (TI×J ,k). The reason for this is that C

m×n
k is not a linear space as we have seen

in Sect. 1.1.5. Hence, H (TI×J ,k) is not a linear space and we have to approximate
the sum A + B by a matrix S ∈ H (TI×J ,k) if we want to avoid that the rank and
hence the complexity grows with each addition. Obviously, this can be done using
the rounded addition from Sect. 1.1.5 on each admissible block. On non-admissible
block, the usual (entrywise) addition is employed. The addition of H -matrices can
therefore easily be parallelized using the scheduling algorithms from Sect. 2.3.2.1.

66 2 Hierarchical Matrices

Since the rounded addition gives a blockwise best approximation (see
Theorem 1.7), S is a best approximation in the Frobenius norm

‖A+B−S‖F ≤ ‖A+B−M‖F for all M ∈ H (TI×J ,k).

Using Theorem 2.16, this estimate for the spectral norm reads

‖A+B−S‖2 ≤ cspL(TI×J)‖A+B−M‖2 for all M ∈ H (TI×J ,k).

The following bound on the number of arithmetic operations results from
Theorem 1.7, (1.35), and (1.36).

Theorem 2.17. Let A,B ∈H (TI×J ,k). The number of operations required for com-
puting a matrix S ∈ H (TI×J ,k) satisfying the above error estimates is of the order

cspk2[L(TI)|I|+L(TJ)|J|]+ cspk3 min{|TI |, |TJ |}.

Alternatively, not k but the blockwise accuracy ε of the approximation can be
prescribed; i.e.,

‖(A+B)b −Sb‖2 ≤ ε‖(A+B)b‖2 for all b ∈ P.

In this case, the required blockwise rank depends on the matrices and cannot be pre-
dicted without deeper knowledge of the underlying problem. Using Theorem 2.16,
we obtain the relative error estimate

‖A+B−S‖2 ≤ cspL(TI×J)ε‖A+B‖2.

2.5.1 Preserving Positivity

In the rest of this chapter we will also define replacements for other common matrix
operations. Since these substitutes will all be based on the rounded addition, the
introduced error will propagate and will in particular perturb the eigenvalues of the
results of these operations. If the smallest eigenvalue is close to the origin compared
with the rounding accuracy ε , it may happen that the result of these operations
becomes indefinite although it should be positive definite in exact arithmetic. Such
a situation can be avoided by the following ideas; cf. [28].

Assume that Â∈C
I×I is the Hermitian positive definite result of an exact addition

of two matrices from H (TI×I ,k) and let A ∈ H (TI×I ,k) be its H -matrix approx-
imant. For a moment we assume that Â and A differ only on a single off-diagonal
block t × s ∈ P. Let EFH , E ∈ C

t×k, F ∈ C
s×k, be the error matrix associated with

t × s; i.e.,
Ats = Âts −EFH

and let
ε := max{‖E‖2

2,‖F‖2
2}. (2.10)

2.5 Adding H -Matrices 67

Due to symmetry, FEH is the error matrix on block s× t.
We modify the approximant A in such a manner that the new approximant Ã can

be guaranteed to be positive definite. This is done by adding EEH to Att and FFH

to Ass such that
[

Ãtt Ãts
ÃH

ts Ãss

]
:=

[
Att Ats
AH

ts Ass

]
+

[
EEH

FFH

]
=

[
Âtt Âts
ÂH

ts Âss

]
+

[
EEH −EFH

−FEH FFH

]
.

Since [
EEH −EFH

−FEH FFH

]
=

[
−E
F

][
−E
F

]H

is positive semi-definite, the eigenvalues of Ã are not smaller than those of Â. There-
fore, Ã is Hermitian positive definite and

‖
[

Ãtt Ãts
ÃH

ts Ãss

]
−

[
Âtt Âts
ÂH

ts Âss

]
‖2 = ‖

[
EEH −EFH

−FEH FFH

]
‖2 ≤ ‖E‖2

2 +‖F‖2
2 ≤ 2ε.

If a relative error is preferred, we have to guarantee that

‖E‖2
2 ≤ ε‖Âtt‖2, ‖F‖2

2 ≤ ε‖Âss‖2 and ‖EFH‖2 ≤ ε‖Âts‖2

holds instead of (2.10). In this case, we obtain from Theorem 2.16 that

‖
[

Ãtt Ãts
ÃH

ts Ãss

]
−

[
Âtt Âts
ÂH

ts Âss

]
‖2 = ‖

[
EEH −EFH

−FEH FFH

]
‖2 ≤ 2ε‖

[
Âtt Âts
ÂH

ts Âss

]
‖2.

Since t × t and s× s will usually not be leaves in TI×I , it is necessary that EEH

and FFH are restricted to the leaves of t × t and s× s when adding them to Att and
Ass, respectively. Note that this leads to a rounding error which in turn has to be
added to the diagonal sub-blocks of t × t and s× s in order to preserve positivity.
The computational complexity which is connected with the rounded addition makes
it necessary to improve the above idea. Once again, we replace an approximant with
another approximant by adding a positive semi-definite matrix. Let t1 and t2 be the
sons of t and let s1 and s2 be the sons of s. If we define

˜̃Att := Ãtt +
[
−Et1
Et2

][
−Et1
Et2

]H

= Att +2
[

Et1 EH
t1 0

0 Et2EH
t2

]
,

the problem of adding EEH to Att is reduced to adding 2Et1EH
t1 to At1t1 and 2Et2 EH

t2
to At2t2 . Applying this idea recursively, adding EEH to Att can finally be done by
adding a multiple of Et ′EH

t ′ to the dense matrix block At ′t ′ for each leaf t ′ in TI from
the set of descendants of t. We obtain the following two algorithms addsym stab
and addsym diag.

68 2 Hierarchical Matrices

procedure addsym stab(t,s,U,V,varA)
if t × s is non-admissible then

add UV H to Ats without approximation;
else

add UV H to Ats using the rounded addition;
denote by EFH the rounding error;
addsym diag(t,E,A);
addsym diag(s,F,A);

endif
Algorithm 2.3: Stabilized Hermitian rounded addition.

The first adds a matrix of low rank UV H to an off-diagonal block t × s while the
latter adds EEH to the diagonal block t × t. Note that we assume that an Hermitian
matrix is represented by its upper triangular part only.

procedure addsym diag(t,E,varA)
if t × t is a leaf then

add EEH to Att without approximation;
else

addsym diag(t1,
√

2Et1 ,A);
addsym diag(t2,

√
2Et2 ,A);

endif
Algorithm 2.4: Stabilized diagonal addition.

We will now estimate the costs if the above algorithms are applied to t×s ∈ TI×I .
Denote by Nstab

diag(t) the number of operations needed if Algorithm 2.4 is applied to
t ∈ TI \L (TI) with E ∈ C

t×k. Since

Nstab
diag(t) = Nstab

diag(t1)+Nstab
diag(t2)

and since at most k|t ′|2 operations are required on each leaf t ′ of Tt , we obtain

Nstab
diag(t) = ∑

t ′∈L (Tt)
Nstab

diag(t
′) ≤ ∑

t ′∈L (Tt)
k|t ′|2 ≤ nmink ∑

t ′∈L (Tt)
|t ′| = nmink |t|.

Additionally, denote by Nstab
add (t,s) the number of operations required to add

UV H ∈ C
t×s
k to Ats using Algorithm 2.3. If t × s is non-admissible, then min{|t|, |s|}

≤ nmin, which leads to

Nstab
add (t,s) ≤ |t||s| ≤ nmin(|t|+ |s|).

Since for admissible t × s ∈ TI×I a rounded addition and two calls to addsym diag
have to be performed, the costs of Algorithm 2.4 can be estimated by

Nstab
add (t,s) = max{k2,nmin}(|t|+ |s|)+Nstab

diag(t)+Nstab
diag(s)

≤ [max{k2,nmin}+nmink](|t|+ |s|).

Hence, the stabilized addition has asymptotically the same computational complex-
ity as the rounded addition on each block.

2.6 Coarsening H -Matrices 69

If two H -matrices are to be added, the stabilized addition has to be applied to
each block. The resulting H -matrix will differ from the result S of the approximate
addition from Sect. 2.5 only in the diagonal blocks of P. Hence, it requires the same
amount of storage. The following theorem gathers the estimates of this section.

Theorem 2.18. Let A,B be Hermitian and let λi, i ∈ I, denote the eigenvalues of
A + B. Assume that S ∈ H (TI×I ,k) has precision ε . Using the stabilized rounded
addition on each block leads to a matrix S̃ ∈ H (TI×I ,k) with eigenvalues λ̃i ≥ λi,
i ∈ I, satisfying

‖A+B− S̃‖2 ∼ L(TI)|I|ε.

Hence, if A+B is positive definite, so is S̃. At most (max{k2,nmin}+nmink)L(TI)|I|
operations are required for the construction of S̃.

Proof. Let t ∈ T (�)
I be a cluster from the �th level of TI . Since at most csp blocks

t × s, s ∈ TI , are contained in P, addsym diag is applied to t only csp times during
the stabilized addition of A and B. This routine adds terms 2pEt ′EH

t ′ , p < L(TI)− �,
to St ′t ′ . Hence, the error on t ′ × t ′ is bounded by

csp

L(TI)

∑
�=0

2L(TI)−1−�ε ≤ csp2L(TI)ε ≤ ccsp|I|ε

with some constant c > 0. The previous estimate follows from the fact that the depth
L(TI) of TI scales like log2 |I|. Since all other blocks blocks coincide with the blocks
of S, which have accuracy ε , we obtain the estimate

‖A+B− S̃‖2 ≤ cc2
spL(TI×I)|I|ε ≤ cc2

spL(TI)|I|ε

due to Theorem 2.16. �	

The stabilized addition will be used in Sect. 3.6.3 when computing approxima-
tions to Cholesky decompositions of almost singular matrices.

2.6 Coarsening H -Matrices

In this section we describe how a given matrix A ∈ H (TI×J ,k) is approximated by
a matrix Ã ∈ H (T ′

I×J ,k
′), where T ′

I×J is a sub-tree of TI×J with the same root I× J.
In the first part of this section, k′ ≤ k will be a given number such that the accuracy
of Ã can be estimated only relatively to the best approximation. In the second part
we prescribe the accuracy and estimate the resulting rank k′.

We have already got to know the following two coarsening techniques.

(a) Blockwise coarsening: Approximants of lower accuracy compared with the ac-
curacy of A are, for instance, sufficient when generating preconditioners of A. In
order to improve the data-sparsity and thereby the efficiency of the H -matrix

70 2 Hierarchical Matrices

approximant, it is helpful to remove superfluous information from the blocks.
In Sect. 1.1.3 it was described how to compute a low-rank approximant of pre-
scribed accuracy and minimal rank to a given low-rank matrix. Especially in
the case of non-local operators (see Chap. 3), this recompression technique is
likely to improve the storage requirements even if the accuracy is not reduced.
The reason for this is that low-rank approximations are usually generated from
non-optimal constructions.

(b) Agglomeration of blocks: The partition P generated in Sect. 1.3 is admissible
and can be computed with logarithmic-linear complexity. We have remarked
that P, however, may be non-optimal. Hence, there is a good chance to improve
it by agglomerating blocks using the procedure from Sect. 1.1.6; see also [115].
The agglomeration of blocks will be particularly beneficial to the efficiency of
arithmetic operations such as multiplication and inversion of H -matrices due
to an improved sparsity constant.

Coarsening can be applied to a whole H -matrix but also to a submatrix. Without
loss of generality we consider only the case that T ′

I×J = I× J; i.e., A is coarsened to
a single matrix block Ã of rank k′.

2.6.0.1 Coarsening with Prescribed Rank

For the first part of this section assume that k′ ≤ k is given. We start from the tree
TL := TI×J , L := L(TI×J)−1, and a matrix AL ∈ H (TL,k′) which is generated from
A by approximating each block Ab, b ∈ L (TI×J), by a matrix of rank k′ using the
technique from Sect. 1.1.3. This first coarsening step requires

∑
t×s∈L (TI×J)

6k2(|t|+|s|)+20k3≤ 6cspk2L(TI×J)[|I|+|J|]+40cspk3 min{|I|, |J|}/nmin

arithmetic operations due to (1.36) and Lemma 1.39. Since A is approximated on
each block by a best approximation, for the Frobenius norm it holds that

‖A−AL‖F ≤ ‖A−M‖F for all M ∈ H (TL,k′). (2.11)

The following rule defines a sequence of block cluster trees T� and an associated
sequence of approximants A� ∈ H (T�,k′), � = L−1, . . . ,0. Let T� result from T�+1

by removing the sons of each block b ∈ T (�)
�+1 \L (T�+1) in the �th level of T�+1.

A� results from A�+1 by the agglomeration procedure from Sect. 1.1.6 applied to
such blocks b. The property that a best approximation is attained on each block is
inherited by the whole matrix with respect to the Frobenius norm; i.e,

‖A�+1 −A�‖F ≤ ‖A�+1 −M‖F for all M ∈ H (T�,k′). (2.12)

In order to agglomerate a non-admissible block, it is first converted to the outer-
product representation using the SVD.

2.6 Coarsening H -Matrices 71

The number of arithmetic operations of the above construction is determined by
the number of operations required for the SVD of each non-admissible block and the
numerical effort of the agglomeration of each block b ∈ TI×J \L (TI×J). According
to Sect. 1.1.6, at most

∑
t×s∈TI×J

24k2(|t|+ |s|)+max{1408
2
3

k3,22n3
min}

operations are required, where we have used that max{|t|, |s|} ≤ nmin, which may
be assumed due to the same level of a block’s row and column cluster. Using (1.35)
we obtain

Lemma 2.19. The number of arithmetic operations required for the above construc-
tion of A0 is of the order

cspk2L(TI×J)(|I|+ |J|)+max{k3,n3
min}|TI×J |.

Using the above procedure, A ∈ H (TI×J ,k) is rounded to a matrix of rank k′.
The resulting approximation error can be arbitrarily bad. Assume we know a best
approximant Abest ∈C

I×J
k′ for A. The following lemma (cf. [116]) relates the approx-

imation error ‖A−A0‖F to the best possible error ‖A−Abest‖F .

Lemma 2.20. Let A0 ∈ C
I×J
k′ be constructed as above. Then it holds that

‖A−A0‖F ≤ 2L(TI×J)‖A−Abest‖F .

Proof. Let L = L(TI×J)−1. From (2.12) it follows that

‖A� −Abest‖F ≤ ‖A� −A�+1‖F +‖A�+1 −Abest‖F ≤ 2‖A�+1 −Abest‖F

for �∈ {0, . . . ,L−1}, because Abest ∈H (T�,k′). Hence, ‖A�−Abest‖F ≤ 2L−�‖AL−
Abest‖F and we obtain from (2.12)

‖AL −A0‖F = ‖
L−1

∑
�=0

(A� −A�+1)‖F ≤
L−1

∑
�=0

‖A� −A�+1‖F ≤
L−1

∑
�=0

‖A�+1 −Abest‖F

≤
L−1

∑
�=0

2L−�−1‖AL −Abest‖F = (2L −1)‖AL −Abest‖F .

The assertion follows from

‖A−A0‖F ≤ ‖A−AL‖F +‖AL −A0‖F ≤ ‖A−AL‖F +(2L −1)‖AL −Abest‖F

≤ 2L‖A−AL‖F +(2L −1)‖A−Abest‖F ≤ (2L+1 −1)‖A−Abest‖F

due to (2.11). �	

72 2 Hierarchical Matrices

2.6.0.2 Coarsening with Prescribed Accuracy

If on the other hand a given accuracy ε > 0 is to be satisfied in each agglomeration
step, i.e., we have

‖A�+1 −A�‖F ≤ ε‖A�+1‖F , 0 ≤ � < L, (2.13)

then the required rank k′ may increase. In order to avoid that the complexity is
deteriorated, we stop the coarsening process in blocks for which the required rank
k′ is such that agglomeration is not worthwhile.

Assume that the sub-blocks S(b) of a block b = t×s∈ T (�)
�+1\L (T�+1) in A�+1 are

low-rank matrices with ranks kt ′×s′ , t ′ ×s′ ∈ S(b). By comparing the original storage
costs of (A�+1)b with those of (A�)b, it is easy to check whether the coarsening leads
to reduced costs of the approximant. If

kt×s(|t|+ |s|) ≤ ∑
t ′×s′∈S(b)

kt ′×s′(|t ′|+ |s′|), (2.14)

then the block cluster tree T�+1 is modified by replacing the sons S(b) of b by the
new leaf b. If this condition is not satisfied, then the sons of b will be kept in the
block cluster tree. This procedure can then be applied to the leaves of the new block
cluster tree until (2.14) is not satisfied.

17

17

17 7

7 20

17 8

7 20

20

20
19

20

4 3

17 4

4 3

7 4

4 3

7 4

5 3

20 5

4 17

3 4

4 7

3 4

4 7

3 4

5 20

3 5

17

17

19 7

8 20

19 7

8 20

20

20
20

20

6 4
17 7

7 20 6

4 4
4 3

7 4 4

5 4
4 7

3 4 5

7 4
19 7

7 20 7

6
17 7

7 20

4 6

5
4 3

7 4

4 5

4
4 7

3 4

4 5

7
19 7

7 20

4 7

19

19

17 7

7 20

17 8

7 20

20

20
19

19

5 3

19 5

4 3

7 4

4 3

7 5

5 4

20 5

5 19

3 5

4 7

3 4

4 7

3 4

5 20

4 5

19

19

19 7

7 20

19 7

7 20

20

20
19

20

4 3
4 3

17 4

4 3

7 4

4 3

7 4

5 3

20 5 4

4 3
5 4

4 3

7 4 5 4

4 3
5

4 3

7 4

4 5 4

5 3
5 3

19 5

4 3

7 5

4 3

7 5

5 4

20 5 5

4
4 17

3 4

4 7

3 4

4 7

3 4

5 20

3 5

3 4

4
5 4

4 7

3 4 5

3 4

4
5

4 7

3 4

4 5

3 4

5
5 19

3 5

4 7

3 4

4 7

3 5

5 20

4 5

3 5

17

17

19 8

7 20

19 8

8 20

20

20
19

20

4 3

17 4

4 3

8 4

4 3

7 4

5 3
12 7

7 12 5

4 17

3 4

4 7

3 4

4 8

3 4

5
12 7

7 12

3 5

17

17

20 8

7 18

20 7

8 18

19

19

12 7

7 12

12 7

7 12

18

18

7 4
19 7

7 20 7

5 4
4 3

7 4 5

4 4
4 7

3 4 5

6 4
20 7

7 18 6

7
19 7

7 20

4 7

4
4 3

7 4

4 5

5
4 7

3 4

4 5

6
20 7

7 18

4 6

19

19

19 7

7 20

19 7

7 20

20

20
19

19

5 3

19 5

5 3

7 4

4 3

7 4

5 4
12 7

7 12 5

5 19

3 5

4 7

3 4

4 7

3 4

5
12 7

7 12

4 5

19

19

20 8

8 18

20 8

8 18

19

19

12 7

7 12

12 7

7 12

18

18

6 4
5 4

17 7

7 20 6

4 3
4 3

7 4 5

4 4
4 7

3 4 5

6 5
19 7

7 20 6 6

4 4
4 3

5 4
4 3

7 4 5 4 4

4 4
4

5 4
4 7

4 4 5

3 4 4

6 4
6 5

19 7

7 20 7

5 4
4 3

7 4 5

5 4
4 7

3 4 5

5 4
20 8

8 18 6 6

6
5

17 7

7 20

4 6

4
4 3

7 4

4 5

4
4 7

3 4

3 5

6
19 7

7 20

5 7

4 6

4
4 3

5
4 4

7 4

4 5 4

4 4

4
4

5
4 7

3 4

4 5

3 4

4 4

6
6

19 7

7 20

5 7

5
4 3

7 4

4 5

5
4 7

3 4

4 5

5
20 8

8 18

4 6

4 6

19

19

17 8

7 20

17 8

7 20

20

20
19

19

5 3

19 5

4 3

7 4

4 3

7 4

5 3

20 5

5 19

3 5

4 7

3 4

4 7

3 5

5 20

3 5

19

19

19 7

7 20

19 7

7 20

20

20
20

20

5 4
17 7

7
6 4

19 6 5

5 4
4 3

7 5 5

4 4
4 7

3 4 4

6 4
19 7

7
6 5

20 6 6

5
17 7

7
6 19

4 6

4 6

4
4 3

7 4

3 4

5
4 7

3 4

4 5

6
19 7

7
6 20

5 6

4 6

20

20
20

20

17 8

7
7 5

20 7

17 7

8
7 20

5 7

18

18
20

20

5 3

20 5

4 3

7 4

4 3

7 4

4 3

18 4

5 20

3 5

4 7

3 4

4 7

3 4

4 18

3 4

20

20
20

20

19 8

8
6 5

20 7

19 8

8
7 20

5 7

18

18
19

20

5 3
5 3

19 5

4 3

7 4

4 3

7 4

5 3

20 5 5

4 3
5 4

4 3

7 4 5 4

4 3
5

4 3

7 5

4 5 4

4 3
5 3

20 5

4 3

8 4

4 3

8 4

4 3

18 4 4

5
5 19

3 5

4 7

3 4

4 7

3 4

5 20

3 5

3 5

4
5 4

4 7

3 5 5

3 4

4
5

4 7

3 4

4 5

3 4

4
5 20

3 5

4 8

3 4

4 8

3 4

4 18

3 4

3 4

19

19

19 7

7 20

19 7

7 20

20

20
19

20

5 3

19 5

4 3

7 4

5 3

7 4

5 3
12 7

7 12 5

5 19

3 5

4 7

3 4

4 7

3 4

5
12 7

7 12

3 5

19

19

20 8

8 18

20 8

8 18

19

19

12 7

7 12

12 7

7 12

18

18

6 4
19 7

7
6 5

20 6 7

5 4
4 4

5 4

7 4 4 4

5 4
4

5 4

7 5

3 4 5

6 4
6 5

20 6

5 4

7 5

5 4

7 5

6 4

18 6
6

6
19 7

7
6 20

5 6

4 7

5
4 3

5 7

4 5 4

4 5

5
4

5 7

4 4

4 4

4 4

6
6 20

5 6

5 7

4 5

5 7

4 5

6 18

4 6

4 6

20

20
20

20

19 8

8
7 5

20 7

19 8

7
6 20

5 7

18

18
20

20

5 3
12 7

7 12 5

4 3
5 4

7 5 4

4 3
5 7

4 5 4

4 3
11 7

7 11 4

5
12 7

7 12

3 5

4
5 4

7 5

3 4

4
5 7

4 5

3 4

4
11 7

7 11

3 4

19

20

12 7

7 12

12 7

7 12

18

18

7 5

20 7

4 4

7 4

5 4

7 5

6 4

18 6

7 20

5 7

5 7

4 5

4 7

4 4

6 18

4 6

20

20

12 7

7 10

12 7

7 10

18

18

17

17

17 7

7 20

17 8

7 20

20

20
19

20

4 3

17 4 8

8
5 3

20 5

4 17

3 4 8

8
5 20

3 5

17

17

19 7

8 20

19 7

8 20

20

20
20

20

6 4
17 7

7 20 6 7

8
7 4

19 7

7 20 7

6
17 7

7 20

4 6 8

7
7

19 7

7 20

4 7

19

19

17 7

7 20

17 8

7 20

20

20
19

19

5 3

19 5 8

8
5 4

20 5

5 19

3 5 8

8
5 20

4 5

19

19

19 7

7 20

19 7

7 20

20

20
19

20

4 3
4 3

17 4 8

8
5 3

20 5 4 8

8
5 3

5 3

19 5 8

8
5 4

20 5 5

4
4 17

3 4 8

8
5 20

3 5

3 4 8

8
5

5 19

3 5 8

8
5 20

4 5

3 5

17

17

19 8

7 20

19 8

8 20

20

20
19

20

4 3

17 4 8

8
5 3

12 7

7 12 5

4 17

3 4 8

8
5

12 7

7 12

3 5

17

17

20 8

7 18

20 7

8 18

19

19

12 7

7 12

12 7

7 12

18

18

7 4
19 7

7 20 7 8

7
6 4

20 7

7 18 6

7
19 7

7 20

4 7 7

8
6

20 7

7 18

4 6

19

19

19 7

7 20

19 7

7 20

20

20
19

19

5 3

19 5 8

7
5 4

12 7

7 12 5

5 19

3 5 7

8
5

12 7

7 12

4 5

19

19

20 8

8 18

20 8

8 18

19

19

12 7

7 12

12 7

7 12

18

18

6 4
5 4

17 7

7 20 6 8

8
6 5

19 7

7 20 6 6 9

9
6 4

6 5
19 7

7 20 7 8

8
5 4

20 8

8 18 6 6

6
5

17 7

7 20

4 6 8

8
6

19 7

7 20

5 7

4 6 9

9
6

6
19 7

7 20

5 7 8

8
5

20 8

8 18

4 6

4 6

19

19

17 8

7 20

17 8

7 20

20

20
19

19

5 3

19 5 8

8
5 3

20 5

5 19

3 5 8

8
5 20

3 5

19

19

19 7

7 20

19 7

7 20

20

20
20

20

5 4
17 7

7
6 4

19 6 5 8

8
6 4

19 7

7
6 5

20 6 6

5
17 7

7
6 19

4 6

4 6 8

8
6

19 7

7
6 20

5 6

4 6

20

20
20

20

17 8

7
7 5

20 7

17 7

8
7 20

5 7

18

18
20

20

5 3

20 5 8

8
4 3

18 4

5 20

3 5 8

8
4 18

3 4

20

20
20

20

19 8

8
6 5

20 7

19 8

8
7 20

5 7

18

18
19

20

5 3
5 3

19 5 8

8
5 3

20 5 5 8

8
4 3

5 3

20 5 8

8
4 3

18 4 4

5
5 19

3 5 8

8
5 20

3 5

3 5 8

8
4

5 20

3 5 8

8
4 18

3 4

3 4

19

19

19 7

7 20

19 7

7 20

20

20
19

20

5 3

19 5 8

8
5 3

12 7

7 12 5

5 19

3 5 8

8
5

12 7

7 12

3 5

19

19

20 8

8 18

20 8

8 18

19

19

12 7

7 12

12 7

7 12

18

18

6 4
19 7

7
6 5

20 6 7 7

8
6 4

6 5

20 6 7

8
6 4

18 6
6

6
19 7

7
6 20

5 6

4 7 8

7
6

6 20

5 6 8

7
6 18

4 6

4 6

20

20
20

20

19 8

8
7 5

20 7

19 8

7
6 20

5 7

18

18
20

20

5 3
12 7

7 12 5 8

8
4 3

18 4

5
12 7

7 12

3 5 8

8
4 18

3 4

19

20

12 7

7 12

12 7

7 12

18

18

7 5

20 7 7

8
6 4

18 6

7 20

5 7 8

7
6 18

4 6

20

20 18

18
18

18

Fig. 2.9 H -matrix before and after coarsening.

It is obvious that this procedure does not increase the amount of storage. In
contrast, depending on A it will usually improve the storage requirements. In the
following two lemmas (see [28]) we analyze the accuracy and the complexity of
this adaptive agglomeration process. For this purpose we consider a single block
b ∈ TI×J in which the described agglomeration stops due to the violation of (2.14)
by the father block of b. Without loss of generality we may identify b with I × J
and assume that (2.14) holds for all t × s ∈ TI×J \L (TI×J). The following lemma
describes the accuracy of A0 compared with the accuracy of AL.

2.6 Coarsening H -Matrices 73

Lemma 2.21. Let A ∈ C
I×J. If ‖A−AL‖F ≤ ε‖A‖F , then ‖A−A0‖F ≤ c(ε)‖A‖F ,

where c(ε) = ε +(1+ ε)[(1+ ε)L −1] ∼ L(TI×J)ε for ε → 0.

Proof. Due to ‖A�‖F ≤‖A�+1‖F +‖A�+1−A�‖F ≤ (1+ε)‖A�+1‖F , from (2.13) we
have that

‖AL −A0‖F = ‖
L−1

∑
�=0

(A�+1 −A�)‖F ≤
L−1

∑
�=0

‖A�+1 −A�‖F ≤ ε
L−1

∑
�=0

‖A�+1‖F

≤ ε
L−1

∑
�=0

(1+ ε)L−�−1‖AL‖F = [(1+ ε)L −1]‖AL‖F .

Observing

‖A−A0‖F ≤ ‖A−AL‖F +‖AL −A0‖F ≤ ε‖A‖F +[(1+ ε)L −1]‖AL‖F

≤ ε‖A‖F +[(1+ ε)L −1](‖A−AL‖F +‖A‖F)

≤
{

ε +(1+ ε)[(1+ ε)L −1]
}
‖A‖F ,

we obtain the assertion. �	

The computational cost of the coarsening procedure is estimated in the following
lemma.

Lemma 2.22. The resulting rank of A0 is bounded by cspkmaxL(TI×J). Hence, the
required costs are of the order

c3
spk2

maxL3(TI×J)[|I|+ |J|],

where kmax := maxt×s∈L (TI×J) kt×s.

Proof. Similarly to the case of a blockwise constant rank, the costs of coarsening
TI×J can be estimated to be bounded by

∑
t×s∈TI×J

k2
t×s(|t|+ |s|),

where we have omitted terms which do depend neither on |t| nor on |s|. Using (2.14),
the cost of each block t × s ∈ TI×J \L (TI×J) can be estimated by a sum over its
leaves

kt×s(|t|+ |s|) ≤ ∑
t ′×s′∈L (Tt×s)

kt ′×s′(|t ′|+ |s′|).

From (1.36) it follows that kt×s ≤ cspL(Tt×s)kmax. With the previous estimate we
obtain

∑
t×s∈TI×J

k2
t×s(|t|+ |s|) ≤ c2

spL2(TI×J)k2
max ∑

t×s∈TI×J

(|t|+ |s|)

≤ c3
spL3(TI×J)k2

max[|I|+ |J|]

74 2 Hierarchical Matrices

due to (1.36). �	

We have seen that each block t × s ∈ L (T ′
I×J) of the final partition L (T ′

I×J) re-
quires O(k2

max(|t|+ |s|)) operations for its computation and that its accuracy is of
the order L(TI×J)ε . Returning to the whole matrix, the coarsening process there-
fore gives back a matrix Ã which has accuracy L(TI×J)ε and can be computed with
O(k2

max(|I|+ |J|)) arithmetic operations; cf. (1.36).

2.7 Multiplying H -Matrices

Let A ∈ H (TI×J ,kA) and B ∈ H (TJ×K ,kB) be two hierarchical matrices. The aim
of this section is to investigate the product AB ∈ C

I×K of A and B. In contrast to
the hierarchical addition, which preserves the block structure, the exact product AB
cannot be represented using the block cluster tree TI×K , i.e., it cannot be guaranteed
that the blockwise rank is bounded in general. Therefore, in the first part of this
section we will define the product tree TIJK , which is suitable to hold the exact
product AB. The second part of this section is devoted to the rounded multiplication
to a given partition and given rank. Our presentation mainly relies on [116].

2.7.1 Product Block Cluster Tree

In this section we assume that TI×J has been generated using the cluster trees TI and
TJ and that for the construction of TJ×K the cluster trees TJ and TK have been used.

=∗

Fig. 2.10 The product of two partitions.

Figure 2.10 shows that the block structure is usually not preserved. The block in
the upper right corner of the product is a sum of products in which at least one factor
is a low-rank matrix. Hence, its rank is bounded by the number of products times
the maximum rank of blocks in A and B. The block on the left of the latter needs to
be refined since for its computation a product of two factors which are not in the set
of leaves is involved. The impression that the product partition is always finer than
the partition of the factors is wrong as can be seen from Fig. 2.11.

2.7 Multiplying H -Matrices 75

=∗

Fig. 2.11 Factors leading to a coarser product partition.

Definition 2.23. The product tree TIJK of TI×J and TJ×K is inductively defined by

(i) I ×K is the root of TIJK
(ii) The set of sons of blocks t × s ∈ TIJK from the �th level of TIJK is

SIJK(t × s) :=
{

t ′ × s′ |∃r ∈ T (�)
J ,r′ ∈ T (�+1)

J : t ′ × r′ ∈ SI×J(t × r)

and r′ × s′ ∈ SJ×K(r× s)
}
.

Lemma 2.24. The product tree TIJK is a block cluster tree based on TI and TK. For
its depth it holds that

L(TIJK) ≤ min{L(TI×J),L(TJ×K)}.

The sparsity constant of TIJK can be estimated as

csp(TIJK) ≤ csp(TI×J) · csp(TJ×K).

Proof. Due to Definition 2.23 it holds that for a given t ∈ TI

{s ∈ TK : t × s ∈ TIJK} ⊂ {s ∈ TK |∃r ∈ TJ : t × r ∈ TI×J and r× s ∈ TJ×K}.

Therefore, recalling Definition 1.35 we have that

|{s ∈ TK : t × s ∈ TIJK}| ≤ ∑
r∈TJ : t×r∈TI×J

|{s ∈ TK : r× s ∈ TJ×K}|

≤ csp(TI×J) · csp(TJ×K).

The rest of the assertion is an easy consequence of Definition 2.23. �	

Let t × s ∈ TIJK be a leaf from the �th level of TIJK . Then

(AB)ts = ∑
j∈J

At jB js.

We will rearrange the previous summation to a sum of products in which one factor
is a low-rank matrix. To this end, denote by Fj(t) ∈ TI and Fj(s) ∈ TK the uniquely
defined ancestors of t and s from the jth, 0 ≤ j ≤ �, level of TI and TK , respectively.
We define the set

76 2 Hierarchical Matrices

Uj(t × s) :=
{

r ∈ T (j)
J :Fj(t)× r ∈ TI×J and r×Fj(s) ∈ L (TJ×K)

or Fj(t)× r ∈ L (TI×J) and r×Fj(s) ∈ TJ×K

}
.

The consequence of the following lemma is that

(AB)ts =
�

∑
j=0

∑
r∈Uj(t×s)

AtrBrs. (2.15)

Lemma 2.25. It holds that
�⋃

j=0

⋃

r∈Uj(t×s)

r = J,

where the union is pairwise disjoint. Furthermore, it holds that

|Uj(t × s)| ≤ min{csp(TI×J),csp(TJ×K)}, 0 ≤ j ≤ �.

Proof. Let ν ∈ J. It holds that b0 := F0(t)×J ∈ TI×J and b′0 := J×F0(s) ∈ TJ×K . If
neither b0 nor b′0 is a leaf, then there is r1 ∈ SJ(J) such that ν ∈ r1 and b1 := F1(t)×
r1 ∈ TI×J , b′1 := r1 ×F1(s) ∈ TJ×K . If still neither b1 nor b′1 is a leaf, we descend the
trees keeping ν ∈ r j until for some j either b j := Fj(t)× r j or b′j := r j ×Fj(s) is a
leaf. In this case ν ∈ r j ∈Uj. Since t × s is a leaf in TIJK , it follows that j ≤ �.

Since Uj is constructed from T (j)
J , the elements of each Uj are pairwise disjoint.

Let r ∈ Uj and r′ ∈ Uj′ , j ≤ j′, and r∩ r′ �= ∅. Since r,r′ ⊂ TJ , we obtain r′ ⊂ r. It
follows that

Fj′(t)× r′ ⊂ Fj(t)× r and r′ ×Fj′(s) ⊂ r×Fj(s). (2.16)

The definition of Uj implies that either Fj(t)× r or r×Fj(s) is a leaf. Hence, one
of the inclusions in (2.16) is an equality, which implies that j = j′ and hence that
r = r′.

From
|Uj| ≤ |{r ∈ T (j)

J : Fj(t)× r ∈ TI×J}| ≤ csp(TI×J)

and
|Uj| ≤ |{r ∈ T (j)

J : r×Fj(s) ∈ TJ×K}| ≤ csp(TJ×K)

we obtain the estimate on the cardinality of Uj. �	

Theorem 2.26. Let L=L(TIJK). For the product AB of two matrices A∈H (TI×J ,kA)
and B ∈ H (TJ×K ,kB) it holds that AB ∈ H (TIJK ,k), where

k ≤ Lmin{csp(TI×J),csp(TJ×K)}max{kA,kB,nmin}.

The matrix AB can be computed with at most

csp(TIJK)Lmax{k′BNMV(A),k′ANMV(B)}

2.7 Multiplying H -Matrices 77

arithmetic operations. Here, NMV(A) denotes the number of arithmetic operations
required for the matrix-vector multiplication (see Sect. 2.2), k′A := max{kA,nmin},
and k′B := max{kB,nmin}.

Proof. Let t × s ∈ L (TIJK) be from the �th level of TIJK . Due to (2.15) we can
express (AB)ts by the sum over Lmax j=0,...,� |Uj(t × s)| matrix products. From the
definition of Uj(t × s) and from t × r ⊂ Fj(t)× r and r× s ⊂ r×Fj(s) we see that
one of the factors of each product corresponds to a leaf and so its rank is bounded
by max{kA,kB,nmin}. As a consequence,

k ≤ L max
j=0,...,�

|Uj(t × s)|max{kA,kB,nmin}.

The first part of the assertion follows from Lemma 2.25.
Using the representation (2.15), we have to compute the products AtrBrs, each

of which consists of max{kA,kB,nmin} matrix-vector products. Hence, with P :=
L (TIJK) and Pi := P ∩ T (i)

IJK , 0 ≤ i < L, we obtain for the number of arithmetic
operations for the matrix product

NMM(A,B) ≤ ∑
t×s∈P

L−1

∑
j=0

∑
r∈Uj(t×s)

max{k′BNMV(Atr),k′ANMV(Brs)}

≤ ∑
t×s∈P

max{k′BNMV(AtJ),k′ANMV(BJs)}

≤
L−1

∑
i=0

∑
t×s∈Pi

max{k′BNMV(AtJ),k′ANMV(BJs)}

≤ csp(TIJK)Lmax{k′BNMV(A),k′ANMV(B)},

which proves the assertion. �	

2.7.2 Preserving the Original Block Structure

The exact product AB of two H -matrices A ∈ H (TI×J ,kA) and B ∈ H (TJ×K ,kB)
can be found in the set H (TIJK ,k′) with a slightly increased blockwise rank k′ as
we have just seen in Theorem 2.26. Since the product tree TIJK will usually lead to
a finer partition, which in turn leads to an increased numerical effort, the product
AB is preferably represented on the usual partition of the cluster tree TI×K with
possibly further increased rank. By the following idempotency constant it is possible
to estimate this increment. For simplicity we restrict ourselves to the case I = J = K.

Definition 2.27. Let TI×I be a block cluster tree generated from the cluster tree TI .
The idempotency constant cid is defined as

cid(b) := |
{

t ′ × s′ ∈ TI×I : t ′ × s′ ⊂ b and ∃r′ ∈ TI with t ′ × r′, r′ × s′ ∈ TI×I
}
|

78 2 Hierarchical Matrices

for b ∈ L (TI×I) and
cid := max

b∈L (TI×I)
cid(b).

If TIII is not finer than TI×I , then cid = 1. In Fig. 2.10 four blocks are refined into
its four sons, respectively. In this case it holds that cid = 5.

Example 2.28. In Example 1.36 we have estimated the sparsity constant csp under
the assumption (see (1.22)) that

(diamXt)m ≤ cg2−� and µ(Xt) ≥ 2−�/cG

for all t ∈ T (�)
I . The same assumption will now be used to estimate the idempotency

constant. Let b ∈L (TI×I) be from the �th level of TI×I . If b is a non-admissible leaf,
then cid(b) = 1. For admissible b = t × s we define

q := log2(cgcGcΩ)+m log2(2+η),

where cΩ is defined in (1.19). We will show that for clusters t ′,r′,s′ ∈ TI , t ′ × s′ ⊂
b = t × s, satisfying t ′ × r′,r′ × s′ ∈ T (�+q)

I×I it follows that either t ′ × r′ or r′ × s′ is a
leaf in TI×I . This can be seen from

2−q/m = c−1/m
g c−1/m

G c−1/m
Ω (2+η)−1

and

diamXr′ = (1+η/2)diamXr′ −η/2diamXr′

≤ (1+η/2)c1/m
g 2−(�+q)/m −η/2diamXr′

≤ c−1/m
Ω /2min{µ1/m(Xt),µ1/m(Xs)}−η/2diamXr′

≤ 1
2

min{diamXt ,diamXs}−η/2diamXr′

≤ η
2

(dist(Xt ,Xs)−diamXr′)

≤ η max{dist(Xt ′ ,Xr′),dist(Xr′ ,Xs′)}.

Since hence either t ′ × r′ or r′ × s′ is admissible, one of these blocks does not have
descendants in TI×I . Hence, the number of vertices in TIII which are contained in b
is bounded by cid ≤ 4q = (cgcGcΩ)2(2+η)2m.

The same kind of proof can be adapted to partitions generated from algebraic
clustering.

Lemma 2.29. Under the assumption (1.28) it holds that cid ≤ [cu(2+η)]2m.

Proof. Let b ∈ L (TI×I) be from the �th level of TI×I . If b is a non-admissible leaf,
then cid(b) = 1. For admissible b = t × s we define

2.7 Multiplying H -Matrices 79

q := m log2 cu(2+η).

We will show that for clusters t ′,r′,s′ ∈ TI , t ′ × s′ ⊂ b = t × s, satisfying t ′ × r′,r′ ×
s′ ∈ T (�+q)

I×I it follows that either t ′ × r′ or r′ × s′ is a leaf in TI×I . This can be seen
from

diamr′ = (1+η/2)diamr′ −η/2diamr′

≤ (1+η/2)cu2−q/m min{diam t,diams}−η/2diamr′

≤ 1
2

min{diam t,diams}−η/2diamr′

≤ η
2

(dist(t,s)−diamr′)

≤ η max{dist(t ′,r′),dist(r′,s′)}.

Since hence either t ′ × r′ or r′ × s′ is admissible, one of these blocks does not have
descendants in TI×I . Therefore, the number of vertices which are contained in b is
bounded by cid ≤ 4q = [cu(2+η)]2m. �	

Theorem 2.30. Let A,B ∈ H (TI×I ,k). Then AB ∈ H (TI×I , k̂), where

k̂ ≤ cidcspL(TI×I)max{k,nmin}.

Proof. Due to Theorem 2.26, we have AB ∈ H (TIII ,k′), where the blockwise rank
k′ is bounded by cspL(TI×I)max{k,nmin}. If a leaf from TI×I is contained in a leaf
from TIII , then the restriction does not increase the rank. If a leaf from TI×I contains
leaves from TIII , then their number is bounded by cid. Therefore, the rank is bounded
by cidk′. �	

2.7.3 Rounded Multiplication

If the product AB ∈H (TI×I ,k) is to be approximated by a matrix from H (TI×I , k̃),
k̃ < k, then one of the rounding algorithms from Sect. 1.1.5 can be used to reduce
the blockwise rank to k̃. The first sums up all arising products in (2.15) and rounds
the result to rank k̃. As shown in Sect. 1.1.5, the result of the rounding can be con-
trolled relatively to the best approximation. The second algorithm gradually adds
the products to a rounded sum and is significantly faster but can result in arbitrarily
large errors for general matrices. The following divide-and-conquer algorithm for
the computation of the approximate update C := C + AB of C ∈ H (TI×I , k̃) stems
from the blockwise matrix multiplication and is even faster.

Assume that A ∈H (TI×J ,kA) and B ∈H (TJ×K ,kB) are subdivided according to
their block cluster trees TI×J and TJ×K :

A =
[

A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
.

80 2 Hierarchical Matrices

Then AB has the following block structure

AB =
[

A11B11 +A12B21 A11B12 +A12B22
A21B11 +A22B21 A21B12 +A22B22

]
.

If the target matrix C has sons in TI×K , then compute

Ci j := Ci j +Ai1B1 j +Ai2B2 j, i, j = 1,2,

each of which has approximately half the size of C := C + AB. In the case that
C is a leaf in TI×K , the sums Ai1B1 j + Ai2B2 j are rounded to rank-k̃ matrices Ri j,
i, j = 1,2, and [

R11 R12
R21 R22

]

is agglomerated to a single rank-k̃ matrix (see Sect. 1.1.6) before adding it to C
using one of the rounded additions. The complexity of the rounded multiplication
was shown to be of the order k2L2(TI)|I|+ k3|I| for I = J; see [132]. A parallel
version of the previous algorithm was presented in [166].

2.7.4 Multiplication of Hierarchical and Semi-Separable Matrices

As we have seen in Sect. 1.2, multiplying a (p,q)-semi-separable matrix S and a
general matrix A ∈ C

m×n can be done with O((p + q)mn) arithmetic operations. If
A is an H -matrix, then AS and SA can be computed with significantly less effort.
Since diagonal-plus-semi-separable matrices are hierarchical matrices, we could use
the hierarchical matrix multiplication algorithm from the previous section. We will
however present an algorithm which is significantly more efficient if one of the ma-
trices is semi-separable. Its complexity will actually be of the order of the hierarchi-
cal matrix-vector multiplication. The resulting algorithms will be used in Sect. 4.6
when updating the factors of the LU decomposition in Broyden’s method.

In the following lemma (see [24]), which is the basis for the efficient multiplica-
tion, we make use of the notation

s′ := {i ∈ I : i < mins} and s′′ := {i ∈ I : i > maxs}

for s ⊂ I. Note that this lemma holds for arbitrary partitions P of the matrix indices
{1, . . . ,m}×{1, . . . ,n}.

Lemma 2.31. Let A ∈ C
m×n and let S ∈ C

n×n be a diagonal-plus-semi-separable
matrix with the notation from Definition 1.10. For t × s ∈ P it holds that

(AS)ts = AtsSss +ΞV H
s +ϒ ZH

s ,

where Ξ := Ats′Us′ ∈ C
t×p and ϒ := Ats′′Ws′′ ∈ C

t×q. Furthermore, if A ∈ C
n×m,

then

2.7 Multiplying H -Matrices 81

(SA)ts = SttAts +Ut Ξ̂ H +Wtϒ̂ H ,

where Ξ̂ := AH
t ′′sVt ′′ ∈ C

s×p and ϒ̂ := AH
t ′sZt ′ ∈ C

s×q. Here, Ut denotes the restriction
of U to the rows t.

Proof. By � we denote the level of t × s in the block cluster tree TI×I . Let τ ×σ ⊃
t × s be in the kth level of TI×I . By induction over k ≤ � we will prove that

Atσ Sσs = AtsSss +Ξ(σ)V H
s +ϒ (σ)ZH

s (2.17)

with vectors Ξ(σ) := Atσ∗Uσ∗ and ϒ (σ) = Atσ∗∗Wσ∗∗ , where σ∗ := {i ∈ σ : i <
mins}, σ∗∗ := {i ∈ σ : i > maxs}. The choice σ = I will then lead to the assertion.

For k = � we have that τ ×σ = t × s. Therefore, we obtain

Atσ Sσs = AtsSss.

Assume that (2.17) is true for k+1 ≤ �. Let Aτσ and Sσσ be partitioned correspond-
ing to the tree TI×I

Aτσ =
[

Aτ1σ1 Aτ1σ2
Aτ2σ1 Aτ2σ2

]
and Sσσ =

[
Sσ1σ1 Uσ1V H

σ2
Wσ2ZH

σ1
Sσ2σ2

]
.

Then we have that

Atσ Sσs =
[

Aτ1σ1 Sσ1σ1 +Aτ1σ2Wσ2 ZH
σ1

Aτ1σ2 Sσ2σ2 +Aτ1σ1Uσ1V H
σ2

Aτ2σ1 Sσ1σ1 +Aτ2σ2Wσ2 ZH
σ1

Aτ2σ2 Sσ2σ2 +Aτ2σ1Uσ1V H
σ2

]

ts
.

If s ⊂ σ1, then

Atσ Sσs = Atσ1Sσ1s +Atσ2Wσ2ZH
s = AtsSss +Ξ(σ1)V H

s +[ϒ (σ1)+Atσ2Wσ2]Z
H
s .

If, on the other hand, s ⊂ σ2, then

Atσ Sσs = Atσ2Sσ2s +Atσ1Uσ1V H
s = AtsSss +[Ξ(σ2)+Atσ1Uσ1]V

H
s +ϒ (σ2)ZH

s

due to the induction assumption. The second part of the assertion is obtained by
similar arguments. �	

According to the previous lemma, each sub-block (AS)ts of AS is a rank-(p+q)
update of AtsSss. Let t1 × s1, . . . , tµ × sµ be the blocks in P such that minsi ≤ mins j
for i ≤ j. Then C := AS can be computed by Algorithm 2.5.

Ξ := 0 from C
I×p

for i = 1, . . . ,µ do
Ctisi := Atisi Ssisi +ΞtiV

H
si

Ξti := Ξti +AtisiUsi

ϒ := 0 from C
I×q

for i = µ, . . . ,1 do
Ctisi := Ctisi +ϒti Z

H
si

ϒti := ϒti +AtisiWsi

Algorithm 2.5: H -matrix times semi-separable matrix.

82 2 Hierarchical Matrices

For the computation of SA the blocks have to be ordered with respect to their row
indices.

In order to be able to compute AS efficiently, we have to exploit that A is an
H -matrix, i.e., that for each block t × s ∈ P it holds that Ats = XY H with X ∈ C

t×k

and Y ∈ C
s×k each consisting of k columns. In this case we have

AtsUs = X(Y HUs)

and each product AtsUs appearing in Algorithm 2.5 can be done with pk(|t|+ |s|)
operations. Additionally, products AtsSss have to be computed for each block t ×
s ∈ P. Exploiting

AtsSss = X(SH
ssY)H ,

it is sufficient to compute the k×s matrix SH
ssY , which can be done with O((p+q)k|s|)

operations using Algorithm 1.1. The rank-p update of AtsSss with ΞtV H
s can be done

explicitly by storing the rank-(k + p) matrix

AtsSss +ΞtV H
s = [X ,Ξt][SH

ssY,Vs]H ,

which requires copying p(|t|+ |s|) units of storage. The updates with ΞtV H
s and

ϒtZH
s lead to a blockwise rank of k + p + q, i.e., with A ∈ H (P,k) it holds that

AS,SA ∈ H (P,k + p+q).
We will apply this multiplication to problems (see Sect. 4.6.2) where p and q

are constants. Hence, the computational complexity of each block t × s is of the
order k(|t|+ |s|), which is exactly the complexity that is required for each block
when multiplying an H (P,k)-matrix by a vector. The latter multiplication requires
O(kn logn) operations; cf. Sect. 2.2.

Remark 2.32. (a) For the update of the LU decomposition we will have to com-
pute the product of triangular hierarchical and triangular semi-separable matrices.
In this case the product will be in H (P,k + p) and H (P,k + q), respectively, if
the hierarchical factor is in H (P,k). It is obvious how to simplify and accelerate
Algorithm 2.5 for such kind of matrices; see Algorithms 2.6 and 2.7.

(b) The rank-p and rank-q updates will gradually increase the rank of the fac-
tors if they are stored explicitly. This can be avoided by truncation to rank-k; see
Sect. 1.1.4. The latter operation requires O(k2(|t|+ |s|)) operations for each block
t × s.

Let L = {t1 × s1, . . . , tµ × sµ} be the blocks in P such that minsi ≥ mins j for i ≤ j.
ϒ := 0 from C

I×q

for i = 1, . . . ,µ do
Ctisi := Ltisi L

′
sisi

+ϒti Z
H
si

ϒti := ϒti +LtisiWsi

Algorithm 2.6: H -matrix times lower triangular semi-separable matrix.

2.8 Hierarchical Inversion 83

Let L = {t1 × s1, . . . , tµ × sµ} be the blocks in P such that min ti ≥ min t j for i ≤ j.
Ξ := 0 from C

I×p

for i = 1, . . . ,µ do
Ctisi := U ′

titiUtisi +Uti Ξ H
si

Ξsi := Ξsi +UH
tisi

Vti

Algorithm 2.7: Upper triangular semi-separable matrix times H -matrix.

2.8 Hierarchical Inversion

In this section we assume that each block Att , t ∈ TI , of A ∈H (TI×I ,k) is invertible.
Positive definite matrices are an important example.

Two approaches to the computation of the H -matrix inverse have been investi-
gated in the literature. The first (see [132]) uses the Schulz iteration

Ci+1 = Ci(2I −ACi), i = 0,1,2, . . . ,

which arises from Newton’s method applied to F(X) := X−1−A = 0. This iteration
converges locally to A−1; see [235]. The following divide-and-conquer approach
(see [127]) has turned out to be significantly more efficient. It exploits the property
that each matrix A ∈ H (TI×I ,k) is subdivided according to its block cluster tree:

A =
[

A11 A12
A21 A22

]
.

It is easy to see that for the exact inverse of A it holds that

A−1 =
[

A−1
11 +A−1

11 A12S−1A21A−1
11 −A−1

11 A12S−1

−S−1A21A−1
11 S−1

]
, (2.18)

where S denotes the Schur complement S := A22 −A21A−1
11 A12 of A11 in A. For the

computation of A−1 the matrices A11 and S, which have approximately half the size
of A, have to be inverted. The H -matrix inverse C of A is computed by replacing
the multiplications and the additions appearing in (2.18) by the H -matrix versions.
We need a temporary matrix T ∈H (TI×I ,k), which together with C is initialized to
zero.

84 2 Hierarchical Matrices

procedure invertH(t,A,varC)
if t ∈ L (TI) then Ctt := A−1

tt is the usual inverse.
else

let t1, t2 denote the sons of t.
invertH(t1,A,C).
Tt1t2 = Tt1t2 −Ct1t1 At1t2 .
Tt2t1 = Tt2t1 −At2t1Ct1t1 .
At2t2 = At2t2 +At2t1 Tt1t2 .
invertH(t2,A,C).
Ct1t2 = Ct1t2 +Tt1t2Ct2t2 .
Ct2t1 = Ct2t1 +Ct2t2 Tt2t1 .
Ct1t1 = Ct1t1 +Tt1t2Ct2t1 .

Algorithm 2.8: H -matrix inversion.

Calling invertH with parameters I, A, and C generates the desired approximation C
of A−1, while A is destroyed.

The complexity of the computation of the H -inverse is determined by the cost of
the H -matrix multiplication. For the following theorem it is assumed that each sum
of two rank-k matrices arising during the previous algorithm is rounded to rank k.
We remark that the feasibility of this assumption has to be checked for the respective
problem since otherwise the approximation error may become uncontrollable.

Theorem 2.33. The computation of the H -matrix inverse C ∈ H (TI×I ,k) of A ∈
H (TI×I ,k) using Algorithm 2.8 requires O(k2L2(TI)|I|) operations.

If we prescribe the rounding precision εH , it is by no means obvious that the re-
quired blockwise rank k of the H -matrix inverse C is small. In order to prove this,
we will leave our algebraic point of view and exploit analytic properties which are
accessible for subclasses of matrices such as those arising from elliptic operators;
see Chap. 4.

The H -matrix inverse may be used for the data-sparse approximation of operator
valued functions. Let f : C → C be analytic inside of a path Γ ⊂ C enveloping the
spectrum of an elliptic operator L . The operator f (L) can be represented using
the Dunford-Cauchy integral

f (L) =
1

2πi

∫

Γ
f (z)(zI−L)−1 dz

provided that this integral converges. Approximating the previous integral by ap-
propriate quadrature formula and treating the discrete resolvents by the H -matrix
inverse leads to a data-sparse approximation. Examples are the operator exponen-
tial exp(−tL) arising from the solution of the heat equation and the operator co-
sine family cos(t

√
L) arising from the wave equation; see [98, 96]. In addition,

data-sparse methods for the approximation of the Sylvester and the Riccati equation
including the matrix sign-function are investigated in [96, 97].

2.9 Computing the H -Matrix LU Decomposition 85

2.8.0.1 Updates of the Inverse

Sometimes, many systems with coefficient matrices differing in only a small number
of entries have to be solved. This problem arises, for instance, as a consequence
of Newton’s method for the solution of nonlinear systems if the coefficients of the
operator change only locally. Assume that A is invertible such that 1+αeT

j A−1ei �= 0
with α ∈ R and the canonical vectors ei,e j ∈ R

n. Due to the Sherman-Morrison-
Woodbury formula (1.3) for the inverse of

Ã := A+αeieT
j

it holds that

Ã−1 = (A+αeieT
j)

−1 = A−1 − α
1+αeT

j A−1ei
A−1eieT

j A−1.

Hence, Ã−1 and A−1 differ only by matrix of rank 1. In the case that A and Ã have
r different entries, the update will be of rank at most r. Using the H -matrix addi-
tion, we are able to compute an approximation C ∈ H (TI×I ,k) of Ã−1 exploiting
the previously computed approximation of A−1. Obviously, this is much faster than
computing the H -matrix inverse of Ã from scratch.

2.9 Computing the H -Matrix LU Decomposition

Although the hierarchical inversion has almost linear complexity provided that the
required blockwise rank behaves well, the numerical effort for its computation is
still relatively high. The following hierarchical LU decomposition provides a sig-
nificantly more efficient alternative.

The first algorithm for the computation of hierarchical LU decompositions has
been proposed in [176]. This algorithm, however, was defined on a partition which
is too restrictive to treat problems of higher spatial dimension. The following algo-
rithm is the first method (see [21]) which can be applied to general H -matrices.
Once again, the required blockwise rank cannot be predicted without restricting the
class of matrices. For elliptic operators it will be possible to prove a logarithmic
dependence on |I|; cf. Sect. 4.3.

We have seen that approximate versions of the usual matrix operations like addi-
tion and multiplication can be defined on the set H (TI×I ,k) of hierarchical matrices.
The hierarchical LU decomposition can be computed using these accelerated oper-
ations during the block LU decomposition instead of the usual ones. The rounding
precision these operations are performed with will be denoted by εH .

To define the H -matrix LU decomposition, we exploit the hierarchical block
structure of a block Att , t ∈ TI \L (TI):

86 2 Hierarchical Matrices

Att =
[

At1t1 At1t2
At2t1 At2t2

]
=

[
Lt1t1
Lt2t1 Lt2t2

][
Ut1t1 Ut1t2

Ut2t2

]
,

where t1, t2 ∈ TI denote the sons of t in TI . Hence, the LU decomposition of a block
Att is reduced to the following four problems on the sons of t × t:

(i) Compute Lt1t1 and Ut1t1 from the LU decomposition Lt1t1Ut1t1 = At1t1 ;
(ii) Compute Ut1t2 from Lt1t1Ut1t2 = At1t2 ;

(iii) Compute Lt2t1 from Lt2t1Ut1t1 = At2t1 ;
(iv) Compute Lt2t2 and Ut2t2 from the LU decomposition Lt2t2Ut2t2 = At2t2 −Lt2t1Ut1t2 .

If a block t×t ∈L (TI×I) is a leaf, the usual pivoted LU decomposition is employed.
For (i) and (iv) two LU decompositions of half the size have to be computed. In order
to solve (ii), i.e., solve a problem of the structure LttBts = Ats for Bts, where Ltt is
a lower triangular matrix and t × s ∈ TI×I , we use the following recursive block
forward substitution. If the block t × s is not a leaf in TI×I , from the subdivision of
the blocks Ats, Bts, and Ltt into their sub-blocks (t1, t2 and s1,s2 are again the sons
of t and s, respectively)

[
Lt1t1
Lt2t1 Lt2t2

][
Bt1s1 Bt1s2
Bt2s1 Bt2s2

]
=

[
At1s1 At1s2
At2s1 At2s2

]

one observes that Bts can be found from the following equations

Lt1t1Bt1s1 = At1s1 ,

Lt1t1Bt1s2 = At1s2 ,

Lt2t2Bt2s1 = At2s1 −Lt2t1Bt1s1 ,

Lt2t2Bt2s2 = At2s2 −Lt2t1Bt1s2 ,

which are again of type (ii). If, on the other hand, t × s is a leaf, then the usual for-
ward substitution is applied. Similarly, one can solve (iii) by recursive block back-
ward substitution.

The complexity of the above recursions is determined by the complexity of the
hierarchical matrix multiplication, which can be estimated as O(k2L2(TI)|I|) for two
matrices from H (TI×I ,k). Each operation is carried out with precision εH . A result
[79] on the stability analysis of the block LU decomposition states that the product
LU is backward stable in the sense that

‖A−LU‖2 < c(|I|)εH (‖A‖2 +‖L‖2‖U‖2).

Provided that ‖L‖2‖U‖2 ≈ ‖A‖2, the relative accuracy of LU will hence be of or-
der εH . Employing the H -matrix arithmetic, it is therefore possible to generate an
approximate LU decomposition of a matrix A ∈ H (TI×I ,k) to any prescribed accu-
racy with almost linear complexity whenever the blockwise rank is guaranteed to be
logarithmically bounded. A logarithmic dependence of k on |I| will, for instance, be
proved under quite general assumptions for finite element stiffness matrices arising
from the discretization of elliptic boundary value problems.

2.10 Hierarchical QR Decomposition 87

It is known that the pointwise LU decomposition preserves the bandwidth and the
skyline structure of a matrix. This property is obviously inherited by the H -matrix
LU decomposition. In Sect. 4.5 we will exploit this in the context of nested dis-
section reorderings, which in particular allows to parallelize the LU factorization
algorithm.

In the case of positive definite matrices A it is possible to define an H -matrix
version of the Cholesky decomposition of a block Att , t ∈ TI \L (TI):

Att =
[

At1t1 At1t2
AH

t1t2 At2t2

]
=

[
Lt1t1
Lt2t1 Lt2t2

][
Lt1t1
Lt2t1 Lt2t2

]H

.

This factorization is recursively computed by

Lt1t1LH
t1t1 = At1t1 ,

Lt1t1LH
t2t1 = At1t2 ,

Lt2t2LH
t2t2 = At2t2 −Lt2t1LH

t2t1

using the usual Cholesky decomposition on the leaves of TI×I . The second equation
Lt1t1LH

t2t1 = At1t2 is solved for Lt2t1 in a way similar to how Ut1t2 was previously
obtained in the LU decomposition.

Once A ≈ LH UH has been decomposed, the solution of Ax = b can be found
by forward/backward substitution: LH y = b and UH x = y. An advantage of the
inverse of a matrix A is that A−1 only has to be multiplied by b when solving the
linear system Ax = b for x. The LU decomposition requires forward-/backward sub-
stitution, which in standard arithmetic has quadratic complexity. Since LH and UH

are H -matrices, yt , t ∈ TI \L (TI), can be computed recursively by solving the
following systems for yt1 and yt2

Lt1t1yt1 = bt1 and Lt2t2yt2 = bt2 −Lt2t1yt1 .

If t ∈ L (TI) is a leaf, a usual triangular solver is used. The backward substitution
can be done analogously. These substitutions are exact and their complexity is de-
termined by the complexity of the hierarchical matrix-vector multiplication, which
is O(kL(TI)|I|) for multiplying an H (TI×I ,k)-matrix by a vector.

2.10 Hierarchical QR Decomposition

In addition to the hierarchical LU decomposition it seems straight forward to de-
fine a hierarchical QR decomposition of A ∈ H (TI×I ,k), which may, for instance,
be used to solve eigenvalue problems with almost linear complexity. In [176] the
QR decomposition of H -matrices is computed using the Cholesky decomposition
LLH = B of B := AHA. The matrix Q is found by forward substitution from A = QLH .
Then Q is unitary because

88 2 Hierarchical Matrices

QHQ = L−1AHAL−H = L−1BL−H = I.

Since squaring a matrix should be avoided, we propose to use the following alterna-
tive recursion.

Assume that A or a diagonal sub-block of A is partitioned in the following way:

A =
[

A11 A12
A21 A22

]
.

Setting X := A21A−1
11 , it is obvious that I +XHX and I +XXH are Hermitian positive

definite and share the same spectra (without 1). Let the Cholesky factors L1 and L2
be computed from

I +XHX = L1LH
1 and I +XXH = L2LH

2 ,

then it follows that detL1 = detL2. The matrix

Q :=
[

L−1
1 L−1

1 XH

−L−1
2 X L−1

2

]
=

[
L−1

1
L−1

2

][
I XH

−X I

]

is unitary and satisfies

QA =
[

L−1
1 (A11 +XHA21) L−1

1 (A12 +XHA22)
0 L−1

2 (A22 −XA12)

]

=
[

LH
1 A11 L−1

1 (A12 +XHA22)
0 L−1

2 S

]
, (2.19)

where S := A22 −XA12 is the Schur complement of A11 in A. If one of the diagonal
blocks of QA is a leaf in the block cluster tree, then the usual QR decomposition
is applied to it. Otherwise, two appropriate transformations of half the size have to
be computed and applied. Instead of immediately applying the next transformation
to the upper right block of (2.19), it is more efficient to gradually apply the trans-
formations to each other before they are multiplied by this block. In this case, the
whole QR recursion is determined by the complexity of the H -matrix multiplica-
tion, which is of order k2L2(TI)|I|.

The matrix Q can be regarded as a block Givens rotation since det Q = 1, which
follows from

detQ = det
[

L−1
1 L−1

1 XH

0 L−1
2 (I +XXH)

]
= det

[
L−1

1 L−1
1 XH

0 LH
2

]
.

Since the computation of the factors L1 and L2 involves approximation errors,
Q will be only “approximately” unitary; i.e., there is an error matrix E ∈ C

I×I

such that
(Q+E)H(Q+E) = I.

2.10 Hierarchical QR Decomposition 89

Since the loss of orthogonality of the columns of Q is amplified by a bad condition
number of A, Q can be improved by decomposing Q = Q′R′, which leads to A = Q′R̂
with the upper block triangular matrix R̂ := R′R.

In order to transform A to an upper triangular matrix, we have to apply a sequence
of approximately unitary matrices Q1, . . . ,QL, where L := L(TI)∼ log |I| denotes the
depth of TI . The following lemma states that the distance of the product Q1 · . . . ·QL
to a unitary matrix is of the order ε logL if the rounding precision is increased from
level to level as ε/�.

Lemma 2.34. Let 0 < ε < 1. Assume that Q�, � = 1, . . . ,L, are approximately unitary
in the sense that (Q� + E�)H(Q� + E�) = I for some matrices E� ∈ C

I×I satisfying
‖E�‖2 < ε/�. Then also the product QL · . . . ·Q1 is approximately unitary; i.e.,

(QL · . . . ·Q1 +E)H(QL · . . . ·Q1 +E) = I

for some E ∈ C
I×I satisfying ‖E‖2 ∼ ε logL.

Proof. The assertion is proved by induction over L. The case L = 1 is trivially true.
Assume that for Q := QL · . . . ·Q1 it holds that

(Q+E)H(Q+E) = I

for some E ∈ C
I×I satisfying ‖E‖2 ≤ ε

(
∑L

�=1 1/�
)

∏L
�=2(1+ ε

�). Observe that

[QL+1Q+F]H [QL+1Q+F] = [(QL+1 +EL+1)(Q+E)]H(QL+1 +EL+1)(Q+E) = I,

where F := (QL+1 + EL+1)E + EL+1(Q + E)−EL+1E. The norm of F can be esti-
mated as

‖F‖2 ≤ ‖E‖2 +‖EL+1‖2 +‖EL+1‖2‖E‖2

≤ ε

(
L

∑
�=1

1/�

)
L

∏
�=2

(1+
ε
�
)+

ε
L+1

+
ε2

L+1

(
L

∑
�=1

1/�

)
L

∏
�=2

(1+
ε
�
)

≤ ε

(
L+1

∑
�=1

1/�

)
L

∏
�=2

(1+
ε
�
)+

ε2

L+1

(
L+1

∑
�=1

1/�

)
L

∏
�=2

(1+
ε
�
)

= ε

(
L+1

∑
�=1

1/�

)
L+1

∏
�=2

(1+
ε
�
).

The assertion follows from ∏L
�=2(1+ ε

�) ≤ exp(ε) and ∑L
�=1 1/� ∼ logL. �	

Assume a logarithmic dependence of the required rank k on the prescribed accu-
racy. Then increasing the accuracy with the level � does not significantly increase
the rank due to k ∼ | logε/�| ∼ | logε|+ log� ∼ | logε|+ log log |I|.

90 2 Hierarchical Matrices

2.11 H 2-Matrices and Fast Multipole Methods

The low-rank blocks of H -matrices can be chosen independently from each other.
By fixing a common basis for the column and the row vectors it is possible to further
reduce the complexity of data-sparse approximations.

Definition 2.35. Let TI be a cluster tree and let kt ∈ N, t ∈ TI , be given. A family
of matrices V (t) ∈ C

t×kt is called cluster basis for the cluster tree TI and the rank
distribution (kt)t∈TI .

Let cluster bases U := {U(t), t ∈ TI} and V := {V (s), s ∈ TJ} with associated
rank distributions (kU

t)t∈TI and (kV
s)s∈TJ be given. The following set of uniform

H -matrices (see [127]) is a subset of the set of H -matrices.

Definition 2.36. Let TI×J be a block cluster tree generated from the cluster trees TI
and TJ . Furthermore, let U and V be cluster bases for TI and TJ . A matrix A ∈ C

I×J

satisfying

Ats = U(t)S(t,s)V (s)H for all admissible t × s ∈ L (TI×J) (2.20)

and some S(t,s) ∈ C
kU

t ×kV
s is called uniform hierarchical matrix for U and V .

Condition (2.20) means that Ats is in the subspace

span{Ui(t)Vj(t)H , i = 1, . . . ,kU
t , j = 1, . . . ,kV

s },

where Ui and Vj denote the ith and the jth column of U and V , respectively. In con-
trast to H -matrices, uniform H -matrices of common cluster bases form a linear
subspace of C

I×J , which avoids rounding sums. Note that this subspace property
would also hold under the weaker condition that each of the two cluster bases de-
pends on t and s, i.e.,

Ats = U(t,s)S(t,s)V (t,s)H

instead of (2.20).
Let k = max{kU

t ,kV
s ; t ∈ TI , s ∈ TJ}. If many uniform H -matrices of common

cluster bases U and V are to be stored, U and V should be stored separately from
the coefficient matrices S(t,s). The storage requirements of the latter are of the order
k min{|I|, |J|}, which due to

∑
t∈TI

∑
t×s∈P

min{k2, |t|2} ≤ csp ∑
t∈TI

min{k2, |t|2}

can be seen from (1.15). Here, we have assumed that for clusters t,s from the same
level it holds that |t| ≈ |s|.

However, storing the cluster bases still requires k[|I|L(TI) + |J|L(TJ)] units of
storage due to Lemma 1.21. This situation can be improved by introducing a sec-
ond hierarchy. The following space of H 2-matrices (see [136]) consists of uniform
H -matrices of given cluster bases U and V which are nested.

2.11 H 2-Matrices and Fast Multipole Methods 91

Definition 2.37. A cluster basis V is called nested if for each t ∈ T \L (T) there
are transfer matrices Bt ′t ∈ C

kt′×kt such that

(V (t))t ′ = V (t ′)Bt ′t for all t ′ ∈ S(t).

Storing a nested cluster basis requires storing V (t) for all leaf clusters t ∈ L (T)
and the transfer matrices Bt ′t , t ′ ∈ S(t), for all t ∈ T \L (TI), which can be done with
order k|I| units of storage due to (1.15); cf. [129].

Definition 2.38. An H 2-matrix is a uniform H -matrix with nested cluster bases.

While in [136] the Taylor expansion is used to show existence of H 2-matrix ap-
proximants, in [103] a practical procedure for their construction is proposed which
is based on polynomial interpolation. Since polynomials do not provide an optimal
approximation system, algebraic recompression techniques [44, 41] can be used to
improve the approximant. The complexity k|I| can also be achieved by the method
presented in Sect. 3.5, which uses the conceptionally easier uniform H -matrices.

2.11.0.2 Matrix-Vector Multiplication

The matrix-vector multiplication y := y+Ax of an H 2-matrix A by a vector x ∈ C
J

can be done by the following three-phase algorithm; cf. [136].

1. Forward transform
In this first phase, transformed vectors x̂(s) := V (s)Hxs are computed for all
s ∈ TJ . Exploiting the nestedness of the cluster basis V , one has the following
recursive relation

x̂(s) = V (s)Hxs = ∑
s′∈S(s)

BH
s′sV (s′)Hxs′ = ∑

s′∈S(s)
BH

s′sx̂(s
′),

which has to be applied starting from the leaf vectors x̂(s) = V (s)Hxs, s ∈
L (TJ).

2. Far field interaction
In the second phase the products S(t,s)x̂(s) are computed and summed up over
all clusters in Rt := {s ∈ TJ : t × s ∈ P is admissible}:

ŷ(t) := ∑
s∈Rt

S(t,s)x̂(s), t ∈ TI .

3. Backward transform
In this third phase, the vectors ŷ(t) are transformed to the target vector y. The
nestedness of the cluster basis U provides the following recursion which de-
scends the cluster tree TI

(a) Compute ŷ(t ′) := ŷ(t ′)+Bt ′t ŷ(t) for all t ′ ∈ S(t);
(b) Compute yt := yt +U(t)ŷ(t) for all leaf clusters t ∈ L (TI).

92 2 Hierarchical Matrices

4. Near field interaction
Compute yt := yt +Atsxs for all non-admissible blocks t × s ∈ P.

The previous matrix-vector multiplication is an algebraic generalization of the fast
multipole method; see [121] and the improved version [122]. The number of oper-
ations is of the order of the number of involved matrix entries and hence k[|I|+ |J|].
H 2-matrices will therefore improve the asymptotic complexity of H -matrices by
a single logarithmic factor due to the nestedness of the cluster bases. If variable
order techniques are used, i.e., the rank

k(�) = [α(L (TI)− �)+β]γ

with parameters α,β , and γ is chosen depending on the level � of a block, then one
can guarantee linear complexity; cf. [136, 227, 184]. Variable order approximations,
however, are feasible only in very special situations.

In addition to the matrix-vector multiplication, H 2-matrices admit matrix opera-
tions such as matrix addition and matrix multiplication with different cluster bases;
see [42] for addition and multiplication algorithms of complexity k3|I|. For these
operations, however, the problem arises that the cluster bases required to hold the
results of addition and multiplication differ from the bases of the input matrices and
are usually unknown.

2.12 Using Hierarchical Matrices for Preconditioning

When investigating the complexity of algorithms for the solution of linear systems
arising from the discretization of a continuous problem, one considers a sequence
of systems

Anxn = bn, n → ∞, (2.21)

where each An ∈ C
n×n is invertible. However, for the sake of readability the index

n is usually dropped whenever this dependency is obvious from the context. For the
solution of (2.21) either direct or iterative solvers can be used. The complexity of
direct solvers such as Gaussian elimination applied to fully populated linear sys-
tems is of cubic order and hence prohibitively large. There are improved variants
(cf. [78, 4, 230]) of Gaussian elimination if A is sparse. Due to fill-in, these methods
are efficient only in two spatial dimensions. The presented hierarchical LU decom-
position from Sect. 2.9 could in principle be used to compute an approximate LU
decomposition with almost linear complexity. H -matrices, however, can be mul-
tiplied by a vector with complexity kn logn and a much smaller (hidden) constant.
The iterative Krylov subspace methods (cf. [223]) such as the conjugate gradient
method (CG) [145] or the method of generalized minimal residuals (GMRes)
[224], which the matrix A enters only through the matrix-vector product, will hence
be faster provided that the number of iterations is small enough.

2.12 Using Hierarchical Matrices for Preconditioning 93

It is well known that the convergence of Krylov subspace methods is determined
by spectral properties such as the distribution of eigenvalues if A is normal or the
numerical range in the general case. Depending on the mapping properties of the
underlying differential or integral operator A , its discretization A and hence also
its H -matrix approximant AH may be ill-conditioned. In addition, a large condi-
tion number can result from the coefficients of the operator or the discretization of
the geometry even for small n; see Sect. 3.6. Therefore, if (2.21) is to be solved
iteratively, one has to incorporate a preconditioner.

A left preconditioner is a regular and easily invertible matrix C such that C ≈
A−1

H in the sense that the distribution of eigenvalues of CAH leads to an improved
convergence of the respective iteration scheme, where instead of (2.21) one solves
the equivalent linear system

CAH x = Cb.

The convergence rate of Krylov subspace methods in the Hermitian case is deter-
mined by the spectral condition number of CAH . Hence, C has to be chosen such
that cond2(CAH) ∼ 1. If AH is non-Hermitian, the aim of preconditioning is to
obtain a spectrum of CAH which is clustered away from the origin. When Krylov
subspace methods are used, it is not necessary to form the preconditioned matrix
CAH . Instead, vectors should be multiplied by AH and C consecutively. If C is
used as a right preconditioner, (2.21) is replaced by

AH Cx̃ = b.

In the latter case, the solution x can be obtained as x = Cx̃. In this section only
right preconditioners are considered. Left preconditioners can be constructed anal-
ogously.

Since H -matrices provide efficient approximations to the inverse and to the LU
decomposition, they are particularly suited for preconditioning. Although the results
of this section are proved for the approximate inverse, they are obviously also valid
if the approximate LU decomposition AH ≈ LH UH is used as C = (LH UH)−1.
The aim of this section is to establish a relation between the condition number of
AH C and the approximation accuracy ε of the inverse in the Hermitian case. For
non-Hermitian coefficient matrices we will present lower bounds for the distance
of a cluster of eigenvalues of AH C and the origin; cf. [22]. This relation will be
used to find out the required size of ε . It will be seen that a low-accuracy approxi-
mate inverse of AH is sufficient to guarantee a bounded number of preconditioned
iterations of appropriate iterative schemes. In addition, the derived condition will
guarantee required properties of the preconditioner such as invertibility and posi-
tivity. Moreover, the number of iterations will depend neither on the operator nor
on the computational domain but only on the accuracy ε . Numerical experiments
in Sect. 3.6 and Sect. 4.4 will demonstrate the effectiveness of the preconditioner
when it is applied to fully populated matrices arising from the discretization of in-
tegral operators and to sparse discretizations of partial differential operators.

In the first part of this section the case of Hermitian positive definite coefficient
matrices AH is treated, the second part concentrates on the non-Hermitian case.

94 2 Hierarchical Matrices

2.12.1 Hermitian Positive Definite Coefficient Matrices

Depending on the operator A , the approximation AH to the discrete operator A ∈
R

n×n is often Hermitian positive definite. If (2.21) is to be solved iteratively, the
preconditioned conjugate gradient method (PCG) is the method of choice. Its
convergence rate and hence the number of iterations required to obtain a prescribed
accuracy of the solution is determined by the distribution of eigenvalues of AH ; see
Theorem 2.40.

Typically, the condition number of A grows for an increasing number of un-
knowns n. The aim of this section is to present preconditioners C such that the
number of iterations for the preconditioned coefficient matrix AH C is bounded by
a constant. A bounded number of iterations, in turn, is guaranteed by an asymptoti-
cally well-conditioned matrix AH C.

Definition 2.39. Let {An}n∈N
be a sequence of Hermitian matrices. Assume that

there is a constant c > 0 such that

cond2(An) ≤ c (2.22)

for all n ∈ N. Then {An}n∈N
is said to be asymptotically well-conditioned.

The following theorem (cf. [9]) describes the convergence of the conjugate gra-
dient method. The estimate is formulated in terms of the norm ‖x‖AH

:= ‖AH x‖2.

Theorem 2.40. Let the spectrum of AH C be decomposed in the following way:

σ(AH C) =
{

λ ′
i , i = 1, . . . , p

}
∪Λ ∪

{
λ ′′

i , i = 1, . . . ,q
}

, Λ ⊂ [a,b].

Then for the error xk − x, k = 0, . . . ,n−1, of the iterate xk of PCG it holds that

‖xk − x‖AH
≤ 2(cond2(AH C)+1)p

(√
b/a−1

√
b/a+1

)k−p−q

‖x0 − x‖AH
.

Hence, if AH C is asymptotically well-conditioned, we may choose Λ = σ(AH C).
In this case, PCG converges linearly, and the number of iterations depends only on
the condition number of AH C and not on n.

Although asymptotically well-conditioned coefficient matrices lead to a bounded
number of iterations, this number might still be large since the constant in (2.22)
usually depends on the coefficients of the underlying operator A , the geometry, and
its discretization. This influence might be even more severe than the dependence on
n; see the numerical experiments in Sect. 3.6 and Sect. 4.4. As we shall see in the
next lemma, the condition

‖I −AH C‖2 ≤ ε < 1, (2.23)

in which ε does not depend on n, leads to an asymptotically well-conditioned
matrix AH C. Spectral equivalence of two matrices A and B does not require A to

2.12 Using Hierarchical Matrices for Preconditioning 95

approximate B. The matrix 2B, for instance, has the same preconditioning effect
as B. However, if they approximate in a certain sense, any condition number in
the neighborhood of 1 can be achieved by decreasing the approximation error. Es-
pecially, this allows to guarantee problem-independent convergence rates, whereas
non-approximating preconditioners usually are only able to guarantee the bounded-
ness of the condition number.

Lemma 2.41. Assume that (2.23) holds. Then

cond2(AH C) = ‖AH C‖2‖(AH C)−1‖2 ≤
1+ ε
1− ε

. (2.24)

Proof. The assertion follows from the triangle inequality

‖AH C‖2 ≤ ‖I‖2 +‖I −AH C‖2 ≤ 1+ ε

and from the Neumann series

‖(AH C)−1‖2 ≤
∞

∑
k=0

‖I −AH C‖k
2 =

1
1− ε

.

�	

Note that (2.24) provides an explicit bound on the condition number. The choice
ε = 0.5, for instance, guarantees that cond2(AH C)≤ 3. In addition, condition (2.23)
guarantees that C is non-singular. To see this, let λ be an eigenvalue of AH C with
associated eigenvector z, ‖z‖2 = 1, then

|1−λ | = ‖(I −AH C)z‖2 ≤ ‖I −AH C‖2 ≤ ε < 1. (2.25)

Hence, with AH C also C is non-singular. In order to be able to apply PCG, C ad-
ditionally needs to be Hermitian positive definite. It is interesting to see that this is
already guaranteed by condition (2.23).

Lemma 2.42. Assume that AH is Hermitian positive definite. Then any Hermitian
matrix C satisfying (2.23) is positive definite, too.

Proof. According to the assumptions, the square root A1/2
H of AH is defined. Since

AH C is similar to the Hermitian matrix A1/2
H CA1/2

H , the eigenvalues of AH C are

real. Moreover, for the smallest eigenvalue of A1/2
H CA1/2

H it follows from (2.25) that

λmin(A
1/2
H CA1/2

H) = λmin(AH C) ≥ 1− ε.

Let x �= 0 and y = A−1/2
H x. Then y �= 0 and we have

xHCx = yHA1/2
H CA1/2

H y ≥ (1− ε)‖y‖2
2 > 0,

which proves that C is positive definite. �	

96 2 Hierarchical Matrices

From the approximation by H -matrices usually error estimates of the form

‖AH −C−1‖2 ≤ ε‖AH ‖2 or ‖A−1
H −C‖2 ≤ ε‖A−1

H ‖2 (2.26)

instead of (2.23) are satisfied. In this case, the following lemma describes a sufficient
condition on ε .

Lemma 2.43. Assume that (2.26) holds with ε > 0 such that ε ′ := ε cond2(AH) < 1.
Then

cond2(AH C) ≤ 1+ ε ′

1− ε ′
.

Proof. Assume first that ‖AH −C−1‖2 ≤ ε‖AH ‖2. Since

‖I − (AH C)−1‖2 = ‖(AH −C−1)A−1
H ‖2 ≤ ε ‖AH ‖2‖A−1

H ‖2 = ε cond2(AH),

one can apply the estimates of the proof of Lemma 2.41 with AH C replaced by
(AH C)−1.

If ‖A−1
H −C‖2 ≤ ε‖A−1

H ‖2, then

‖I −AH C‖2 = ‖AH (A−1
H −C)‖2 ≤ ε ‖AH ‖2‖A−1

H ‖2 = ε cond2(AH)

gives the assertion. �	

The stronger condition ε cond2(AH) < 1 implies that ε has to go to zero if AH is
not well-conditioned. This, however, will not destroy the almost linear complexity
since it will be seen that the complexity of the H -matrix approximation depends
logarithmically on the accuracy ε .

2.12.1.1 Clusters of Eigenvalues

From Theorem 2.40 it can also be seen that few small or large eigenvalues λ ′
i and

λ ′′
i do not affect the rate of convergence. Therefore, the distribution of eigenval-

ues within the spectrum is even more important for the rate of convergence than
the condition number, which depends only on the minimum and maximum eigen-
value of AH C. A faster convergence of PCG can be obtained by a condition on the
distribution neglecting the size of the interval.

Definition 2.44. By γA(ε) we denote the number of eigenvalues of A ∈ R
n×n lying

outside a disc of radius ε > 0 centered at the origin. The eigenvalues of a sequence of
matrices {An}n∈N

are said to have a cluster at 0 if γAn(ε) is bounded independently
of n. The eigenvalues of {An}n∈N

are said to have a cluster at z ∈ C if {An − zIn}n∈N

has a cluster at 0.

If AH and C are Hermitian positive definite and AH C has a cluster at 1, then
PCG converges super-linearly; i.e., for all sufficiently large n the residual in the kth
step is bounded by cqk for all 0 < q < 1. Why this super-linear convergence happens
is explained in [9].

2.12 Using Hierarchical Matrices for Preconditioning 97

The following theorem states that for the existence of eigenvalue clusters the
approximation C of A−1

H does not have to be too accurate.

Theorem 2.45. Let {An}n∈N
⊂R

n×n be a bounded sequence, i.e., ‖An‖F ≤ c, where
c does not depend on n. Then both the singular values and the eigenvalues of
{An}n∈N

cluster at 0.

Proof. By νA(ε) we denote the number of singular values σi(A), i = 1, . . . ,n, of A
lying outside a disc of radius ε > 0 centered at the origin. Assume that νA(ε) >
c2/ε2. Then

c2 < νA(ε)ε2 ≤
n

∑
i=1

σ2
i (A) = ‖A‖2

F ,

which gives the contradiction. Hence, νA(ε) ≤ c2/ε2.
In order to prove the same property for the eigenvalues, let A = QT QH be Schur’s

form with unitary Q and upper triangular matrix T with the eigenvalues of A on its
diagonal. The assertion follows from

‖A‖2
F = ‖T‖2

F ≥
n

∑
i=1

|λi(A)|2

and the same arguments as above. �	

Therefore, if for C it holds that

‖I −AH C‖F ≤ c

with a constant c > 0 which does not depend on n, then the eigenvalues of AH C
cluster at 1 and PCG converges super-linearly. Note that in order to guarantee that C
is positive definite, we can employ the stabilized rounded addition from Sect. 2.5.1
during the computations without any further assumption on c.

2.12.2 Non-Hermitian Coefficient Matrices

If A is not self-adjoint, then AH cannot be expected to be Hermitian. In this case,
not the spectral condition number of the coefficient matrix but the distance of a
cluster of eigenvalues to the origin usually determines the convergence rate of appro-
priate Krylov subspace methods such as GMRes, BiCGStab, and MinRes. Neverthe-
less, a low-accuracy approximate inverse will be sufficient to guarantee a bounded
number of iterations.

For the convergence of GMRes, for instance, the numerical range

F (AH C) :=
{

xHAH Cx : x ∈ C
n, ‖x‖2 = 1

}

of AH C is of particular importance. It is known (see [117]) that for the kth iterate
xk of GMRes applied to Ax = b it holds that

98 2 Hierarchical Matrices

‖b−AH xk‖2 ≤ 2
(

r
|z|

)k

‖b‖2

provided that F (AH C) ⊂ Br(z), where Br(z) denotes the closed disc around z with
radius r. A similar behavior can be observed for other non-Hermitian Krylov sub-
space methods. Condition (2.23) implies that F (AH C) ⊂ Bε(1), which follows
from

|xHAH Cx−1| = |xH(AH C− I)x| ≤ ‖I −AH C‖2 ≤ ε for all x ∈ C
n, ‖x‖2 = 1.

Therefore, (2.23) also leads to a problem-independent convergence

‖b−AH xk‖2 ≤ 2εk‖b‖2 (2.27)

of GMRes.
In the following chapters these results will be used when solving problems arising

from the discretization of integral operators and boundary value problems.

http://www.springer.com/978-3-540-77146-3

